
Computationally Sound, Automated Proofs
for Security Protocols

Véronique Cortier1 ⋆ and Bogdan Warinschi2 ⋆⋆

1 cortier@loria.fr, Loria, CNRS, Nancy, France, fax: (+33) 3 83 27 83 19
2 bogdan@soe.ucsc.edu, Computer Science Department, University of California at

Santa Cruz, USA

Abstract. Since the 1980s, two approaches have been developed for analyzing security
protocols. One of the approaches relies on a computational model that considers issues
of complexity and probability. This approach captures a strong notion of security, guar-
anteed against all probabilistic polynomial-time attacks. The other approach relies on a
symbolic model of protocol executions in which cryptographic primitives are treated as
black boxes. Since the seminal work of Dolev and Yao, it has been realized that this
latter approach enables significantly simpler and often automated proofs. However, the
guarantees that it offers have been quite unclear.
In this paper, we show that it is possible to obtain the best ofboth worlds: fully automated
proofs and strong, clear security guarantees. Specifically, for the case of protocols that use
signatures and asymmetric encryption, we establish that symbolic integrity and secrecy
proofs are sound with respect to the computational model. The main new challenges
concern secrecy properties for which we obtain the first soundness result for the case of
active adversaries. Our proofs are carried out using Casrul, a fully automated tool.

1 Introduction

Security protocols are short programs designed to achieve various security goals, such
as data privacy and data authenticity, even when the communication between parties
takes place over channels controlled by an attacker. Their ubiquitous presence in many
important applications makes designing and establishing the security of such protocols
a very important research goal. Unfortunately, attaining this goal seems to be quite a
difficult task, and many of the protocols that had been proposed have been found to be
flawed.

Starting in the early ’80s, two distinct and quite differentmethods have emerged in
an attempt to ground the security of protocols on firm, rigorous mathematical founda-
tions. They are generically known as the computational (or the cryptographic) approach
and the symbolic (or the Dolev-Yao) approach.

Under the computational approach, the security of protocols is based on the security
of the underlying primitives, which in turn is proved assuming the hardness of solving

⋆ Véronique Cortier’s work was partly supported by the ACI Jeunes Chercheurs Crypto and the
RNTL project PROUVE-03V360.

⋆⋆ Bogdan Warinschi was partly supported by the National Science Foudation Grants CCR-
0204162 and CCR-0208800

various computational tasks such as factoring or taking discrete logarithms. The main
tools used for proofs arereductions: to prove a protocol secure one shows that a suc-
cessful adversary against the protocol can be efficiently transformed into an adversary
against some primitive used in its construction. Here, quantification is universal over
all possible probabilistic polynomial-time (p.p.t.) adversaries and the execution model
that is analyzed is specified down to the bit-string level. Proofs in the computational
model imply strong guarantees (security holds in the presence of anarbitrary proba-
bilistic polynomial-time adversary). At the same time however, security reductions for
even moderately-sized protocols become extremely long, difficult, and tedious.

The central characteristics of the symbolic approach are anabstract view of the
execution and a significantly limited adversary. More precisely, in this model, the im-
plementation details of the primitives are abstracted away, and the execution is modeled
only symbolically. Furthermore, the actions of the adversary are quite constrained. For
instance, it is postulated that it can recover the plaintextunderlying a ciphertext only if
it can derive the appropriate decryption key. The resultingexecution models are rather
simple and can easily be handled by automated tools. In fact,many security proofs have
already been carried out using model checkers [16] and theorem provers [19]. Unfortu-
nately, the high degree of abstraction and the limited adversary raise serious questions
regarding the security guarantees offered by such proofs, especially from the perspec-
tive of the computational model.

Recently, a significant research effort has been directed atbridging the gap be-
tween the two approaches [3, 18, 5, 17]. The idea is to determine condition under which
symbolic analysis is sound with respect to standard computational models. This path
promises tremendous benefits: protocols can be analyzed andproved secure using the
simpler, automated methods specific to the symbolic approach, yet the security guar-
antees are with respect to the more comprehensive computational model. In this paper
we extend and apply the work of Micciancio and Warinschi [17]to demonstrate for the
first time thatfully automatedsecurity proofs with clear computational implications are
indeed possible.

Specifically, our results are as follows. First, we give a language for specifying
protocols. The syntax of our language is close to that of Casrul and allows the use of
random nonces, digital signatures and public-key encryption. For protocols specified
in this language we give two kinds of executions for protocols. Each of these models
considers a powerfulactiveadversary that controls and potentially tampers with the
communication in an unbounded number of sessions of the protocol executed by honest
users. The first model is a computational model in which the adversary is an arbitrary
p.p.t. algorithm. The second model is symbolic, and the adversary is a typical Dolev-
Yao adversary. One crucial property of the latter model is that it actually coincides with
the execution semantics used by an existing automated tool called Casrul. We then link
the two models in several ways.

Our first contribution (Theorem 1) is a soundness theorem forproofs of trace prop-
erties: if all symbolic traces of a protocol satisfy a certain predicate (i.e. the protocol
is secure in the symbolic model), then the concrete traces satisfy the same predicate
with overwhelming probability against p.p.t. adversaries(i.e. the protocol is secure in

2

the computational model). Our result is a proper extension of a similar theorem of [17]
to protocols that besides nonces and public-key encryptionalso use digital signatures.

Our second main result concerns soundness of secrecy proofs. This issue is signifi-
cantly more challenging since unlike in the case of trace properties, secrecy is formal-
ized in quite different ways in the two models that we consider: inability of deriving the
secret in the formal world3 and indistinguishability of adversary’s views in the compu-
tational world. Nevertheless, we are able to prove that in the case of nonces, symbolic
secrecy implies computational secrecy.

Although our theorems justify formal analysis as used in Casrul [9], we also briefly
considered other automatic tools, such as Proverif [7], Casper [16], and Securify [10]
and we strongly believe that similar soundness results could be obtained for these tools
also. While our choice was mainly determined by our familiarity with Casrul (one of
the authors is a close collaborator of the team that developsCasrul) an additional factor
was that most of the tools dedicated to an unbounded number ofsessions allow only for
proofs of secrecy and not for authenticity.
RELATED WORK. The rationale behind the need for soundness theorems was outlined
by Abadi [1] and the first such result was obtained by Abadi andRogaway [3]. Quite a
few other results followed, and here we recall those that areclosest to our work. These
include the soundness theorem for secrecy properties givenby Abadi and Rogaway for
symmetric encryption in the presence of passive adversaries [3]. Another results is that
of Laud [14] who shows soundness of confidentiality properties for symmetric encryp-
tion in a model with a fixed number of sessions. A soundness result for trace properties
was proved by Micciancio and Warinschi [17] for a language that used random nonces
and public-key encryption. In this paper we extend their work to also include digital
signature and ciphertext forwarding. Soundness of trace properties for an even richer
language that includes in addition symmetric encryption and authentication was given
by Backes, Pfitzmann, and Waidner [5] and work in progress is aimed at achieving
soundness for secrecy of symmetric keys [4]. While it is conceivable that building upon
these results at least partial automation of symbolic proofs can be achieved, this work
still remains to be carried out.

The rest of the paper is structured as follows. In Section 2 webriefly recall dig-
ital signatures and public-key encryption schemes. We present the protocol syntax in
Section 3 and the two execution models in Section 4. In Section 5 we define generic
security properties and prove our soundness theorems for trace and secrecy properties.
Section 6 concludes with a discussion regarding the implications of our results on the
proofs done with Casrul.

2 Computational Cryptography

In this paper we will use a generic digital signature schemeDS = (Ks, Sig, Vf) given,
as usual, by algorithms for key generation, signing and verifying. Also, we consider an
arbitrary public-key encryption schemeAE = (Ke, Enc, Dec) given by algorithms for

3 Secrecy can alternatively be defined using an equivalence based formulation, as in the spi-
calculus [2] for example, but in this paper we concentrate onthe formulation used in Casrul.

3

key generation, encryption and decryption. For a precise specification of their syntax
we refer to [11].

Traditionally, security is defined for each individual primitive separately. Since the
protocols that we aim to analyze may use both encryption and digital signatures, it is
more convenient to define the security of signatures and encryption when used simulta-
neously, in a multi-user environment. We develop a formal model for security that mixes
definitional ideas from [13] (for digital signature schemes) and from [20] and [6] (for
asymmetric encryption). Here, we only give an overview of the definition. The precise
definition can be found in [11]. We consider an experiment parametrized by a digital
signature schemeDS, an asymmetric encryption schemeAE , an adversaryA, a bit b
and a security parameterη. In this experiment the adversaryA has access to anoracle
denotedODS,AE(b, η). The adversary issues the following requests in any order and
any number of times:

– creation of keys: the oracle generates (internally) keys for encryption, decryption,
signing, and verifying and returns the public keys (i.e. keys for encryption and for
verifying) to the adversary.

– signature request: the adversary can request signatures onany message it chooses,
under any of the secret signing keys that has been generated.The oracle computes
such a signature and returns it to the adversary.

– encryption requests: here the adversary submits a pair of messages(m0, m1), spec-
ifies an encryption key that has been generated and obtains from the oracle the
encryption ofmb under that key.

– decryption requests: the adversary can require to see the decryption of any cipher-
text of his choosing, provided that the ciphertext has not been obtained from the
encryption oracle.

The goal of the adversary is to produce a valid signature on some message which it
did not query to the oracle (i.e. break the signature scheme), or determine what is the
selection bitb with probability significantly better than1/2 (i.e.break the encryption).

If for all p.p.t. adversaries either of the above events happens only with negligi-
ble probability4 (in the security parameter), then we say thatDS andAE are jointly
secure. Although this is a new measure of security intended for analyzing security of
encryption and that of signing when used simultaneously, itis easy to prove that it
is implied by standard requirements on the individual primitives. More precisely, it is
easy to show that if the digital signature schemeDS is existentially unforgeable un-
der chosen-message attack [13] and ifAE is secure in the sense of indistinguishability
under chosen-ciphertext attacks (IND-CCA) thenDS andAE are jointly secure.

3 Protocol Syntax

We consider protocols specified in a language similar to the one of Casrul [21] allow-
ing parties to exchange messages built from identities and randomly generated nonces
using public key encryption and digital signatures. Consider an algebraic signatureΣ

4 A function is said to be negligible if it grows slower than theinverse of any polynomial.

4

with the following sorts. A sortID for agent identities, sortsSKey, VKey, EKey, DKey

containing keys for signing, verifying, encryption, and decryption respectively. The al-
gebraic signature also contains sortsNonce, Label, Ciphertext, Signature, andPair for
respectively nonces, labels, ciphertexts, signatures, and pair. The sortLabel is used in
encryption and signatures to distinguish between different encryption/signature of the
same plaintext. The sortTerm is a supersort containing all other sorts, exceptSKey and
DKey. There are nine operations: the four operationsek, dk, sk, vk are defined on the
sort ID and return the encryption key, decryption key, signing key,and verification key
associated to the input identity. The two operationsag andadv are defined on natu-
ral numbers and return labels: these labels are used to differentiate between different
encryptions (and signatures) of the same plaintext, created by the honest agents or the
adversary. We distinguish between labels for agents and forthe adversary since they do
not use the same randomness. The other operations that we consider are pairing, public
key encryption, and signing with the following ranges and domains.

– 〈 , 〉 : Term× Term→ Pair

– { } : EKey × Term× Label→ Ciphertext

– [] : SKey× Term× Label→ Signature

Protocols are specified using the algebra of terms constructed over the above signa-
ture from a setX of sorted variables. Specifically,X = X.n ∪ X.a ∪ X.c ∪ X.s ∪ X.l,
whereX.n, X.a, X.c, X.s, X.l are sets of variables of sort nonce, agent, ciphertext, sig-
nature, and labels respectively. Furthermore,X.a andX.n are as follows. Ifk ∈ N

is some fixed constant representing the number of protocol participants, w.l.o.g. we
fix the set of agent variables to beX.a = {A1, A2, . . . , Ak}, and partition the set of
nonce variables, by the party that generates them. Formally: X.n = ∪A∈X.aXn(A) and
Xn(A) = {Xj

A | j ∈ N}. This partition avoids to specify later, for each role, which
variables stand for generated nonces and which variables stand for expected nonces.

The messages that are sent by participants are specified using terms inTΣ(X), the
free algebra generated byX over the signatureΣ. The individual behavior of each
protocol participant is defined by arole that describes a sequence of message recep-
tions/transmissions. Ak-party protocol is given byk such roles.

Definition 1 (Roles and protocols).The setRoles of roles for protocol participants is
defined byRoles = (({init} ∪ TΣ(X))× (TΣ(X) ∪ {stop}))∗.
Ak-party protocol is a mappingΠ : [k]→ Roles, where[k] denotes the set{1, 2, . . . , k}.

We assume that a protocol specification is such thatΠ(j) = ((lj1, r
j
1), (l

j
2, r

j
2), . . .), the

j’th role in the definition of the protocol being executed by playerAj . Each sequence
((l1, r1), (l2, r2), . . .) ∈ Roles specifies the messages to be sent/received by the party
executing the role: at stepi, the party expects to receive a message conforming toli
and returns messageri. We wish to emphasize however that termslji , r

j
i are not actual

messages but specify how the message that is received and themessage that is output
should look like.

5

Example 1.The Needham-Schroeder-Lowe protocol [15] is specified as follows: there
are two rolesΠ(1) andΠ(2) corresponding to the sender’s role and the receiver’s role.

A→ B : {Na, A}ek(B)

B → A : {Na, Nb, B}ek(A)

A→ B : {Nb}ek(B)

Π(1) = (init, {X1
A1

, A1}
ag(1)
ek(A2)

), ({X1
A1

, X1
A2

, A2}Lek(A1)
, {X1

A2
}

ag(1)
ek(A2)

)

Π(2) = ({X1
A1

, A1}
L1

ek(A2)
, {X1

A1
, X1

A2
, A2}

ag(1)
ek(A1)

), ({X1
A2
}L2

ek(A2)
, stop)

EXECUTABLE PROTOCOLS. Clearly, not all protocols written using the syntax above
are meaningful. We only consider the class ofexecutable protocols, i.e. protocols for
each role can be implemented in an executable program, usingonly the local knowl-
edge of the corresponding agent. This requires in particular that any sent message (cor-
responding to somerj

k) is always deducible from the previously received messages
(corresponding tolj1, . . . , l

j
k). A precise definition may found in [11].

4 Execution Models

In this section we give a symbolic and a computational execution model for the proto-
cols specified using the syntax defined in the previous section. In the symbolic model
the honest parties and the adversary exchange elements of a certain term algebra; the
adversary can compute its messages only following the standard Dolev-Yao restrictions.
In the concrete execution model, the messages that are exchanged are bit-strings and the
honest parties and the adversary are p.p.t. Turing machines.

4.1 Formal Execution Model

In the formal execution model, messages are terms of the freealgebraT f defined by:

T f ::= N | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a, j, s) a ∈ ID, j, s ∈ N

〈T f , T f〉 | {T f}
ag(i)
ek(a) | {T

f}
adv(i)
ek(a) | [T

f]
ag(i)
sk(a) | [T

f]
adv(i)
sk(a) a ∈ ID, i ∈ N

If A is a variable, or constant of sort agent, we define its knowledge bykn(A) =
{dk(A), sk(A)} ∪ Xn(A) i.e. an agent knows its secret decryption and signing key as
well as the nonces it generates during the execution. The formal execution model is
a state transition system. Aglobal stateof the system is given by(SId, f, H) where
H is a set of terms ofT f representing the messages sent on the network andf main-
tains the local states of all sessions idsSId. Session identities are tuples of the form
(n, j, (a1, a2, . . . , ak)) ∈ (N×N× IDk), wheren ∈ N identifies the session, the names
a1, a2, . . . , ak are the identities of the parties that are involved in the protocol andj is
the index of the role that is executed in this session. Mathematically, f is a function
f : SId → ([X → T f] × N × N), wheref(sid) = (σ, i, p) is the local state of session
sid. The functionσ is a partial instantiation of the variables occurring in roleΠ(i) and
p ∈ N is the control point of the program. Three transitions are allowed.

6

m ∈ S
S ⊢ m

b ∈ X.a
S ⊢ b, ek(b), vk(b)

Initial knowledge

S ⊢ m1 S ⊢ m2

S ⊢ 〈m1 , m2〉

S ⊢ 〈m1 , m2〉
i ∈ {1, 2}

S ⊢ mi

Pairing and unpairing

S ⊢ ek(b) S ⊢ m
i ∈ N

S ⊢ {m}
adv(i)
ek(b)

S ⊢ {m}l
ek(b) S ⊢ dk(b)

S ⊢ m

Encryption and decryption

S ⊢ sk(b) S ⊢ m
i ∈ N

S ⊢ [m]
adv(i)
sk(b)

S ⊢ [m]
ag(i)

sk(b)
i, j ∈ N

S ⊢ [m]
adv(j)

sk(b)

S ⊢ [m]lsk(b)

S ⊢ m

Signature

Fig. 1. Deduction rules for the formal adversary; hereS is an arbitrary set of formal terms.

– (SId, f, H)
corrupt(a1,...,al)
−−−−−−−−−−−→ (SId, f,∪1≤j≤lkn(aj)∪H). The adversary corrupts

parties by outputting a set of identities. He receives in return the secret keys corre-
sponding to the identities. It happens only once at the beginning of the execution.

– The adversary can initiate new sessions:(SId, f, H)
new(i,a1,...,ak)
−−−−−−−−−−→ (SId′, f ′, H ′)

whereH ′, f ′ andSId′ are defined as follows. Lets = |SId|+1, be the session iden-
tifier of the new session, where|SId| denotes the cardinality ofSId. H ′ is defined
by H ′ = H ∪ {(s, i, (a1, . . . , ak))} andSId′ = SId ∪ {(s, i, (a1, . . . , ak))}. The
functionf ′ is defined as follows.
• f ′(sid) = f(sid) for everysid ∈ SId.
• f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) whereσ is a partial functionσ : X→ T f and:

{

σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s) j ∈ N

We recall that the principal executing the roleΠ(i) is represented byAi thus, in
that role, every variable of the formXj

Ai
represents a nonce generated byAi.

– The adversary can send messages:(SId, f, H)
send(sid,m)
−−−−−−−→ (SId, f ′, H ′) where

sid ∈ SId, m ∈ T f , H ′, andf ′ are defined as follows. We definef ′(sid′) = f(sid′)
for everysid′ 6= sid. We denoteΠ(j) = ((lj1, r

j
1), . . . , (l

j
kj

, rj
kj

)). f(sid) = (σ, j, p)
for someσ, j, p. There are two cases.
• Either there exists a least general unifierθ of m andljpσ. Thenf ′(sid) = (σ ∪

θ, i, p + 1) andH ′ = H ∪ {rj
pσθ}.

• Or we definef ′(sid) = f(sid) andH ′ = H (the state remains unchanged).

If we denote bySID = N × N × IDk the set of all sessions ids, the set ofsymbolic
execution tracesis SymbTr=SID×(SID→([X→T f]×N×N))×2T f

.
The adversary intercepts messages between honest participants and computes new

messages using the deduction relation⊢ defined in Figure 1. Intuitively,S ⊢ m means
that the adversary is able to compute the messagem from the set of messagesS. All
deduction rules are rather standard with the exception of the last two; for these rules

7

some explanations are in order. The next to last rule states that given a signature on
some messagem, the adversary can compute new signatures on the same message. The
last rules states that the adversary can recover the corresponding message out of a given
signature. Both rules are needed to obtain soundness. The rules reflect capabilities that
do not contradict the standard computational security definition of digital signatures,
and thus are available to computational adversaries.

Then, a symbolic execution trace(SId1, f1, H1), . . . , (SIdn, fn, Hn) is valid if the
messages sent by the adversary can be computed by Dolev-Yao operations,i.e. if, when-

ever(SIdi, fi, Hi)
send(s,m)
−−−−−−−→ (SIdi+1, fi+1, Hi+1), we haveHi ⊢ m. Given a protocol

Π , the set of valid symbolic execution traces is denoted byExecs(Π).

Example 2.Playing with the Needham-Schroeder-Lowe protocol described in Exam-
ple 1, an adversary can corrupt an agenta3, start a new session for the second role with
playersa1, a2 and send the message{n(a3, 1, 1), a1}

adv(1)
ek(a2)

to the player of the second
role. The corresponding valid trace execution is:

(∅, f1, ∅)
corrupt(a3)
−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)
−−−−−−−−→ ({sid1}, f2,kn(a3) ∪ {sid1})

send(sid1,{n3,a1}
adv(1)

ek(a2)
)

−−−−−−−−−−−−−−−→
(

{sid1}, f3,kn(a3) ∪ {sid1, {n3, n2, a2}
ag(1)
ek(a1)}

)

,

wheresid1 = (1, 2, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1), andf2, f3 are defined
as follows:f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) whereσ1(A1) = a1, σ1(A2) =
a2, σ1(X

1
A2

) = n2, andσ2 extendsσ1 by σ2(X
1
A1

) = n3.

4.2 Concrete Execution Model

In a concrete execution, the messages that are exchanged arebit-strings and depend on
a security parameterη (which is used for example to determine the length of random
nonces). We denote byCη the set of valid messages. We denote the subsets contain-
ing values for agent identities, nonces, encryption keys, verification keys, ciphertexts,
signatures, and pairs byCη.a, Cη.n, Cη.e, Cη.v, Cη.c, Cη.s, Cη.p respectively. The im-
plementation is such that each bit-string inCη has a unique type which can be efficiently
recovered by using the functiontype : Cη → {a, n, e, v, c, s, p}. The operations are im-
plemented as follows: we assume a PKI-like setting in which the public keys of parties
(those for encryption and signature verification) are accessible to all parties. We model
this situation by making available to all parties the (efficiently invertible and) publicly
computable functionsvk : Cη.a → Cη.v andek : Cη.a → Cη.e which given an agent
identity return its signature verification key and encryption key respectively. In the con-
crete implementation, encryption, and signing are implemented with encryption scheme
AE = (Ke, Enc, Dec) and digital signature schemeDS = (Ks, Sig, Vf), which we fix
throughout this section. Pairing is implemented by some standard (efficiently invertible)
encoding function〈· , ·〉 : Cη × Cη → Cη.p.

The global state of the execution is a pair(f, SId), wheref is used to represent the
local state of each session, andSId represents the set of session ids.

Session ids are tuples(n, i, (a1, a2, . . . , al)), wheren ∈ N is a unique session iden-
tifier, i is the index of the role executed in this session anda1, a2, . . . ak ∈ Cη are the

8

names of the agents involved in running this session. The state functionf : SId→ [X→
Cη]×N×N, given a session idsid returnsf(sid) = (σ, i, p) whereσ assigns values to
the variables of the program executed in this session (see the discussion regarding the
execution of individual roles),i is the index of the role executed in this session andp is
the program counter that keeps track of the next step to be executed in this session.

We now discuss how the execution proceeds in this setting.

– At the beginning of the execution, the adversary corrupts a set of parties via a
requestcorrupt(a1, a2, . . .), wherea1, a2, . . . ∈ Cη.a are agent identities. As a
result, the key generation algorithms for encryption and signing are executed, the
public keys are published and the secrets keys are given to the adversary.

– The adversary initiates new sessions by issuing requestsnew(i, a1, . . . , ak), with
i ∈ [k] anda1, . . . , ak ∈ Cη.a. In this case, cryptographic keys are generated for
those agents which do not have such keys, the (public) encryption and verification
keys are published and a new session is initiated: if(SId, f) is the state of the
execution prior to the request the resulting state is(SId′, f ′) with SId′ = SId∪{sid},
sid = (|SId|+ 1, i, (a1, . . . , ak)), andf ′ defined as follows:
• f ′(s) = s for s ∈ SId (i.e. the local states of previous sessions stay unchanged)
• f ′(sid) = (σ, i, 1) with σ : X→ Cη defined as follows:

{

σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s)
$
← Cη.n j ∈ N

The local state of the new session is initialized by mapping agent variables to the
names of the agents selected by the adversary, and selectingrandom values for the
nonces generated by the party executing the role.
In addition, for each term{t}l

ek(Aj)
and each term[t]l

sk(Aj)
that are sent (i.e.occur-

ring within some rj
i of Π(i)) we choose random coinsresid(t, Aj , l) and

rs
sid(t, Aj , l) respectively. These coins will later be used in randomizingthe en-

cryption and signing functions in the concrete implementation.
– The third kind of queries are message transmission queriessend(sid, m), with

sid ∈ SId andm ∈ Cη which are processed in two steps:
First, the incoming message is parsed as an instantiation ofthe termlpi , where
we let (σ, i, p) be the local statef(sid) of sessionsid prior to the request. The
parsing is done recursively, on the structure oflpi , and the final result is a mapping
σ′ assigning values inCη to the variables occurring inlpi . To facilitate the parsing
procedure, we assume that 1) from any valid ciphertext it is easy to recover the key
used for encryption (which is public) and 2) from any valid signature, it is easy
to recover the message that was signed and the verification key that needs to be
used for verifying. Both these requirements can be easily achieved by tagging the
signatures and the ciphertext with the appropriate information.
In the second step, the local state ofsid is updated and a protocol message is com-
puted and returned to the adversary. If the parsing procedure fails at any point (the
types of the term and of the bit-string do not match, or a ciphertext is invalidetc)
then the local state ofsid remains unchanged. This is also the case if there exists
some variableX ∈ X for which σ andσ′ assign different values. Otherwise, the

9

local store is updated toσ = σ ∪ σ′ and the answer is computed by replacing each
variableX in rp

i with σ(X) and replacing the encryptions and signatures with their
computational counterparts,i.e.with the randomized functionsEnc andSig.

The execution model that we described above uses randomization: the adversary is
probabilistic, and the honest parties use randomization for generating nonces, encryp-
tions, and signatures. It can be shown that if the adversaryA runs in polynomial-time,
then the honest parties use a number of coins that is a polynomial in the security pa-
rameter. In the following, for a fixed adversaryA we denote by{0, 1}pA(η), resp.
by {0, 1}gA(η), the spaces from where the adversary, resp. the honest parties, draw
the coins used in the execution. Notice that each pair of random coins(RA, RΠ) ∈
{0, 1}pA(η) × {0, 1}gA(η) determines a unique sequence of global states(f1, SId1),
(f2, SId2), . . ., called theconcrete tracedetermined by random coins(RΠ , RA) and
which we denote byExecΠ(RΠ),A(RA)(η). If the set of all possible session ids isSId =

N × [k] × (Cη.a)k then, we denote byConcTr the set of all possible concrete traces:
∪η(SId × [SId→ [X→ Cη])∗.

5 Security Properties and Soundness Theorems

We are interested in two types of security properties. Integrity properties and secrecy
properties. The former are quite general: for example, theyencompass various forms of
authentication (both for messages and entities). Our focuswill be secrecy properties:
we give formalizations for this kind of properties in both the formal and in the compu-
tational model, focusing on nonces. We then prove our secondmain result, a soundness
theorem for secrecy of nonces.

5.1 Relating Symbolic and Concrete Traces

Concrete traces can be regarded as instantiations of formaltraces via appropriate in-
stantiations of the terms. More precisely, given a formal tracets = (SIds

1, f1, H1), . . .,
(SIds

n, fn, Hn), one can obtain a concrete execution tracetc = (SIdc
1, g1), . . . , (SIdc

n, gn)
on the following way. Once an injective functionc : T f → Cη that maps terms
to bitstrings is chosen,tc is obtained by instantiating the local states: iffi(sid) =
(σsid, isid, psid) thengi(sid) = (τ sid, isid, psid) whereτ sid = c ◦ σsid, and the session
ids are unchanged:SIds

i = SIdc
i . In that case, we say thattc is aconcrete instantiation

of ts (or alternativelyts is asymbolic representationof tc) and we writets � tc.
For P ⊆ SymbTr we denote byconcrete(P) the set{tc | ∃ts ∈ P ts � tc} of all

concrete instantiations of symbolic traces inP.
Technically, the following lemma is at the core of our results. It states that with

overwhelming probability, the concrete executions tracesof a protocol are instantiations
of valid symbolic execution traces.

Lemma 1. Let Π be an executable protocol. If in the concrete implementation the
schemesAE andDS are jointly secure then for any p.p.t. algorithmA

Pr
[

∃ts ∈ Execs(Π) | ts � Execc
Π(RΠ),A(RA)(η)

]

≥ 1− νA(η)

10

where the probability is over the choice(RΠ , RA)
$
← {0, 1}pA(η) × {0, 1}gA(η) and

νA(·) is some negligible function.

Proof (Overview).Due to space constraints we only sketch the main aspects of the
proof (details may be found in [11]).

The proof works in two steps. First, we explain how each concrete execution trace
Execc

Π(RΠ),A(RA) determines a unique symbolic tracets. We constructts by tracing the
queries made by the concrete adversaryA and translating them into symbolic queries.
Specifically, we map each bit-stringm occurring in the execution to a symbolic term
c(m) as follows. Agent identities, cryptographic keys and random nonces (which are
quantities that are uniquely determined byRΠ) are canonically mapped to symbolic
representations: for example the bit-string representingthe decryption key of partyai

is mapped tosk(ai). The rest of the messages are interpreted as they occur: eachmes-
sagem sent by the adversary is parsed (notice that all keys that areneeded are already
known) and its symbolic interpretation is obtained by replacing all occurring basic val-
ues (keys, nonces, identities) with their symbolic interpretation, and then replacing the
concrete operations with their symbolic counterparts.

In the second step of the proof, we show that with overwhelming probability over
the choice of(RΠ , RA), the tracets obtained as explained above is a valid execution
trace. We prove this statement by contradiction: given an adversaryAwe construct three
adversariesB1,B2 andB3 such that if with non-negligible probability the symbolic
trace associated to the execution ofA is not a valid Dolev-Yao trace, then at least one
of the three adversaries breaks the joint security ofDS andAE .

The idea behind the construction of these adversaries is to execute adversaryA as a
subroutine, and use access to the oracleODS,AE (to which each of the three adversaries
has access) to simulate the execution of the protocol on behalf of the honest parties.
Then, we show that, using the invalid query made byA, adversaryBi (with i = 1, 2, 3)
can break either the encryption, or the signing scheme, eachof the three adversaries
exploiting one of the following three possibilities. AdversaryB1 is based on the as-
sumption that the invalid query of adversaryA contains a signature[t]sk(ai) under the
secret key of an honest partyai which was never sent prior in the execution. This essen-
tially means that the corresponding concrete term is a signature forgery, and adversary
B1 simply outputs it. AdversariesB2 andB3 correspond to the case where the adversary
A outputs the encryption of some termt such that neithert nor the encryption can be
computed by the adversary from the previous messages using only Dolev-Yao opera-
tions. In this case we show how to use the adversaryA to determine some secret which
he should not have been able to compute. This secret is a random nonce generated by
some honest party in the case of adversaryB2 and a signature also generated by an hon-
est party, in the case of adversaryB3. Moreover, the adversariesB1,B2, andB3 that we
construct are such that their sample space partition the sample space of the experiment
in which adversaryA is executed. Therefore, if with non-negligible probability the ad-
versaryA has an invalid symbolic execution trace, then with non-negligible probability
at least one of the adversariesB1,B2,B3 breaks the joint security ofDS andAE which
contradicts the hypothesis of the theorem. ⊓⊔

11

5.2 Trace Properties

For both the symbolic and the computational execution model, trace properties are pred-
icates on the global execution traces. The definition of security (i.e. when a protocol
satisfies a given trace property) differs between the symbolic and the computational
model. We now give these definitions and give our main result:a soundness theorem
for proofs of trace properties.

SYMBOLIC TRACE PROPERTIES. A symbolic trace property is a predicate on (or alter-
natively a subset of) the setSymbTr. We say that protocolΠ satisfies the symbolic trace
propertyPs ⊆ SymbTr and we writeΠ |=s Ps, if all valid execution traces satisfyPs,
i.e.Execs(Π) ⊆ Ps.

Various definitions of authentication may be expressed using such trace properties.
Informally, a trace of a protocol is a “good” mutual entity authentication trace, if for
any two identitiesa andb, if a (playing the second role of the protocol) has finished a
session of the protocol with intended partnerb (playing the first role of the protocol),
thenb has finished a session with intended partnera. Using this characterization, we say
that a protocol is a secure authentication protocol if all its traces are good. Depending
on which notion of authentication we consider, we may also require that for any session
wherea terminates, there exists exactly one corresponding session whereb terminates
andb must have finished beforea.

COMPUTATIONAL TRACE PROPERTIES. A computational trace property is a predi-
cate onConcTr. We say that protocolΠ satisfies the concrete security propertyPc ⊆
ConcTr, and we writeΠ |=c Pc if its execution traces satisfyPc with overwhelm-
ing probability over the coins used in the execution,i.e. for every p.p.t. adversaryA,
the probabilityPr

[

ExecΠ(RΠ),A(RA)(η) 6∈ Pc
]

is negligible as a function ofη. The

probability is taken over the choice(RΠ , RA)
$
← {0, 1}pA(η) × {0, 1}qA(η).

For mutual authentication, good traces are those satisfying the predicate we sketched
for the symbolic model, but the definition of security for protocols is specific to the
computational setting: it asks from protocol to have good traces with overwhelming
probability. It thus allows for “bad” runs, but only with negligible probability.

One of our contributions is the following soundness theoremfor trace properties.

Theorem 1. Let Π be an executable protocol,Ps ⊆ SymbTr be an arbitrary sym-
bolic trace property andPc ⊆ ConcTr be a computational security property such that
concrete(Ps) ⊆ Pc. ThenΠ |=s Ps impliesΠ |=c Pc.

Proof. LetA be an arbitrary p.p.t. adversary forΠ . We have

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c

˜

≥

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c ∧ ∃t ∈ Exec

s(Π), t � ExecΠ(RΠ),A(RA)(η)
˜

.

SinceΠ |=s Ps andconcrete(Ps) ⊆ Pc it follows that:

Pr
ˆ

ExecΠ(RΠ),A(RA)(η) ∈ P
c

˜

≥ Pr
ˆ

∃t ∈ Exec
s(Π) | t � ExecΠ(RΠ),A(RA)(η)

˜

.

By Lemma 1, we deducePr
[

ExecΠ(RΠ),A(RA)(η) 6∈ Pc
]

≤ νA(η), i.e.Π |=c Πc. ⊓⊔

12

5.3 Secrecy Properties

In the symbolic model, secrecy is naturally expressed as a trace property: a message
is secret if it cannot be derived by the adversary. In the computational model however,
typical definitions are much stronger and they usually say that an attacker cannot obtain
not only the secret, but alsoanypartial information about the secret. In this section we
give symbolic and computational definitions for the secrecyof nonces used in a protocol
and prove a soundness theorem: if a nonce is deemed secret using symbolic techniques,
then the nonce is secret with respect to the stronger, computational definition.

We concentrate on the case of secrecy of nonces since there isno canonical def-
inition for secrecy of composed messages in the computational world. In addition, as
noticed in [12], the definition of secrecy for keys for example has to be weaker than
indistinguishability as soon as the encrypted messages contain some redundancy. How-
ever, if the keys are not used, then security of keys is similar to the security of nonces
and our results yield meaningful results for symmetric key exchange.

SECRECY IN THE SYMBOLIC MODEL. Let Π be an arbitraryk-party protocol. We say
thatΠ guarantees thesecrecyof the nonceXj

Ai
∈ Xn(Ai) if in all possible executions,

each instantiation of this variable remains unknown to the adversary. Formally, this
means that for every valid trace(sid1, f1, H1), . . . , (sidn, fn, Hn) of the protocol, for
every session idsidp = (r, i, (a1, . . . , ak)) wherea1, . . . , ak are honest agents (i.e.
none of them appears in thecorrupt query), we haveHn 6⊢ n(ai, j, r). If this is the
case, we writeΠ |=s SecNonce(i, j).

SECRECY IN THE COMPUTATIONAL MODEL. We define the secrecy of the nonceXj
Ai

in protocolΠ using an experimentExpsec b
ExecΠ,A

(i, j)(η) that we describe below. The
experiment is parametrized by a bitb and involves an adversaryA. The input to the
experiment is a security parameterη. It starts by generating two random noncesn0 and
n1 in Cη.n. Then the adversaryA starts interacting with the protocolΠ as in the exper-
imentExecΠ,A(η): it generates new sessions, sends messages and receives messages to
and from these sessions (as prescribed by the protocol). At some point in the execution
the adversary initiates a sessions in which the role ofAi is executed, and declares this
session under attack. Then, in this session the variableXj

Ai
is instantiated withnb (i.e.

one of the two nonces chosen in the beginning of the experiment, the selection being
made according to the bitb). The rest of the execution is exactly as inExecΠ,A. In the
end, the adversary is givenn0 andn1 and outputs a guessd, which is also the result of
the experiment. We define the advantage of the adversaryA by:

Advsec
ExecΠ,A

(i, j)(η) = Pr
[

Expsec 1
ExecΠ,A

(i, j)(η) = 1
]

−Pr
[

Expsec 0
ExecΠ,A

(i, j)(η) = 1
]

We say that nonceXj
Ai

is computationally secret in protocolΠ , and we writeΠ |=c

SecNonce(i, j) if for every p.p.t. adversaryA its advantage is negligible.
Our second main result, captured by the following theorem, states that if a nonce is

secret in the symbolic model then it is also secret in the computational model.

Theorem 2. Let Π be an executable protocol. If the schemesDS andAE are jointly
secure, then:Π |=f SecNonce(i, j) impliesΠ |=c SecNonce(i, j).

13

6 Automated Proof using Casrul

In this section we describe the automated tool Casrul [9] anddiscuss the implications
of our results for the proofs done with Casrul.

Casrul is a system for automated verification of cryptographic protocols, developed
by the Cassis group at Loria (France) available at

http://www.loria.fr/equipes/cassis/softwares/casrul/
It translates a protocol given in common abstract syntax into a rewrite system. The

rewrite system is processed using a first order theorem prover for equational logic for
the automated detection of flaws. We note that Casrul does notallow the use of signa-
tures and labels yet. Nevertheless, both its syntax and semantics coincide with ours for
public key protocols, i.e.protocols that only use pairing and asymmetric encryption,but
without using labels. We believe that both labels and signatures could be easily added
in Casrul.

AUTOMATED PROOF FOR COMPUTATIONAL SECURITY USINGCASRUL. Casrul can
be used to prove three particular types of properties: entity authentication, authentica-
tion on data and data secrecy. Here, we discuss the implications of these proofs with
respect to the computational model.

The syntax of Casrul does not yet allow the use of labels for encryption. However,
it can be shown that for the security properties that are typically proved with Casrul,
proofs in the execution model without labels are sound w.r.t. the model where labels
are used. Thus, thanks to Theorem 1, Casrul proofs of the security with respect to these
properties have a clear computational interpretation. Forexample, the Casrul proof that
the Needham-Schroeder-Lowe [15] protocol is a secure mutual authentication proto-
col (file NSPK LOWE3.hlpsl) implies the same property, but in the computational
model.

Similarly, Casrul proofs of nonce secrecy imply, via Theorem 2, the strong, com-
putational secrecy notion that we gave in Section 5.3. For example, Casrul enables to
prove the computational secrecy of nonces used in the corrected Needham-Schroeder-
Lowe protocol [15] (fileNSPK LOWE2.hlpsl) and in the SPLICE protocol [22] (file
SPLICE2.hlpsl).

Note that Casrul works only with a finite number of sessions, thus proofs in the
computational model are obtained only for that fixed number of sessions. Nevertheless,
since our proofs consider adversaries that create an unbounded of sessions, we could
also obtain proofs of computational security properties byusing tools dedicated to an
unbounded number of sessions like Hermes [8] or Securify [10]. This would require
to first prove that protocols secure in the symbolic models ofSecurify or Hermes are
also secure in our symbolic model. We believe this to be true since their symbolic
models are very similar to ours. We did not use these tools forour proofs since they
only provide automatic proofs of secrecy. Automated proofsof other security properties
like authentication are still under development.

Acknowledgements:We would like to thank Martin Abadi for enlightening dis-
cussions and advice, Daniele Micciancio for useful suggestions and to the anonymous
referees for their helpful remarks.

14

References

1. M. Abadi. Taming the adversary. InProc. of Crypto’00, 2000.
2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus. InProc.

of the 4th Conf. on Computer and Communications Security, pages 36–47. ACM Press, 1997.
3. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption).Journal of Cryptology, 15(2):103–127, 2002.
4. M. Backes. Personal communication.
5. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested

operations (extended abstract). InProc. of 10th ACM Conference on Computer and Commu-
nications Security (CCS’05), pages 220 – 230, 2003.

6. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting:
Security proofs and improvements. InProc. of Eurocrypt’00, volume 1807 ofLNCS, pages
259–274, 2000.

7. B. Blanchet. An efficient cryptographic protocol verifierbased on prolog rules. InProc. of
the 14th CSFW, June 2001.

8. L. Bozga, Y. Lakhnech, and M. Perin. An automatic tool for the verification of secrecy in
security protocols. In15th Int. Conference on Computer Aided Verification (CAV 2003),
volume 2725 ofLNCS, pages 219–222. Springer, July 2003.

9. Y. Chevalier and L. Vigneron. A tool for lazy verification of security protocols. InProc. of
the 16th Conf. on Automated Software Engineering (ASE-2001). IEEE CS Press, 2001.

10. V. Cortier.A guide for Securify. RNTL EVA project, Report n. 13, December 2003.
11. V. Cortier and B. Warinschi. Computationally sound, automated proofs for security proto-

cols. Research Report RR-5341, INRIA, October 2004.
12. D.H.Phan and D. Pointcheval. Une comparaison entre deuxméthodes de preuve de sécurité.

In Proc. of RIVF, pages 105–110, 2003. In French.
13. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against adaptive

chosen-message attacks.SIAM Journal of Computing, 17(2):281–308, April 1988.
14. P. Laud. Symmetric encryption in automatic analyses forconfidentiality against active ad-

versaries. InProc. of 2004 IEEE Symposium on Security and Privacy, pages 71–85, 2004.
15. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In

Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume
1055 ofLNCS, pages 147–166. Springer-Verlag, March 1996.

16. G. Lowe. Casper: A compiler for the analysis of security protocols. InProc. of 10th
CSFW’97. IEEE Computer Society Press, 1997.

17. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. InTheory of Cryptography Conference (TCC 2004), pages 133–151, Cam-
bridge, MA, USA, February 2004. Springer-Verlag.

18. J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilistic polynomial-time
calculus for analysis of cryptographic protocols.Electronic Notes in Theoretical Computer
Science, 45, 2001.

19. L. Paulson. Mechanized proofs for a recursive authentication protocol. InProc. of the 10th
CSFW’97, pages 84–95. IEEE Computer Society Press, 1997.

20. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and chosen
ciphertext attack. InCRYPTO’91, pages 433–444, 1992.

21. M. Rusinowitch and M. Turuani. Protocol insecurity withfinite number of sessions is NP-
complete. InProc. of the 14th CSFW’01, pages 174–190. IEEE Computer Society Press,
2001.

22. S. Yamaguchi, K. Okayama, and H. Miyahara. The design andimplementation of an authen-
tication system for the wide area distributed environment.IEICE Transactions on Informa-
tion and Systems, November 1991.

15

