Computationally Sound, Automated Proofs
for Security Protocols

Veéronique Cortiet * and Bogdan Warinschi*

Y cortier@oria. fr,Loria, CNRS, Nancy, France, fax: (+33) 38327 83 19
2 bogdan@oe. ucsc. edu, Computer Science Department, University of California at
Santa Cruz, USA

Abstract. Since the 1980s, two approaches have been developed fgzengpsecurity
protocols. One of the approaches relies on a computationdehthat considers issues
of complexity and probability. This approach captures arsirnotion of security, guar-
anteed against all probabilistic polynomial-time attackise other approach relies on a
symbolic model of protocol executions in which cryptogriapprimitives are treated as
black boxes. Since the seminal work of Dolev and Yao, it haanbealized that this
latter approach enables significantly simpler and ofteormated proofs. However, the
guarantees that it offers have been quite unclear.

In this paper, we show that it is possible to obtain the bebbtff worlds: fully automated
proofs and strong, clear security guarantees. Specifidatiyhe case of protocols that use
signatures and asymmetric encryption, we establish thrabslic integrity and secrecy
proofs are sound with respect to the computational moded mhin new challenges
concern secrecy properties for which we obtain the first doass result for the case of
active adversaries. Our proofs are carried out using Caaffully automated tool.

1 Introduction

Security protocols are short programs designed to achiakiews security goals, such
as data privacy and data authenticity, even when the conuation between parties
takes place over channels controlled by an attacker. Théguitous presence in many
important applications makes designing and establistiiagécurity of such protocols
a very important research goal. Unfortunately, attainimnig goal seems to be quite a
difficult task, and many of the protocols that had been preddgve been found to be
flawed.

Starting in the early '80s, two distinct and quite differamtthods have emerged in
an attempt to ground the security of protocols on firm, riggranathematical founda-
tions. They are generically known as the computationalerctryptographic) approach
and the symbolic (or the Dolev-Yao) approach.

Under the computational approach, the security of prosisdbased on the security
of the underlying primitives, which in turn is proved assagihe hardness of solving

* Véronique Cortier's work was partly supported by the AClides Chercheurs Crypto and the
RNTL project PROUVE-03V360.
** Bogdan Warinschi was partly supported by the National S&eRoudation Grants CCR-
0204162 and CCR-0208800



various computational tasks such as factoring or takingrdie logarithms. The main
tools used for proofs areeductions to prove a protocol secure one shows that a suc-
cessful adversary against the protocol can be efficierdlysiormed into an adversary
against some primitive used in its construction. Here, tjfieation is universal over

all possible probabilistic polynomial-time (p.p.t.) adveiea and the execution model
that is analyzed is specified down to the bit-string levebd?®s in the computational
model imply strong guarantees (security holds in the presef anarbitrary proba-
bilistic polynomial-time adversary). At the same time hoee security reductions for
even moderately-sized protocols become extremely lorifigult, and tedious.

The central characteristics of the symbolic approach aralmtract view of the
execution and a significantly limited adversary. More pselbj, in this model, the im-
plementation details of the primitives are abstracted aamg the execution is modeled
only symbolically. Furthermore, the actions of the adversae quite constrained. For
instance, it is postulated that it can recover the plaintexterlying a ciphertext only if
it can derive the appropriate decryption key. The resulérgcution models are rather
simple and can easily be handled by automated tools. Infeaty security proofs have
already been carried out using model checkers [16] and éneprovers [19]. Unfortu-
nately, the high degree of abstraction and the limited ashrgrraise serious questions
regarding the security guarantees offered by such prosfga@ally from the perspec-
tive of the computational model.

Recently, a significant research effort has been directeutidging the gap be-
tween the two approaches [3, 18,5, 17]. The idea is to detergondition under which
symbolic analysis is sound with respect to standard contiputel models. This path
promises tremendous benefits: protocols can be analyzedramdd secure using the
simpler, automated methods specific to the symbolic approgat the security guar-
antees are with respect to the more comprehensive compaatnodel. In this paper
we extend and apply the work of Micciancio and Warinschi [tb7/dlemonstrate for the
first time thatfully automatedsecurity proofs with clear computational implications are
indeed possible.

Specifically, our results are as follows. First, we give agiamge for specifying
protocols. The syntax of our language is close to that of @asrd allows the use of
random nonces, digital signatures and public-key enavypti-or protocols specified
in this language we give two kinds of executions for protec@ach of these models
considers a powerfuhctive adversary that controls and potentially tampers with the
communication in an unbounded number of sessions of theqobéxecuted by honest
users. The first model is a computational model in which theeeghry is an arbitrary
p.p.t. algorithm. The second model is symbolic, and the exdweg is a typical Dolev-
Yao adversary. One crucial property of the latter model & thactually coincides with
the execution semantics used by an existing automatedatieticCasrul. We then link
the two models in several ways.

Ouir first contribution (Theorem 1) is a soundness theorempiioofs of trace prop-
erties: ifall symbolic traces of a protocol satisfy a certain predicate the protocol
is secure in the symbolic model), then the concrete tracesfysthe same predicate
with overwhelming probability against p.p.t. adversaf(ies. the protocol is secure in



the computational model). Our result is a proper extensf@smilar theorem of [17]
to protocols that besides nonces and public-key encrypimuse digital signatures.

Our second main result concerns soundness of secrecy piidaésissue is signifi-
cantly more challenging since unlike in the case of trac@ertes, secrecy is formal-
ized in quite different ways in the two models that we consittability of deriving the
secret in the formal worftland indistinguishability of adversary’s views in the compu
tational world. Nevertheless, we are able to prove that énddse of nonces, symbolic
secrecy implies computational secrecy.

Although our theorems justify formal analysis as used inr@lig9], we also briefly
considered other automatic tools, such as Proverif [7]p€aEL6], and Securify [10]
and we strongly believe that similar soundness resultsddoellobtained for these tools
also. While our choice was mainly determined by our familjawith Casrul (one of
the authors is a close collaborator of the team that develagsul) an additional factor
was that most of the tools dedicated to an unbounded numlisessions allow only for
proofs of secrecy and not for authenticity.

RELATED WORK. The rationale behind the need for soundness theorems vtirseolu
by Abadi [1] and the first such result was obtained by Abadi Rodaway [3]. Quite a
few other results followed, and here we recall those thatkosest to our work. These
include the soundness theorem for secrecy properties giyétbadi and Rogaway for
symmetric encryption in the presence of passive advessg]eAnother results is that
of Laud [14] who shows soundness of confidentiality proesrfor symmetric encryp-
tion in a model with a fixed number of sessions. A soundnesstres trace properties
was proved by Micciancio and Warinschi [17] for a languaga tised random nonces
and public-key encryption. In this paper we extend theirkuor also include digital
signature and ciphertext forwarding. Soundness of traopeaties for an even richer
language that includes in addition symmetric encryptioth anthentication was given
by Backes, Pfitzmann, and Waidner [5] and work in progressnsed at achieving
soundness for secrecy of symmetric keys [4]. While it is @weble that building upon
these results at least partial automation of symbolic greah be achieved, this work
still remains to be carried out.

The rest of the paper is structured as follows. In Section 2oviefly recall dig-
ital signatures and public-key encryption schemes. Weegnttethe protocol syntax in
Section 3 and the two execution models in Section 4. In Sed&iwe define generic
security properties and prove our soundness theoremsdfoe ind secrecy properties.
Section 6 concludes with a discussion regarding the imjidina of our results on the
proofs done with Casrul.

2 Computational Cryptography

In this paper we will use a generic digital signature sch@nse= (K, Sig, Vf) given,
as usual, by algorithms for key generation, signing andyieg. Also, we consider an
arbitrary public-key encryption schem#€ = (K, Enc, Dec) given by algorithms for

% Secrecy can alternatively be defined using an equivalensedbformulation, as in the spi-
calculus [2] for example, but in this paper we concentratéherformulation used in Casrul.



key generation, encryption and decryption. For a precigeifipation of their syntax
we refer to [11].

Traditionally, security is defined for each individual pitive separately. Since the
protocols that we aim to analyze may use both encryption &githtisignatures, it is
more convenient to define the security of signatures and/ption when used simulta-
neously, in a multi-user environment. We develop a formadeldor security that mixes
definitional ideas from [13] (for digital signature schemaad from [20] and [6] (for
asymmetric encryption). Here, we only give an overview @& tiefinition. The precise
definition can be found in [11]. We consider an experimenapwatrized by a digital
signature schem®S, an asymmetric encryption schen, an adversany, a bitb
and a security parameter In this experiment the adversary/has access to aracle
denotedOps 4¢ (b, n). The adversary issues the following requests in any ordér an
any number of times:

— creation of keys: the oracle generates (internally) keyeferyption, decryption,
signing, and verifying and returns the public keye.(keys for encryption and for
verifying) to the adversary.

— signature request: the adversary can request signatur@syomessage it chooses,
under any of the secret signing keys that has been genefdtechracle computes
such a signature and returns it to the adversary.

— encryption requests: here the adversary submits a pair séages$m,, m1 ), spec-
ifies an encryption key that has been generated and obtainstfie oracle the
encryption ofm; under that key.

— decryption requests: the adversary can require to see thgptmn of any cipher-
text of his choosing, provided that the ciphertext has nenbebtained from the
encryption oracle.

The goal of the adversary is to produce a valid signature omesmessage which it
did not query to the oracle.é. break the signature scheme), or determine what is the
selection bit with probability significantly better thaih/2 (i.e. break the encryption).

If for all p.p.t. adversaries either of the above events leagponly with negligi-
ble probability* (in the security parameter), then we say tha and.A€ are jointly
secure. Although this is a new measure of security intendedrialyzing security of
encryption and that of signing when used simultaneouslig #&asy to prove that it
is implied by standard requirements on the individual ptives. More precisely, it is
easy to show that if the digital signature schefg is existentially unforgeable un-
der chosen-message attack [13] and is secure in the sense of indistinguishability
under chosen-ciphertext attackD-CCA) thenDS and. A€ are jointly secure.

3 Protocol Syntax

We consider protocols specified in a language similar to treeaf Casrul [21] allow-
ing parties to exchange messages built from identities andamly generated nonces
using public key encryption and digital signatures. Coesah algebraic signatute

4 A function is said to be negligible if it grows slower than theerse of any polynomial.



with the following sorts. A sortD for agent identities, sortSKey, VKey, EKey, DKey
containing keys for signing, verifying, encryption, anccdgtion respectively. The al-
gebraic signature also contains sdtitsnce, Label, Ciphertext, Signature, andPair for
respectively nonces, labels, ciphertexts, signatures pair. The sortabel is used in
encryption and signatures to distinguish between diffeesieryption/signature of the
same plaintext. The sofierm is a supersort containing all other sorts, excgf¢y and
DKey. There are nine operations: the four operatiekslk, sk, vk are defined on the
sortID and return the encryption key, decryption key, signing ke verification key
associated to the input identity. The two operatiagsand adv are defined on natu-
ral numbers and return labels: these labels are used toetfitiate between different
encryptions (and signatures) of the same plaintext, cidayehe honest agents or the
adversary. We distinguish between labels for agents anthéoadversary since they do
not use the same randomness. The other operations that wieleoare pairing, public
key encryption, and signing with the following ranges andhdms.

— (_,-) : Term x Term — Pair
— {_}-: EKey x Term x Label — Ciphertext
— [-]- : SKey x Term x Label — Signature

Protocols are specified using the algebra of terms constiumter the above signa-
ture from a seK of sorted variables. Specificallitf = X.n U X.a U X.c U X.s U X.,
whereX.n, X.a, X.c, X.s, X.l are sets of variables of sort nonce, agent, ciphertext, sig-
nature, and labels respectively. Furthermote; and X.n are as follows. Ifk € N
is some fixed constant representing the number of protoaticeants, w.l.o.g. we
fix the set of agent variables to bea = {A;, Ao, ..., Ax}, and partition the set of
nonce variables, by the party that generates them. Formaly= Uaex..X,.(A4) and
Xn(A) = {XY | j € N}. This partition avoids to specify later, for each role, which
variables stand for generated nonces and which variatded $or expected nonces.

The messages that are sent by participants are specifiegitasms inT 5 (X), the
free algebra generated B¢ over the signature”. The individual behavior of each
protocol participant is defined by rale that describes a sequence of message recep-
tions/transmissions. A-party protocol is given by such roles.

Definition 1 (Roles and protocols)The seRoles of roles for protocol participants is
defined byRoles = (({init} U Tx (X)) x (Tx(X) U {stop}))*.
A k-party protocol is amappind! : [k] — Roles, where[k] denotesthe sétl, 2, ..., k}.

We assume that a protocol specification is such thgt) = ((1Z,77), (13,73), .. .), the

j'th role in the definition of the protocol being executed byysrA;. Each sequence
((I1,71), (I2,7m2),...) € Roles specifies the messages to be sent/received by the party
executing the role: at stejy the party expects to receive a message conformirlg to
and returns message We wish to emphasize however that terths-) are not actual
messages but specify how the message that is received anmteisage that is output
should look like.



Example 1.The Needham-Schroeder-Lowe protocol [15] is specified bavfs: there
are two roled7(1) andII(2) corresponding to the sender’s role and the receiver’s role.

A— B: {N,, Alex)
B— A: {Na,Nb,B}ek(A)
A— B: {Nb}ek(B)

.. 1 1
(1) = (init, { X5, A L), (X, XAy, AodE ) AXE, )
1
(2) = ({X4,, A} G,y {X;h,ngz,Az}zg((Aﬁ)), ({X4, Y22 4,)r5tOP)

EXEcUTABLE PROTOCOLS Clearly, not all protocols written using the syntax above
are meaningful. We only consider the classegEcutable protoco]s.e. protocols for
each role can be implemented in an executable program, osilygthe local knowl-
edge of the corresponding agent. This requires in particbo&t any sent message (cor-
responding to some}) is always deducible from the previously received messages
(corresponding té;, . . ., I7). A precise definition may found in [11].

4 Execution Models

In this section we give a symbolic and a computational exesuhodel for the proto-
cols specified using the syntax defined in the previous sedtiothe symbolic model
the honest parties and the adversary exchange elementsdfainderm algebra; the
adversary can compute its messages only following the atdridbolev-Yao restrictions.
In the concrete execution model, the messages that arergy@thare bit-strings and the
honest parties and the adversary are p.p.t. Turing machines

4.1 Formal Execution Model

In the formal execution model, messages are terms of theafgabral/ defined by:

T? :=N|a|ek(a) | dk(a) | sk(a) | vk(a) | n(a, j,s) aclD,j,seN
ag(i adv(i ag(i adv(s ,
(75, TF) [{TTYED) AT ) [P35 a€lDjieN

If A is a variable, or constant of sort agent, we define its knogdeby kn(A4) =
{dk(A),sk(A4)} U X, (A) i.e. an agent knows its secret decryption and signing key as
well as the nonces it generates during the execution. Thedbexecution model is
a state transition system. @lobal stateof the system is given bySld, f, H) where

H is a set of terms of'/ representing the messages sent on the networkfandin-
tains the local states of all sessions &ld. Session identities are tuples of the form
(n,j, (a1, az,...,a)) € (Nx Nx ID¥), wheren € N identifies the session, the names
ai,az,...,a are the identities of the parties that are involved in theégwol andj is
the index of the role that is executed in this session. Mattieally, f is a function
f:Sld — ([X — T¥] x N x N), wheref(sid) = (o,1,p) is the local state of session
sid. The functiono is a partial instantiation of the variables occurring irerdl (<) and

p € Nis the control point of the program. Three transitions alevedd.



——meES — b eXa i
SEm S F b, ek(b), vk(b) Initial knowledge

SkEFmi Stmg St (m1,ma) B B
— ———— i€ {1,2} Pairing and unpairing
S}_<mlzm2> SFmZ

Stek(d) SEm Sk l S - dk(b
— i €eN {m}en) (%) Encryption and decryption

adv ()
8= {m}id Stm
St sk(b) Stkm S+ [m]ag(i> SE iml
adv(z) i 7::\/((17?) 7‘7.] eN [m]Sk<b) Signature
S [m]Sk(b) Sk [m]sk(b)J SEm

Fig. 1. Deduction rules for the formal adversary; hetés an arbitrary set of formal terms.

corrupt(ai,...,a;)

— (Sld, f, H) (Sld, f,Ui<j<ikn(a;) U H). The adversary corrupts
parties by outputting a set of identities. He receives inmethe secret keys corre-
sponding to the identities. It happens only once at the Imégiof the execution.

— The adversary can initiate new sessioffsd, f, H) new(he1,mak), (Sid’, ', H')
whereH’, f/ andSld’ are defined as follows. Let= |Sld|+ 1, be the session iden-
tifier of the new session, whet8ld| denotes the cardinality &fld. H' is defined
by H = H U{(s,i,(ay,...,ax))} andSld" = Sld U {(s, i, (ay,...,ax))}. The
function f’ is defined as follows.

e f'(sid) = f(sid) for everysid € Sld.

o f'(s,i,(ay,...,ax)) = (o,i,1) whereo is a partial functionr : X — 7'/ and:
O'(Aj‘) :aj ].S]Sk
o(X},) =nlai,j,s) jEN

We recall that the principal executing the rdlg(i) is represented byl; thus, in
that role, every variable of the ford -]41, represents a nonce generateddy

_ The adversary can send messag&td, f, H) “™. (14 7 H') where
sid € Sld, m € T/, H', andf’ are defined as follows. We defirfé(sid’) = f(sid")
for everysid’ # sid. We denotd1(j) = ((11,71), ..., (11,7 ). f(sid) = (o, 4,p)
for someo, j, p. There are two cases. Y

« Either there exists a least general unifiesf . andl/o. Thenf’(sid) = (o U
0,i,p+1)andH’ = H U {rio6}.
e Or we definef’(sid) = f(sid) andH' = H (the state remains unchanged).

If we denote bySID = N x N x ID” the set of all sessions ids, the setsymbolic
execution traces SymbTr=S5ID x (SID — ([X — T¥] x Nx N)) x 27"

The adversary intercepts messages between honest pantei@nd computes new
messages using the deduction relatiodefined in Figure 1. Intuitivelys - m means
that the adversary is able to compute the messadeom the set of messages All
deduction rules are rather standard with the exception eidkt two; for these rules



some explanations are in order. The next to last rule sthtsgiven a signature on
some message, the adversary can compute new signatures on the same ree$bag
last rules states that the adversary can recover the comdspy message out of a given
signature. Both rules are needed to obtain soundness. Twrailect capabilities that
do not contradict the standard computational security digfimof digital signatures,
and thus are available to computational adversaries.

Then, a symbolic execution tra€8ldy, f1, H1), ..., (Sld,, f», H,) is valid if the
messages sent by the adversary can be computed by Dolevp¥eationsi.e. if, when-

ever(Sld,, fi, Hy) 2™ (Sid,. 1, fisr, Hisn), we haveH; F m. Given a protocol
11, the set of valid symbolic execution traces is denote@ue® (7).

Example 2.Playing with the Needham-Schroeder-Lowe protocol descriln Exam-
ple 1, an adversary can corrupt an ageptstart a new session for the second role with
playersa;, a; and send the message(as, 1, 1), al}ZE(VC(LB to the player of the second
role. The corresponding valid trace execution is:

(0, fr,0) <UPHO) (g p kn(ag)) 20 ((6id, Y, £, kn(ag) U {sidi})

dv (1) )

send (sid1,{n3,a1 }:k(%)

({Sidl}af:s,kn(%) U {sidy, {713,”2,@2}25((2) ) ;

wheresid; = (1,2, (a1, a2)), ne = n(az, 1,1),ng = n(as, 1,1), andfs, f3 are defined
as fO”OWS:fQ(Sidl) = (0'1, 2, 1), fg(sidl) = (0'2, 2, 2) Whereal(Al) = a, 0'1(142) =
az, 01(X},) = na, ando, extendsr; by 02(X} ) = ns.

4.2 Concrete Execution Model

In a concrete execution, the messages that are exchangkeit-sittngs and depend on
a security parameter (which is used for example to determine the length of random
nonces). We denote h§’ the set of valid messages. We denote the subsets contain-
ing values for agent identities, nonces, encryption kegsfication keys, ciphertexts,
signatures, and pairs by".a,C".n,C".e,C".v,C".c,C".s,C".p respectively. The im-
plementation is such that each bit-string’ihhas a unique type which can be efficiently
recovered by using the functiappe : C" — {a,n,e, v, ¢, s,p}. The operations are im-
plemented as follows: we assume a PKI-like setting in whiehgublic keys of parties
(those for encryption and signature verification) are asibés to all parties. We model
this situation by making available to all parties the (effidly invertible and) publicly
computable functiongk : C".a — C".v andek : C".a — C".e which given an agent
identity return its signature verification key and encrgptkey respectively. In the con-
crete implementation, encryption, and signing are impletee with encryption scheme
AE = (Ke, Enc, Dec) and digital signature scheniaS = (K, Sig, Vf), which we fix
throughout this section. Pairing is implemented by somrdsted (efficiently invertible)
encoding function(- ,-) : C" x C" — C".p.

The global state of the execution is a p@frSid), wheref is used to represent the
local state of each session, a8ld represents the set of session ids.

Session ids are tuplés, i, (a1, a9, ..., a;)), wheren € N is a unique session iden-
tifier, 7 is the index of the role executed in this session ands, ...a; € C" are the



names of the agents involved in running this session. The fstactionf : Sld — [X —
C"] x N x N, given a session isid returnsf (sid) = (o, 4, p) whereo assigns values to
the variables of the program executed in this session (gdifltussion regarding the
execution of individual roles), is the index of the role executed in this session arl
the program counter that keeps track of the next step to beue@ in this session.

We now discuss how the execution proceeds in this setting.

— At the beginning of the execution, the adversary corruptgtao$ parties via a
requestcorrupt(as, as, . ..), whereay,as,... € C".a are agent identities. As a
result, the key generation algorithms for encryption amphisig are executed, the
public keys are published and the secrets keys are givertadbersary.

— The adversary initiates new sessions by issuing requesti, ay, . . . , ax ), with
i € [k] anday,...,a; € C".a. In this case, cryptographic keys are generated for
those agents which do not have such keys, the (public) etiaryand verification
keys are published and a new session is initiatedSid, f) is the state of the
execution prior to the request the resulting stat&lg’, f/) with Sid" = SldU{sid},
sid = (|Sld| + 1,4, (a1, . .., ax)), and f’ defined as follows:

e f'(s) = sfors € Sld (i.e.the local states of previous sessions stay unchanged)
o f/(sid) = (o,4,1) with o : X — C" defined as follows:

o(X},) = nlai,j,s) &C'n jEN

The local state of the new session is initialized by mappopgna variables to the
names of the agents selected by the adversary, and seleatitigm values for the
nonces generated by the party executing the role.

In addition, for each temﬁt}lek(Aj) and each tern[t]ik(Aj) that are sentife. occur-

ring within somer/ of II(i)) we choose random coinses(t, A;, 1) and
rs¥d(t, A;,1) respectively. These coins will later be used in randomiziregen-
cryption and signing functions in the concrete implemeatat

— The third kind of queries are message transmission qusdasl(sid, m), with
sid € Sld andm € C" which are processed in two steps:
First, the incoming message is parsed as an instantiatidheoferm!”, where
we let (0,4, p) be the local statef(sid) of sessionsid prior to the request. The
parsing is done recursively, on the structurelgfand the final result is a mapping
o’ assigning values ig" to the variables occurring iff . To facilitate the parsing
procedure, we assume that 1) from any valid ciphertext iagydo recover the key
used for encryption (which is public) and 2) from any validrsiture, it is easy
to recover the message that was signed and the verificatipthke needs to be
used for verifying. Both these requirements can be easityeaed by tagging the
signatures and the ciphertext with the appropriate infdiona
In the second step, the local statesiefis updated and a protocol message is com-
puted and returned to the adversary. If the parsing proeefdils at any point (the
types of the term and of the bit-string do not match, or a adifgxt is invalidetc)
then the local state afid remains unchanged. This is also the case if there exists
some variableX € X for which o ando’ assign different values. Otherwise, the



local store is updated t® = o U ¢’ and the answer is computed by replacing each
variableX in r? with o(X') and replacing the encryptions and signatures with their
computational counterpartse. with the randomized functiorSnc andSig.

The execution model that we described above uses randaoomizéte adversary is
probabilistic, and the honest parties use randomizatiogéoerating nonces, encryp-
tions, and signatures. It can be shown that if the adverdamyns in polynomial-time,
then the honest parties use a number of coins that is a polghanthe security pa-
rameter. In the following, for a fixed adversa® we denote by{0, 1}74(), resp.
by {0,1}94(" the spaces from where the adversary, resp. the honesegadtiaw
the coins used in the execution. Notice that each pair ofaandoins(R 4, Ry7) €
{0,137 x {0,1}94( determines a unique sequence of global stafesSld;),
(f2,Sld2), . .., called theconcrete tracedetermined by random coing?;;, R.4) and
which we denote b¥xec 7 (r ), 4(r.4)(1)- If the set of all possible session idsS&l =

N x [k] x (C".a)* then, we denote bfoncTr the set of all possible concrete traces:
Up(SId x [SId — [X — C"])*.

5 Security Properties and Soundness Theorems

We are interested in two types of security properties. Irtgg@roperties and secrecy
properties. The former are quite general: for example, #resompass various forms of
authentication (both for messages and entities). Our faglide secrecy properties:

we give formalizations for this kind of properties in botketformal and in the compu-

tational model, focusing on nonces. We then prove our seomid result, a soundness
theorem for secrecy of nonces.

5.1 Relating Symbolic and Concrete Traces

Concrete traces can be regarded as instantiations of fdaraxds via appropriate in-
stantiations of the terms. More precisely, given a formatet® = (SId7, f1, H1), .. .,
(SId;,, fn, Hy), One can obtain a concrete execution trgice (SIdf, ¢1), ..., (Sld;, g»)
on the following way. Once an injective functian: 77 — C7 that maps terms
to bitstrings is chosen,® is obtained by instantiating the local states;fjfsid) =
(o514, 3514 psid) then g;(sid) = (759,i%9, psid) wherersd = ¢ o 0%, and the session
ids are unchange®ld; = SId;. In that case, we say th#tis aconcrete instantiation
of ¢* (or alternativelyt® is asymbolic representatioof :°) and we writet® < ¢€.

ForP C SymbTr we denote byoncrete(P) the set{tc | 3¢t € P t* < ¢¢} of all
concrete instantiations of symbolic trace$in

Technically, the following lemma is at the core of our result states that with
overwhelming probability, the concrete executions trafesprotocol are instantiations
of valid symbolic execution traces.

Lemma 1. Let IT be an executable protocol. If in the concrete implementatiee
schemesA€ and DS are jointly secure then for any p.p.t. algorithsh

Pr | 3t° € Exec”(II) | t* < Execly(ry),ara)(m) | =1 —va(n)

10



where the probability is over the choi¢®;;, R4) < {0,1}P4( x {0,1}94(") and
v 4(+) is some negligible function.

Proof (Overview).Due to space constraints we only sketch the main aspectsof th
proof (details may be found in [11]).

The proof works in two steps. First, we explain how each cetgcexecution trace
Execﬁy(Rn)_’A(RA) determines a unique symbolic traceWe construct® by tracing the
gueries made by the concrete adversdrgnd translating them into symbolic queries.
Specifically, we map each bit-string occurring in the execution to a symbolic term
c(m) as follows. Agent identities, cryptographic keys and randwnces (which are
guantities that are uniquely determined By;) are canonically mapped to symbolic
representations: for example the bit-string represerttiegdecryption key of party;
is mapped tak(a;). The rest of the messages are interpreted as they occurnezssh
sagem sent by the adversary is parsed (notice that all keys thaieeded are already
known) and its symbolic interpretation is obtained by rejig all occurring basic val-
ues (keys, nonces, identities) with their symbolic intetation, and then replacing the
concrete operations with their symbolic counterparts.

In the second step of the proof, we show that with overwhejnpirobability over
the choice of (R, R.4), the tracet® obtained as explained above is a valid execution
trace. We prove this statement by contradiction: given aesary.A we construct three
adversaried3;, B, and B3 such that if with non-negligible probability the symbolic
trace associated to the executionfs not a valid Dolev-Yao trace, then at least one
of the three adversaries breaks the joint securitipSfand.AE£.

The idea behind the construction of these adversaries isttuge adversaryl as a
subroutine, and use access to the oréttg; 4 (to which each of the three adversaries
has access) to simulate the execution of the protocol onlfoehthe honest parties.
Then, we show that, using the invalid query madetyadversanB; (withi = 1,2, 3)
can break either the encryption, or the signing scheme, ehte three adversaries
exploiting one of the following three possibilities. Adegary B, is based on the as-
sumption that the invalid query of adversa#ycontains a signaturg|,,) under the
secret key of an honest paity which was never sent prior in the execution. This essen-
tially means that the corresponding concrete term is a figadorgery, and adversary
B, simply outputs it. AdversarieS; and33 correspond to the case where the adversary
A outputs the encryption of some ternsuch that neithet nor the encryption can be
computed by the adversary from the previous messages usigdoolev-Yao opera-
tions. In this case we show how to use the adverghty determine some secret which
he should not have been able to compute. This secret is amandoce generated by
some honest party in the case of adverdgyand a signature also generated by an hon-
est party, in the case of adversd#y. Moreover, the adversariés , 32, andB3 that we
construct are such that their sample space partition th@lesspace of the experiment
in which adversaryA is executed. Therefore, if with non-negligible probalitihe ad-
versary.A has an invalid symbolic execution trace, then with non-igdglke probability
at least one of the adversariBs, B3>, 33 breaks the joint security @S and. A€ which
contradicts the hypothesis of the theorem. O

11



5.2 Trace Properties

For both the symbolic and the computational execution maale properties are pred-
icates on the global execution traces. The definition of ic(i.e. when a protocol
satisfies a given trace property) differs between the symlawid the computational
model. We now give these definitions and give our main resuftoundness theorem
for proofs of trace properties.

SYMBOLIC TRACE PROPERTIES A symbolic trace property is a predicate on (or alter-
natively a subset of) the s&ymbTr. We say that protocdll satisfies the symbolic trace
propertyP* C SymbTr and we writell =° P#, if all valid execution traces satisfy®,
i.e.Exec®(IT) C P=.

Various definitions of authentication may be expressedqusirth trace properties.
Informally, a trace of a protocol is a “good” mutual entitythentication trace, if for
any two identities: andb, if a (playing the second role of the protocol) has finished a
session of the protocol with intended partihgplaying the first role of the protocol),
thenb has finished a session with intended partnéysing this characterization, we say
that a protocol is a secure authentication protocol if alkiaices are good. Depending
on which notion of authentication we consider, we may alspire that for any session
whereq terminates, there exists exactly one corresponding sesdiereb terminates
andb must have finished before

COMPUTATIONAL TRACE PROPERTIES A computational trace property is a predi-
cate onConcTr. We say that protocall satisfies the concrete security propepty C
ConcTr, and we writeIl = P¢ if its execution traces satisfy® with overwhelm-
ing probability over the coins used in the executibe, for every p.p.t. adversary,
the probabilityPr [ Execr(r,),.a(r0)(n) € P¢] is negligible as a function of. The
probability is taken over the choid@;r, R4) < {0,1}P4) x {0, 1}24),

For mutual authentication, good traces are those satpfhimpredicate we sketched
for the symbolic model, but the definition of security for fivools is specific to the
computational setting: it asks from protocol to have go@dds with overwhelming
probability. It thus allows for “bad” runs, but only with nkgjble probability.

One of our contributions is the following soundness theofentrace properties.

Theorem 1. Let /1 be an executable protocdP® C SymbTr be an arbitrary sym-
bolic trace property and“ C ConcTr be a computational security property such that
concrete(P®) C P¢. ThenIT =° P® impliesII =° P°.

Proof. Let A be an arbitrary p.p.t. adversary faf. We have

Pr [Execrr(ry). ara) (1) € P7] >
Pr [ExeCH(RH),A(RA)(n) eP°ATte EXGCS(H),t < EXGCU(RH)_’A(RA)(U)],

Sincell =° P® andconcrete(P®) C P¢ it follows that:
Pr [ExeCH(RH),A(RA)(n) € Pc] > Pr [Elt € EXGCS(H) | t= ExecH(Rn),A(RA)(n)]~

By Lemma 1, we dedud@r [Execr(r,).a(r.) (1) € P¢] < va(n),ie I = 1I°. O

12



5.3 Secrecy Properties

In the symbolic model, secrecy is naturally expressed aace tproperty: a message
is secret if it cannot be derived by the adversary. In the agatfpnal model however,
typical definitions are much stronger and they usually sayah attacker cannot obtain
not only the secret, but alsmypartial information about the secret. In this section we
give symbolic and computational definitions for the seci@ayonces used in a protocol
and prove a soundness theorem: if a nonce is deemed seaigsysibolic techniques,
then the nonce is secret with respect to the stronger, catipnal definition.

We concentrate on the case of secrecy of nonces since theeedanonical def-
inition for secrecy of composed messages in the computtisarld. In addition, as
noticed in [12], the definition of secrecy for keys for examplas to be weaker than
indistinguishability as soon as the encrypted messagéaiosome redundancy. How-
ever, if the keys are not used, then security of keys is sirmtildhe security of nonces
and our results yield meaningful results for symmetric keghange.

SECRECY IN THE SYMBOLIC MODEL Let IT be an arbitrary:-party protocol. We say
that IT guarantees theecrecyof the nonceX) € X,,(4;) if in all possible executions,
each instantiation of this variable remains unknown to tteeasary. Formally, this
means that for every valid tradeidy, f1, H1), . . ., (sid,, fn, Hy) of the protocol, for
every session idid, = (r,4,(a1,...,ax)) whereay, ..., a; are honest agents.€.
none of them appears in tkerrupt query), we haved,, 1/ n(a;, j,r). If this is the
case, we writd] |=° SecNonce(i, j).

SECRECY IN THE COMPUTATIONAL MODEL We define the secrecy of the nonKéh

in protocol IT using an experimerExpE‘;CenyA(z’,j)(n) that we describe below. The
experiment is parametrized by a bitand involves an adversamt. The input to the
experiment is a security parametgiit starts by generating two random nonegsand
ny in C".n. Then the adversary starts interacting with the protocdl as in the exper-
imentExecyr 4(n): it generates new sessions, sends messages and receigagesas
and from these sessions (as prescribed by the protocolprAe point in the execution
the adversary initiates a sessioin which the role ofA; is executed, and declares this
session under attack. Then, in this session the vari&jleis instantiated wit;, (i.e.
one of the two nonces chosen in the beginning of the expetirttem selection being
made according to the ). The rest of the execution is exactly asbxecy, 4. In the
end, the adversary is givery andn; and outputs a guesgs which is also the result of
the experiment. We define the advantage of the adver$dny.

AdVEL,, (i:7) () = Pr [ExpEe, | (i.)(n) = 1] ~Pr [Expged, (i) () = 1]

We say that noncé(f;i is computationally secret in protocdl, and we writell =
SecNonce(i, §) if for every p.p.t. adversaryl its advantage is negligible.

Our second main result, captured by the following theordates that if a nonce is
secret in the symbolic model then it is also secret in the adgatfpnal model.

Theorem 2. Let IT be an executable protocol. If the scheriaS and A€ are jointly
secure, theniT =7 SecNonce(i, j) impliesIT =°¢ SecNonce(i, j).

13



6 Automated Proof using Casrul

In this section we describe the automated tool Casrul [9]discuss the implications
of our results for the proofs done with Casrul.

Casrul is a system for automated verification of cryptogiaplotocols, developed
by the Cassis group at Loria (France) available at

http://ww. | oria.fr/equi pes/cassis/softwares/casrul/

It translates a protocol given in common abstract syntaxantewrite system. The
rewrite system is processed using a first order theorem pfovequational logic for
the automated detection of flaws. We note that Casrul doesliost the use of signa-
tures and labels yet. Nevertheless, both its syntax andrg@sa&oincide with ours for
public key protocold.e. protocols that only use pairing and asymmetric encrypto,
without using labels. We believe that both labels and signeatcould be easily added
in Casrul.

AUTOMATED PROOF FOR COMPUTATIONAL SECURITY USINGCASRUL. Casrul can
be used to prove three particular types of properties:eatithentication, authentica-
tion on data and data secrecy. Here, we discuss the implitsatf these proofs with
respect to the computational model.

The syntax of Casrul does not yet allow the use of labels forygation. However,
it can be shown that for the security properties that arecsibi proved with Casrul,
proofs in the execution model without labels are sound vitre model where labels
are used. Thus, thanks to Theorem 1, Casrul proofs of theigewaith respect to these
properties have a clear computational interpretation eéxample, the Casrul proof that
the Needham-Schroeder-Lowe [15] protocol is a secure rhatuthentication proto-
col (file NSPK_LOWE3. hl psl ) implies the same property, but in the computational
model.

Similarly, Casrul proofs of nonce secrecy imply, via Theorg, the strong, com-
putational secrecy notion that we gave in Section 5.3. Fampte, Casrul enables to
prove the computational secrecy of nonces used in the dedéteedham-Schroeder-
Lowe protocol [15] (fileNSPK_LOWE2. hl psl ) and in the SPLICE protocol [22] (file
SPLI CE2. hl psl).

Note that Casrul works only with a finite number of sessiohsstproofs in the
computational model are obtained only for that fixed numlisessions. Nevertheless,
since our proofs consider adversaries that create an unleounf sessions, we could
also obtain proofs of computational security propertiesibiyng tools dedicated to an
unbounded number of sessions like Hermes [8] or Securify. [IBis would require
to first prove that protocols secure in the symbolic modelSedurify or Hermes are
also secure in our symbolic model. We believe this to be tineestheir symbolic
models are very similar to ours. We did not use these tool®@orproofs since they
only provide automatic proofs of secrecy. Automated predfsther security properties
like authentication are still under development.

Acknowledgements:We would like to thank Martin Abadi for enlightening dis-
cussions and advice, Daniele Micciancio for useful suggestand to the anonymous
referees for their helpful remarks.

14



References

N

[S2lF

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Abadi. Taming the adversary. Froc. of Crypto’00 2000.
M. Abadi and A. Gordon. A calculus for cryptographic pratés: The spi calculus. IRroc.
of the 4th Conf. on Computer and Communications Secyndyes 36—47. ACM Press, 1997.

. M. Abadi and P. Rogaway. Reconciling two views of crypagy (the computational

soundness of formal encryptionjournal of Cryptology15(2):103—-127, 2002.

. M. Backes. Personal communication.
. M. Backes, B. Pfitzmann, and M. Waidner. A composable ogatphic library with nested

operations (extended abstract).Rroc. of 10th ACM Conference on Computer and Commu-
nications Security (CCS’05pages 220 — 230, 2003.

. M. Bellare, A. Boldyreva, and S. Micali. Public-key enptipn in a multi-user setting:

Security proofs and improvements. Rroc. of Eurocrypt’0Q volume 1807 oL NCS pages
259-274, 2000.

. B. Blanchet. An efficient cryptographic protocol verifteased on prolog rules. IRroc. of

the 14th CSF\\WJune 2001.

. L. Bozga, Y. Lakhnech, and M. Perin. An automatic tool foe terification of secrecy in

security protocols. Irl5th Int. Conference on Computer Aided Verification (CAV300
volume 2725 oLNCS pages 219-222. Springer, July 2003.

. Y. Chevalier and L. Vigneron. A tool for lazy verificatior security protocols. IrProc. of

the 16th Conf. on Automated Software Engineering (ASE)20BEE CS Press, 2001.

V. Cortier. A guide for SecurifyRNTL EVA project, Report n. 13, December 2003.

V. Cortier and B. Warinschi. Computationally sound,omuated proofs for security proto-
cols. Research Report RR-5341, INRIA, October 2004.

D.H.Phan and D. Pointcheval. Une comparaison entre ahétixodes de preuve de sécurité.
In Proc. of RIVF, pages 105-110, 2003. In French.

S. Goldwasser, S. Micali, and R. Rivest. A digital sigmatscheme secure against adaptive
chosen-message attacl&AM Journal of Computingl7(2):281-308, April 1988.

P. Laud. Symmetric encryption in automatic analysesdmfidentiality against active ad-
versaries. IProc. of 2004 IEEE Symposium on Security and Priyaages 71-85, 2004.
G. Lowe. Breaking and fixing the Needham-Schroeder pKaly protocol using FDR. In
Tools and Algorithms for the Construction and Analysis at@ns (TACAS'96Volume
1055 ofLNCS pages 147-166. Springer-Verlag, March 1996.

G. Lowe. Casper: A compiler for the analysis of securitgtpcols. InProc. of 10th
CSFW'97 IEEE Computer Society Press, 1997.

D. Micciancio and B. Warinschi. Soundness of formal gption in the presence of active
adversaries. InTheory of Cryptography Conference (TCC 2Q0dages 133-151, Cam-
bridge, MA, USA, February 2004. Springer-Verlag.

J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. rgbabilistic polynomial-time
calculus for analysis of cryptographic protocoElectronic Notes in Theoretical Computer
Science45, 2001.

L. Paulson. Mechanized proofs for a recursive authatitio protocol. InProc. of the 10th
CSFW’'97 pages 84-95. IEEE Computer Society Press, 1997.

C. Rackoff and D. Simon. Non-interactive zero-knowkeggoof of knowledge and chosen
ciphertext attack. 'CRYPTO’91pages 433-444, 1992.

M. Rusinowitch and M. Turuani. Protocol insecurity withite number of sessions is NP-
complete. InProc. of the 14th CSFW’Qlpages 174-190. IEEE Computer Society Press,
2001.

S. Yamaguchi, K. Okayama, and H. Miyahara. The designnplgémentation of an authen-
tication system for the wide area distributed environméBtCE Transactions on Informa-
tion and System&ovember 1991.

15



