Computationally Sound Symbolic Secrecy in the
Presence of Hash Functions

Véronique Cortier! Steve Kremer?, Ralf Kiisters®, and Bogdan Warinschi*

! Loria, CNRS & INRIA project Cassis, Nancy, France
2 LSV, CNRS & ENS Cachan & INRIA project Secsi, France
3 Christian-Albrechts-Universitat zu Kiel, Germany

Abstract. The standard symbolic, deducibility-based notions of secrecy are in
genera insufficient from a cryptographic point of view, especially in presence
of hash functions. In this paper we devise and motivate a more appropriate se-
crecy criterion which exactly captures a standard cryptographic notion of secrecy
for protocols involving public-key enryption and hash functions: protocols that
satisfy it are computationally secure while any violation of our criterion directly
leads to an attack. Furthermore, we prove that our criterion isdecidable viaan NP
decision procedure. Our results hold for standard security notions for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for the rigorous design and analysis
of cryptographic protocols: the so-called Dolev-Yao, symbolic, or forma modelson the
one hand and the cryptographic, computational, or concrete models on the other hand.
In symbolic models messages are considered as formal terms and the adversary can
manipul ate these terms based on a fixed set of operations. The main advantage of the
symbolic approachisitsrelative simplicity which makesit amenabl e to automated anal -
ysis tools (see, eg., [7,14]). In cryptographic models, messages are actual bit strings
and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing machine.
While proofs in this kind of models yield strong security guarantees, the proofs are
often quite involved and only rarely suitable for automation (see, e.g., [11, 6]).

Starting with the seminal work of Abadi and Rogaway [2], a significant amount
of research has been directed at bridging the gap between the two approaches. The
goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The typical approach is to show that the executions of the
computational adversaries correspond to executions of the symbolic adversaries, and
then use this result to show how to translate security notions from the symbolic world
to the computational world.

For some security notions like integrity and authentication, the derivation of com-
putational guarantees out of symbolic ones can be done with relative ssimplicity [4, 13].
In contrast, analogous results for the basic notion of secrecy proved significantly more
elusive and have appeared only recently [5, 10, 12, 8]. The apparent reason for this sit-
uation is the striking difference between the definitional ideas used in the two different

models. Symbolic secrecy typically states that the adversary cannot deduce the entire
secret from the messages it gathersin an execution. On the other hand, computational
secrecy requires that not only the secret, but also no partial information is leaked to
the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS. In this paper we investigate soundness results for symbolic se-
crecy in the presence of hash functions. One of the main motivations for considering
hash functions, which have not been considered in the aforementioned results?, is that
they present a new challenge in linking symbolic and cryptographic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a
value h is the hash value corresponding to a given message m. Thisimplies that a sim-
ple minded extension of previous results on symbolic and computational secrecy fails.
Assume, for example, that in some protocol the hash h = h(s) of some secret s is sent
in clear over the network. Then, while virtually all symbolic models would conclude
that s remains secret (and this is also a naive assumption often made in practice), a
trivial attack works in computational models: given s, s’ and h, compare h with h(s)
and h(s’), and therefore recover s. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal the message signed.

In this paper we propose a new symbolic definition for nonce secrecy in protocols
that use party identities, nonces, hash functions, and public key encryption. The defini-
tion that we giveis based on theintuitively appealing concept of patterns[2].

The central aspect of our criterionisthat it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
that are secret according to our symbolic criterion are also secret according to a stan-
dard computational definition. Furthermore, there exist successful attacks against the
secrecy of any nonce that does not satisfy our definition. Our theorems hold for pro-
tocols implemented with encryption schemes that satisfy standard notions of security,
and for hash functions modeled as random oracles. In the proofs we combine different
techniques from cryptography and make direct use of a (non-trivial) extension of the
mapping theorem of [13] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy
criterion (w.r.t. a bounded number of sessions). Thisisacrucial result that enablesthe
automatic verification of computational secrecy for nonces. We give an NP-decision
procedure based on constraint solving, a technique that is suitable for practical imple-
mentations [3]. While the constraint solving technique is standard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secrecy criterion: For the standard
deducibility-based secrecy definition it suffices to transform constraint systems until
one obtainsaso-called simple form. However, for our symbolic secrecy criterion further
transformations might be required in order for the procedureto be complete. Identify-
ing a sufficient set of such transformations and proving that they are sufficient turned
out to be non-trivial.

RELATED WORK. The papers that are immediately related to our work are those of
Cortier and Warinschi [10], Backes and Pfitzmann [5], and Canetti and Herzog [8],

4 One exception is [12] where hash functions are allowed, but only as randomness extractors.

who study computationally sound secrecy properties, as well as the paper by Janvier
et a. [?], that presents a soundness result in the presence of hash functions. In this
context, our work isthefirst to tackle computationally sound secrecy in the presence of
hashes. We study the trandation of symbolic secrecy into a computational version in a
setting closely related to that in [10]. However, the use of hashes requires, as explained
above, new notions and non-trivial extensions of the results proved there. In[?], Janvier
et a. present a soundness result that differs however from this one. On the one hand
they do not consider computational secrecy of nonces sent under hash functions. On the
other hand, they present a new security criterion for hash functions, which is not the
random oracle, although no implementation of a hash function satisfying their criterion
iscurrently known. Thework in[5] and[8] is concerned with secrecy properties of key-
exchange protocols in the context of simulation-based security, and hence, they study
different computational settings. Interestingly, the symbolic criterion used in [8] isaso
formalized using patterns, but their use is unrelated to ours. None of the mentioned
works considers decidability issues.

PAPER OUTLINE. In the following section, we introduce the symbolic and computa-
tional models. Our symbolic secrecy criterion is developed in Section 3. We state and
prove the soundness and completeness of this criterion w.r.t. computational secrecy in
Section 4, and prove its decidability in Section 5.

2 The Symbolic and Concrete Protocol and Intruder Models

In this section, we introduce the symbolic and the concrete protocol and intruder models
(see Appendix A to D for more details).

2.1 The Symbolic M odel

We define (symbolic) messages and terms, how honest agents and the (Dol ev-Yao-style€)
intruder can derive messages from a set of messages, and how protocols are specified.

MESSAGES AND TERMS. To define messages, we consider an infinite set A of agent
identities, infinite sets Nonce,4, Nonceqq,, Rand,g, and Randgq, (nonces and ran-
dom coins generated by the agents and the adversary, respectively), and an infinite set
Garbage representing garbage messages. All of these sets are assumed to be pairwise
digoint. We set Nonce = Nonce, 4 U Nonceqq, and Rand = Rand,y U Randggy.

The set of messages M (w.r.t. A, Nonce, and Rand) is defined by the following
grammar: M ::= A | Nonce | ek(A) | dk(A) | (M, M) | {M}ERE(T) | h(M) | Garbage
where ek(a) and dk(a) with a € A denote the public and private key of a, respectively,
(m,m’) denotes pairing of m and m’, {m}gk(a) denotes the message m encrypted with
ek(a) using the random coins r, and h(m) is the hash of m. We define the following
subsets of M: EKey, DKey, Ciphertext, Hash, and Pair are the sets of all messages
starting with ek(-), dk(-), {-}:, h(-), and (-, -}, respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variables X where the types are as above and for
avariable of a certain type only messages of this type may be substituted. In particular,

we assume variables A;, i € {1,...,k}, for agent identities and variables X7, , L/,
J € N, for fresh nonces and random coins generated by A ;. The set of terms T (X) over
X is defined analogously to the set of messages.

DERIVING MESSAGES.Let ¢ denote aset of terms. The set of termsthat can be derived
from ¢ is defined by the deduction rules given in Figure 1. We write ¢ + ,.4,,4 t t0 S3y
that ¢ can be derived from ¢ (using randomness rand C Rand). For example, we have
that {{dk(a), {c}e(a))} U A FRandaas {c}g((b) whereb € A and r’ € Randggs.

¢}—b (bl—ml (ﬁ"’l’nz ¢}_<m1,m2> .
mmé(b m be AUX.a ¢'_<m17m2> qﬂ_ml 16{1,2}
¢+ ek(b),d+m p{mlam oFdkd) pFm
¢>"{m}£k<b) r € rand pEm ¢ Fh(m)

Fig. 1. Deduction rules

ProTocoOLS. Rolesare usually specified by asequence of input/output actions. In order
tomodel branching protocols, the roleswe consider are ordered edge-1abel ed finite trees
whereevery edgeislabeled by anagentrule (I, r), wherel, r € T(X) aremessageswith
variables, and certain syntactic conditions are satisfied such that the actions can actually
be carried out (in a computationa interpretation). A k-party protocol is a mapping
IT : [k] — Roles where[k] = {1, ..., k} and Roles denotes the set of roles.

SyMBOLIC EXECUTION OF A PRoTOCOL . The symbolic execution of a k-party proto-
col is modeled as afinite sequence of global states. A global stateisatriple (Sld, f,)
where ¢ isafinite set of messages (the current intruder knowledge), Sid isafinite set of
session ids, and f mapsevery session id in Sld to the current state of the corresponding
session. This state is called the local state and is of the form (i, o, p, (a1, a2, ..., ax))
where i € [k] is the index of the role that is executed in this session, ¢ is a substitu-
tion whose domain is a subset of the variables occurring in 77(i) (i.e., o determines
the messages assigned to variables so far in the current session), p is a node of 17 (i)
and determines at what node the agent currently stands, and (a 1, as, . .., a;) € A is
the tuple of names of the agents that are involved in the session, where a ; is the agent
carrying out the current session (supposedly with the mentioned agents a 5, j # 4). The
initial stateisqr = (0,0, AUEKey U Nonce,q,), i.€., theintruder knows all names and
public keys of agents as well as theinfinite set of intruder nonces.
We allow three kinds of transitions between global states.

— The adversary corrupts a set of parties and thereby learns the private keys of the

agents. q; <P g g A EKey U {dk(a;) | 1 < j < 1}). Note that
this transition can only be applied at the beginning (static corruption).

new(i,ai,...,ak)
Pt S bt M el TN

— The adversary can initiate new sessions. (Sld, f, ©) (SId’, f', o)
whereSld’" and f’ are defined asfollows. Let sid = |Sld|+ 1 bethe session identifier
of the new session where |Sld| denotes the cardinality of Sld. We define Sld" =
Sld U {sid}. The function f’ is defined as follows: f’(sid") = f(sid’) for every
sid" € Sld and f’(sid) = (i,0,¢, (a1, ..., ax)) Where e denotes the root of therole
treeand o(A;) = a; forevery 1 < j < kand o(X?)) = n*7*, o(LY,) = 1%9*
for every j € N. ' '

— Theadversary can send messages: (Sld, f,) (Sld, f', ¢') wheresid €
Sld, m € M, and ¢’ and f’ are defined as follows. We define f/(sid") = f(sid") for
every sid’ # sid. Supposethat f(sid) = (i, 0, p, (a1,...,ax)) and (Iy,r1),.. ., (In,
ry,) arethelabels of edges leaving p (in this order). We distinguish two cases:

e there does not exist a j such that m and [;o match. Then, we define f'(sid) =
f(sid) and ¢’ = ¢ (the state remains unchanged);

o else, let j be minimal s. t. m and [0 match. Let 6 be the matcher, i.e., m =
(l;o)0. Wedefine f'(sid) = (z,0U0,pj, (a1, ..., ar)) and ¢’ = oU{(r;Tq, sia)o0}.

send (sid,m)
—_—

A finite sequence of global statesis called asymbolic execution trace (for a protocol
1) if it starts with the initial global state ¢; and two consecutive global states in this
sequence are connected via one of the above transitions. We say that a trace is valid

if every send transition (Sld, £, ¢) sond(sidm), (Sld, f', ¢') verifies that the adversary
could actually deduce m, that is ¢ - m. The set of valid symbolic execution traces (for
aprotocol I7) is denoted by Exec®(IT). The set of valid set of messages is defined by
Msg®(II) = {¢ | (Sld, f, ¢) isthe last state of a valid execution trace}.

2.2 TheConcrete Model

The concrete model is defined w.r.t. an encryption scheme AE = (K, Enc, Dec), which
we now fix once and for al. Hashing is modeled by the random oracle.

CONCRETE MESSAGES. Concrete messages are bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of type Pair, the two components
can be efficiently retrievedand strings of type Ciphertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bit strings is denoted by C 7. This
set depends on the security parameter » as this parameter determinesthe length of agent
names, nonces, and keys. Substitutions now map variables (of some type) to concrete
messages (of the same type).

CONCRETE EXECUTION OF A PROTOCOL . A concrete global stateisa4-tuple (Sid, f,
v, H) where ¢ is afinite set of bit strings, Sld is afinite set of sessionids, and f maps
every session id in Sld to the current state of the corresponding session (the concrete
local states). A concrete local state is defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are also bit strings. The fourth
component carries the state of the random oracle: H is a set of couples (m, h) where
m isabit string and h its corresponding hash value. A protocol is executed by running
a ppt Turing machine, the (concrete) adversary, which may make queries correspond-
ing to the transitions in the symbolic model. We allow four kinds of transitions between
global states, whichwewill refer to by corrupt, new, send transitions, and hash queries.

The semantics of the first three queries is defined by analogy with the formal execu-
tion model. In addition, the adversary may also make queries to the random oracle:

(Sld, f, ¢, H) 2220 Q14 £, H') where H! is defined as follows. If there exists
n such that (m,n) € H, then H’ = H and we define b = n. Else a hash value h is
generated at random for m and H' = HU{(m, h)}. Inany case, h isreturned to the ad-
versary. A finite sequence of concrete global states is called a concrete execution trace
if it starts with the initial global state. Obviously, since the adversary is a ppt Turing
machine the length of the trace is bounded by a polynomial in the security parameter .

Also, the sequence of random coins R ;7 used in the execution by the honest agents and
the random oracle as well as the sequence of random coins R 4 used by the adversary
can be bounded in length by polynomialsg _4(n) and p 4(n), respectively. Clearly, if R
and R 4 arefixed, we obtain a uniquely determined concrete trace, which we denote by

Execir(rp),ArA)(N)-

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition of secrecy and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formalize thisideais to require that
the secret s is indistinguishable from an unrelated random bitstring s’ chosen (from an
appropriate distribution). The secrecy of nonce variable X 4, (the nonce generated by
A; inthejith role of the protocol) in protocol I7 is defined as follows.

Definition 1. Consider the experiment EXPSEiZ}bH,A (i,7)(n) parametrized by a bit b
and that involves an adversary .4 against protocol I7. The experiment takes as input a
security parameter n and starts by generating two random nonces ny and n; in C".n.
Then the adversary A starts interacting with the protocol I7 as in the execution de-
scribed by Execr, 4(n). At some point in the execution the adversary initiates a session
s in which the role of A; is executed, and declares this session under attack. In this
session, the variable Xﬁh isinstantiated with n;,. The rest of the execution is exactly as
in Execyr 4(n). At some point the adversary requires the two noncesn and n; and has
to output a guess d. The bit d isthe result of the experiment. e define the advantage of

the adversary A by:
AdVEL,, (i.7) () = Pr [Bxpie, (i)(n)=1] = Pr [ExpEd, | (5,5)(n)=1

We say that nonce X i is computationally secret in protocol I7, and we write IT ¢
SecNonce(i, 7) if for every p.p.t. adversary A its advantageis negligible.

SyMmBoOLIC SECRECY. Asexplained in the introduction, wesak secrecy is not sufficient
to capture the standard indi stingui shability-based notion used in computational settings.
The new notion of secrecy we propose here relies on the intuitively appealing concept
of patterns[2]. Roughly, the pattern of an expression is obtained by replacing with O,
all the subterms of the expression that are secret. In our case, asubterm 7" of T/ is secret

if, even when given T' the adversary cannot verify that T' has been used to construct 7'’.
Formally, we add T to the knowledge set ¢ in the deduction relation. The ideas behind
our definition of patterns are related to offline guessing attacks, where the adversary
is given the weak secret and should be unable to test whether the given weak secret is
indeed the one used in the observed messages.

Definition 2 (Patterns). Given a set of closed terms ¢ = {M7, Mo, ..., My} and a
term T, wedefinePaty(¢) = {Pat% (M,), Patl.(Ma), . . ., Patd.(My)}, where Pat% (M)
defined recursively by:

a if, T Frandyq
O otherwise

<PatT Ml) PatT(M2)>
{PatT ek If &, T FRrand,,, dk(a) or if r € Randgq,
otherW|se

Pat?(h(M)) = {D(PatT() gtﬁérTW;:and wan M

Pat(ls (a) =
PatT(<M1, Ms))

Pat{, (M}

Pat. is extended to set of messages as expected: Pat.(S) = |J,. g Pat(t).

The messages of ¢ may contain some subterms of the form { M }gk(a) wherer €

Rand,4,. Because of the random coins such messages must have been build by the
adversary and M should be deducible. Thus we consider ¢ augmented with such mes-
sages. ¢ = ¢ U {M | {M}gk(a) subterm of ¢}. For any valid message set ¢ (that is
¢ € Msg®(IT) for some protocol IT), we can show that ¢ - M for every M < ¢.

Definition 3 (Nonce secrecy). Let H be a protocol and X 7 J a nonce variable occur-

ringinsomerole A;. V\EsaythatX |ssecret|nHandwewr|teH =° SecNonce(%, j),
if for every valid set of messages ¢ € Msg® ({T) it holds that for every session number
s, the symbolic nonce n#J>* does not occur in Pat,,a;.5,- (¢).

To better appreciate these definitions, consider the following examples.
1. Let g1 = {h({np,n))} = ¢1. Then Pat,, (1) = {O}. ¢1 preservestheindistin-
guishability of n;, since, intuitively, ny, is hidden by the secret nonce n'.
2. Let g2 = {h({ne, {n'},)),n'} where r & Randgav. Then ¢ = ¢; and
Pat,, (¢2) = {0, n'}. Inthis example, the encryption of »n” does hide n;.
3. Let g3 = {A({ne, {n'}¢,)))} wherer € Randagy. Then ¢ = ¢s U {n'} and
Patn, (¢3) = {h((ns, {n'}(4))),n'}. We have that n,, occursin Paty, (¢3). This

correspondsindeed to an attack. Asn’ has been encrypted by the adversary himself
he knows the ciphertext. Given n and n, he computesboth ({ro, {n'}¢(,)) and

h({n1,{n'}e(a)) and comparesthemto h((ns, {n'}e ,)) yielding the attack.

4. Let ¢4 = {{(h(ne), h(n'))}&(4)> dk(a)} where r & Randagy. Then ¢4 = ¢4 and
Patn, (¢4) = {{(h(ns), 1)} &4, dk(a)}. Again, n, does occur in Paty,, (¢1). For
this attack an intruder may get h(n;) by decrypting and projecting the message

{{(h(np), h(n')) ek(a) @d compare h(ny) with h(ng) and h(n1) that he may com-
pute fromngy and n; .

Our notion of secrecy has a useful equivalent formulation described in the follow-
ing lemma. Informally, the lemma states that all unencrypted occurrences of the secret
noncein aset of messages are such that they occur in aterm ¢ that is hashed, and such
that ¢ itself can not be computed from ¢ and n.

Lemmal. Let ¢ bean arbitrary set of messages and n a nonce symbol that occursin
. n does not occur in Pat,,(¢) if and only if ¢ 7 n and VM subterm of ¢ such that
¢ = M, ¥p such that M|, = n, so that there is no encryption along p, 3p’ < p such
that 1) M|, = h(M') and 2) ¢, n tf M.

4 Symbolic Secrecy is Equivalent to Computational Secrecy

To provethe soundness and the compl eteness of our secrecy criterion, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prove equivaence of the symbolic
and computational notions.

RELATING SYMBOLIC AND CONCRETE TRACES. Thefirst step linking security prop-

erties in symbolic and concrete models is to exhibit a relation between individual exe-

cution traces. The relation is similar to that developed in previous works [13, 10], but

our definitions and results have to deal with the use of random oracles in computational

executions. In line with common practice in symbolic models, hash applications (ex-

plicitly captured as queriesto the random oracle by concrete traces) are not reflected by

the symbolic traces. Therefore, we define the hash-query freetrace clean hash(¢ ©) asso-
ciated to the concrete trace t¢ = (SId, g1, 1, H1), - - ., (SIdy., gn, ©n, Hn). The trace
clean_hash(t¢) istheconcretetrace (SId5 , g, , @i, , Hi,), - - -, (SId5, , g4y, 04y, Hay,), Ob-
tained by removing from ¢ ¢ the states that are the result of a hash request.

Definition 4. Lett® = (SId], f1, 1), ..., (SId}, fr, ¢n) beasymbolic execution trace
and let clean_hash(t¢) = (SIdS, g1, v1, H1), - - -, (SId5,, gn, @n, H.) bethe hash-query
free trace of concrete execution trace ¢..

— Wesay that trace t isa concreteinstantiation of ¢° with (partial) mappingc : M —
C" and we write t* <€ ¢€ if for every £ (1 < ¢ < n) it holds that Sld; = Sldj
and for every sid € SIdj if fo(sid) = (0%9,i%¢ psid (aq,...,ax)) and g,(sid) =
(,7_sid7jsid7 qsid’ (ah . ak)) then 759 = ¢ o O.sid, 4sid — jsid and psid — qsid.

— Tracet® isa concrete instantiation with Dolev-Yao hash queries of ¢ ¢ and we write
t* < t¢ if there exists a partial, injective function ¢ : M — C" such that ¢* <°¢ ¢¢
and for every 1 < k < n, for every message m such that (m, h) € Hy, for some h,
there exists aterm M such that ¢(M) = m and ¢y, Frand,,, M.

adv

Proposition 1. Let IT be an executable protocol. If the encryption scheme A€ is
IND-CCA secure, and the hash functions are random oracles, then for any p.p.t. al-
gorithm A

Pr | 3¢° S EXeCS(H) | t? j Exec%(Rn),A(R_A)(n) Z 1-— VA(n)

where the probability is over the choice (R, Ra) < {0,1}74(x {0,1}94(") and
v 4(+) is some negligible function.

The proof shares many ideas with earlier work [13,10] and is given in Appendix H.1.

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY. The follow-
ing theorem states that the symbolic secrecy criterion is necessary and sufficient for
computational secrecy to hold.

Theorem 1. Let I7 be an executable protocol and let X f4 be a nonce variable occur-
ring in some role A;. If the encryption scheme A€ used in the implementation of 17 is
IND-CCA securethen IT |=° SecNonce(3, j) if and only if IT |=¢ SecNonce(i, j).

Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no adversary can distinguish the
modified execution, which we call the “oracle execution” from the real execution.

Next, we argue that in the oracle execution, the nonces that are symbolically secret
are information theoretically hidden from the computational adversary. Indeed, if the
symbolic secrecy property is satisfied, by Lemma 1 the nonce occurs only in some
hashed terms, and the term themselves are secret (in the sensethat it cannot be computed
efficiently). Since in the random oracle model the hash values are independent of the
hashed message, the view of the adversary is independent from the value of the secret
nonces.

STEP |. We now describe the “ oracle execution” . Whenever the protocol dictates that an
honest party encrypts some bitstring m, the party encrypts instead a randomly selected
bitstring r,,, of equal length. The execution keeps a table with all association (m, r,,,),
which we call the random associations table (RAT). The RAT is not made available to
the adversary, but only to honest parties. Specifically, whenever an honest party receives
encrypted messages, the party performs the appropriate decryption and recovers some
plaintext. If the plaintext is some m’ such that (m, m’) occursin RAT, the party treats
the encryption as an encryption of m and continues its execution as normal. Otherwise,
the underlying plaintext is set to m’.

Intuitively, if any adversary behaves differently in the two executions, it is because
he can see the difference between encryptions of true, and random ciphertexts. For-
mally, if welet Exec 4, i7(n) be the output of adversary .A when executed with protocol
IT for security parameter 7, and Exec’ 1() the output of the adversary in the associ-
ated oracle execution, we have the following lemma (which we provein Appendix H.2).

Lemma 2. Let IT be an executable protocol, and A an arbitrary ppt adversary. Then,
if the encryption scheme A€ used in the implementation of 77 isIND-CCA secure, then
Pr[Execa,(n) = 1] — Pr[Execy ;(n) = 1] isnegligible.

Notice that we can apply the above lemma for the case when the execution that is
considered is used in the experiment Exp %Y (i, §)(n), for some b, 1, j. If we write

Execa. 17

Expsd, (i,)(n) for the corresponding oracle execution, we obtain that there exists

o
Exec%

some negligi ble function v; ; ;, such that
Pr[Expied, (i,7)0) = 1] = Pr [Expicd, () = 1] =vije(m))

9

STEP Il. In the next step, we associate symbolic traces to the computational traces
of the oracle execution. This enables us to reason about an adversary’s success in the
oracle execution (which is conceptually simpler). The association is in fact the one
in the proof of Proposition 1, with an additional parsing step necessary to take into
account the random association table that we detail below. In addition to access to the
keys and the randomness of the parties, the parsing procedure also uses access to the
random association table, and is as follows: the first step in processing some message
m’ is a search in the random association table. If (m,m’) occurs in the RAT, then the
procedure proceeds as before, with m’ replaced by m, otherwise the procedure remains
unchanged.

Next, we arguethat the symbolic traces obtained as above are valid execution traces,
and moreover, that they are included among the traces of the execution of I7. The for-
malization is given in the next lemma. Its proof isin Appendix H.3.

Lemma 3. The symbolic traces of Exec®(I1,.A) are valid with overwhelming probabil-
ity and Execfl"H C Execa,1.

Steplll. Finally, weprovethat if A€ isIND-CCA securethen I7 |= SecNonce®(i, j) =
IT |=° SecNonce(i, 7). For an arbitrary adversary A against the secrecy of nonceXii

recall that we write Expec: N (n) for the oracle version of the experiment defining

Exec"H’
secrecy of nonce X7, . Let Advffxcecz‘ . (n) be the corresponding advantage functions.
By definition we have that:

AdVES,,, (i.7)(n) = Pr [ExpE, (i) (n)=1| ~Pr [Expes, | (i) (n)=1]
Advii, (,5)(n) = Pr [Bxpged, (i) n)=1]~Pr [Expged (i)(n)=/1]

By subtracting, using Equation 1, and rearranging terms we obtain that for some negli-
gible function v

Adviee, , (6:5)(n) = Advie, (,5)(n) +v(n) 2
Finally, we show that in the oracle execution the advantage Adv g .o (i,j)(n) of

any adversary A is negligible since nonces that are symbolically secret are informa-
tional theoretically hidden from the adversary. This can be seen as follows.

Consider the symbolic trace ¢ that corresponds to the execution of the experiment
Expst, (1), up to the point when the adversary is given the nonces and he is asked

Exec‘l’ij
to determine the bit b. Let s be the id of the session under attack, and let n %7>* be the
symbolic nonce that corresponds to the nonce under attack. By Lemma 3, thetrace ¢ is
with overwhelming probability a Dolev-Yao trace of protocol I1. By the hypothesis of
thetheorem IT |=* SecNonce(i, j) and therefore by Lemma 1, al occurrences of n @9
in ¢ that are not under an honest encryption are in some term T'; that appears under
ahash, and T; is nondeductible from ¢, n%9>5. Let t; be the bitstrings that correspond
to the terms T;. We conclude by observing that in the real execution, the adversary
may observethevaluescy = h(t1),ca = h(tz), ..., but provided that it does not query
t1,t2, ... totherandom oracle, their values (and thusin particular the value of the secret

10

nonce) are independent from the ¢4, ca, Since all queries to the random oracle are
the images of deductible terms, we conclude that .A does not request h(t;), for all i.
The“only if” direction. It isimportant to observethat if amessage M isdeducible
from a set of messages M1, Mo, ..., M, the associated deduction tree 7 can be trans-
lated into an (efficient) program 7 which given the bit-string representations of m. ; for
M; (i =1,2,...,n) computes the bit-string representation m of M.
We proceed as follows. Assume that for some symboalic trace ¢, the symbolic nonce

n®:3>% occurs in Pat,,a, ;. (¢), starting from Lemma 1 we can show that there exist a
term M € ¢ and adeduction tree 7 such that: 1) 7(¢, n%7»*) yields message M and 2)
forn # n%+9%, 7(¢,n) doesnot yield M. Since M € ¢, weknow that there also exists
adeduction tree 7 such that 7 (¢) yields M.

Based on the above, we construct a two-stage adversary against secrecy of nonce
X jh_ . Inthefirst stage, the adversary produces a computational representation ¢ © of the
trace ¢ (by simply following the instructions of the Dolev-Yao adversary that defines
¢). Once ¢ is created, it requests the two values of the nonce n %75 and receives from
the experiment n;, and n1_;. Then it computesm;, = 7(¢<,ny,) forb = 0,1 and m =
7(¢°), and retrieves b by comparing m with mq and m;.

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is decidable. We present an NP-
procedurethat decides nonce non-secrecy for the case of abounded number of sessions
(that is, adversaries are allowed only afixed number of new queries)®

Without loss of generality, we assume that al of the new queries are performed at
the beginning of the execution. Our decision procedure starts by guessing the sequence
of these requests together with the identities of the agents involved. Then, the proce-
dure guesses an interleaving for the execution. Using standard techniques [14], such
executions can be tranglated to constraint systems. We recall their definition:

Definition 5. A constraint system C' is a finite set of expressions T; I+ # or T; I+ w;,
where T; is a non empty set of terms, # is a special symbol that represents an always
deducibleterm, and (for 1 < i < n) u; isatermsuch that:

- TZQTZH,foralllgzgn—l,
- if o € var(T;) then 35 < isuchthat T; = min{T | T I+ v € C,z € var(u)} (for
theinclusion relation) and T'; C T;.

=

The left-hand side (right-hand side) of a constraint T' I+ w is T (respectively «). The
left-hand side of a constraint system C', (for which we write lhs(C)), isthe maximal set
of messages 7,. By | we denote the unsatisfiable system.

Theleft-hand side of aconstraint represents the messages already sent on the network,
while the right-hand side represents the message expected by an agent in order to per-
form the next protocol step. A solution of aconstraint system C' isaground substitution

5 For the case of an unbounded number of sessions our secrecy notion is undecidable, just asthe
standard deducibility-based notions.

11

o suchthat T'o FRrand,,, vwo forany T' I-u € C. We say that C' preserves nonce secrecy
of n if there does not exist asolution o of C' such that n occursin Pat,, (Ihs(C)o).
Thetransformation of protocolsinto constraint systemsyields systemsthat are well-
formed. A constraint system E iswell-formed if 1) any subterm of E of theform dk(¢")
issuch that ' is an agent identity and 2) any subterm of E of the form {¢}}, issuch
that » € Rand and r ¢ Rand,q,. Thefollowing theorem states that our notion of nonce

secrecy (Section 3) is decidable for a bounded number of sessions.
Theorem 2. The following problemis co-NP complete:

Given: awell-formed constraint system C and a noncen.
Decide: Does C preserve the nonce secrecy of n?

The decision procedure for nonce secrecy preservation works as follows. First, given
an arbitrary constraint system we reduce it to a solved system using non-deterministic
transformation rules similar to those in [9] (see Appendix G). A constraint system is
solved if it isdifferent from L and each of its constraintsare of theform 7" I+ ¢ or T' I+ x
where x is avariable. Second, we check whether n occursin Pat,, (lhs(C)). If not, we
check whether C' can further be simplified into a solved form that does not preserve
nonce secrecy, and so on. Note that although for standard deducibility-based notions
decision procedures can stop as soon as the constraint system has been transformed
into solved form, for our secrecy notion further transformations might be necessary. NP-
hardnessis proved analogously to the case of standard deducibility-based notions [15].

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equationa the-
ories. In Proc. 31st International Colloguium on Automata, Languages and Programming
(ICALP’04), volume 3142 of LNCS, pages 46-58, 2004.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proc. of the Interna-
tional Conference on Theoretical Computer Science (IFIP TCS 00), volume 1872 of LNCS,
pages 3-22, August 2000.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma,
P. Heam, O. Kouchnarenko, J. Mantovani, S. Mddersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Vigand, and L. Vigneron. The Avispa tool for the automated
validation of internet security protocols and applications. In Proc. of Computer Aided Veri-
fication (CAV’ 05), volume 3576 of LNCS, 2005.

4. M. Backes and |. Christian Jacobi. Cryptographically sound and machine-assisted verifica-
tion of security protocols. In Proc. of the 20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 03), pages 675686, 2003.

5. M. Backes and B. Pfitzmann. Relating cryptographic und symbolic key secrecy. In Proc.
26th |EEE Symposium on Security and Privacy (SSP’05), pages 171-182, 2005.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology — Crypto *93, 13th Annual International Cryptology Conference, volume 773 of
LNCS pages 232-249, 1993.

7. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
14th IEEE Computer Security Foundations Workshop (CSFW 01), pages 8296, 2001.

8. R. Canetti and J. Herzog. Soundness of formal encryption in the presence of active adver-
saries. In Proc. 3rd Theory of Cryptography Conference (TCC' 06), LNCS, 2006. To appear.

12

9. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. In Proc. of 18th Annual |EEE Symposium on Logic in
Computer Science (LICS’03), pages 271-280, 2003.

10. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Security Pro-
tocols. In Proc. 14th European Symposium on Programming (ESOP’ 05), volume 3444 of
LNCS pages 157-171, 2005.

11. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270-299, 1984.

12. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key ex-
change protocols. In Proc. of the 2005 ACM workshop on Formal methods in security engi-
neering (FMSE’ 05), pages 23-32, 2005.

13. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC'04), volume 2951 of
LNCS, pages 133-151, 2004.

14. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. 8th ACM Conference on Computer and Communications Security
(CCS01), pages 166175, 2001.

15. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions and
Composed Keys is NP-complete. Theoretical Computer Science, 299:451-475, April 2003.

A Protocol Roles

An agent ruleis atuple of the form (I, r) (also written as! — r) wherel,r € T(X).
Typically, the substitution o of some of the variables in [and r is already fixed by
applications of preceding agent rules (sharing variables with the current agent rule). If,
now, the agent receives a message m, then m is matched againt /o, say the matcher is
7, and the message ron is produced as output (as explained below, it will always be
the case that ron does not contain variables). If m and [o do not match, then the agent
will not produce output. If m and lo match, we say that the rule (I, r) is applied to (is
applicableto) m.

A role an agent performs in a run of a protocol is specified by an ordered edge-
labeled finite tree where every edge is labeled by an agent rule. In arun of a protocol
an agent will stand at a certain node of the tree. Assume that the outgoing edges of that
node are of theform (11, 71), ..., ({5, rs) (starting with the left-most edge). Now, if the
agent receives amessage, say m, then the agent will apply thefirst agent rule (from left)
applicableto m to produceits output.

Formally, we first define role trees and then roles, which are role tree satisfying
certain conditions.

A roletree R isafinite ordered edge-label ed tree where the domain is afinite prefix-
closed subset of N* (the ith successor of a node p is pi) and every edge is labeled by
an agent rule. Given anode p in R, we denote by Rules,, the sequence of agent rules
the edges on the path from the root of R to p are labeled with. We write Rules ﬁ) and
Rules;, to denote the sequence of |eft- and right-hand sides of these rules, respectively.
(We sometimes consider these sequences as sets.) If p # ¢, we write rule,, to denote
the agent rule the edge leading to p is labeled with. The left-hand side of this ruleis
refered to by rule!, and the right-hand side by rule?,.

13

The ith role performed by agent A; in a k-party protocol is a role tree R such
that certain conditions are satisfied. To define these conditions we need some notation.
Let p we a node in R. Then, we denote by IE;, = {ek(41),...,ek(Ax),dk(A;)} U
X.n(Ai)URulesi, the set of termsagent A; knowsin nodep. (Notethat this set includes
ruleé.) If p’ is the predecessor of p (we define p’ = p if p = ¢), then we define
Ki = {ek(A1), ... ek(Ag),dk(A;)} UX.n(A;) U Rulesé,. (This set coincides with
I€; except that rule; is not added.) We can now formulate the mentioned conditions
required for R (see below for informal description): For every node p # ¢ in R we
require that:

1 7'ule§) and rule;, do not contain a subterm of type DKey,

2. every r € Rand,, occurs in Rules, a most in the context of one term of type
Ciphertext, i.e., the set of subterms of the form {¢'}} in Rules,, (for some¢ andt’)
isasingleton,

3. every x € X.r occursin Rules; at most once and does not occur in Rulesy; if it
occursit occursin aterm of theform {t} ¢, ,) for some.

4. 16;) FRand,, Tule;, and (16;, NX) UKL Fx.rURand,, Tulel,

Thefirst condition says that decryption keys are not explicity contained in agentsrules.

This implies that these keys may be output by an agent. As for the second condition,

aterm of the form {¢'}] meansthat A; computes the encryption for plain text ¢ using
key ¢’ and random coins . The agent A; might use the computed ciphertext at different
placesin therole. Therefore, the term {¢’}} (and hence, r) may occur aso in different
places in the agent rules. However, if A; computes the encryption for a different plain
text and/or a different key, then A; will also use different random coins. The intuition
behind thethird conditionisasfollows: Variablesin X.r are used in termsfor decrypting
messages. More precisely, in the concrete execution model, aterm of theform {¢} fjk(A
will cause A; to perform the following action. It first checks whether the given message
is a ciphertext with ek(A;) as public key. Then it would decrypt the message and try to
parse this message according to ¢. Therefore, message of theform {¢} gk(A should only
occur on the left-hand side of agent rules and only in terms of the form {¢} &, 4. Note
that if aterm of theform {¢}Z, ,) with j # i would occur on the left-hand side of an
agent rule for A;, then this would mean that A; can decrypt a message encrypted with
the publickey of A ;. This should of course be forbidden. Also, when parsing a message
according to {t}, ,,), we don’t assume that the agent is able to extract the random
coins x used to encrypt the message. Depending on the encryption scheme this might

not be possible, and more importantly, protocols typicaly do not use this information.

Therefore, should only occur at one position in the agent rules of A ;. Together with
the previous conditions, the last condition implies that A; can actually carry out the
tests when receiving a message and can actually produce the output message.

B Transtionsin the Formal Execution Model

To define transitions between global states, we use the following notation. By n %7>° €
Nonce,, Witha € A and j, s € N we denote distinct nonces. Analogously, by r%7»* €

14

Rand,y wWitha € A, j € Rand,g, s € N we denote distinct random coins. By 7, ¢
we denote a mapping that maps every » € Rand,g to r*"™*. Givent € T(X), we
denote by ¢7, , the term obtained from ¢ by simulataneous replacing every r» € Rand 44
occurring in ¢ by 7, s(r). We use this mapping to replace the randomness used in ¢ by
fresh randomness. (Below ¢ will be the right-hand side of an agent rule).

We allow three kinds of transitions between global states, which we will refer to by
corrupt, new, and send transitions, respectively.

— The adversary corrupts a set of parties by outputting a set of identities and thereby

learnsthe private keysof theagents: ¢; <20 0 AUEKeyU{dk(a;) |
1 < j <'1). Note that this transition can only be applied at the beginning (static
corruption).

new (%,a1,...,ax)

— The adversary can initiate new sessions. (Sld, f, ©) (SId’, f',)
whereSld" and f’ are defined asfollows. Let sid = |Sld|+ 1 bethe session identifier
of the new session where |Sld| denotes the cardinality of Sld. We define Sid’ =
SId U {sid}. Thefunction f’ is defined as follows.

o f/(sid") = mf(sid’) for every sid" € Sld.

o f'(sid) = (i,0,¢,(a1,...,ar)) where the domain of o is {Ay,..., Az} U
X.n(A;) with o(A;) = a; forevery 1 < j < kand o(X7) = n®7* for
every j € N.

send (sid,m)
—_—

— Theadversary can send messages: (Sld, f,) (Sld, f', ¢') wheresid €
Sld, m € M, and ¢’ and f’ are defined as follows. We define f/(sid’) = f(sid")
for every sid’ # sid. Supposethat f(sid) = (i, o,p, (a1, ...,ax)) and ((I1,71), ...
, (In, 1)) arethelabels of edgesleaving p (in this order). We distinguish two cases:

e there does not exist a j such that m and [;o match. Then, we define f'(sid) =
f(sid) and ¢’ = ¢ (the state remains unchanged);

o otherwise, let j be minimal such that m and [;o match. Let 6 be the matcher,
i.e, m = (lj0)0. Then, we define f'(sid) = (4,0 U 8, pj, (a1, ...,ar)) and
¢ =@ U{(r;Ta, sia)ob}.

C Concrete Types

We will identify every element in {a,n,e,d, c, h, p, g} with some bit string of length
three. By C".a we denote the set of bit strings of the form a - m where - denotes
concatenation and m € {0,1}"” is interpreted as the name of the agent. (Recall that
a € {0,1}3.) The set C".n of nonces and the set C".h of hash values are defined anaol-
ogously, where, however, a isreplaced by h and n, respectively. (The specific details of
the encoding of types and the exact length of the bit strings of these setsis not essential
for the results shown in this paper as long as certain conditions are satisfied. For ex-
ample, the size of the set of nonces and hashes should grow exponentially in n, which
for the specific definition is the case.) Given n and a hit string m, type returns a iff
m € {0, 1}73 and m is prefixed with a. Analogously for the typesn and h.

We say that a bit string of the form e - m (where m may have to satisfy certain
efficiently checkable conditions) is a public key or a bit string of type e. Hence, the

15

algorithm type returns e if amessage is of the above type. Analogously for type d. We
assume that public and private keys obtained by running K(n) are prefixed with e and
d, respectively. The set of bit strings of type e (d) is denoted by C".e (C".d).

By (-,)., m1(-), and 72 (-) we denote efficiently computable functions which sat-
isfy the following conditions: (m,m’). is prefixed with p, 71 ((m, m’).) = m, and
ma({m,m’).) = m’ for al bit stringsm and m’. Oninput n and m, the algorithm type
returns p iff m is prefixed with p and (71 (m), m2(m)). = m. By C".p we denote the
set of bit strings for which type returns p.

A bit string obtained as a concatenation of ¢ (the type), a public key (as defined
above), and some bit string (the actual ciphtertext, which may satisfying certain effi-
ciently computable conditions) such that all three components can efficiently be recov-
ered is called a ciphertext or a hit string of type c. Hence, type returns c if a given bit
string is of the required form. We assume that the encryption algorithm returns a bit
string of type c. The set of bit strings of type ¢ is denoted by C ".c. Given abit string of
type ¢, we denote by pubkey the algorithm recovering the public key, i.e., the second
component of the message. We emphasize that this public key was not necessarily used
to obtain actual ciphtertext of the message.

We denote by C".g the set of bit strings on which type does not return one of the
typesa, n, e, d, ¢, h, p. Inthis case, we require type to return g (for garbage).

D Transtionsin the Concrete Execution M odel

In an execution of a protocol, the adversary may make a sequence of queries, whichin-
duces a sequence of (concrete) global states. Next we explain the queries the adversary
may make.

— Corrupt query: at the beginning of the execution, the adversary may corrupt a set
of parties viaarequest corrupt(ay,as,...,a;) whereay,as,...,a; € C".a. As
aresult, public and private keys are generated for the agents by running K (7)) {
times (with independent random coins). All agent namesalong with their public and
private keys are given to the adversary and added to the current intruder knowledge.

— New session query: the adversary initiates a new session by issuing a request of
the form new (i, a1,...,a;) wherei € [k] and aq,...,ar € C".a. As aresult,
the following happens: first, for @l a; (j € [k]) for which no public key has been
generated so far, apublic and private key pair is generated by running K (7). Then,
an instance for running (a concrete version of) I1(:) isinitiated. Thisinstance gets
n aswell as ay,...,a; aong with their public keys and the private key of a; as
input. Then, for all variables X ﬁ‘j occurring in I7 (i) random nonces (derived from
C".n) are generated. These are aso given to the instance as input. Accordingly, if
(Sld, f, ¢, H) isthe current global state, then the new stateis (SId’, f/, ¢, H) where
Sld" = SId U {sid} with sid = |SId| 4+ 1 and f’ is defined as follows:

o f/(sid") = f(sid’) for sid’" € Sld (i.e., the local states of previous sessions
remain unchanged);

o f/(sid) = (i,0,¢, (a1, ..., ax)) where o is defined as follows:
o(4;) =aj 1<j<k
o(X%) L ern jeN, XY, occurringin I7(j)

16

— Send message query: by issuing the a query of theform send(sid, m), wheresid €
Sld and m € C" the adversary can send a message to instance sid. The effect
of this query is the following: assume that the current global stateis (Sid, f, ¢, H),
f(sid) = (i,0,p, (a1, ..., a;)), and the outgoing edges of p arelabeled by the agent
rules ((I1,71), .-, (I, 7)) (in this order). Starting from the left-most rule, agent
a; (Who carries out session sid) will first check whether m matches with one of the
agent rules. Say (I, ;) is the first to match. Then, a, produces output according
to this rule and then moves the program pointer to pj. It will aso store the values
assigned to variablesin [; (and hence, r;) aong the way. We now briefly explain
how {; is matched against m and then explain how the output is produced according
to Tj.

Matching of /; against m: thisis done recursively on the structure of { ;.

o If [; isavariable such that no value has been stored for this variable so far and
m is of the same type as the variable (this can be checked by running type on
m), then m is assigned to this variable. If a variable has been assigned to the
variable aready, then it is checked whether is coincides with m.

o If[; isof theform (¢, ¢2), thenitis checked whether type(m) = p and thetwo
components of m are extracted by running =, and 7». Then, these components
are matched with ¢, and to, respectively (in some order).

o If ijisof theform {t}g, 4, witha € X.r, thenit is checked whether m is of
type ciphertext, and if it is, the public key is extracted (by running pubkey on
m). Then, m is decrypted using the decyrption key of a ;. If the decryption is
successful, the resulting plaintext is matched with ¢.

o Ifl;isof theform {t}], ,) withr € Rand,, thentheencryptionsm’ of the bit
string corresponding to ¢ with some randomness replaced for » and the public
key of a; is computed. More precisely, we distinguish between two cases: if
{t}’e"k(;) occurred in some preceeding agent rule, then m’ has been computed
already and it is simply checked whether m and m’ coincide. Otherwise, if
{t}ex(a,) hasno occurred before, then it follows from the condition on roles of

protocolsthat {t};’k(4,) can be derived from the messages seen so far (formally,

we have that (IE;', N X) UKL Fx rURanda, {t}i(a,))- Following the derivation
tree, one can therefore compute a bit string corresponding to ¢. This bit string
can then be encryption with the public key of a ; and some fresh random coins.
Itisthen checked whether the resulting bit string coincides with m. (A techni-
cal detall is that not all variablesin IC;; N X might have been assigned values
yet since, for example, they occur in a different component of (-, -) which has
not been matched yet. However, if the matching is successful, they will be sub-
stituted by bit string and then can be used to evaluate ¢.)

o If[; isof theform h(t), thenit follows from the condition on roles of protocols
that ¢ can be derived from the messages seen so far (formally, we have that
(K NX) UK Fx.rURanda, h(t) whichimpliesthat (KC) N X) UK Fx.rURand,
t). Asabove, one can thereforeevaluate ¢, which resultsin abit string, and then
compare this bit string to m.

If one of the above checksfails, the instance will ignore the incoming message and
theinternal state will not be changed.

17

The output, i.e., the bit string, produced according to r ; is computed following the
structure of ; in the obvious way. The condition for role of protocols guarantee
that the computation can actually be carried out.

According to the above description, the current global state (Sld, f, ¢, H) is up-
datedto (Sld, ', ¢’, H) inthe obviousway: if the matching between [; and m fails,
then the global state does not change. Otherwise, ¢’ is obtained from ¢ by adding
the bit string produced as output. We define f/(sid") = f(sid") for every sid” # sid.
If f(sid) = (¢,0,p,(a1,...,a1)), the new local state f/(sid) of the session sid is
(i,0',pj, (a1,...,a;)) where ¢’ is obtained from o by adding the substitution of
the variablesin [; that have not been subsituted before according to the matching
of [; and m.

— Hash query: the adversary may issue a hash request to the random oracle of the
form hash(m). If the current global state is (Sld, f, ¢, H), then the effect of this
query is the following: if H does not contain an entry for m, then a bit string is
chosen randomly from C".h. This bit string is given to the adversary. The global
state, in particular, ¢ and H, are updated accordingly.

E IND-CCA Security for Asymmetric Encryption Schemes

In this appendix we recall a standard notion of security for asymmetric encryption
schemes, namely IND-CCA security. The formulation that we give is the multi-user
version, known to be equivalent to the single user version (see, e.g., [10]).

For afixed encryption scheme A€ = (K, Enc, Dec), aleft-right encryption oracle
parametrized by a bit b and encryption key pk is an oracle which accepts as queries
pairs of equal-length bitstring (m ¢, m1) and returns an encryption Enc(pk, my,).

Given an encryption scheme AE = (K., Enc, Dec) we consider the experiment
Exp’; %" (n) parametrized by the bit b, and that uses adversary .A. The adversary A
is provided access to polynomially many left-right oracles, each parametrized by b and
apublic key pk; generated via (pk;, sk;) & Ke(n). The adversary is also given access
to corresponding decryption oracles, that is, oracles parametrized by the decryption
keys sk;, that accept as input bitstrings and return the decryption of the bitstring under
sk;. The adversary is alowed to make as many encryption and decryption queries as
he likes, under the condition that he is does not submit to the decryption oracle under
sk; a ciphertext obtained from the encryption oracle under pk ;. When A finishes its
execution, the adversary outputs a bit d (which is his guess as to what the bit b is) and
the bit d isthe output of the experiment. We define the advantage of A by:

Advff(ifg“ =Pr [Expfﬁg‘lo (n) = 1} —Pr [Expfﬁg‘“ n)=1

and we say that AE is IND-CCA secure if for all probabilistic polynomial-time adver-
saries, the function Adv’; %< () is negligible.

F Proof of Lemma 1

Let ¢ be an arbitrary set of messages and n. a nonce symbol that occursin ¢.

18

Right implication =. First, ¢ - n impliesthat n occursin Pat,, (¢) by induction
on the proof of ¢ - n and using that » can be obtained using only decomposition rules
(that is projections and decryption).

Second, assume that there exists M subterm of ¢ such that ¢ = M and p such that
M|, = n, o that there is no encryption along p and for al p’ < p, M|, = h(M’)
implies ¢, n = M’. Since M only contains pairing and hashes aong p, it is easy to
verify that n occursin Pat? (M) thusin Pat,, (¢) (since M is adeducible subterm).

L eft implication <. Assume that n occurs in Pat,,(¢) and that VM € ¢, Vp such
that M|, = n and such that thereisno encryptionaong p, 3p’ suchthat M|, = h(M’)
and ¢, n tf M'.

We prove by induction on M that for any M subterm of ¢ such that ¢ - M, n
occursin Pat? (M) implies ¢ + n.

— Base case: M isaconstant or aname. n occurs in Pat? (M) implies M = n thus
¢Fn=DM. B

—If M = (M, M,). Then n. must occur in Pat?(M;) for i equal 1 or 2. Since
¢+ M;, we deduce by induction hypothesisthat ¢ I- 7.

- M = {M'}},,- Thenn occursin Pat{, (M),

e r € Randgg,. Then M’ € ¢ by construction of ¢. Thus ¢ - M’ and by
induction ¢ + n. B B

e Otherwise, we must have ¢,n + dk(a). This implies ¢ + dk(a) (this can
be shown using the fact the dk(a) can be obtained using only decomposition
rules). We deduce that ¢ + M’ thus we obtain again by induction hypothesis
¢ Fn. _

— M = h(M"). Thenn occursin Pat? (M’) and we must have ¢, n_ M.

o Either ¢ - M’ and applying the induction hypothesiswe get ¢ - n.

e Or ¢ I/ M'. It means that there exists some context C' computable by the
adversary (that is, there is no agent encryption in C) and terms N, ..., Ng,
deducible subterms of ¢ such that C[N7, ..., Ny,n] = M'. (Seefor example
Proposition 7 of [1].) Let p be such that M ’|, = n (p aso position of C).

x |f there exists an adversary encryption along p, that is, there exists a sub-
term {M"}{,) of M’ with n occurring in Pat?(M") then M" € ¢ by
construction of ¢. Hence, ¢ - n by induction hypothesis.

x If there is no adversary encryption along p, it means that there is no en-
cryption at al. Thus by hypothesis, there exists p’ < p such that M|, =
h(M") and ¢,n t/ M". But M" must be equal to C'[Ny, ..., Ni,n] for
some C’ sub-context of C'. Hence ¢, n t# M", contradiction.

G Decidability of nonce secrecy preservation

This appendix is devoted to the proof of Theorem 2. NP-hardness comes from the same
construction than NP-hardnessfor deciding usual secrecy. The non-deterministic proce-
dure to decide nonce secrecy preservation worksin two steps. First, arbitrary constraint
systems are reduced to solved constraint systems using non-deterministic transforma-
tion rules Second, we show how to decide nonce preservation for solved constraint
systems.

19

Ri CATlku ~ CATIt ifTU{z | T ko eCT €T} Frand,y, U

Ry CATIFu ~,Co ATolFuo if o = mgu(t,u),t € St(T),

t # u, t,u not variables
R3 CANTIFu ~sCo ATolruo if o = mgu(t1,t2),t1,t2 € St(T),

t1 # ta, t1,te Not variables

Ry CATIFu ~ 1 if var(T,u) =0 and T Rrand, 4, U
R<’> C/\T||‘<U1,U2> ~ CANTIFur ANTIFus
Ry, CATIFh(u) ~ CATIFu
R%} CATIF{ui}y, ~» CATIFu ATIFuz r € Randaay

J)
R CATH{uhtt ~ CAThu ATkuz L :Randea,
Riey C ~o Co if o = {ek(a)/z},ek(a) € Ihs(C),
x key variablein key position

St(T') denotes the set of subterms of thetermsin T'.
LJAZ, : Rand,q4, Means that LJAi isof subtype Rand,qy.

Fig. 2. Simplification rules.

G.1 Reduction to solved forms

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we have called solved.

The simplification rules we consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We write C' ~~" C’ if there are C4,...,C, withn > 1,
C'=C,,,C vy, Cf ~gy o+ g, Cpando = 0102...0,. Wewrite C ~71 C if
C ~" C' forsomen > 1.

The simplification rules are correct, complete and terminating in polynomial time.

Theorem 3. Let C' be a constraint system, € a substitution and » be a nonce.

1. (Correctness) If C' ~} €’ for some constraint system C’ and some substitution
o and if 0 is a solution of C’ such that n occurs in Pat,, (lhs(C”)0) then o6 is a
solution of C' such that n occursin Pat,, (1hs(C)o#).

2. (Completeness) If 6 is a solution of C' such that n occursin Pat,, (lhs(C)6) and if
C isnot in solved form, then there exist a constraint system C’ and substitutions
0,0 suchthat § = o6’, C' ~~71 C” and 0’ isa solution of C” such that n occursin
Pat,, (Ihs(C")6").

3. (Termination) If C' ~~" C’ for some constraint system C’ and some substitution o
then n is polynomially bounded in the size of C.

The proof is a simple extension of the proof provided in [9] (without XOR). The ex-
tension to our nonce secrecy notion simply relies on the fact that whenever C ~ 1 C”
and then ihs(C)(c8) = (Ihs(C)o)8 = Ihs(C")0 for any substitution ¢ solution of C”.
The rule Ry, has been added for our decidability purposes but does not compromise
the correctness and compl eteness of the transformation rules.

20

G.2 Decidability of nonce secrecy for solved forms

Using the general approach presented in the previous section, verifying nonce secrecy
can be reduced in non deterministic polynomial time to deciding these properties on
constraint systems in solved form. Indeed, applying Theorem 3, we have that a con-
straint system E preserves the nonce secrecy of n if and only if there exists a con-
traint system in solved form E’ such that £’ preserves the nonce secrecy of n and
E ~1 FE'. By définition, a constraint system E’ in solved form preserves the nonce
secrecy of n if and only if there does not exist a solution o’ of E’ such that n occurs
in Pat,, (Ihs(C")o"). Since we only consider well-typed substitution, o’(z) = ek(a) for
some agent identity « for any key variable x. We can thus assume that the rule R ., has
been applied as much as possible.

Let E be asolved form and n be anonce. We consider '’ the solved form defined
asfollows:

E' ={Tuvar(T)IFu|TIFueE}
Thenit is easy to verify that:

— oisasolutionof E if and only if o isasolution of E’,
— n ocecursin Pat,, (lhs(Eo)) if and only if n occursin Pat,, (lhs(E'0)).

We can thus assume that var(T) C T forany T |- u € E. In that case, we say that
FE containsits variables. In what follows, a solved form is redefined as a well-formed
constraint system in solved form that containsits variables and has no successor for the
Ry, rules. It is sufficient to decide nonce secrecy only on solved forms.

Given E in solved form, the decision procedure works as follows:

1. Check whether EU{lhs(E) IF n} hasasolution (thisisdecidable[15]). If yesthen
E clearly does not preserve nonce secrecy.

2. If not, choose non-deterministically a successor £’ in solved form of E, that is
E' = Eor E ~} E'for someo and check whether n occursin Pat *(7) (1hs(E")).
If yesthen E clearly does not preserve nonce secrecy. If not then E preservesnonce
secrecy of n.

The completeness of the non-deterministic decision procedurerelies on the follow-
ing property.

Proposition 2. Let E be a solved form and » be a nonce. Assume E U {lhs(E) I+ n}
has no solution. Assume E does not preserve nonce secrecy of n, that is, there exists a
solution § of E' such that n occursin Pat,, (lhs(E®)). Then

— either n occursin Pat,, (Ihs(E)),
— or thereexists o such that £ ~~+ E’ and E’ does not preserve nonce secrecy of n.

Assuming Proposition 2, we get that £ does not preserve nonce secrecy of n if and
only if E has a successor E’ in solved form such that £ ~~} E’ and n occurs in
Pat,,(lhs(E")), which proves the correctness of our decision procedure. | ndeed, apply-
ing Proposition 2, if £ does not preserve nonce secrecy of n then either n occursin
Pat, (ihs(E)) or thereexists o such that E ~~} E’ and E’ does not preserve nonce se-
crecy of n. We can assumethat £’ isin solved form otherwise we can apply Theorem 3

21

(possibly several times) and until we get E” insolved formand o’ suchthat E” ~7, E"
and E” does not preserve nonce secrecy of n. Thus we can apply Proposition 2 again
until » occursin Pat,, (lhs(E")).

The remaining of the section is devoted to the proof of this proposition. We need
some intermediate lemmas and definitions.

We define public terms to be terms constructed by the adversary.

Definition 6. Public context are terms with variables defined inductively as follows:

t,ty,ty = public terms
| « variable z
| a agent identity a
| g garbage g
| {t}gk(a) adversary encryption, » € Rand g4,
| h(t) hash
|

(t1,t2) pairing

A public context isalinear public term (no variable appearstwice). By convention, the
expression C[ty,. .., t,] denotes the term Co where the exact set of variables of C'is
{z1,...,zp}ando = {t1 /21, ... tn/ 20}

Lemma4. Letn beanonce t beaterm, E = {T1 Ik ay,..., T} - ay} withT; C T4
be a constraint systemin solved form and o be a solution of E.

— IfTj0,n FRand,,, tthenthereexistsapublic context C suchthatt = Clt1o,. .., tio, n]
where each ¢; isa subtermof 7; such that T’; Frand,,, t; @ndt; isnot a variable.

— If T} FRand,,, t thenthere exists a public context C' such that ¢ = Cltq, ...,]
where each ¢; is a subtermof 7; such that T'; Frand,,, t; @ndt; isnot a variable.

adv

Proof. We prove the first part of Lemma 4, the second part is done similarly. We con-
sider a minimal proof of T'jo,n FRrand,,, ¢ iN the sense that, at each step it uses the
smallest premises. More formally, for any sub-proof 70,7 Frand,,, u. l€t i bethe
minimal index such that it is also a proof of T;0,n FRrand,,, «.If i > 2, we must
have T;_10,n t/rand,,, u. The proof is done by induction j and the length on the
proof of Tjo,n FRrand,,, t (I€xicographical order). If there exists i < j such that
Ti0,n FRrand,,, t» We are done by induction hypothesis. Thus we can assume that j
is actually the minimal index such that 7°j0, 7 FRrand, 4, t-

adv

— If t = nthenwe consider C' = [].

— Ift € Tjo,thent = t,0 witht, € T}. If t; isnot avariable, we are done. Let i be
the minimal index such that it isalso aproof of T';0, 1 FRrand,,, t. If t1 iSavariable,
we have t; € T;. By definition of constraint system, there exists [< i such that
T, IF t; € E. Since o isasolution of E, we have T;0 Frang. .. t10 = t, which
contradicts the minimality of ;.

— Ifthelast appliedruleisaconstructionrule: t = f(t1,...,tx) with f € {{),enc, h}.
By induction there exist public context C; such that t; = C[t}o,...,t, o,n]. We
consider the public context C = f(C4,...,C,). Notethat if f isanencryption, an
adversary randomness must have been used.

adv

22

— If thelast applied ruleisaprojection rule.

T;0,n FRand,,, (M1, m2)

adv

Tj 0,1 FRand m;

adv

By induction hypothesis, there exist a public context C' such that (m,ms) =
Cltio,. .., tgo,n] where each ¢; is a subterm of T; such that T; Frand,,, t: and
t; isnot avariagble. If C' = (C1, C>) then the public context C; satisfies the con-
ditions. Otherwise (m1,m2) = t10 some non variable deducible subterm of T';.
Thust, = (t},15). Wehave T Frand,,, t; adm; = tjo. If ¢t} isnot avariable, we
are done. If t] isavariable, we must have t; € T and there exists! < j such that
Ti0 FRrand,,, ™i, which contradicts the minimality of j.
— If thelast applied ruleis adecryption rule.

Tjo,n FRandaa, {Mtapy 15051 FRand,a, dk(b)

TjU, n l_RandU,dv m

By induction hypothesis, there exist a public context C' such that {m} (b)) =
Cltio,...,tgo,n] where each ¢; is a subterm of T; such that T} Fgrand,,, t
and ¢; is not a variable. If C = {C;}¢, then the public context C; satisfies
the conditions. Otherwise {m}_, ;,, = t10 some non variable deducible subterm
of T;. Thust; = {t'}},. t" is not a variable otherwise the rule Ry, would be
applicable, which contradicts that £ has no successor. Thus t” = ek(b). Since
T;0,n FRand,,, dk(b), by induction hypothesis, there exists a public context C
such that dk(b) = Cf[tio,...,tx0,n] where each ¢; is a subterm of T); such that
T; FRrand,,, t; andt; isnot avariable. We must have C' = [] thus dk(b) = ¢10.
Since ¢ is not a variable, by well-formedness of the constraint system, we must
havet; = dk(b) thus T Frand,,, dk(b). We deducethat T; Frand,,, t'- If t’ isnot
avariable, we are done. If ¢’ is a variable, we show again that this contradicts the
minimality of ;.

Lemmab. If Ihs(E)o,n Frand

adv

dk(a) then ihs(E) Frand, ., dk(a).

adv

Proof. Thisaconsequenceof Lemmad4. Assume lhs(E)o, n b Rrand,,, dk(a). By Lemma4,
there exists a public context C' such that dk(a) = Cltio,...,tro, n] whereeach ¢; is

a subterm of lhs(E) such that lhs(E) FRrand,,, t: @ndt; isnot a variable. We must
have C' = [] thusdk(a) = t10. Since t; is not a variable, by well-formedness of the
constraint system, we must have t1 = dk(a) thus lhs(E) Frand,,, dk(a).

Lemma®6. lhs(E)o,n Frand,,, tifandonlyif lhs(E)o, n Frand,,, t-

adv

Proof. Since lhs(E)o C lhs(E)o, ths(E)o,n Frand
t.

Conversely, since E iswell formed lhs(E) = lhs(FE) thus lhs(E)o = lhs(E)o U
{{m}}, subtermof ¢ | » € Rand,q,}. Let us show that actually any term {m}}, sub-
term of o suchthat r € Rand .4y, iSdeduciblefrom lhs(E)o, n. By Lemma4, there ex-
istsapublic context C suchthat {m}} = C[t10, ..., tro, n] whereeach ¢; isasubterm
of lhs(E) suchthat (hs(E) FRrand,,, t: andt; isnot avariable. Since E iswell-formed,
r cannot appearsinthe¢;. Thus{m}; = C|[n] thus lhs(E)o, n FRrand,,, {m}}-

W, timplies lhs(E)o,n Frand,,,

23

Lemma?7. Let F bea constraint systemin solved formand o be a solution of E. Let ¢
beaterm.

th(E)O’ l_Rand
andt =t'o.

t if and only if there existsa termt’ such that ihs(E) Frand, ., t’

adv

Proof. If there exists aterm ¢’ such that lhs(F) FRrand,,, t andt = t'c then clearly
lhs(E)U FRand, 4, t-

Conversely, assume lhs(E)o FRrand,,, t- Applying Lemma4 (with a nonce n that
does not occur in t), there exists a public context C' such that {m}}, = Cltio, ..., tx0]
where each ¢; is a subterm of lhs(E) such that lhs(E) Frand,,, t: andt; is not a
variable. We chooset’ = C[ty,. .., tx]. Wehavet = t'o. Moreover lhs(E) Frand, ., ti
and C public context impliesthat ihs(E) Frand,,, t-

Lemma8. Let n be a nonce, E be a constraint system in solved form and o be a
solution of E. Assume E U {lhs(E) IF n} has no solution. Assume that » does not
occur in Pat*(®) (ihs(E)). Let o bea solution of E. Then

1. either n does not occur in Pat*(£

t,
2. or thereexists o’ suchthat E ~*, E’, 0 = 06, 6’ isasolution of £/ and n occurs
in Pat!(F) (1hs(E")0).

Note that this lemmaimplies Proposition 2. Indeed, assume £ U {lhs(E) I n} hasno
solution. Assumethere existsasolution o of E suchthat n occursin Pat *(5)7 (1hs(E)o).

— Either n occursin Pat*() (Ihs(E)),
— or, by Lemma 8, there are two possbll|t|es
e either n doesnot occur in Pat s (E)7 (1) for any term ¢ suchthat lhs (E)o FRand, .

t. In that case, we know by Lemma 6 that, for any term ¢, Pat*(E)o(3) =
Pat*(B)7 (1) since hs(E)o, n Frand,,, t' if and only if Ths(E)o, n Frand,.,.
t' for any term ¢’. Since lhs(E)o FRrand,,, t for any t € lhs(E)o, we deduce
that n does not occur in Pat,, (lhs(E)o) thus doesnot occur in Pat,, (1hs(E)o),
contradiction.

o orthereexistso’ suchthat £ ~~*, E', 0 = 0’6 andn occursin Pat ™ (E)? (1ns(E/)6),
which meansthat £’ does not preserve nonce secrecy of n.

)7 (¢) for any term ¢ such that Ihs(E)o Frand

adv

It is thus now sufficient to prove Lemma8

Proof. Let n be anonce, E be a constraint system in solved form and o be a solution
of E. Assume E U {lhs(E) IF n} has no solution. Assume that » does not occur in
Pats(E)(jphs(E)).

Either there existsJ suchthat £~} E', 0 = ¢'6, ¢ isasolution of E’ and n
occurs in Pat'*(EY9 (1hs(E7)6) in which case we are done. Or we prove that n does
not oceur in Pat”“(E)"(t) for any term t such that lhs(E)o Frand,,, t. Let E = {T} |-

adv

ay, ..., Ty lFa}.
Assume lhs(E)o FRrand,,, t-By Lemma?,thereexistsatermt’ suchthat (hs(E) Frand,,,
t'andt =t'o.

Wefirst assumethat ¢’ is asubterm of [hs(E) and provethe following statement by
induction on (k, |t'|) (Iexicographical ordering), where |¢t’| denotesthe size of ¢'.

24

lhs(E)o
n

n does not occur in Pat
th(E) FRand,, 4. t.

(t'o) for any term ¢’ subterm of T}, such that

Basecase: k£ = 1 andt’ isatomic.

If ¢’ isanonceor aname, t'c = ¢'. Thent’ # n since E U {lhs(F) I n} hasno
solution. Thus n does not occur in Pat*(E)7 (¢/4),

n

If t' isavariableisexcluded sincet’ isasubterm of 7 and 7 containsno variables.
Induction step: ¢’ subterm of T}, such that lhs(E) Frand,,, t'-

If ¢’ isanonceor aname, t'c = ¢'. Thent’ # n since E U {lhs(F) I n} hasno
solution. Thus n does not occur in Pat *(#)7 (¢/4),

If ¢ is avariable, then by definition of constraint systems, there exists k' < k such
that T/ I- ¢ € E. We deduce that Ty 0 FRrand,,, t'c. Lett = t'o. By applying
Lemma 4 to constraint system {7 I+ aq,..., Ty I ap }, there exist uq, ..., uy
subterms of T} such that t = Clus,...,u,]o where C is a public context. We
deduce that Pat*(#)7 (1) = C[Pat!**(®)7 (4, 0), ..., Pat™(F)7 (4, 5)]. Applying
the induction hypothesis, we get that n does not occur in Pat "*(¥)7 (4;0) thus n
does not occur in Pats(B)7 (1),

If ¢/ = (t1,t5). Then Pat™*B)o(¢/5) = (Paths(B)o (1)) Pat*(B)o(1,)). Since
Ihs(E) Frand,,, t implies lhs(E) Frand,,, t1,t2 and t; and to are subterms
of T}, we can apply the induction hypothesis, we get that n does not occur in
Paths(B)o (1),

If t" = {t1}}, and ty0 = ek(a). We must have t, = ek(a) or ¢, is a variable.
The caset, variableis excluded by application of the transformation rule Ry, . We
assume now to = ek(a).

Thecaser € Rand,q, isexcludedsincet’ isasubterm of T}, and £ iswell-formed.
Either lhs(E)o, n Hrand, ,, dk(a), inthat case, Pat*(®)7(¢) = O and n does not
occur in .

Or lhs(E)o,n Frand,,, dk(a). Thenby Lemmas, Ihs(E) Frand,,, dk(a). Thus
Ihs(E) FRrand,,, t1 @ndt; isa subterm of T}, thus we can apply our induction
hypothesis.

If ' = h(t"o). Either Ihs(E)o,n Yrana,,, t"c, inthat case, Pat!**(F)o () = O
and n does not occur in OJ. Or lhs(E)o, n FRrand,,, to. Applying Lemma4, there
exists a public context C' such that t”o = Cluyo, ..., u,o,n] where each u; isa
subterm of lhs(E) such that lhs(E) Frand,,, % andu,; isnot avariable.

Either there exists a path p of ¢’ such that ¢'|,, is not avariable and ¢'|, = w,o for
some i and t'|, # ;. Since u; is not avariable, therule R3 of the transformation
rules can be applied. Let o’ = mgu(u;, t’'|,). We haveo = o’6 for some 6, E ~~,
Ec¢’ and n occurs in Pat,, (lhs(E")0) since lhs(E")0 = lhs(E)o’'0 = lhs(E)o,
contradiction.

Ort" =C'[n,x1,...,Tk, Uiys - - -, Ui, |. ThENhS(E) Frand,,, t”’ sincevar(lhs(E)) C
lhs(FE) and the u; are subtermsof ¢’ thus of T}, thus we can apply the induction hy-
pothesis.

25

In the general case, applying Lemma 4, ihs(E)o FRrand,,, t implies that there exists
apublic context C suchthat ¢t = C[t},...,t,]o where each ¢} is a subterm of lhs(E)
such that ihs(E) Frand,,, t; andt; isnot avariable. Since C is apublic context,

Pat!* ()7 (1) = C[Pat* (P (#,0), ..., Pat!* (7 (1}.0)]
Sincethet/ are subtermsof Ihs(E), we have seen that n doesnot occur in Pat "(#)7 (47,
We conclude that » does not occur in Pat (F)7 (1),

n

H Proofsfor Resultsin Section 4
H.1 Proof of Proposition 1

Proof (Sketch).

The proof isin two steps, which we briefly sketch before giving the details.

First, we associate to each computational trace of an arbitrary adversary A a sym-
bolic trace by parsing each bit-string down to its most basic components (keys, identi-
ties, nonces, randomness), and mapping each of these componentsto appropriate sym-
bolic constants. In parsing the messages we may freely use the decryption keys, which
are fixed by the randomness used in the trace.

In the second step, we show that the trace associated as aboveis avalid trace, with
overwhelming probability (over the coins used in the execution). The proof is based
on a characterization of non valid traces that identifies all ways in which the messages
output by the adversary are invalid. Then, we construct an adversary B that simulates
the execution of the protocol in the presence of the adversary A. Adversary BB is against
the encryption scheme and uses its encryption oracles to simulate the execution of the
honest parties. Then, if A with non-negligible probability outputs a non-Dolev-Yao
message, adversary BB breaks the security of the encryption scheme.

STEP |. For each concrete execution trace t¢ = Execy(g,,) a(r.) () We construct
the symbolic ¢* and the function c by tracing the queries made by adversary A and
tranglating them into symbolic queries. Notice that since we do not require that c is
efficiently constructable, in its construction we may safely assume that all decryption
keys are known (notice that they arefixed by R 7).

For corrupt and new queries the trandation is straightforward (party identities
are mapped to appropriate symbols). The interesting party is how send queries are
treated. Each bitstring m that occursin asend query is translated to a symbolic term
c(m) asfollows. Agent identities, cryptographic keys, randomness used for encryption
by honest parties, and random nonces (all quantities that are uniquely determined by
Rypr) are canonically mapped to symbolic representations. for example the bit-string
representing the encryption key of party a; is mapped to ek(a;). Ciphertexts created by
the adversary are decrypted with the appropriate key (recall that all decryption keys are
available while defining the mapping).

Therest of the messages are interpreted as they occur: each message m sent by the
adversary is parsed (notice that all decryption keys needed for parsing are known, since
they are fixed by the randomness used in the experiment).

26

STEP |1. In the second step of the proof we show that the trace t * constructed as above
is Dolev-Yao with overwhelming probability. The proof relies on the following lemma
that characterizes non Dolev-Yao adversaries. In what follows, ag(i) € Rand,, and
adv(i) € Randggy.

Lemma9. Let My, ..., My, M be ground terms such that

— Mq,..., My b/ M,
— names(M) C |J, ;< names(M,);

— if {M’}ek(g isa subtermof M then { M’ }Zkg(() isa subterm of some M;.

There exists a non deducibleterm 7', subtermof M, thatis M, ..., My, t# T and there
isa position p such that M|, = 7" and

1. for any pathp’ < p, M|,» isnon deduciblefrom My, ..., M,
2. for any path p’ < p suchthat M|, = {M’ }ek(a) or M|, =h(M'), M|, isnota
subterm of the M;’s,
3. — Tisadecryptionkey dk(a),
— or T is subterm of some M; and is either a nonce or an encrypted message of

the form { M’ }afg) or ahash h(M).

We say that 7" is under attack.

Proof. We prove the lemma by induction on the size of M.

Base case: M is a nonce, an agent identity, a key or, a garbage symbol. Since M
is non deducible, by construction of the deduction system, M must be a nonce or a
decryption key dk(a) of some honest agent. If M isadecryptionkey, T := M sdtisfies
Lemma. If M isanoncethen by hypothesis, M € |J, -, names(M;). Thus M isa
subterm of some M;. We then take T := M which satisfies the lemma.

Theinduction step: M is acomposed term.

— Either M = h(M’). If M isasubtermof some M, thenT' := M satisfies the condi-
tions of Lemma9. Otherwise M is not asubterm of any M ;. Then M’ must be non
deducible. Otherwise M would be deducible. We apply the induction hypothesis
on M’ andfind T satisfying Lemma9 for M, ..., My and M’.

-Or M = {M' }:‘k‘(“()) Then M’ must be non deduC|bIe otherwise M would be

deducible. We apply theinduction hypothesison M’ and find T satisfying Lemma9
for My, ..., My and M'.

- OrM = (M*, M?). Then M* or M2, say M7, must be non deducible otherwise M
would be deducible. We apply theinduction hypothesison M 7 and find T" satisfying
Lemma9for My, ..., M; and M7,

—or M = {M'}?2) By hypothesis, thisimplies that M is a subterm of some M,

ek(a)

thusT := M satisfiesLemma9.

Inthethreefirst cases, it is easy to verify that T" also satisfiesLemma9 for M, ..., My
and M since M isnon deducibleand M is not asubterm of some M ; (or M isapair).

27

For our proofs, it isimportant to also show that if M1, M, ..., M, are the output
of honest parties in a symbolic execution of a protocol, then the term T" (which occurs
in some M;) isin fact constructed by the honest parties, and not by the adversary.

Thiscan beseenasfollows. Let M1, ..., M} bemessages sent (in thisorder) during
the execution of a protocol I1. Therefore, each M ; is of the form M; = r;,0; where
l;, — r; isaedge of aroleof IT and for each variable of the domain of 6, 6;(z)
is either a subterm of M, ..., M;_q or adeducible term from AM+,..., M;_,. Let T
satisfy Lemma 9. Since 7' is non deducible it must occur as a non trivial subterm of
somer;,, that isthereexists 4, j and anon variableposition p of r; suchthat T' = r;|,6;,
which showsthat T" is computed by an honest party.

Themain (and final) step of the proof is to show that if there exists an adversary A
for which the associated symbolic traces are non-Dolev-Yao with non-negligible prob-
ability, then we can construct an adversary BB that breaks encryption.

The adversary BB that we construct uses its access to left-right encryption oracle
and to the corresponding decryption oracles to simulate the parties against which A is
normally executed, and also simulates the random oracle. In general, B intercepts and
answers all queriesthat are made by A asfollows.

— When A sendsits corrupt(aq, ag, . . ., a;) request adversary B generates private
and public keysfor partiesaq, as, . . ., a; and sends them to the adversary.

— When A wants to initiate a new session new (i, a1, ..., a), if agents a,; are new,
B requests new users corresponding to these agents in the multi-party setting for
public-key encryption. Then B generates al the honest nonces corresponding of
agents a; in that new session.

— When A makes a send(s, m) request, B parses the message possibly using the
decryption oracle and the records of the hashes already generated when simulating
the random oracle and answers according to the protocol (encrypting the message
by himself).

— When A makes a hash(m) request, either B has already generated a hash value
h for m and simply returns h or 3 generates a new hash value, memorizes the
association and returns the value to A.

The critical part of the proof is how adversary A uses the non-Dolev Yao message
T (described in Lemma 1) to break encryption. We treat separately the case when T' is
a decryption key of an honest agent, and the case when T' is a nonce or an encrypted
message of the form {M’}Zf&)) orahash h(M') and T is asubterm of some previously
sent messages. We start with the latter case which is more complex.

Thefirst step of 5 isto guess when T" occurs in the execution of honest parties for
thefirst time. Since T is created by some honest party (see the remark after Lemmal),
this can be done by guessing a session number, in which instruction (I ;,;), and on
which position of r;, T' occurs. The key idea is to construct two different bit-string
interpretations¢to and ¢, for 7', and uses the left-right encryption oraclesin such away
that the view simulated for A is such that the bit-string associated to T is precisely
ty, where b is the selection bit of the encryption oracles. Then, when A makes its first
non-Dolev Yao query 5 recoverst; using the decryption oracles, and therefore b.

When B needs to produce the bit-string representation of the first message M ; that
containsT', it proceedsasfollows. If T"isanonce, 15 generatestwo noncest, and ¢, , and

28

if T is an encryption, B generates two versionst, and ¢, of the encryption (by calling
the encryption a gorithm twice, with different random coins); if T isahash, B generates
two random values ¢, and ¢. Then, B constructs the bitstring M;[T" — t,] where b is
the bit used by the left-right encryption oracle. Notice that since T is non-deducible it

occurs either under an encryption or under a hash. In either case, we compute the bit-

string associated to theinner-most “ protection” of ¢;, whichiseither ahonest encryption
or a hash, by using either the left-right oracle (if it is an encryption application), or by

arandom value (if it is a hash). In the last case we say that B does a cheating hash. We
give examples for the two cases below.

Example 1. If M;[T] is of the form {h(M’[T])}ZE((;)), and T is deducible from M '[T
by projections (thusis“unprotected” in M), then B computes the concrete counterparts
mo and m4 for M|to] and M [t4], respectively and generates a cheating hash 2 which is
associated to the couple (g, m1). Then, the representation of {h(M’[T])}ZE((Z)), isan
encryption of h, computed by 5 himself.

If M;[T)] isof theform h({M’[T]}ZE((Z))) and T is deduciblefrom M’[T}) by projec-
tion then B computes concrete counterparts m and m4 for M[to] and Mt;] and then
uses the left-right oracle to compute {1 }ex(q)- The final value is computed by B who
generates a hash value i for h({ms}ek(a))-

Now we arguethat 5 is able to proceed simulating the rest of the protocol, namely,
to provide the concrete counterpart of M ;[t,] where b is the bit used by the left-right
encryption oracle. The problematic cases are when 3 receives hash and send requests
send(s, m) or hash(m). In that cases, B first parses m to make sure that it does not
recover t, in clear, that is m isanon Dolev-Yao message.

— When B receives a hash query hash(m), there are two cases. Either B has already
generated a hash value h for m, then B simply answers by h; or B has generated
a cheating hash value for m which means that m is equal to some m, thus m is
already a non Dolev-Yao message; contradiction. If B has never generated a hash
value for m, B simply generates a new value, gives it to .4, and remembers the
associ ation.

— When B receives a send reguest send(sid, m), since B simulates the protocal it
knowsthe valuesof f(sid) = (o, j,p). Let (({1,71), ..., (Ix, 7)) bethe outcoming
edges of the node p of I7(j). B tries recursively to find a substitution § compatible
with o such that m = [;06. Assume he finds one. If, when parsing m adversary BB
finds a cheating hash or an encryption that was obtained from the left-right oracle,
adversary B recovers the two possibles values my and m, for which we know
that the secret value t(or ¢ is deducible by projection. Since ¢, is non-deducible,
t, must be re-encrypted or hashed in r,06. As before, B replaces the inner-most
“protection” of T}, either a honest encryption or a hash, by using either the left-
right oracle or by replacing it by a random value (cheating hash).

Next, we explain how B recovers b out of the first non Dolev-Yao output of A.
We abuse notation and occasionally write M for both a symbolic representation of a
message, and for its bit-string representation. Which is the case can always be deduced
from the context.

29

This message occurs in either a send query, or in a hash request. Let M be the
symbolic representation of the first non-Dolev Yao query of A, and let p by the path
from the characterization of M given by Lemma 1. We claim that B can parse M to
recover t; associated to T, following the path p. We reason inductively on the structure
of M.

—if M = (M [T), M?[T)) andp = i - p’, B opens M* following the path p’.

—if M = {M'[T}}}, ., andp = 1-p, then by Lemma9, M does not occur as
subterm of the M;’s, and in particular it has not been obtained using the encryption
oracle. Thus B may submit M to the decryption oracle and recovers M '[t;]. Then,
ty, is recovered following the path p’.

—if M = h(M'[T]) andp = 1 - p’. Either h(M'[my]) has been obtained using the
random oracle, thus B knows itsform, i.e. M ’'[my], and opensit following the path
p’. Alternatively, h(M'[M,)) has been obtained by doing acheating hash, i.e. B has
generated a nonce by himself. In this case, h(M'[my]) is a subterm of some M,
which contradicts Lemma9.

We concludethat B is ableto retrieve T, thus b, therefore breaking encryption.

H.2 Proof of Lemma?2

Proof. Given an adversary A for which the above function is non-negligible, we show
how to construct a successful adversary B against the encryption scheme Enc. Recall
that B has access to polynomially many left-right encryption oracles, and to the corre-
sponding decryption oracles. We write (pk;, sk;) (for ¢ = 1,2,...) for the encryption
and decryption keys that parametrize the oracle. Adversary B executes A as a subrou-
tine and simulates for A its environment (that is, the experiment defining secrecy of
nonces) by playing the role of the honest parties whose public keys are set to be keysin
{pklvkaa e }

Notice that although 5 does not know the secret keysthat correspond to the encryp-
tion keys of the parties that it smulates, it can still parse the messages sent by A by
using the decryption oracles.

The difference between the normal execution and the execution that is simulated by
B is that the encryptions that the honest parties need to compute are computed using
the left right encryption oracles as follows. Whenever some honest party ¢ needs to
encrypt amessage m under the public key of party j, and the message m is sufficiently
long (that is, longer than the security parameter), adversary 5 selects arandom message
rm Of equal length. The encryption is set to be ¢,,,, the result obtained by submitting
(m,) totheleft-right oracle under the public key pk ;. Adversary B maintains atable
of al pairs (m, ¢,,). Whenever a party needs to decrypt a ciphertext c,,, obtained from
the left-right oracle, B sets the underlying plaintext to be m. In rest, the simulation of
the parties by 55 is precisely as in the normal execution. The output of 5 is whatever
adversary A outputs. Notice that if the bit b that parametrizesthe left-right oraclesis 0,
then the simulation that 3 offersto A4 is precisely asin the execution Exec 4 ;7 whereas
if the bit b is 0 then the simulation that B offersto A is asin Exec? ;. We therefore
have that:

30

Advieer () = Pr [Expgec® () = 1] - Pr [Expgec® () = 1]
= Pr[Execa,z(n) = 1] — Pr[Exec) ;(n) = 1]

Since Enc is IND-CCA secure, the conclusion of the lemmafollows.

H.3 Proof of Lemma3

Proof. The proof is similar to that of Lemma 2. We show that if there exists a com-
putational adversary A for which the induced symbolic traces of its oracle execution
are not Dolev-Yao, then, we construct an adversary B that breaks AE. Adversary 5
executes adversary A as a subroutine and emul ates the environment that A expects by
simulating the honest parties. Adversary BB intercepts all queries and answers precisely
as adversary 3 in the proof of Lemma 2 does. Recall that each time an honest party
needs to encrypt some message m, adversary I3 obtains the corresponding ciphertext by
submitting (m, r,,,) toitsleft-right encryption oracle. Here, r,, is selected uniformly at
random among the string of length equal to that of m.

In addition, adversary 5 keeps track of the symbolic trace that corresponds to the
execution trace, simply by parsing all messages that are sent by the adversary and the
honest parties, and constructing (during the execution) the mapping c. Each time adver-
sary A sends amessage m to one of the parties, B verifiesif the symbolic representation
of m can be obtained using Dolev-Yao operations from the symbolic representations of
the messages that the adversary had priorly seen. It is known that for closed terms the
verification procedure can be donein polynomial time. If at any point the message out-
put by A isnot Dolev-Yao, then 5 stopsits execution and outputs 1. Otherwise, when A
finishesits execution, adversary 13 outputs 0. Notice that if the bit of theleft-right oracle
is0, then B simulates perfectly the environment of Exec 4,;7(n7) whereasif b = 1, then
the simulation is as in Exec% ;;(n). Let NDY(Exec4,17(n)) denote the event that the
execution Exec 4 7(7) is not Dolev Yao. Similarly, let NDY (Exec? j;(n)) denote the
event that the execution Exec’ 1() isnot Dolev Yao. Then, we obtain that:

AdVEE(n) = Pr | Bxpliects (n) = 1] — Pr | Expliec (n) = 1]
= Pr[NDY(Execa,z(n))] — Pr [NDY(Execil!H(n))}

Since Pr [NDY (Exec4,17(n))] is negligible (Proposition 1) and Advgf(éﬁf;“(n) isaso
negligible (A€ isIND-CCA secure), we obtain that

Pr [NDY (Exec)y (1)) | = Pr[NDY (Execa,nr(n))] — Advig'gnc” (n)

is also negligible. We conclude that in Exec? ; the computational execution traces are
valid Dolev-Yao traces.

31

