
Computationally Sound Symbolic Secrecy in the
Presence of Hash Functions

Véronique Cortier1 Steve Kremer2, Ralf Küsters3, and Bogdan Warinschi1

1 Loria, CNRS & INRIA project Cassis, Nancy, France
2 LSV, CNRS & ENS Cachan & INRIA project Secsi, France

3 Christian-Albrechts-Universität zu Kiel, Germany

Abstract. The standard symbolic, deducibility-based notions of secrecy are in
general insufficient from a cryptographic point of view, especially in presence
of hash functions. In this paper we devise and motivate a more appropriate se-
crecy criterion which exactly captures a standard cryptographic notion of secrecy
for protocols involving public-key enryption and hash functions: protocols that
satisfy it are computationally secure while any violation of our criterion directly
leads to an attack. Furthermore, we prove that our criterion is decidable via an NP
decision procedure. Our results hold for standard security notions for encryption
and hash functions modeled as random oracles.

1 Introduction

Two distinct kinds of models have been developed for the rigorous design and analysis
of cryptographic protocols: the so-called Dolev-Yao, symbolic, or formal models on the
one hand and the cryptographic, computational, or concrete models on the other hand.
In symbolic models messages are considered as formal terms and the adversary can
manipulate these terms based on a fixed set of operations. The main advantage of the
symbolic approach is its relative simplicity which makes it amenable to automated anal-
ysis tools (see, e.g., [7, 14]). In cryptographic models, messages are actual bit strings
and the adversary is an arbitrary probabilistic polynomial-time (ppt) Turing machine.
While proofs in this kind of models yield strong security guarantees, the proofs are
often quite involved and only rarely suitable for automation (see, e.g., [11, 6]).

Starting with the seminal work of Abadi and Rogaway [2], a significant amount
of research has been directed at bridging the gap between the two approaches. The
goal is to obtain the best of both worlds: simple, automated security proofs that entail
strong security guarantees. The typical approach is to show that the executions of the
computational adversaries correspond to executions of the symbolic adversaries, and
then use this result to show how to translate security notions from the symbolic world
to the computational world.

For some security notions like integrity and authentication, the derivation of com-
putational guarantees out of symbolic ones can be done with relative simplicity [4, 13].
In contrast, analogous results for the basic notion of secrecy proved significantly more
elusive and have appeared only recently [5, 10, 12, 8]. The apparent reason for this sit-
uation is the striking difference between the definitional ideas used in the two different

models. Symbolic secrecy typically states that the adversary cannot deduce the entire
secret from the messages it gathers in an execution. On the other hand, computational
secrecy requires that not only the secret, but also no partial information is leaked to
the adversary. A typical formulation that is used requires the adversary to distinguish
between the secret and a completely unrelated alternative.

OUR CONTRIBUTIONS. In this paper we investigate soundness results for symbolic se-
crecy in the presence of hash functions. One of the main motivations for considering
hash functions, which have not been considered in the aforementioned results 4, is that
they present a new challenge in linking symbolic and cryptographic secrecy: Unlike
ciphertexts, hashes have to be publicly verifiable, i.e., any third party can verify if a
value h is the hash value corresponding to a given message m. This implies that a sim-
ple minded extension of previous results on symbolic and computational secrecy fails.
Assume, for example, that in some protocol the hash h = h(s) of some secret s is sent
in clear over the network. Then, while virtually all symbolic models would conclude
that s remains secret (and this is also a naive assumption often made in practice), a
trivial attack works in computational models: given s, s ′ and h, compare h with h(s)
and h(s′), and therefore recover s. Similar verifiability properties also occur in other
settings, e.g. digital signatures which do not reveal the message signed.

In this paper we propose a new symbolic definition for nonce secrecy in protocols
that use party identities, nonces, hash functions, and public key encryption. The defini-
tion that we give is based on the intuitively appealing concept of patterns [2].

The central aspect of our criterion is that it captures precisely security in the compu-
tational world in the sense that it is both sound and complete. More specifically, nonces
that are secret according to our symbolic criterion are also secret according to a stan-
dard computational definition. Furthermore, there exist successful attacks against the
secrecy of any nonce that does not satisfy our definition. Our theorems hold for pro-
tocols implemented with encryption schemes that satisfy standard notions of security,
and for hash functions modeled as random oracles. In the proofs we combine different
techniques from cryptography and make direct use of a (non-trivial) extension of the
mapping theorem of [13] to hash functions.

Our second important result is to prove the decidability of our symbolic secrecy
criterion (w.r.t. a bounded number of sessions). This is a crucial result that enables the
automatic verification of computational secrecy for nonces. We give an NP-decision
procedure based on constraint solving, a technique that is suitable for practical imple-
mentations [3]. While the constraint solving technique is standard in automatic pro-
tocol analysis, we had to adapt it for our symbolic secrecy criterion: For the standard
deducibility-based secrecy definition it suffices to transform constraint systems until
one obtains a so-called simple form. However, for our symbolic secrecy criterion further
transformations might be required in order for the procedure to be complete. Identify-
ing a sufficient set of such transformations and proving that they are sufficient turned
out to be non-trivial.

RELATED WORK. The papers that are immediately related to our work are those of
Cortier and Warinschi [10], Backes and Pfitzmann [5], and Canetti and Herzog [8],

4 One exception is [12] where hash functions are allowed, but only as randomness extractors.

2

who study computationally sound secrecy properties, as well as the paper by Janvier
et al. [?], that presents a soundness result in the presence of hash functions. In this
context, our work is the first to tackle computationally sound secrecy in the presence of
hashes. We study the translation of symbolic secrecy into a computational version in a
setting closely related to that in [10]. However, the use of hashes requires, as explained
above, new notions and non-trivial extensions of the results proved there. In [?], Janvier
et al. present a soundness result that differs however from this one. On the one hand
they do not consider computational secrecy of nonces sent under hash functions. On the
other hand, they present a new security criterion for hash functions, which is not the
random oracle, although no implementation of a hash function satisfying their criterion
is currently known. The work in [5] and [8] is concerned with secrecy properties of key-
exchange protocols in the context of simulation-based security, and hence, they study
different computational settings. Interestingly, the symbolic criterion used in [8] is also
formalized using patterns, but their use is unrelated to ours. None of the mentioned
works considers decidability issues.

PAPER OUTLINE. In the following section, we introduce the symbolic and computa-
tional models. Our symbolic secrecy criterion is developed in Section 3. We state and
prove the soundness and completeness of this criterion w.r.t. computational secrecy in
Section 4, and prove its decidability in Section 5.

2 The Symbolic and Concrete Protocol and Intruder Models

In this section, we introduce the symbolic and the concrete protocol and intruder models
(see Appendix A to D for more details).

2.1 The Symbolic Model

We define (symbolic) messages and terms, how honest agents and the (Dolev-Yao-style)
intruder can derive messages from a set of messages, and how protocols are specified.

MESSAGES AND TERMS. To define messages, we consider an infinite set A of agent
identities, infinite sets Nonceag , Nonceadv, Randag , and Randadv (nonces and ran-
dom coins generated by the agents and the adversary, respectively), and an infinite set
Garbage representing garbage messages. All of these sets are assumed to be pairwise
disjoint. We set Nonce = Nonceag ∪ Nonceadv and Rand = Randag ∪ Randadv.

The set of messages M (w.r.t. A, Nonce, and Rand) is defined by the following
grammar: M ::= A | Nonce | ek(A) | dk(A) | 〈M, M〉 | {M}Rand

ek(A) | h(M) | Garbage

where ek(a) and dk(a) with a ∈ A denote the public and private key of a, respectively,
〈m, m′〉 denotes pairing of m and m′, {m}r

ek(a) denotes the message m encrypted with
ek(a) using the random coins r, and h(m) is the hash of m. We define the following
subsets of M: EKey, DKey, Ciphertext, Hash, and Pair are the sets of all messages
starting with ek(·), dk(·), {·}··, h(·), and 〈·, ·〉, respectively. We sometimes refer to the
sets introduced above as types.

We assume an infinite set of typed variables X where the types are as above and for
a variable of a certain type only messages of this type may be substituted. In particular,

3

we assume variables Ai, i ∈ {1, . . . , k}, for agent identities and variables X j
Ai

, Lj
Ai

j ∈ N, for fresh nonces and random coins generated by A i. The set of terms T(X) over
X is defined analogously to the set of messages.

DERIVING MESSAGES.Let φ denote a set of terms. The set of terms that can be derived
from φ is defined by the deduction rules given in Figure 1. We write φ � rand t to say
that t can be derived from φ (using randomness rand ⊆ Rand). For example, we have
that {〈dk(a), {c}r

ek(a)〉} ∪ A �Randadv
{c}r′

ek(b) where b ∈ A and r′ ∈ Randadv.

φ � m
m ∈ φ

φ � b

φ � ek(b)
b ∈ A ∪ X.a

φ � m1 φ � m2

φ � 〈m1, m2〉
φ � 〈m1, m2〉

φ � mi
i ∈ {1, 2}

φ � ek(b), φ � m

φ � {m}r
ek(b)

r ∈ rand
φ � {m}r

ek(b) φ � dk(b)

φ � m

φ � m

φ � h(m)

Fig. 1. Deduction rules

PROTOCOLS. Roles are usually specified by a sequence of input/output actions. In order
to model branching protocols, the roles we consider are ordered edge-labeled finite trees
where every edge is labeled by an agent rule (l, r), where l, r ∈ T(X) are messages with
variables, and certain syntactic conditions are satisfied such that the actions can actually
be carried out (in a computational interpretation). A k-party protocol is a mapping
Π : [k] → Roles where [k] = {1, . . . , k} and Roles denotes the set of roles.

SYMBOLIC EXECUTION OF A PROTOCOL. The symbolic execution of a k-party proto-
col is modeled as a finite sequence of global states. A global state is a triple (SId, f, ϕ)
where ϕ is a finite set of messages (the current intruder knowledge), SId is a finite set of
session ids, and f maps every session id in SId to the current state of the corresponding
session. This state is called the local state and is of the form (i, σ, p, (a1, a2, . . . , ak))
where i ∈ [k] is the index of the role that is executed in this session, σ is a substitu-
tion whose domain is a subset of the variables occurring in Π(i) (i.e., σ determines
the messages assigned to variables so far in the current session), p is a node of Π(i)
and determines at what node the agent currently stands, and (a 1, a2, . . . , ak) ∈ Ak is
the tuple of names of the agents that are involved in the session, where a i is the agent
carrying out the current session (supposedly with the mentioned agents a j , j �= i). The
initial state is qI = (∅, ∅, A∪EKey∪Nonceadv), i.e., the intruder knows all names and
public keys of agents as well as the infinite set of intruder nonces.

We allow three kinds of transitions between global states.

– The adversary corrupts a set of parties and thereby learns the private keys of the

agents: qI
corrupt(a1,...,al)−−−−−−−−−−−→ (∅, ∅, A ∪ EKey ∪ {dk(aj) | 1 ≤ j ≤ l}). Note that

this transition can only be applied at the beginning (static corruption).

4

– The adversary can initiate new sessions: (SId, f, ϕ)
new(i,a1,...,ak)−−−−−−−−−−→ (SId′, f ′, ϕ)

where SId′ and f ′ are defined as follows. Let sid = |SId|+1 be the session identifier
of the new session where |SId| denotes the cardinality of SId. We define SId ′ =
SId ∪ {sid}. The function f ′ is defined as follows: f ′(sid′) = f(sid′) for every
sid′ ∈ SId and f ′(sid) = (i, σ, ε, (a1, . . . , ak)) where ε denotes the root of the role
tree and σ(Aj) = aj for every 1 ≤ j ≤ k and σ(X j

Ai
) = nai,j,s, σ(Lj

Ai
) = lai,j,s

for every j ∈ N.

– The adversary can send messages: (SId, f, ϕ)
send(sid,m)−−−−−−−→ (SId, f ′, ϕ′) where sid ∈

SId, m ∈ M, and ϕ′ and f ′ are defined as follows. We define f ′(sid′) = f(sid′) for
every sid′ �= sid. Suppose that f(sid) = (i, σ, p, (a1, . . . , ak)) and (l1, r1), . . . , (lh,
rh) are the labels of edges leaving p (in this order). We distinguish two cases:
• there does not exist a j such that m and ljσ match. Then, we define f ′(sid) =

f(sid) and ϕ′ = ϕ (the state remains unchanged);
• else, let j be minimal s. t. m and ljσ match. Let θ be the matcher, i.e., m =

(ljσ)θ. We define f ′(sid) = (i, σ∪θ, pj, (a1, . . . , ak)) and ϕ′ = ϕ∪{(rjτai,sid)σθ}.

A finite sequence of global states is called a symbolic execution trace (for a protocol
Π) if it starts with the initial global state qI and two consecutive global states in this
sequence are connected via one of the above transitions. We say that a trace is valid

if every send transition (SId, f, ϕ)
send(sid,m)−−−−−−−→ (SId, f ′, ϕ′) verifies that the adversary

could actually deduce m, that is ϕ � m. The set of valid symbolic execution traces (for
a protocol Π) is denoted by Execs(Π). The set of valid set of messages is defined by
Msgs(Π) = {ϕ | (SId, f, ϕ) is the last state of a valid execution trace}.

2.2 The Concrete Model

The concrete model is defined w.r.t. an encryption scheme AE = (K e, Enc, Dec), which
we now fix once and for all. Hashing is modeled by the random oracle.

CONCRETE MESSAGES. Concrete messages are bit strings which carry type informa-
tionwhich can be efficiently computed. In bit strings of type Pair, the two components
can be efficiently retrievedand strings of type Ciphertext carry the public key that sup-
posedly was used to encrypt the plaintext. The set of bit strings is denoted by C η. This
set depends on the security parameter η as this parameter determines the length of agent
names, nonces, and keys. Substitutions now map variables (of some type) to concrete
messages (of the same type).

CONCRETE EXECUTION OF A PROTOCOL. A concrete global state is a 4-tuple (SId, f,
ϕ,H) where ϕ is a finite set of bit strings, SId is a finite set of session ids, and f maps
every session id in SId to the current state of the corresponding session (the concrete
local states). A concrete local state is defined just as a symbolic one, except that vari-
ables are now mapped to bit strings and agent names are also bit strings. The fourth
component carries the state of the random oracle: H is a set of couples (m, h) where
m is a bit string and h its corresponding hash value. A protocol is executed by running
a ppt Turing machine, the (concrete) adversary, which may make queries correspond-
ing to the transitions in the symbolic model. We allow four kinds of transitions between
global states, which we will refer to by corrupt, new, send transitions, and hash queries.

5

The semantics of the first three queries is defined by analogy with the formal execu-
tion model. In addition, the adversary may also make queries to the random oracle:

(SId, f, ϕ,H)
hash(m)−−−−−→ (SId, f, ϕ,H′) where H′ is defined as follows. If there exists

n such that (m, n) ∈ H, then H′ = H and we define h = n. Else a hash value h is
generated at random for m and H ′ = H∪{(m, h)}. In any case, h is returned to the ad-
versary. A finite sequence of concrete global states is called a concrete execution trace
if it starts with the initial global state. Obviously, since the adversary is a ppt Turing
machine the length of the trace is bounded by a polynomial in the security parameter η.
Also, the sequence of random coins RΠ used in the execution by the honest agents and
the random oracle as well as the sequence of random coins RA used by the adversary
can be bounded in length by polynomials gA(η) and pA(η), respectively. Clearly, if RΠ

and RA are fixed, we obtain a uniquely determined concrete trace, which we denote by
ExecΠ(RΠ),A(RA)(η).

3 Symbolic and Computational Secrecy Properties

In this section we recall the computational definition of secrecy and introduce our new
symbolic definition for secrecy.

COMPUTATIONAL SECRECY. Computational secrecy requires that no partial informa-
tion is leaked to the adversary. The typical way to formalize this idea is to require that
the secret s is indistinguishable from an unrelated random bitstring s ′ chosen (from an
appropriate distribution). The secrecy of nonce variable X Ai (the nonce generated by
Ai in the ith role of the protocol) in protocol Π is defined as follows.

Definition 1. Consider the experiment Expsec b
ExecΠ,A(i, j)(η) parametrized by a bit b

and that involves an adversary A against protocol Π . The experiment takes as input a
security parameter η and starts by generating two random nonces n0 and n1 in Cη.n.
Then the adversary A starts interacting with the protocol Π as in the execution de-
scribed by ExecΠ,A(η). At some point in the execution the adversary initiates a session
s in which the role of Ai is executed, and declares this session under attack. In this
session, the variable X j

Ai
is instantiated with nb. The rest of the execution is exactly as

in ExecΠ,A(η). At some point the adversary requires the two nonces n0 and n1 and has
to output a guess d. The bit d is the result of the experiment. We define the advantage of
the adversary A by:

Advsec
ExecΠ,A(i, j)(η) = Pr

[
Expsec 1

ExecΠ,A(i, j)(η)=1
]
− Pr

[
Expsec 0

ExecΠ,A(i, j)(η)=1
]

We say that nonce X j
Ai

is computationally secret in protocol Π , and we write Π |=c

SecNonce(i, j) if for every p.p.t. adversary A its advantage is negligible.

SYMBOLIC SECRECY. As explained in the introduction, weak secrecy is not sufficient
to capture the standard indistinguishability-based notion used in computational settings.
The new notion of secrecy we propose here relies on the intuitively appealing concept
of patterns [2]. Roughly, the pattern of an expression is obtained by replacing with �,
all the subterms of the expression that are secret. In our case, a subterm T of T ′ is secret

6

if, even when given T the adversary cannot verify that T has been used to construct T ′.
Formally, we add T to the knowledge set φ in the deduction relation. The ideas behind
our definition of patterns are related to offline guessing attacks, where the adversary
is given the weak secret and should be unable to test whether the given weak secret is
indeed the one used in the observed messages.

Definition 2 (Patterns). Given a set of closed terms φ = {M1, M2, . . . , Mk} and a
term T , we define PatT (φ) = {PatφT (M1), PatφT (M2), . . . , PatφT (Mk)}, where PatφT (M)
defined recursively by:

PatφT (a) =
{

a if φ, T �Randadv
a

� otherwise
PatφT (〈M1, M2〉) = 〈PatφT (M1), PatφT (M2)〉
PatφT ({M}r

ek(a)) =
{{PatφT (M)}r

ek(a) if φ, T �Randadv
dk(a) or if r ∈ Randadv

� otherwise

PatφT (h(M)) =
{

h(PatφT (M)) if φ, T �Randadv
M

� otherwise

PatφT is extended to set of messages as expected: Patφ
T (S) =

⋃
t∈S PatφT (t).

The messages of φ may contain some subterms of the form {M} r
ek(a) where r ∈

Randadv. Because of the random coins such messages must have been build by the
adversary and M should be deducible. Thus we consider φ augmented with such mes-
sages: φ = φ ∪ {M | {M}r

ek(a) subterm of φ}. For any valid message set φ (that is

φ ∈ Msgs(Π) for some protocol Π), we can show that φ � M for every M ∈ φ.

Definition 3 (Nonce secrecy). Let Π be a protocol and X j
Ai

a nonce variable occur-

ring in some role Ai. We say that X j
Ai

is secret in Π and we write Π |=s SecNonce(i, j),
if for every valid set of messages φ ∈ Msgs(Π) it holds that for every session number
s, the symbolic nonce nai,j,s does not occur in Patnai,j,s(φ).

To better appreciate these definitions, consider the following examples.

1. Let φ1 = {h(〈nb, n
′〉)} = φ1. Then Patnb

(φ1) = {�}. φ1 preserves the indistin-
guishability of nb since, intuitively, nb is hidden by the secret nonce n′.

2. Let φ2 = {h(〈nb, {n′}r
ek(a)〉), n′} where r �∈ Randadv. Then φ2 = φ2 and

Patnb
(φ2) = {�, n′}. In this example, the encryption of n ′ does hide nb.

3. Let φ3 = {h(〈nb, {n′}r
ek(a)〉)} where r ∈ Randadv. Then φ3 = φ3 ∪ {n′} and

Patnb
(φ3) = {h(〈nb, {n′}r

ek(a)〉), n′}. We have that nb occurs in Patnb
(φ3). This

corresponds indeed to an attack. As n ′ has been encrypted by the adversary himself
he knows the ciphertext. Given n0 and n1 he computes both h(〈n0, {n′}r

ek(a)〉) and
h(〈n1, {n′}r

ek(a)〉) and compares them to h(〈nb, {n′}r
ek(a)) yielding the attack.

4. Let φ4 = {{〈h(nb), h(n′)〉}r
ek(a), dk(a)} where r �∈ Randadv. Then φ4 = φ4 and

Patnb
(φ4) = {{〈h(nb),�〉}r

ek(a), dk(a)}. Again, nb does occur in Patnb
(φ1). For

this attack an intruder may get h(nb) by decrypting and projecting the message

7

{〈h(nb), h(n′)〉}r
ek(a) and compare h(nb) with h(n0) and h(n1) that he may com-

pute from n0 and n1.

Our notion of secrecy has a useful equivalent formulation described in the follow-
ing lemma. Informally, the lemma states that all unencrypted occurrences of the secret
nonce in a set of messages are such that they occur in a term t that is hashed, and such
that t itself can not be computed from φ and n.

Lemma 1. Let φ be an arbitrary set of messages and n a nonce symbol that occurs in
φ. n does not occur in Patn(φ) if and only if φ �� n and ∀M subterm of φ such that
φ � M , ∀p such that M |p = n, so that there is no encryption along p, ∃p ′ < p such
that 1) M |p′ = h(M ′) and 2) φ, n �� M ′.

4 Symbolic Secrecy is Equivalent to Computational Secrecy

To prove the soundness and the completeness of our secrecy criterion, we proceed in two
steps: i) relate symbolic and concrete traces and ii) prove equivalence of the symbolic
and computational notions.

RELATING SYMBOLIC AND CONCRETE TRACES. The first step linking security prop-
erties in symbolic and concrete models is to exhibit a relation between individual exe-
cution traces. The relation is similar to that developed in previous works [13, 10], but
our definitions and results have to deal with the use of random oracles in computational
executions. In line with common practice in symbolic models, hash applications (ex-
plicitly captured as queries to the random oracle by concrete traces) are not reflected by
the symbolic traces. Therefore, we define the hash-query free trace clean hash(t c) asso-
ciated to the concrete trace tc = (SIdc

1, g1, ϕ1,H1), . . . , (SIdc
n, gn, ϕn,Hn). The trace

clean hash(tc) is the concrete trace (SIdc
i1 , gi1 , ϕi1 ,Hi1), . . . , (SIdc

ik
, gik

, ϕik
,Hik

), ob-
tained by removing from tc the states that are the result of a hash request.

Definition 4. Let ts = (SIds
1, f1, φ1), . . . , (SIds

n, fn, φn) be a symbolic execution trace
and let clean hash(tc) = (SIdc

1, g1, ϕ1,H1), . . . , (SIdc
n, gn, ϕn,Hn) be the hash-query

free trace of concrete execution trace tc.

– We say that trace tc is a concrete instantiation of ts with (partial) mapping c : M →
Cη and we write ts
c tc if for every
 (1 ≤
 ≤ n) it holds that SIds

� = SIdc
�

and for every sid ∈ SIds
� if f�(sid) = (σsid, isid, psid, (a1, . . . , ak)) and g�(sid) =

(τ sid, jsid, qsid, (a1, . . . , ak)) then τ sid = c ◦ σsid, isid = jsid and psid = qsid.
– Trace tc is a concrete instantiation with Dolev-Yao hash queries of ts and we write

ts
 tc if there exists a partial, injective function c : M → Cη such that ts
c tc

and for every 1 ≤ k ≤ n, for every message m such that (m, h) ∈ Hk for some h,
there exists a term M such that c(M) = m and φk �Randadv

M .

Proposition 1. Let Π be an executable protocol. If the encryption scheme AE is
IND-CCA secure, and the hash functions are random oracles, then for any p.p.t. al-
gorithm A

Pr
[
∃ts ∈ Execs(Π) | ts
 Execc

Π(RΠ),A(RA)(η)
]
≥ 1 − νA(η)

8

where the probability is over the choice (RΠ , RA) $← {0, 1}pA(η) × {0, 1}gA(η) and
νA(·) is some negligible function.

The proof shares many ideas with earlier work [13, 10] and is given in Appendix H.1.

SYMBOLIC SECRECY IS EQUIVALENT TO COMPUTATIONAL SECRECY. The follow-
ing theorem states that the symbolic secrecy criterion is necessary and sufficient for
computational secrecy to hold.

Theorem 1. Let Π be an executable protocol and let X j
Ai

be a nonce variable occur-
ring in some role Ai. If the encryption scheme AE used in the implementation of Π is
IND-CCA secure then Π |=s SecNonce(i, j) if and only if Π |=c SecNonce(i, j).

Proof. The “if” direction. First, we give an ideal execution of the protocols that re-
places real nonces with random strings. We show that no adversary can distinguish the
modified execution, which we call the “oracle execution” from the real execution.

Next, we argue that in the oracle execution, the nonces that are symbolically secret
are information theoretically hidden from the computational adversary. Indeed, if the
symbolic secrecy property is satisfied, by Lemma 1 the nonce occurs only in some
hashed terms, and the term themselves are secret (in the sense that it cannot be computed
efficiently). Since in the random oracle model the hash values are independent of the
hashed message, the view of the adversary is independent from the value of the secret
nonces.

STEP I. We now describe the “oracle execution”. Whenever the protocol dictates that an
honest party encrypts some bitstring m, the party encrypts instead a randomly selected
bitstring rm of equal length. The execution keeps a table with all association (m, rm),
which we call the random associations table (RAT). The RAT is not made available to
the adversary, but only to honest parties. Specifically, whenever an honest party receives
encrypted messages, the party performs the appropriate decryption and recovers some
plaintext. If the plaintext is some m′ such that (m, m′) occurs in RAT, the party treats
the encryption as an encryption of m and continues its execution as normal. Otherwise,
the underlying plaintext is set to m′.

Intuitively, if any adversary behaves differently in the two executions, it is because
he can see the difference between encryptions of true, and random ciphertexts. For-
mally, if we let ExecA,Π(η) be the output of adversary A when executed with protocol
Π for security parameter η, and Execo

A,Π(η) the output of the adversary in the associ-
ated oracle execution, we have the following lemma (which we prove in Appendix H.2).

Lemma 2. Let Π be an executable protocol, and A an arbitrary ppt adversary. Then,
if the encryption scheme AE used in the implementation of Π is IND-CCA secure, then
Pr [ExecA,Π(η) = 1] − Pr

[
Execo

A,Π(η) = 1
]

is negligible.

Notice that we can apply the above lemma for the case when the execution that is
considered is used in the experiment Expsec b

ExecA,Π
(i, j)(η), for some b, i, j. If we write

Expsec b
Execo

A,Π
(i, j)(η) for the corresponding oracle execution, we obtain that there exists

some negligible function νi,j,b such that

Pr
[
Expsec b

ExecΠ,A(i, j)(η) = 1
]
− Pr

[
Expsec b

Execo
Π,A

(i, j)(η) = 1
]

= νi,j,b(η) (1)

9

STEP II. In the next step, we associate symbolic traces to the computational traces
of the oracle execution. This enables us to reason about an adversary’s success in the
oracle execution (which is conceptually simpler). The association is in fact the one
in the proof of Proposition 1, with an additional parsing step necessary to take into
account the random association table that we detail below. In addition to access to the
keys and the randomness of the parties, the parsing procedure also uses access to the
random association table, and is as follows: the first step in processing some message
m′ is a search in the random association table. If (m, m ′) occurs in the RAT, then the
procedure proceeds as before, with m ′ replaced by m, otherwise the procedure remains
unchanged.

Next, we argue that the symbolic traces obtained as above are valid execution traces,
and moreover, that they are included among the traces of the execution of Π . The for-
malization is given in the next lemma. Its proof is in Appendix H.3.

Lemma 3. The symbolic traces of Execo(Π,A) are valid with overwhelming probabil-
ity and Execo

A,Π ⊆ ExecA,Π .

STEP III. Finally, we prove that ifAE is IND-CCA secure then Π |= SecNonces(i, j) ⇒
Π |=c SecNonce(i, j). For an arbitrary adversary A against the secrecy of nonce X j

Ai

recall that we write Expsec b
Execo

Π,A
(η) for the oracle version of the experiment defining

secrecy of nonce X j
Ai

. Let Advsec
Execo

A,Π
(η) be the corresponding advantage functions.

By definition we have that:

Advsec
ExecΠ,A(i, j)(η) = Pr

[
Expsec 1

ExecΠ,A(i, j)(η)=1
]
−Pr

[
Expsec 0

ExecΠ,A(i, j)(η)=1
]

Advsec
Execo

Π,A
(i, j)(η) = Pr

[
Expsec 1

Execo
Π,A

(i, j)(η)=1
]
−Pr

[
Expsec 0

Execo
Π,A

(i, j)(η)=f1
]

By subtracting, using Equation 1, and rearranging terms we obtain that for some negli-
gible function ν

Advsec
ExecΠ,A(i, j)(η) = Advsec

Execo
Π,A

(i, j)(η) + ν(η) (2)

Finally, we show that in the oracle execution the advantage Adv sec
Execo

Π,A
(i, j)(η) of

any adversary A is negligible since nonces that are symbolically secret are informa-
tional theoretically hidden from the adversary. This can be seen as follows.

Consider the symbolic trace φ that corresponds to the execution of the experiment
Expsec b

Execo
Π,A

(η), up to the point when the adversary is given the nonces and he is asked

to determine the bit b. Let s be the id of the session under attack, and let n a,j,s be the
symbolic nonce that corresponds to the nonce under attack. By Lemma 3, the trace φ is
with overwhelming probability a Dolev-Yao trace of protocol Π . By the hypothesis of
the theorem Π |=s SecNonce(i, j) and therefore by Lemma 1, all occurrences of na,j,s

in φ that are not under an honest encryption are in some term T i that appears under
a hash, and Ti is nondeductible from φ, ni,j,s. Let ti be the bitstrings that correspond
to the terms Ti. We conclude by observing that in the real execution, the adversary
may observe the values c1 = h(t1), c2 = h(t2), . . ., but provided that it does not query
t1, t2, . . . to the random oracle, their values (and thus in particular the value of the secret

10

nonce) are independent from the c1, c2, Since all queries to the random oracle are
the images of deductible terms, we conclude that A does not request h(t i), for all i.

The “only if” direction. It is important to observe that if a message M is deducible
from a set of messages M1, M2, . . . , Mn, the associated deduction tree τ can be trans-
lated into an (efficient) program τ which given the bit-string representations of m i for
Mi (i = 1, 2, . . . , n) computes the bit-string representation m of M .

We proceed as follows. Assume that for some symbolic trace φ, the symbolic nonce
nai,j,s occurs in Patnai,j,s(φ), starting from Lemma 1 we can show that there exist a
term M ∈ φ and a deduction tree τ such that: 1) τ(φ, nai,j,s) yields message M and 2)
for n �= nai,j,s, τ(φ, n) does not yield M . Since M ∈ φ, we know that there also exists
a deduction tree π such that π(φ) yields M .

Based on the above, we construct a two-stage adversary against secrecy of nonce
Xj

Ai
. In the first stage, the adversary produces a computational representation φ c of the

trace φ (by simply following the instructions of the Dolev-Yao adversary that defines
φ). Once φ is created, it requests the two values of the nonce nai,j,s and receives from
the experiment nb and n1−b. Then it computes mb = τ(φc, nb) for b = 0, 1 and m =
π(φc), and retrieves b by comparing m with m0 and m1.

5 Decidability of Symbolic Secrecy

In this section, we show that our notion of secrecy is decidable. We present an NP-
procedure that decides nonce non-secrecy for the case of a bounded number of sessions
(that is, adversaries are allowed only a fixed number of new queries) 5

Without loss of generality, we assume that all of the new queries are performed at
the beginning of the execution. Our decision procedure starts by guessing the sequence
of these requests together with the identities of the agents involved. Then, the proce-
dure guesses an interleaving for the execution. Using standard techniques [14], such
executions can be translated to constraint systems. We recall their definition:

Definition 5. A constraint system C is a finite set of expressions Ti � tt or Ti � ui,
where Ti is a non empty set of terms, tt is a special symbol that represents an always
deducible term, and (for 1 ≤ i ≤ n) ui is a term such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n − 1;
- if x ∈ var(Ti) then ∃j < i such that Tj = min{T | T � u ∈ C, x ∈ var(u)} (for

the inclusion relation) and Tj � Ti.

The left-hand side (right-hand side) of a constraint T � u is T (respectively u). The
left-hand side of a constraint system C, (for which we write lhs(C)), is the maximal set
of messages Tn. By ⊥ we denote the unsatisfiable system.

The left-hand side of a constraint represents the messages already sent on the network,
while the right-hand side represents the message expected by an agent in order to per-
form the next protocol step. A solution of a constraint system C is a ground substitution

5 For the case of an unbounded number of sessions our secrecy notion is undecidable, just as the
standard deducibility-based notions.

11

σ such that Tσ �Randadv
uσ for any T � u ∈ C. We say that C preserves nonce secrecy

of n if there does not exist a solution σ of C such that n occurs in Patn(lhs(C)σ).
The transformation of protocols into constraint systems yields systems that are well-

formed. A constraint system E is well-formed if 1) any subterm of E of the form dk(t ′)
is such that t′ is an agent identity and 2) any subterm of E of the form {t 1}r

t2 is such
that r ∈ Rand and r /∈ Randadv. The following theorem states that our notion of nonce
secrecy (Section 3) is decidable for a bounded number of sessions.

Theorem 2. The following problem is co-NP complete:

Given: a well-formed constraint system C and a nonce n.
Decide: Does C preserve the nonce secrecy of n?

The decision procedure for nonce secrecy preservation works as follows. First, given
an arbitrary constraint system we reduce it to a solved system using non-deterministic
transformation rules similar to those in [9] (see Appendix G). A constraint system is
solved if it is different from⊥ and each of its constraints are of the form T � tt or T � x
where x is a variable. Second, we check whether n occurs in Patn(lhs(C)). If not, we
check whether C can further be simplified into a solved form that does not preserve
nonce secrecy, and so on. Note that although for standard deducibility-based notions
decision procedures can stop as soon as the constraint system has been transformed
into solved form, for our secrecy notion further transformations might be necessary. NP-
hardness is proved analogously to the case of standard deducibility-based notions [15].

References

1. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-
ories. In Proc. 31st International Colloquium on Automata, Languages and Programming
(ICALP’04), volume 3142 of LNCS, pages 46–58, 2004.

2. M. Abadi and P. Rogaway. Reconciling two views of cryptography. In Proc. of the Interna-
tional Conference on Theoretical Computer Science (IFIP TCS’00), volume 1872 of LNCS,
pages 3–22, August 2000.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. H. Drielsma,
P. Heám, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, and L. Vigneron. The Avispa tool for the automated
validation of internet security protocols and applications. In Proc. of Computer Aided Veri-
fication (CAV’05), volume 3576 of LNCS, 2005.

4. M. Backes and I. Christian Jacobi. Cryptographically sound and machine-assisted verifica-
tion of security protocols. In Proc. of the 20th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’03), pages 675–686, 2003.

5. M. Backes and B. Pfitzmann. Relating cryptographic und symbolic key secrecy. In Proc.
26th IEEE Symposium on Security and Privacy (SSP’05), pages 171–182, 2005.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology – Crypto ’93, 13th Annual International Cryptology Conference, volume 773 of
LNCS, pages 232–249, 1993.

7. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc.
14th IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96, 2001.

8. R. Canetti and J. Herzog. Soundness of formal encryption in the presence of active adver-
saries. In Proc. 3rd Theory of Cryptography Conference (TCC’06), LNCS, 2006. To appear.

12

9. H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and insecurity
decision in presence of exclusive or. In Proc. of 18th Annual IEEE Symposium on Logic in
Computer Science (LICS ’03), pages 271–280, 2003.

10. V. Cortier and B. Warinschi. Computationally Sound, Automated Proofs for Security Pro-
tocols. In Proc. 14th European Symposium on Programming (ESOP’05), volume 3444 of
LNCS, pages 157–171, 2005.

11. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

12. P. Gupta and V. Shmatikov. Towards computationally sound symbolic analysis of key ex-
change protocols. In Proc. of the 2005 ACM workshop on Formal methods in security engi-
neering (FMSE’05), pages 23–32, 2005.

13. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, pages 133–151, 2004.

14. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. 8th ACM Conference on Computer and Communications Security
(CCS’01), pages 166–175, 2001.

15. M. Rusinowitch and M. Turuani. Protocol Insecurity with Finite Number of Sessions and
Composed Keys is NP-complete. Theoretical Computer Science, 299:451–475, April 2003.

A Protocol Roles

An agent rule is a tuple of the form (l, r) (also written as l → r) where l, r ∈ T(X).
Typically, the substitution σ of some of the variables in l and r is already fixed by
applications of preceding agent rules (sharing variables with the current agent rule). If,
now, the agent receives a message m, then m is matched againt lσ, say the matcher is
η, and the message rση is produced as output (as explained below, it will always be
the case that rση does not contain variables). If m and lσ do not match, then the agent
will not produce output. If m and lσ match, we say that the rule (l, r) is applied to (is
applicable to) m.

A role an agent performs in a run of a protocol is specified by an ordered edge-
labeled finite tree where every edge is labeled by an agent rule. In a run of a protocol
an agent will stand at a certain node of the tree. Assume that the outgoing edges of that
node are of the form (l1, r1), . . . , (ls, rs) (starting with the left-most edge). Now, if the
agent receives a message, say m, then the agent will apply the first agent rule (from left)
applicable to m to produce its output.

Formally, we first define role trees and then roles, which are role tree satisfying
certain conditions.

A role tree R is a finite ordered edge-labeled tree where the domain is a finite prefix-
closed subset of N∗ (the ith successor of a node p is pi) and every edge is labeled by
an agent rule. Given a node p in R, we denote by Rulesp the sequence of agent rules
the edges on the path from the root of R to p are labeled with. We write Rules l

p and
Rulesr

p to denote the sequence of left- and right-hand sides of these rules, respectively.
(We sometimes consider these sequences as sets.) If p �= ε, we write rulep to denote
the agent rule the edge leading to p is labeled with. The left-hand side of this rule is
refered to by rulel

p and the right-hand side by ruler
p.

13

The ith role performed by agent Ai in a k-party protocol is a role tree R such
that certain conditions are satisfied. To define these conditions we need some notation.
Let p we a node in R. Then, we denote by K̂i

p = {ek(A1), . . . , ek(Ak), dk(Ai)} ∪
X.n(Ai)∪Rulesl

p the set of terms agent Ai knows in node p. (Note that this set includes
rulel

p.) If p′ is the predecessor of p (we define p′ = p if p = ε), then we define
Ki

p = {ek(A1), . . . , ek(Ak), dk(Ai)} ∪ X.n(Ai) ∪ Rulesl
p′ . (This set coincides with

K̂i
p except that rulel

p is not added.) We can now formulate the mentioned conditions
required for R (see below for informal description): For every node p �= ε in R we
require that:

1. rulel
p and ruler

p do not contain a subterm of type DKey,
2. every r ∈ Randag occurs in Rulesp at most in the context of one term of type

Ciphertext, i.e., the set of subterms of the form {t ′}r
t in Rulesp (for some t and t′)

is a singleton,
3. every x ∈ X.r occurs in Rulesl

p at most once and does not occur in Rulesr
p; if it

occurs it occurs in a term of the form {t}x
ek(Ai)

for some t.

4. K̂i
p �Randag

ruler
p and (K̂i

p ∩ X) ∪ Ki
p �X.r∪Randag rulel

p,

The first condition says that decryption keys are not explicity contained in agents rules.
This implies that these keys may be output by an agent. As for the second condition,
a term of the form {t′}r

t means that Ai computes the encryption for plain text t using
key t′ and random coins r. The agent Ai might use the computed ciphertext at different
places in the role. Therefore, the term {t ′}r

t (and hence, r) may occur also in different
places in the agent rules. However, if Ai computes the encryption for a different plain
text and/or a different key, then Ai will also use different random coins. The intuition
behind the third condition is as follows: Variables in X.r are used in terms for decrypting
messages. More precisely, in the concrete execution model, a term of the form {t} x

ek(Ai)

will cause Ai to perform the following action. It first checks whether the given message
is a ciphertext with ek(Ai) as public key. Then it would decrypt the message and try to
parse this message according to t. Therefore, message of the form {t} x

ek(Ai)
should only

occur on the left-hand side of agent rules and only in terms of the form {t} x
ek(Ai)

. Note
that if a term of the form {t}x

ek(Aj)
with j �= i would occur on the left-hand side of an

agent rule for Ai, then this would mean that Ai can decrypt a message encrypted with
the public key of Aj . This should of course be forbidden. Also, when parsing a message
according to {t}x

ek(Ai)
, we don’t assume that the agent is able to extract the random

coins x used to encrypt the message. Depending on the encryption scheme this might
not be possible, and more importantly, protocols typically do not use this information.
Therefore, x should only occur at one position in the agent rules of A i. Together with
the previous conditions, the last condition implies that A i can actually carry out the
tests when receiving a message and can actually produce the output message.

B Transitions in the Formal Execution Model

To define transitions between global states, we use the following notation. By n a,j,s ∈
Nonceag with a ∈ A and j, s ∈ N we denote distinct nonces. Analogously, by r a,j,s ∈

14

Randag with a ∈ A, j ∈ Randag , s ∈ N we denote distinct random coins. By τa,s

we denote a mapping that maps every r ∈ Randag to ra,r,s. Given t ∈ T(X), we
denote by tτa,s the term obtained from t by simulataneous replacing every r ∈ Rand ag

occurring in t by τa,s(r). We use this mapping to replace the randomness used in t by
fresh randomness. (Below t will be the right-hand side of an agent rule).

We allow three kinds of transitions between global states, which we will refer to by
corrupt, new, and send transitions, respectively.

– The adversary corrupts a set of parties by outputting a set of identities and thereby

learns the private keys of the agents: qI
corrupt(a1,...,al)−−−−−−−−−−−→ (∅, ∅, A∪EKey∪{dk(aj) |

1 ≤ j ≤ l). Note that this transition can only be applied at the beginning (static
corruption).

– The adversary can initiate new sessions: (SId, f, ϕ)
new(i,a1,...,ak)−−−−−−−−−−→ (SId′, f ′, ϕ)

where SId′ and f ′ are defined as follows. Let sid = |SId|+1 be the session identifier
of the new session where |SId| denotes the cardinality of SId. We define SId ′ =
SId ∪ {sid}. The function f ′ is defined as follows.
• f ′(sid′) = mf(sid′) for every sid′ ∈ SId.
• f ′(sid) = (i, σ, ε, (a1, . . . , ak)) where the domain of σ is {A1, . . . , Ak} ∪

X.n(Ai) with σ(Aj) = aj for every 1 ≤ j ≤ k and σ(X j
Ai

) = nai,j,s for
every j ∈ N.

– The adversary can send messages: (SId, f, ϕ)
send(sid,m)−−−−−−−→ (SId, f ′, ϕ′) where sid ∈

SId, m ∈ M, and ϕ′ and f ′ are defined as follows. We define f ′(sid′) = f(sid′)
for every sid′ �= sid. Suppose that f(sid) = (i, σ, p, (a1, . . . , ak)) and ((l1, r1), . . .
, (lh, rh)) are the labels of edges leaving p (in this order). We distinguish two cases:
• there does not exist a j such that m and ljσ match. Then, we define f ′(sid) =

f(sid) and ϕ′ = ϕ (the state remains unchanged);
• otherwise, let j be minimal such that m and ljσ match. Let θ be the matcher,

i.e., m = (ljσ)θ. Then, we define f ′(sid) = (i, σ ∪ θ, pj, (a1, . . . , ak)) and
ϕ′ = ϕ ∪ {(rjτai,sid)σθ}.

C Concrete Types

We will identify every element in {a, n, e, d, c, h, p, g} with some bit string of length
three. By Cη.a we denote the set of bit strings of the form a · m where · denotes
concatenation and m ∈ {0, 1}η is interpreted as the name of the agent. (Recall that
a ∈ {0, 1}3.) The set Cη.n of nonces and the set Cη.h of hash values are defined anaol-
ogously, where, however, a is replaced by h and n, respectively. (The specific details of
the encoding of types and the exact length of the bit strings of these sets is not essential
for the results shown in this paper as long as certain conditions are satisfied. For ex-
ample, the size of the set of nonces and hashes should grow exponentially in η, which
for the specific definition is the case.) Given η and a bit string m, type returns a iff
m ∈ {0, 1}η+3 and m is prefixed with a. Analogously for the types n and h.

We say that a bit string of the form e · m (where m may have to satisfy certain
efficiently checkable conditions) is a public key or a bit string of type e. Hence, the

15

algorithm type returns e if a message is of the above type. Analogously for type d. We
assume that public and private keys obtained by running K e(η) are prefixed with e and
d, respectively. The set of bit strings of type e (d) is denoted by C η.e (Cη.d).

By 〈·, ·〉c, π1(·), and π2(·) we denote efficiently computable functions which sat-
isfy the following conditions: 〈m, m′〉c is prefixed with p, π1(〈m, m′〉c) = m, and
π2(〈m, m′〉c) = m′ for all bit strings m and m′. On input η and m, the algorithm type
returns p iff m is prefixed with p and 〈π1(m), π2(m)〉c = m. By Cη.p we denote the
set of bit strings for which type returns p.

A bit string obtained as a concatenation of c (the type), a public key (as defined
above), and some bit string (the actual ciphtertext, which may satisfying certain effi-
ciently computable conditions) such that all three components can efficiently be recov-
ered is called a ciphertext or a bit string of type c. Hence, type returns c if a given bit
string is of the required form. We assume that the encryption algorithm returns a bit
string of type c. The set of bit strings of type c is denoted by C η.c. Given a bit string of
type c, we denote by pubkey the algorithm recovering the public key, i.e., the second
component of the message. We emphasize that this public key was not necessarily used
to obtain actual ciphtertext of the message.

We denote by Cη.g the set of bit strings on which type does not return one of the
types a, n, e, d, c, h, p. In this case, we require type to return g (for garbage).

D Transitions in the Concrete Execution Model

In an execution of a protocol, the adversary may make a sequence of queries, which in-
duces a sequence of (concrete) global states. Next we explain the queries the adversary
may make.

– Corrupt query: at the beginning of the execution, the adversary may corrupt a set
of parties via a request corrupt(a1, a2, . . . , al) where a1, a2, . . . , al ∈ Cη.a. As
a result, public and private keys are generated for the agents by running K e(η) l
times (with independent random coins). All agent names along with their public and
private keys are given to the adversary and added to the current intruder knowledge.

– New session query: the adversary initiates a new session by issuing a request of
the form new(i, a1, . . . , ak) where i ∈ [k] and a1, . . . , ak ∈ Cη.a. As a result,
the following happens: first, for all aj (j ∈ [k]) for which no public key has been
generated so far, a public and private key pair is generated by running K e(η). Then,
an instance for running (a concrete version of) Π(i) is initiated. This instance gets
η as well as a1, . . . , ak along with their public keys and the private key of a i as
input. Then, for all variables X j

Ai
occurring in Π(i) random nonces (derived from

Cη.n) are generated. These are also given to the instance as input. Accordingly, if
(SId, f, φ,H) is the current global state, then the new state is (SId′, f ′, φ,H) where
SId′ = SId ∪ {sid} with sid = |SId| + 1 and f ′ is defined as follows:
• f ′(sid′) = f(sid′) for sid′ ∈ SId (i.e., the local states of previous sessions

remain unchanged);
• f ′(sid) = (i, σ, ε, (a1, . . . , ak)) where σ is defined as follows:{

σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) R←− Cη.n j ∈ N, Xj
Ai

occurring in Π(j)

16

– Send message query: by issuing the a query of the form send(sid, m), where sid ∈
SId and m ∈ Cη the adversary can send a message to instance sid. The effect
of this query is the following: assume that the current global state is (SId, f, φ,H),
f(sid) = (i, σ, p, (a1, . . . , al)), and the outgoing edges of p are labeled by the agent
rules ((l1, r1), . . . , (lk, rk)) (in this order). Starting from the left-most rule, agent
ai (who carries out session sid) will first check whether m matches with one of the
agent rules. Say (lj , rj) is the first to match. Then, ai produces output according
to this rule and then moves the program pointer to pj. It will also store the values
assigned to variables in lj (and hence, rj) along the way. We now briefly explain
how lj is matched against m and then explain how the output is produced according
to rj .
Matching of lj against m: this is done recursively on the structure of l j .
• If lj is a variable such that no value has been stored for this variable so far and

m is of the same type as the variable (this can be checked by running type on
m), then m is assigned to this variable. If a variable has been assigned to the
variable already, then it is checked whether is coincides with m.

• If lj is of the form 〈t1, t2〉, then it is checked whether type(m) = p and the two
components of m are extracted by running π1 and π2. Then, these components
are matched with t1 and t2, respectively (in some order).

• If lj is of the form {t}x
ek(Ai)

with x ∈ X.r, then it is checked whether m is of
type ciphertext, and if it is, the public key is extracted (by running pubkey on
m). Then, m is decrypted using the decyrption key of a i. If the decryption is
successful, the resulting plaintext is matched with t.

• If lj is of the form {t}r
ek(Aj)

with r ∈ Randag, then the encryption m′ of the bit
string corresponding to t with some randomness replaced for r and the public
key of aj is computed. More precisely, we distinguish between two cases: if
{t}r

ek(Aj)
occurred in some preceeding agent rule, then m ′ has been computed

already and it is simply checked whether m and m ′ coincide. Otherwise, if
{t}r

ek(Aj)
has no occurred before, then it follows from the condition on roles of

protocols that {t}r
ek(Aj)

can be derived from the messages seen so far (formally,

we have that (K̂i
p ∩ X) ∪ Ki

p �X.r∪Randag {t}r
ek(Aj)

). Following the derivation
tree, one can therefore compute a bit string corresponding to t. This bit string
can then be encryption with the public key of a j and some fresh random coins.
It is then checked whether the resulting bit string coincides with m. (A techni-
cal detail is that not all variables in K̂i

p ∩ X might have been assigned values
yet since, for example, they occur in a different component of 〈·, ·〉 which has
not been matched yet. However, if the matching is successful, they will be sub-
stituted by bit string and then can be used to evaluate t.)

• If lj is of the form h(t), then it follows from the condition on roles of protocols
that t can be derived from the messages seen so far (formally, we have that
(K̂i

p ∩X)∪Ki
p �X.r∪Randag h(t) which implies that (K̂i

p ∩X)∪Ki
p �X.r∪Randag

t). As above, one can therefore evaluate t, which results in a bit string, and then
compare this bit string to m.

If one of the above checks fails, the instance will ignore the incoming message and
the internal state will not be changed.

17

The output, i.e., the bit string, produced according to r j is computed following the
structure of rj in the obvious way. The condition for role of protocols guarantee
that the computation can actually be carried out.
According to the above description, the current global state (SId, f, φ,H) is up-
dated to (SId, f ′, φ′,H) in the obvious way: if the matching between l j and m fails,
then the global state does not change. Otherwise, φ ′ is obtained from φ by adding
the bit string produced as output. We define f ′(sid′) = f(sid′) for every sid′ �= sid.
If f(sid) = (i, σ, p, (a1, . . . , al)), the new local state f ′(sid) of the session sid is
(i, σ′, pj, (a1, . . . , al)) where σ′ is obtained from σ by adding the substitution of
the variables in lj that have not been subsituted before according to the matching
of lj and m.

– Hash query: the adversary may issue a hash request to the random oracle of the
form hash(m). If the current global state is (SId, f, φ,H), then the effect of this
query is the following: if H does not contain an entry for m, then a bit string is
chosen randomly from C η.h. This bit string is given to the adversary. The global
state, in particular, φ and H, are updated accordingly.

E IND-CCA Security for Asymmetric Encryption Schemes

In this appendix we recall a standard notion of security for asymmetric encryption
schemes, namely IND-CCA security. The formulation that we give is the multi-user
version, known to be equivalent to the single user version (see, e.g., [10]).

For a fixed encryption scheme AE = (Ke, Enc, Dec), a left-right encryption oracle
parametrized by a bit b and encryption key pk is an oracle which accepts as queries
pairs of equal-length bitstring (m0, m1) and returns an encryption Enc(pk, mb).

Given an encryption scheme AE = (Ke, Enc, Dec) we consider the experiment
Expindccab

A,AE (η) parametrized by the bit b, and that uses adversary A. The adversary A
is provided access to polynomially many left-right oracles, each parametrized by b and
a public key pki generated via (pki, ski)

$← Ke(η). The adversary is also given access
to corresponding decryption oracles, that is, oracles parametrized by the decryption
keys ski, that accept as input bitstrings and return the decryption of the bitstring under
ski. The adversary is allowed to make as many encryption and decryption queries as
he likes, under the condition that he is does not submit to the decryption oracle under
ski a ciphertext obtained from the encryption oracle under pk i. When A finishes its
execution, the adversary outputs a bit d (which is his guess as to what the bit b is) and
the bit d is the output of the experiment. We define the advantage of A by:

Advindcca
A,AE = Pr

[
Expindcca0

A,AE (η) = 1
]
− Pr

[
Expindcca1

A,AE (η) = 1
]

and we say that AE is IND-CCA secure if for all probabilistic polynomial-time adver-
saries, the function Advindcca

A,AE (η) is negligible.

F Proof of Lemma 1

Let φ be an arbitrary set of messages and n a nonce symbol that occurs in φ.

18

Right implication ⇒. First, φ � n implies that n occurs in Patn(φ) by induction
on the proof of φ � n and using that n can be obtained using only decomposition rules
(that is projections and decryption).

Second, assume that there exists M subterm of φ such that φ � M and p such that
M |p = n, so that there is no encryption along p and for all p ′ < p, M |p′ = h(M ′)
implies φ, n � M ′. Since M only contains pairing and hashes along p, it is easy to

verify that n occurs in Patφn(M) thus in Patn(φ) (since M is a deducible subterm).
Left implication ⇐. Assume that n occurs in Patn(φ) and that ∀M ∈ φ, ∀p such

that M |p = n and such that there is no encryption along p, ∃p ′ such that M |p′ = h(M ′)
and φ, n �� M ′.

We prove by induction on M that for any M subterm of φ such that φ � M , n

occurs in Patφn(M) implies φ � n.

– Base case: M is a constant or a name. n occurs in Patφ
n(M) implies M = n thus

φ � n = M .
– If M = 〈M1, M2〉. Then n must occur in Patφ

n(Mi) for i equal 1 or 2. Since
φ � Mi, we deduce by induction hypothesis that φ � n.

– M = {M ′}r
ek(a). Then n occurs in Patφn(M ′).

• r ∈ Randadv. Then M ′ ∈ φ by construction of φ. Thus φ � M ′ and by
induction φ � n.

• Otherwise, we must have φ, n � dk(a). This implies φ � dk(a) (this can
be shown using the fact the dk(a) can be obtained using only decomposition
rules). We deduce that φ � M ′ thus we obtain again by induction hypothesis
φ � n.

– M = h(M ′). Then n occurs in Patφn(M ′) and we must have φ, n � M ′.
• Either φ � M ′ and applying the induction hypothesis we get φ � n.
• Or φ �� M ′. It means that there exists some context C computable by the

adversary (that is, there is no agent encryption in C) and terms N 1, . . . , Nk,
deducible subterms of φ such that C[N1, . . . , Nk, n] = M ′. (See for example
Proposition 7 of [1].) Let p be such that M ′|p = n (p also position of C).
∗ If there exists an adversary encryption along p, that is, there exists a sub-

term {M ′′}r
ek(a) of M ′ with n occurring in Patφn(M ′′) then M ′′ ∈ φ by

construction of φ. Hence, φ � n by induction hypothesis.
∗ If there is no adversary encryption along p, it means that there is no en-

cryption at all. Thus by hypothesis, there exists p ′ < p such that M |p′ =
h(M ′′) and φ, n �� M ′′. But M ′′ must be equal to C ′[N1, . . . , Nk, n] for
some C ′ sub-context of C. Hence φ, n �� M ′′, contradiction.

G Decidability of nonce secrecy preservation

This appendix is devoted to the proof of Theorem 2. NP-hardness comes from the same
construction than NP-hardness for deciding usual secrecy. The non-deterministic proce-
dure to decide nonce secrecy preservation works in two steps. First, arbitrary constraint
systems are reduced to solved constraint systems using non-deterministic transforma-
tion rules Second, we show how to decide nonce preservation for solved constraint
systems.

19

R1 C ∧ T � u � C ∧ T � tt if T ∪ {x | T ′ � x ∈ C, T ′ � T} �Randadv
u

R2 C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ = mgu(t, u), t ∈ St(T),
t �= u, t, u not variables

R3 C ∧ T � u �σ Cσ ∧ Tσ � uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T),
t1 �= t2, t1, t2 not variables

R4 C ∧ T � u � ⊥ if var(T, u) = ∅ and T ��Randadv u

R〈,〉 C ∧ T � 〈u1, u2〉 � C ∧ T � u1 ∧ T � u2

Rh C ∧ T � h(u) � C ∧ T � u
R1

{} C ∧ T � {u1}r
u2 � C ∧ T � u1 ∧ T � u2 r ∈ Randadv

R2
{} C ∧ T � {u1}

L
j
Ai

u2 � C ∧ T � u1 ∧ T � u2 Lj
Ai

: Randadv

Rkey C �σ Cσ if σ = {ek(a)/x}, ek(a) ∈ lhs(C),
x key variable in key position

St(T) denotes the set of subterms of the terms in T .
Lj

Ai
: Randadv means that Lj

Ai
is of subtype Randadv .

Fig. 2. Simplification rules.

G.1 Reduction to solved forms

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we have called solved.

The simplification rules we consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We write C �n

σ C′ if there are C1, . . . , Cn with n ≥ 1,
C′ = Cn, C �σ1 C1 �σ2 · · · �σn Cn and σ = σ1σ2 . . . σn. We write C �+

σ C′ if
C �n

σ C′ for some n ≥ 1.
The simplification rules are correct, complete and terminating in polynomial time.

Theorem 3. Let C be a constraint system, θ a substitution and n be a nonce.

1. (Correctness) If C �+
σ C′ for some constraint system C ′ and some substitution

σ and if θ is a solution of C ′ such that n occurs in Patn(lhs(C′)θ) then σθ is a
solution of C such that n occurs in Patn(lhs(C)σθ).

2. (Completeness) If θ is a solution of C such that n occurs in Patn(lhs(C)θ) and if
C is not in solved form, then there exist a constraint system C ′ and substitutions
σ, θ′ such that θ = σθ′, C �+

σ C′ and θ′ is a solution of C ′ such that n occurs in
Patn(lhs(C′)θ′).

3. (Termination) If C �n
σ C′ for some constraint system C ′ and some substitution σ

then n is polynomially bounded in the size of C.

The proof is a simple extension of the proof provided in [9] (without XOR). The ex-
tension to our nonce secrecy notion simply relies on the fact that whenever C �+

σ C′

and then lhs(C)(σθ) = (lhs(C)σ)θ = lhs(C ′)θ for any substitution θ solution of C ′.
The rule Rkey has been added for our decidability purposes but does not compromise
the correctness and completeness of the transformation rules.

20

G.2 Decidability of nonce secrecy for solved forms

Using the general approach presented in the previous section, verifying nonce secrecy
can be reduced in non deterministic polynomial time to deciding these properties on
constraint systems in solved form. Indeed, applying Theorem 3, we have that a con-
straint system E preserves the nonce secrecy of n if and only if there exists a con-
traint system in solved form E ′ such that E ′ preserves the nonce secrecy of n and
E �+

σ E′. By definition, a constraint system E ′ in solved form preserves the nonce
secrecy of n if and only if there does not exist a solution σ ′ of E′ such that n occurs
in Patn(lhs(C′)σ′). Since we only consider well-typed substitution, σ ′(x) = ek(a) for
some agent identity a for any key variable x. We can thus assume that the rule R key has
been applied as much as possible.

Let E be a solved form and n be a nonce. We consider E ′ the solved form defined
as follows:

E′ = {T ∪ var(T) � u | T � u ∈ E}
Then it is easy to verify that:

– σ is a solution of E if and only if σ is a solution of E ′,
– n occurs in Patn(lhs(Eσ)) if and only if n occurs in Patn(lhs(E′σ)).

We can thus assume that var(T) ⊆ T for any T � u ∈ E. In that case, we say that
E contains its variables. In what follows, a solved form is redefined as a well-formed
constraint system in solved form that contains its variables and has no successor for the
Rkey rules. It is sufficient to decide nonce secrecy only on solved forms.

Given E in solved form, the decision procedure works as follows:

1. Check whether E∪{lhs(E) � n} has a solution (this is decidable [15]). If yes then
E clearly does not preserve nonce secrecy.

2. If not, choose non-deterministically a successor E ′ in solved form of E, that is
E′ = E or E �+

σ E′ for some σ and check whether n occurs in Pat lhs(E
′)

n (lhs(E′)).
If yes then E clearly does not preserve nonce secrecy. If not then E preserves nonce
secrecy of n.

The completeness of the non-deterministic decision procedure relies on the follow-
ing property.

Proposition 2. Let E be a solved form and n be a nonce. Assume E ∪ {lhs(E) � n}
has no solution. Assume E does not preserve nonce secrecy of n, that is, there exists a
solution θ of E such that n occurs in Patn(lhs(Eθ)). Then

– either n occurs in Patn(lhs(E)),
– or there exists σ such that E �+

σ E′ and E ′ does not preserve nonce secrecy of n.

Assuming Proposition 2, we get that E does not preserve nonce secrecy of n if and
only if E has a successor E ′ in solved form such that E �+

σ E′ and n occurs in
Patn(lhs(E′)), which proves the correctness of our decision procedure. Indeed, apply-
ing Proposition 2, if E does not preserve nonce secrecy of n then either n occurs in
Patn(lhs(E)) or there exists σ such that E �+

σ E′ and E ′ does not preserve nonce se-
crecy of n. We can assume that E ′ is in solved form otherwise we can apply Theorem 3

21

(possibly several times) and until we get E ′′ in solved form and σ ′ such that E ′ �+
σ′ E′′

and E ′′ does not preserve nonce secrecy of n. Thus we can apply Proposition 2 again
until n occurs in Patn(lhs(E′)).

The remaining of the section is devoted to the proof of this proposition. We need
some intermediate lemmas and definitions.

We define public terms to be terms constructed by the adversary.

Definition 6. Public context are terms with variables defined inductively as follows:

t, t1, t2 ::= public terms
| x variable x
| a agent identity a
| g garbage g
| {t}r

ek(a) adversary encryption, r ∈ Randadv

| h(t) hash
| 〈t1, t2〉 pairing

A public context is a linear public term (no variable appears twice). By convention, the
expression C[t1, . . . , tn] denotes the term Cσ where the exact set of variables of C is
{x1, . . . , xn} and σ = {t1/x1,tn/xn}.

Lemma 4. Let n be a nonce, t be a term, E = {T1 � al, . . . , Tl � al} with Ti ⊆ Ti+1

be a constraint system in solved form and σ be a solution of E.

– If Tjσ, n �Randadv
t then there exists a public context C such that t = C[t1σ, . . . , tkσ, n]

where each ti is a subterm of Tj such that Tj �Randadv
ti and ti is not a variable.

– If Tj �Randadv
t then there exists a public context C such that t = C[t1, . . . , tk]

where each ti is a subterm of Tj such that Tj �Randadv
ti and ti is not a variable.

Proof. We prove the first part of Lemma 4, the second part is done similarly. We con-
sider a minimal proof of Tjσ, n �Randadv

t in the sense that, at each step it uses the
smallest premises. More formally, for any sub-proof T jσ, n �Randadv

u, let i be the
minimal index such that it is also a proof of T iσ, n �Randadv

u. If i ≥ 2, we must
have Ti−1σ, n ��Randadv

u. The proof is done by induction j and the length on the
proof of Tjσ, n �Randadv

t (lexicographical order). If there exists i < j such that
Tiσ, n �Randadv

t, we are done by induction hypothesis. Thus we can assume that j
is actually the minimal index such that Tjσ, n �Randadv

t.

– If t = n then we consider C = [].
– If t ∈ Tjσ, then t = t1σ with t1 ∈ Tj . If t1 is not a variable, we are done. Let i be

the minimal index such that it is also a proof of T iσ, n �Randadv
t. If t1 is a variable,

we have t1 ∈ Ti. By definition of constraint system, there exists l < i such that
Tl � t1 ∈ E. Since σ is a solution of E, we have Tlσ �Randadv

t1σ = t, which
contradicts the minimality of j.

– If the last applied rule is a construction rule: t = f(t1, . . . , tk) with f ∈ {〈〉, enc, h}.
By induction there exist public context Ci such that ti = C[ti1σ, . . . , tiki

σ, n]. We
consider the public context C = f(C1, . . . , Cn). Note that if f is an encryption, an
adversary randomness must have been used.

22

– If the last applied rule is a projection rule.

Tjσ, n �Randadv
〈m1, m2〉

Tjσ, n �Randadv
mi

By induction hypothesis, there exist a public context C such that 〈m 1, m2〉 =
C[t1σ, . . . , tkσ, n] where each ti is a subterm of Tj such that Tj �Randadv

ti and
ti is not a variable. If C = 〈C1, C2〉 then the public context Ci satisfies the con-
ditions. Otherwise 〈m1, m2〉 = t1σ some non variable deducible subterm of T j .
Thus t1 = 〈t′1, t′2〉. We have Tj �Randadv

t′i and mi = t′iσ. If t′i is not a variable, we
are done. If t′i is a variable, we must have t′i ∈ Tj and there exists l < j such that
Tlσ �Randadv

mi, which contradicts the minimality of j.
– If the last applied rule is a decryption rule.

Tjσ, n �Randadv
{m}r

ek(b) Tjσ, n �Randadv
dk(b)

Tjσ, n �Randadv
m

By induction hypothesis, there exist a public context C such that {m} r
ek(b) =

C[t1σ, . . . , tkσ, n] where each ti is a subterm of Tj such that Tj �Randadv
ti

and ti is not a variable. If C = {C1}C2 then the public context C1 satisfies
the conditions. Otherwise {m}r

ek(b) = t1σ some non variable deducible subterm
of Tj . Thus t1 = {t′}r

t′′ . t′′ is not a variable otherwise the rule Rkey would be
applicable, which contradicts that E has no successor. Thus t ′′ = ek(b). Since
Tjσ, n �Randadv

dk(b), by induction hypothesis, there exists a public context C
such that dk(b) = C[t1σ, . . . , tkσ, n] where each ti is a subterm of Tj such that
Tj �Randadv

ti and ti is not a variable. We must have C = [] thus dk(b) = t1σ.
Since t1 is not a variable, by well-formedness of the constraint system, we must
have t1 = dk(b) thus Tj �Randadv

dk(b). We deduce that Tj �Randadv
t′. If t′ is not

a variable, we are done. If t′ is a variable, we show again that this contradicts the
minimality of j.

Lemma 5. If lhs(E)σ, n �Randadv
dk(a) then lhs(E) �Randadv

dk(a).

Proof. This a consequence of Lemma 4. Assume lhs(E)σ, n �Randadv
dk(a). By Lemma 4,

there exists a public context C such that dk(a) = C[t1σ, . . . , tkσ, n] where each ti is
a subterm of lhs(E) such that lhs(E) �Randadv

ti and ti is not a variable. We must
have C = [] thus dk(a) = t1σ. Since t1 is not a variable, by well-formedness of the
constraint system, we must have t1 = dk(a) thus lhs(E) �Randadv

dk(a).

Lemma 6. lhs(E)σ, n �Randadv
t if and only if lhs(E)σ, n �Randadv

t.

Proof. Since lhs(E)σ ⊆ lhs(E)σ, lhs(E)σ, n �Randadv
t implies lhs(E)σ, n �Randadv

t.
Conversely, since E is well formed lhs(E) = lhs(E) thus lhs(E)σ = lhs(E)σ ∪

{{m}r
k subterm of σ | r ∈ Randadv}. Let us show that actually any term {m}r

k, sub-
term of σ such that r ∈ Randadv, is deducible from lhs(E)σ, n. By Lemma 4, there ex-
ists a public context C such that {m}r

k = C[t1σ, . . . , tkσ, n] where each ti is a subterm
of lhs(E) such that lhs(E) �Randadv

ti and ti is not a variable. Since E is well-formed,
r cannot appears in the ti. Thus {m}r

k = C[n] thus lhs(E)σ, n �Randadv
{m}r

k.

23

Lemma 7. Let E be a constraint system in solved form and σ be a solution of E. Let t
be a term.

lhs(E)σ �Randadv
t if and only if there exists a term t′ such that lhs(E) �Randadv

t′

and t = t′σ.

Proof. If there exists a term t′ such that lhs(E) �Randadv
t′ and t = t′σ then clearly

lhs(E)σ �Randadv
t.

Conversely, assume lhs(E)σ �Randadv
t. Applying Lemma 4 (with a nonce n that

does not occur in t), there exists a public context C such that {m} r
k = C[t1σ, . . . , tkσ]

where each ti is a subterm of lhs(E) such that lhs(E) �Randadv
ti and ti is not a

variable. We choose t′ = C[t1, . . . , tk]. We have t = t′σ. Moreover lhs(E) �Randadv
ti

and C public context implies that lhs(E) �Randadv
t′.

Lemma 8. Let n be a nonce, E be a constraint system in solved form and σ be a
solution of E. Assume E ∪ {lhs(E) � n} has no solution. Assume that n does not
occur in Patlhs(E)

n (lhs(E)). Let σ be a solution of E. Then

1. either n does not occur in Patlhs(E)σ
n (t) for any term t such that lhs(E)σ �Randadv

t,
2. or there exists σ′ such that E �+

σ′ E′, σ = σ′θ, θ′ is a solution of E ′ and n occurs

in Patlhs(E
′)θ

n (lhs(E′)θ).

Note that this lemma implies Proposition 2. Indeed, assume E ∪ {lhs(E) � n} has no
solution. Assume there exists a solution σ of E such that n occurs in Pat lhs(E)σ

n (lhs(E)σ).

– Either n occurs in Patlhs(E)
n (lhs(E)),

– or, by Lemma 8, there are two possibilities
• either n does not occur in Patlhs(E)σ

n (t) for any term t such that lhs(E)σ �Randadv

t. In that case, we know by Lemma 6 that, for any term t, Pat lhs(E)σ
n (t) =

Patlhs(E)σ
n (t) since lhs(E)σ, n �Randadv

t′ if and only if lhs(E)σ, n �Randadv

t′ for any term t′. Since lhs(E)σ �Randadv
t for any t ∈ lhs(E)σ, we deduce

that n does not occur in Patn(lhs(E)σ) thus does not occur in Patn(lhs(E)σ),
contradiction.

• or there exists σ′ such that E �+
σ′ E′, σ = σ′θ and n occurs in Patlhs(E

′)θ
n (lhs(E′)θ),

which means that E ′ does not preserve nonce secrecy of n.

It is thus now sufficient to prove Lemma 8

Proof. Let n be a nonce, E be a constraint system in solved form and σ be a solution
of E. Assume E ∪ {lhs(E) � n} has no solution. Assume that n does not occur in
Patlhs(E)

n (lhs(E)).
Either there exists σ′ such that E �+

σ′ E′, σ = σ′θ, θ′ is a solution of E ′ and n

occurs in Patlhs(E
′)θ

n (lhs(E′)θ) in which case we are done. Or we prove that n does
not occur in Patlhs(E)σ

n (t) for any term t such that lhs(E)σ �Randadv
t. Let E = {T1 �

a1, . . . , Tl � al}.
Assume lhs(E)σ �Randadv

t. By Lemma 7, there exists a term t′ such that lhs(E) �Randadv

t′ and t = t′σ.
We first assume that t′ is a subterm of lhs(E) and prove the following statement by

induction on (k, |t′|) (lexicographical ordering), where |t ′| denotes the size of t′.

24

n does not occur in Patlhs(E)σ
n (t′σ) for any term t′ subterm of Tk such that

lhs(E) �Randadv
t′.

Base case: k = 1 and t′ is atomic.

– If t′ is a nonce or a name, t′σ = t′. Then t′ �= n since E ∪ {lhs(E) � n} has no
solution. Thus n does not occur in Pat lhs(E)σ

n (t′σ).
– If t′ is a variable is excluded since t′ is a subterm of T1 and T1 contains no variables.

Induction step: t′ subterm of Tk such that lhs(E) �Randadv
t′.

– If t′ is a nonce or a name, t′σ = t′. Then t′ �= n since E ∪ {lhs(E) � n} has no
solution. Thus n does not occur in Pat lhs(E)σ

n (t′σ).
– If t′ is a variable, then by definition of constraint systems, there exists k ′ < k such

that Tk′ � t′ ∈ E. We deduce that Tk′σ �Randadv
t′σ. Let t = t′σ. By applying

Lemma 4 to constraint system {T1 � a1, . . . , Tk′ � ak′}, there exist u1, . . . , un

subterms of Tk′ such that t = C[u1, . . . , un]σ where C is a public context. We
deduce that Patlhs(E)σ

n (t) = C[Patlhs(E)σ
n (u1σ), . . . , Patlhs(E)σ

n (unσ)]. Applying
the induction hypothesis, we get that n does not occur in Pat lhs(E)σ

n (uiσ) thus n

does not occur in Patlhs(E)σ
n (t).

– If t′ = 〈t1, t2〉. Then Patlhs(E)σ
n (t′σ) = 〈Patlhs(E)σ

n (t1), Patlhs(E)σ
n (t2)〉. Since

lhs(E) �Randadv
t′ implies lhs(E) �Randadv

t1, t2 and t1 and t2 are subterms
of Tk, we can apply the induction hypothesis, we get that n does not occur in
Patlhs(E)σ

n (t′σ).
– If t′ = {t1}r

t2 and t2σ = ek(a). We must have t2 = ek(a) or t2 is a variable.
The case t2 variable is excluded by application of the transformation rule R key . We
assume now t2 = ek(a).
The case r ∈ Randadv is excluded since t′ is a subterm of Tk and E is well-formed.
Either lhs(E)σ, n ��Randadv

dk(a), in that case, Patlhs(E)σ
n (t) = � and n does not

occur in �.
Or lhs(E)σ, n �Randadv

dk(a). Then by Lemma 5, lhs(E) �Randadv
dk(a). Thus

lhs(E) �Randadv
t1 and t1 is a subterm of Tk thus we can apply our induction

hypothesis.
– If t′ = h(t′′σ). Either lhs(E)σ, n ��Randadv

t′′σ, in that case, Patlhs(E)σ
n (t) = �

and n does not occur in �. Or lhs(E)σ, n �Randadv
t′′σ. Applying Lemma 4, there

exists a public context C such that t′′σ = C[u1σ, . . . , ukσ, n] where each ui is a
subterm of lhs(E) such that lhs(E) �Randadv

ui and ui is not a variable.
Either there exists a path p of t′ such that t′|p is not a variable and t′|p = uiσ for
some i and t′|p �= ui. Since ui is not a variable, the rule R3 of the transformation
rules can be applied. Let σ ′ = mgu(ui, t

′|p). We have σ = σ′θ for some θ, E �σ′

Eσ′ and n occurs in Patn(lhs(E′)θ) since lhs(E′)θ = lhs(E)σ′θ = lhs(E)σ,
contradiction.
Or t′′ = C′[n, x1, . . . , xk, ui1 , . . . , uil

]. Then lhs(E) �Randadv
t′′ since var(lhs(E)) ⊆

lhs(E) and the ui are subterms of t′ thus of Tk thus we can apply the induction hy-
pothesis.

25

In the general case, applying Lemma 4, lhs(E)σ �Randadv
t implies that there exists

a public context C such that t = C[t′1, . . . , t
′
k]σ where each t′i is a subterm of lhs(E)

such that lhs(E) �Randadv
t′i and t′i is not a variable. Since C is a public context,

Patlhs(E)σ
n (t) = C[Patlhs(E)σ

n (t′1σ), . . . , Patlhs(E)σ
n (t′kσ)]

Since the t′i are subterms of lhs(E), we have seen that n does not occur in Pat lhs(E)σ
n (t′i).

We conclude that n does not occur in Pat lhs(E)σ
n (t).

H Proofs for Results in Section 4

H.1 Proof of Proposition 1

Proof (Sketch).
The proof is in two steps, which we briefly sketch before giving the details.
First, we associate to each computational trace of an arbitrary adversary A a sym-

bolic trace by parsing each bit-string down to its most basic components (keys, identi-
ties, nonces, randomness), and mapping each of these components to appropriate sym-
bolic constants. In parsing the messages we may freely use the decryption keys, which
are fixed by the randomness used in the trace.

In the second step, we show that the trace associated as above is a valid trace, with
overwhelming probability (over the coins used in the execution). The proof is based
on a characterization of non valid traces that identifies all ways in which the messages
output by the adversary are invalid. Then, we construct an adversary B that simulates
the execution of the protocol in the presence of the adversaryA. Adversary B is against
the encryption scheme and uses its encryption oracles to simulate the execution of the
honest parties. Then, if A with non-negligible probability outputs a non-Dolev-Yao
message, adversary B breaks the security of the encryption scheme.

STEP I. For each concrete execution trace tc = Execc
Π(RΠ),A(RA)(η) we construct

the symbolic ts and the function c by tracing the queries made by adversary A and
translating them into symbolic queries. Notice that since we do not require that c is
efficiently constructable, in its construction we may safely assume that all decryption
keys are known (notice that they are fixed by RΠ).

For corrupt and new queries the translation is straightforward (party identities
are mapped to appropriate symbols). The interesting party is how send queries are
treated. Each bitstring m that occurs in a send query is translated to a symbolic term
c(m) as follows. Agent identities, cryptographic keys, randomness used for encryption
by honest parties, and random nonces (all quantities that are uniquely determined by
RΠ) are canonically mapped to symbolic representations: for example the bit-string
representing the encryption key of party a i is mapped to ek(ai). Ciphertexts created by
the adversary are decrypted with the appropriate key (recall that all decryption keys are
available while defining the mapping).

The rest of the messages are interpreted as they occur: each message m sent by the
adversary is parsed (notice that all decryption keys needed for parsing are known, since
they are fixed by the randomness used in the experiment).

26

STEP II. In the second step of the proof we show that the trace t s constructed as above
is Dolev-Yao with overwhelming probability. The proof relies on the following lemma
that characterizes non Dolev-Yao adversaries. In what follows, ag(i) ∈ Randag and
adv(i) ∈ Randadv.

Lemma 9. Let M1, . . . , Mk, M be ground terms such that

– M1, . . . , Mk �� M ;
– names(M) ⊆ ⋃

1≤i≤k names(Mi);

– if {M ′}ag(i)
ek(a) is a subterm of M then {M ′}ag(i)

ek(a) is a subterm of some Mi.

There exists a non deducible term T , subterm of M , that is M1, . . . , Mk �� T and there
is a position p such that M |p = T and

1. for any path p′ ≤ p, M |p′ is non deducible from M1, . . . , Mk,

2. for any path p′ < p such that M |p′ = {M ′}ag(i)
ek(a) or M |p′ = h(M ′), M |p′ is not a

subterm of the Mi’s,
3. – T is a decryption key dk(a),

– or T is subterm of some Mi and is either a nonce or an encrypted message of
the form {M ′}ag(i)

ek(a) or a hash h(M ′).

We say that T is under attack.

Proof. We prove the lemma by induction on the size of M .
Base case: M is a nonce, an agent identity, a key or, a garbage symbol. Since M

is non deducible, by construction of the deduction system, M must be a nonce or a
decryption key dk(a) of some honest agent. If M is a decryption key, T := M satisfies
Lemma 9. If M is a nonce then by hypothesis, M ∈ ⋃

1≤i≤k names(Mi). Thus M is a
subterm of some Mi. We then take T := M which satisfies the lemma.

The induction step: M is a composed term.

– Either M = h(M ′). If M is a subterm of some Mi then T := M satisfies the condi-
tions of Lemma 9. Otherwise M is not a subterm of any M i. Then M ′ must be non
deducible. Otherwise M would be deducible. We apply the induction hypothesis
on M ′ and find T satisfying Lemma 9 for M1, . . . , Mk and M ′.

– Or M = {M ′}adv(i)
ek(a) . Then M ′ must be non deducible otherwise M would be

deducible. We apply the induction hypothesis on M ′ and find T satisfying Lemma 9
for M1, . . . , Mk and M ′.

– Or M = 〈M 1, M2〉. Then M 1 or M 2, say M j , must be non deducible otherwise M
would be deducible. We apply the induction hypothesis on M j and find T satisfying
Lemma 9 for M1, . . . , Mk and M j .

– Or M = {M ′}ag(i)
ek(a). By hypothesis, this implies that M is a subterm of some Mi,

thus T := M satisfies Lemma 9.

In the three first cases, it is easy to verify that T also satisfies Lemma 9 for M1, . . . , Mk

and M since M is non deducible and M is not a subterm of some M i (or M is a pair).

27

For our proofs, it is important to also show that if M1, M2, . . . , Mn are the output
of honest parties in a symbolic execution of a protocol, then the term T (which occurs
in some Mi) is in fact constructed by the honest parties, and not by the adversary.

This can be seen as follows. Let M1, . . . , Mk be messages sent (in this order) during
the execution of a protocol Π . Therefore, each M i is of the form Mi = rjiθi where
lji → rji is a edge of a role of Π and for each variable of the domain of θ i, θi(x)
is either a subterm of M1, . . . , Mi−1 or a deducible term from M1, . . . , Mi−1. Let T
satisfy Lemma 9. Since T is non deducible it must occur as a non trivial subterm of
some rji , that is there exists i, j and a non variable position p of rj such that T = rj |pθi,
which shows that T is computed by an honest party.

The main (and final) step of the proof is to show that if there exists an adversary A
for which the associated symbolic traces are non-Dolev-Yao with non-negligible prob-
ability, then we can construct an adversary B that breaks encryption.

The adversary B that we construct uses its access to left-right encryption oracle
and to the corresponding decryption oracles to simulate the parties against which A is
normally executed, and also simulates the random oracle. In general, B intercepts and
answers all queries that are made by A as follows.

– When A sends its corrupt(a1, a2, . . . , al) request adversary B generates private
and public keys for parties a1, a2, . . . , al and sends them to the adversary.

– When A wants to initiate a new session new(i, a1, . . . , ak), if agents ai are new,
B requests new users corresponding to these agents in the multi-party setting for
public-key encryption. Then B generates all the honest nonces corresponding of
agents ai in that new session.

– When A makes a send(s, m) request, B parses the message possibly using the
decryption oracle and the records of the hashes already generated when simulating
the random oracle and answers according to the protocol (encrypting the message
by himself).

– When A makes a hash(m) request, either B has already generated a hash value
h for m and simply returns h or B generates a new hash value, memorizes the
association and returns the value to A.

The critical part of the proof is how adversary A uses the non-Dolev Yao message
T (described in Lemma 1) to break encryption. We treat separately the case when T is
a decryption key of an honest agent, and the case when T is a nonce or an encrypted
message of the form {M ′}ag(i)

ek(a) or a hash h(M ′) and T is a subterm of some previously
sent messages. We start with the latter case which is more complex.

The first step of B is to guess when T occurs in the execution of honest parties for
the first time. Since T is created by some honest party (see the remark after Lemma 1),
this can be done by guessing a session number, in which instruction (l i, ri), and on
which position of ri, T occurs. The key idea is to construct two different bit-string
interpretations t0 and t1 for T , and uses the left-right encryption oracles in such a way
that the view simulated for A is such that the bit-string associated to T is precisely
tb, where b is the selection bit of the encryption oracles. Then, when A makes its first
non-Dolev Yao query B recovers tb using the decryption oracles, and therefore b.

When B needs to produce the bit-string representation of the first message M i that
contains T , it proceeds as follows. If T is a nonce,B generates two nonces t 0 and t1, and

28

if T is an encryption, B generates two versions t0 and t1 of the encryption (by calling
the encryption algorithm twice, with different random coins); if T is a hash,B generates
two random values t0 and t1. Then, B constructs the bitstring Mi[T �→ tb] where b is
the bit used by the left-right encryption oracle. Notice that since T is non-deducible it
occurs either under an encryption or under a hash. In either case, we compute the bit-
string associated to the inner-most “protection” of tb, which is either a honest encryption
or a hash, by using either the left-right oracle (if it is an encryption application), or by
a random value (if it is a hash). In the last case we say that B does a cheating hash. We
give examples for the two cases below.

Example 1. If Mi[T] is of the form {h(M ′[T])}ag(i)
ek(a), and T is deducible from M ′[T]

by projections (thus is “unprotected” in M ′), thenB computes the concrete counterparts
m0 and m1 for M [t0] and M [t1], respectively and generates a cheating hash h which is

associated to the couple (m0, m1). Then, the representation of {h(M ′[T])}ag(i)
ek(a), is an

encryption of h, computed by B himself.
If Mi[T] is of the form h({M ′[T]}ag(i)

ek(a)) and T is deducible from M ′[Tb] by projec-
tion then B computes concrete counterparts m0 and m1 for M [t0] and M [t1] and then
uses the left-right oracle to compute {mb}ek(a). The final value is computed by B who
generates a hash value h for h({mb}ek(a)).

Now we argue that B is able to proceed simulating the rest of the protocol, namely,
to provide the concrete counterpart of M j [tb] where b is the bit used by the left-right
encryption oracle. The problematic cases are when B receives hash and send requests
send(s, m) or hash(m). In that cases, B first parses m to make sure that it does not
recover tb in clear, that is m is a non Dolev-Yao message.

– When B receives a hash query hash(m), there are two cases. Either B has already
generated a hash value h for m, then B simply answers by h; or B has generated
a cheating hash value for m which means that m is equal to some m b thus m is
already a non Dolev-Yao message; contradiction. If B has never generated a hash
value for m, B simply generates a new value, gives it to A, and remembers the
association.

– When B receives a send request send(sid, m), since B simulates the protocol it
knows the values of f(sid) = (σ, j, p). Let ((l1, r1), . . . , (lk, rk)) be the outcoming
edges of the node p of Π(j). B tries recursively to find a substitution θ compatible
with σ such that m = liσθ. Assume he finds one. If, when parsing m adversary B
finds a cheating hash or an encryption that was obtained from the left-right oracle,
adversary B recovers the two possibles values m0 and m1 for which we know
that the secret value t0 or t1 is deducible by projection. Since tb is non-deducible,
tb must be re-encrypted or hashed in riσθ. As before, B replaces the inner-most
“protection” of Tb, either a honest encryption or a hash, by using either the left-
right oracle or by replacing it by a random value (cheating hash).

Next, we explain how B recovers b out of the first non Dolev-Yao output of A.
We abuse notation and occasionally write M for both a symbolic representation of a
message, and for its bit-string representation. Which is the case can always be deduced
from the context.

29

This message occurs in either a send query, or in a hash request. Let M be the
symbolic representation of the first non-Dolev Yao query of A, and let p by the path
from the characterization of M given by Lemma 1. We claim that B can parse M to
recover tb associated to T , following the path p. We reason inductively on the structure
of M .

– if M = 〈M 1[T], M2[T]〉 and p = i · p′, B opens M i following the path p′.
– if M = {M ′[T]}l

ek(a) and p = 1 · p′, then by Lemma 9, M does not occur as
subterm of the Mi’s, and in particular it has not been obtained using the encryption
oracle. Thus B may submit M to the decryption oracle and recovers M ′[tb]. Then,
tb is recovered following the path p ′.

– if M = h(M ′[T]) and p = 1 · p′. Either h(M ′[mb]) has been obtained using the
random oracle, thus B knows its form, i.e. M ′[mb], and opens it following the path
p′. Alternatively, h(M ′[Mb]) has been obtained by doing a cheating hash, i.e. B has
generated a nonce by himself. In this case, h(M ′[mb]) is a subterm of some Mi,
which contradicts Lemma 9.

We conclude that B is able to retrieve Tb thus b, therefore breaking encryption.

H.2 Proof of Lemma 2

Proof. Given an adversary A for which the above function is non-negligible, we show
how to construct a successful adversary B against the encryption scheme Enc. Recall
that B has access to polynomially many left-right encryption oracles, and to the corre-
sponding decryption oracles. We write (pki, ski) (for i = 1, 2, ...) for the encryption
and decryption keys that parametrize the oracle. Adversary B executes A as a subrou-
tine and simulates for A its environment (that is, the experiment defining secrecy of
nonces) by playing the role of the honest parties whose public keys are set to be keys in
{pk1, pk2, . . .}.

Notice that although B does not know the secret keys that correspond to the encryp-
tion keys of the parties that it simulates, it can still parse the messages sent by A by
using the decryption oracles.

The difference between the normal execution and the execution that is simulated by
B is that the encryptions that the honest parties need to compute are computed using
the left right encryption oracles as follows. Whenever some honest party i needs to
encrypt a message m under the public key of party j, and the message m is sufficiently
long (that is, longer than the security parameter), adversaryB selects a random message
rm of equal length. The encryption is set to be cm, the result obtained by submitting
(m, rm) to the left-right oracle under the public key pk j . AdversaryB maintains a table
of all pairs (m, cm). Whenever a party needs to decrypt a ciphertext cm obtained from
the left-right oracle, B sets the underlying plaintext to be m. In rest, the simulation of
the parties by B is precisely as in the normal execution. The output of B is whatever
adversary A outputs. Notice that if the bit b that parametrizes the left-right oracles is 0,
then the simulation that B offers to A is precisely as in the execution ExecA,Π whereas
if the bit b is 0 then the simulation that B offers to A is as in Execo

A,Π . We therefore
have that:

30

Advindcca
B,Enc (η) = Pr

[
Expindcca0

B,Enc (η) = 1
]
− Pr

[
Expindcca1

B,Enc (η) = 1
]

= Pr [ExecA,Π(η) = 1] − Pr
[
Execo

A,Π(η) = 1
]

Since Enc is IND-CCA secure, the conclusion of the lemma follows.

H.3 Proof of Lemma 3

Proof. The proof is similar to that of Lemma 2. We show that if there exists a com-
putational adversary A for which the induced symbolic traces of its oracle execution
are not Dolev-Yao, then, we construct an adversary B that breaks AE . Adversary B
executes adversary A as a subroutine and emulates the environment that A expects by
simulating the honest parties. Adversary B intercepts all queries and answers precisely
as adversary B in the proof of Lemma 2 does. Recall that each time an honest party
needs to encrypt some message m, adversaryB obtains the corresponding ciphertext by
submitting (m, rm) to its left-right encryption oracle. Here, rm is selected uniformly at
random among the string of length equal to that of m.

In addition, adversary B keeps track of the symbolic trace that corresponds to the
execution trace, simply by parsing all messages that are sent by the adversary and the
honest parties, and constructing (during the execution) the mapping c. Each time adver-
sary A sends a message m to one of the parties,B verifies if the symbolic representation
of m can be obtained using Dolev-Yao operations from the symbolic representations of
the messages that the adversary had priorly seen. It is known that for closed terms the
verification procedure can be done in polynomial time. If at any point the message out-
put byA is not Dolev-Yao, thenB stops its execution and outputs 1. Otherwise, when A
finishes its execution, adversaryB outputs 0. Notice that if the bit of the left-right oracle
is 0, then B simulates perfectly the environment of ExecA,Π(η) whereas if b = 1, then
the simulation is as in Execo

A,Π(η). Let NDY(ExecA,Π(η)) denote the event that the
execution ExecA,Π(η) is not Dolev Yao. Similarly, let NDY(Execo

A,Π(η)) denote the
event that the execution Execo

A,Π(η) is not Dolev Yao. Then, we obtain that:

Advindcca
B,Enc (η) = Pr

[
Expindcca0

B,Enc (η) = 1
]
− Pr

[
Expindcca1

B,Enc (η) = 1
]

= Pr [NDY(ExecA,Π(η))] − Pr
[
NDY(Execo

A,Π(η))
]

Since Pr [NDY(ExecA,Π(η))] is negligible (Proposition 1) and Adv indcca
B,Enc (η) is also

negligible (AE is IND-CCA secure), we obtain that

Pr
[
NDY(Execo

A,Π(η))
]

= Pr [NDY(ExecA,Π(η))] − Advindcca
B,Enc (η)

is also negligible. We conclude that in Execo
A,Π the computational execution traces are

valid Dolev-Yao traces.

31

