Safely composing security protocols *

Véronique Cortier, Jérémie Delaitre, and Stéphanie Delaune

LORIA, CNRS & INRIA, project Cassis, Nancy, France

Abstract. Security protocols are small programs that are executed in hostile
environments. Many results and tools have been developed to formally analyze
the security of a protocol in the presence of active attackers that may block, in-
tercept and send new messages. However even when a protocol has been proved
secure, there is absolutely no guarantee if the protocol is executed in an envi-
ronment where other protocols, possibly sharing some common identities and
keys like public keys or long-term symmetric keys, are executed.

In this paper, we show that security of protocols can be easily composed. More
precisely, we show that whenever a protocol is secure, it remains secure even
in an environment where arbitrary protocols are executed, provided each en-
cryption contains some tag identifying each protocol, like e.g. the name of the
protocol.

1 Introduction

Security protocols are small programs that aim at securing communications over
a public network like the Internet. Considering the increasing size of networks
and their dependence on cryptographic protocols, a high level of assurance is
needed in the correctness of such protocols. The design of such protocols is dif-
ficult and error-prone; many attacks have been discovered even several years
after the publication of a protocol. Consequently, there has been a growing in-
terest in applying formal methods for validating cryptographic protocols and
many results have been obtained. The main advantage of the formal approach
is its relative simplicity which makes it amenable to automated analysis. For
example, the secrecy preservation is co-NP-complete for a bounded number of
sessions [17], and decidable for an unbounded number of sessions under some
additional restrictions (e.g. [2,4,18]). Many tools have also been developed to
automatically verify cryptographic protocols like [14, 3].

However even when a protocol has been proved secure for an unbounded
number of sessions, against a fully active adversary that can intercept, block
and send new messages, there is absolutely no guarantee if the protocol is exe-
cuted in an environment where other protocols, possibly sharing some common
identities and keys like public keys or long-term symmetric keys, are executed.
This is however very likely to happen since a user connected to the Internet for
example, usually uses simultaneously several protocols with the same identity.

* This work has been partly supported by the RNTL project POSE and the ARA
SSIA Formacrypt.

The interaction with the other protocols may dramatically damage the security
of a protocol. Consider for example the two following naive protocols.

. . B-
Pi: A= B:{s}pun) P g _}ﬁ }{sza}pub(B)
In protocol Py, the agent A simply sends a secret s encrypted under B’s public
key. In protocol Ps, the agent sends some fresh nonce to B encrypted under B’s
public key. The agent B acknowledges A’s message by forwarding A’s nonce.
While P; executed alone easily guarantees the secrecy of s, even against an
active adversary, the secrecy of s is no more guaranteed when the protocol P is
executed. Indeed, an adversary may use the protocol P, as an oracle to decrypt
any message. More realistic examples illustrating interactions between protocols
can be found in e.g. [13].

The purpose of this paper is to investigate sufficient and rather tight condi-
tions for a protocol to be safely used in an environment where other protocols
may be executed as well. Our main contribution is to show that whenever a pro-
tocol is proved secure when it is executed alone, its security is not compromised
by the interactions with any other protocol, provided each protocol is given an
identifier (e.g. the protocol’s name) that should appear in any encrypted mes-
sage. Continuing our example, let us consider the two slightly modified protocols.

Pj: A— B:{2,Ny}ouns
Plli A—>BZ{1;S}pub(B) 2 B—>A3Na pub(B)
Applying our result, we immediately deduce that P{ can be safely executed
together with Pj, without compromising the secrecy of s.

The idea of adding an identifier in encrypted messages is not novel. This rule
is in the same spirit as those proposed in the paper of Abadi and Needham on
prudent engineering practice for cryptographic protocols [1] (principle 10). The
use of unique protocol identifiers is also recommended in [13,5] and has also
been used in the design of fail-stop protocols [11]. However, to the best of our
knowledge, it has never been proved that it is sufficient for securely executing
several protocols in the same environment. Note that some other results also
use tags for different purposes. For instance, Blanchet uses tags to exhibit a
decidable class [4] but his tagging policy is stronger since any two encrypted
subterm in a protocol have to contain different tags.

The result the most closely related to ours is the one of Guttman and
Thayer [12]. They show that two protocols can be safely executed together with-
out damaging interactions, as soon as the protocols are “independent”. The in-
dependence hypothesis requires in particular that the set of encrypted messages
that the two protocols handle should be different. As in our case, this can be
ensured by giving each protocol a distinguishing value that should be included
in the set of encrypted messages that the protocol handles. However, the major
difference with our result is that this hypothesis has to hold on any valid execu-
tion of the protocol. In particular, considering again the protocol Pj, an agent

should not accept a message of the form {2, {1,m}x}pun(z) while he might not
be able to decrypt the inside encryption and detect that it contains the wrong
identifier. In particular, their result do not allow to conclude when no typing
hypothesis is assumed (that is, when agents are not required to check the type
of each component of a message) or for protocols with cyphertext forwarding,
that is, when agents have to forward unknown message components.

Datta et al. [9,10] have also studied secure protocol composition in a more
broader sense: protocols can be composed in parallel, sequentially or protocols
may use other protocols as components. However, they do not provide any syn-
tactic conditions for a protocol P to be safely executed in parallel with other
protocols. For any protocol P’ that might be executed in parallel, they have
to prove that the two protocols P and P’ satisfy each other invariants. Their
approach is thus rather designed for component-based design of protocols.

2 Models for security protocols

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically,
we consider the signature F = {enc, enca, sign, (), pub, priv} together with ari-
ties of the form ar(f) = 2 for the four first symbols and ar(f) = 1 for the two last
ones. The symbol () represents the pairing function. The terms enc(m, k) and
enca(m, k) represent respectively the message m encrypted with the symmetric
(resp. asymmetric) key k. The term sign(m, k) represents the message m signed
by the key k. The terms pub(a) and priv(a) represent respectively the public
and private keys of an agent a. We fix an infinite set of names N' = {a,b...}
among which we distinguish two particular names init and stop; and an infinite
set of variables X = {x,y...}. The set of Terms is defined inductively by

ti= term
| z variable z
| a name a
| f(a) application of symbol f € {pub, priv} on a name
| f(ti,t2) application of symbol f € {enc, enca,sign, ()}

As usual, we write vars(t) (resp. names(t)) for the set of variables (resp.
names) occurring in ¢. A term is ground or closed if and only if it has no variables.
We write St(t) for the set of subterms of a term ¢. This notion is extended as
expected to sets of terms. Extended names are names or terms of the form
pub(a), priv(a). The set of extended names of a term ¢, denoted by n(¢), is
n(t) = names(t) U {pub(¢), priv(¢) | pub(¢) or priv(¢) € St(t)}. For example, we
have that n(enc(a,pub(b))) = {a,b,pub(b), priv(b)}. Substitutions are written
o={x1—t1,...,xn — tp} with dom(o) = {z1,...,2,}. The substitution o is
closed if and only if all the ¢; are closed. The application of a substitution o to
a term ¢ is written o(¢) or to.

THu Thrw THu Trw THu Trw THu Trw

T+ (u,v) T + enc(u,v) T + enca(u, v) T+ sign(u, v)
T+ (u,v) T+ (u,v) Tt enc(u,v) Thko
ThHu ThHwv ThHu
T + enca(u, pub(v)) T F priv(v) T I sign(u, priv(v)) T
(optional) T u e
ThHu ThHu u

Fig. 1. Intruder deduction system.

2.2 Intruder capabilities

The ability of the intruder is modelled by a deduction system described in Fig-
ure 1 and corresponds to the usual Dolev-Yao rules. The first line describes the
composition rules. We call these deduction rules pairing, symmetric and asym-
metric encryption and signature respectively. The two last lines describe the de-
composition rules and the axiom. We call these rules first and second projection,
symmetric and asymmetric decryption respectively. Intuitively, these deduction
rules say that an intruder can compose messages by pairing, encrypting and sign-
ing messages provided he has the corresponding keys. Conversely, it can decom-
pose messages by projecting or decrypting provided it has the decryption keys.
For signatures, the intruder is also able to verify whether a signature sign(m, k)
and a message m match (provided she has the verification key), but this does
not give her any new message. That is why this capability is not represented in
the deduction system. We also consider an optional rule that expresses that an
intruder can retrieve the whole message from its signature. This property may
or may not hold depending on the signature scheme, and that is why this rule is
optional. Our results hold in both cases (that is, when the deduction relation F
is defined with or without this rule).

A term wu is deducible from a set of terms 7', denoted by T+ w if there exists
a proof i.e. a tree such that the root is T' F wu, the leaves are of the form T + v
with v € T (axiom rule) and every intermediate node is an instance of one of
the rules of the deduction system.

Example 1. The term (k1, ko) is deducible from the set T7 = {enc(k1, k2), k2}.

2.3 Protocols

We consider protocols specified in a language similar to the one of [17] allow-
ing parties to exchange messages built from identities and randomly generated
nonces using public key, symmetric encryption and digital signatures. The in-
dividual behavior of each protocol participant is defined by a role describing a
sequence of message receptions/transmissions, and a k-party protocol is given
by k such roles.

Definition 1 (Roles and protocols). The set Roles of roles for protocol partici-
pants is the set of sequences of the form (rcvq, N1,sndy) - - - (rcve, Ny, sndy) where
each element, called rule, satisfies (rcv;, N;,snd;) € Terms x 2% x Terms, and for
any variable, x € vars(snd;) implies z € (J, ;<; N; U vars(rev;).

The length of a role is the number of elements in its sequence. A k-party
protocol is a mapping I7 : [k] — Roles, where [k] = {1,2,...,k}.

The last condition ensures that each variable which appears in a sent term
is either a nonce or has been introduced in a previously received message. The
set of variables, names or extended names of a protocol is defined as expected,

considering all the terms occurring in the role’s specification.
Nj

. J

The j* role of a protocol IT is denoted by (rcv) i snd})--- (rcvfcj & sndij).
It specifies the messages to be sent/received by the party executing the role: at
step i, the jth party expects to receive a message conformed to rcvf , instantiate
the variables of Nij with fresh names and returns the message sndg . We assume
the sets Nij to be pairwise disjoint. The special constants init and stop will be
used to specify that no message is expected or sent.

The composition of two protocols I1; and II5, denoted by I1; | IT5 is simply
the protocol obtained by the union of the roles of IT; and IT5. If IT; : [k1] — Roles
and II5 : [k2] — Roles, then IT = ITy | II5 : [k1 + k2] — Roles with I7(i) = IT1 (%)
for any 1 <i <k; and IT(ky +1i) = (i) for any 1 < i < kg .

Example 2. Consider the famous Needham-Schroeder asymmetric key authenti-
cation protocol [16] designed for mutual authentication.

A — B : {NQ,A}pub(B)
B — A: {Na, No}pub(a)
A—B: {Nb}pub(B)

The agent A sends to B his name and a fresh nonce (a randomly generated
value) encrypted with the public key of B. The agent B answers by copying A’s
nonce and adds a fresh nonce Np, encrypted by A’s public key. The agent A
acknowledges by forwarding B’s nonce encrypted by B’s public key. For instance,
let a, b, and ¢ be three agent names. The role IT(1) corresponding to the first
participant played by a talking to c is:

(init x} enca((X, a), pub(c))), (enca((X, z), pub(a)) LA enca(x, pub(c)))

The role I1(2) corresponding to the second participant played by b with a is:

(enca((y, a), pub(b)) &} enca((y,Y), pub(a))), (enca(Y, pub(d)) LN stop)

Note that there is also a role corresponding to the first participant played by a
talking to b for example. If more agent identities need to be considered, then the
corresponding roles should be added to the protocol. It has been shown however
that two agents are sufficient (one honest and one dishonest) for proving security
properties [6].

Clearly, not all protocols written using the syntax above are meaningful. In
particular, some of them might not be executable. A precise definition of exe-
cutability is not relevant for our result. We use instead a weaker hypothesis (see
Section 3). In particular, our combination result also holds for non executable
protocols that satisfy our hypothesis.

2.4 Constraint systems

Constraint systems are quite common (see e.g. [17,7,8]) in modeling security
protocols. They are used to specify secrecy preservation of security protocols
under a particular, finite scenario. We recall here their formalism and we show in
the next section that the secrecy preservation problem for an unbounded number
of sessions can be specified using (infinite) families of constraint systems.

Definition 2 (constraint system). A constraint system C is either L or a finite
set of expressions T' IF u, called constraints, where T' is a non empty set of terms,
called the left-hand side of the constraint and u is a term, called the right-hand
side of the constraint, such that:

— the left-hand sides of all constraints are totally order by inclusion;
— if # € vars(T) for some (T' I+ u) € C then
T, % min{7T" | (T" I+ u') € C and = € vars(u’)}
exists and T, C 7.

A solution of C is a closed substitution 6 such that for every (T I- u) € C, we
have that 70 - uf. The empty constraint system is always satisfiable whereas |
denotes an unsatisfiable system.

A constraint system C is usually denoted as a conjunction of constraints
C = Nicicn(Ti - u;) with T; € Tiyq, for all 1 < i < n. The second condition in
Definition 2 says that if @ € vars(T;) then 3j < i such that T; =T, and T; C T;.
In other words, each time a variable occurs first in some right-hand side, it
must not have occurred before in some left-hand side. The left-hand side of a
constraint system usually represents the messages sent on the network.

2.5 Secrecy

We define the general secrecy preservation problem for an unbounded number
of sessions, using infinite families of constraint systems. A role may be executed
in several sessions, using different nonces at each session. Moreover, since the
adversary may block, redirect and send new messages, all the sessions might be
interleaved in many ways. This is captured by the notion of scenario.

Definition 3 (scenario). A scenario for a protocol IT : [k] — Roles is a sequence
sc = (r1,81) -+ (rn, 8y) such that 1 < r; < k, s; € N, the number of identical
occurrences of a pair (r, s) is smaller than the length of the role r, and whenever
s; = s;j then r; = ;.

The numbers r; and s; represent respectively the involved role and the ses-
sion number. The last condition ensures that a session number is not reused
on other roles. We say that (r,s) € sc if (r,s) is an element of the sequence sc.
Let IT = II; | I15 be a protocol obtained by composition of IT; and ITs and let sc
be a scenario for IT. The scenario sc|z, is simply the sequence obtained from sc
by removing any element (7, s) where r is a role of ITo. Given a scenario, we can
define a sequence of rules that corresponds to the sequence of expected and sent
messages.

Definition 4. Given a scenario sc = (r1,51) -+ - (7, s,) for a k-party protocol IT,
the sequence of rules (ug,v1) - - (un, vy,) associated to sc is defined as follows.
. N . . Nj_ .
Let I1(j) = (rcvi — snd{) -« (revy, = sndj) for 1 < j < k.
Let p; = #{(rj,s;) € sc| j <i,r; = r;}, i.e. the number of previous occurrences
in sc of the role r;. We have p; < k,., and (u;,v;) = (rcvgi Ory 505 snd;?'i Or,s;), Where

= dom(ors) = Uj<icp, (V] Uwars(revy)), i.e. variables occurring in I1(r),
—ors(x)=ngysifze U1§z‘§kr N, where n, , is a name.
— oys(x) = x5 otherwise, where x5 is a variable.

We assume that names (resp. variables) with different indexes are pairwise dif-
ferent and also different from the names (resp. variables) occurring in I7,

We say that a protocol preserves the secrecy of a data if it preserves its
secrecy for any scenario. In particular, the secrecy of the data must be preserved
for any possible instances of its fresh values (e.g. nonces and keys).

Definition 5 (secrecy). A protocol IT preserves the secrecy of a term m for the
initial knowledge Ty if for any scenario sc for I1, for any role number 1 <1 < k,
for any session number s; € N that either corresponds to role ¢, that is (4, s;) € sc
or does not appear in the scenario, that is V7, (j, s;) ¢ sc, the following constraint
system is not satisfiable

T IF ug A /\ (T Udvr, .. vib IF i) A(THU{vr, . on} IEmoy s, - Oks,)
1<i<n

where T} = To U{init} and (u1,v1) - - - (un, vy) is the sequence of rules associated
to sc and o, s is the substitution defined in Definition 4.

The initial knowledge typically contains the names and the public keys of all
agents and the private keys of all dishonest agents.

Example 3. Consider again the Needham-Schroeder protocol. Let IT(1) and I7(2)
the two roles introduced in Example 2. This protocol is well-known to be inse-
cure w.r.t. m =Y and Ty = {priv(c), pub(c), a, b, pub(a), pub(b)}. Let s; and so
be two session numbers (s; # s2) and consider sc = (1, s1) (2, s2) (1, s1) (2, s2).

The constraint system C associated to Tp, sc and moy s5,02,5, = Ny,s, (according
to Definition 5) is given below.

T, init IF init
Ty def Ty, init, enca((nx s, ,a), pub(c)) IF enca({ys,, a), pub(b))
C:= T def Ti, enca((Ys,, My,s,), pub(a)) IF enca((nx s, , s,), pub(a))
Ts, enca(zs, , pub(c)) IF enca(ny,s,, pub(b))
Ty, enca(xs, , pub(c)) IF nys,

The substitution o = {ys, — nx.s,,Ts, > Ny,s,} is a solution of C.

3 Composition result

3.1 Hypothesis

Even if a protocol is secure for an unbounded number of sessions, its security
may collapse if the protocol is executed in an environment where other protocols
sharing some common keys are executed. We have seen a first example in the
introduction. To avoid a cyphertext from a protocol IT; to be decrypted in an
another protocol I3, we introduce the notion of well-tagged protocol.

Definition 6 (well-tag, a-tag). Let « be a term. We say that a term ¢ is a-
tagged if for every ¢ € St(t) of the form ¢’ = enc(t1,t2), t' = enca(ty,t2), or
t' = sign(t1,t2), we have t; = («,t}) for some term t{. A term is said well-
tagged if it is a-tagged for some term a.

A protocol IT is a-tagged is any term occurring in the role of the protocol is
a-tagged. A protocol is said well-tagged if it is a-tagged for some term «.

Requiring that a protocol is well-tagged can be very easily achieved in practice:
it is sufficient for example to add the name of the protocol in each encrypted
term. Moreover, note that (as opposite to [12]) this does not require that the
agents check that nested encrypted terms are correctly tagged. For example,
let IT be a protocol with one role as follows:

II1(1) = (enca({a, x), pub(a)) — enca({a, x), pub(b))).

The protocol IT is a-tagged and still the message enca({«a,enc(a,k)), pub(a))
(which is not a-tagged) would be accepted by the agent playing the role.

Tagging protocols is not sufficient, indeed critical long-term keys should not
be revealed in clear. Consider for example the following two well-tagged protocols

Ps: A— B:{a,stk, Py: A— B:ky

The security of protocol Ps is again compromised by the execution of P;. Thus
we will require that long-term keys (except possibly the public ones) do not
occur in plaintext in the protocol.

Definition 7 (plaintext). The set plaintext(t) of plaintext of a term ¢ is the set
of extended names and variables, that is recursively defined as follows.

plaintext(u) = {u} if u is a variable or a name
plaintext(f(u)) = {f(u)} for f € {pub, priv}
plaintext((u1,ug)) = plaintext(uy) U plaintext(uz)

plaintext(f(u1,uz)) = plaintext(uy) for f € {enc,enca,sign}

This notation is extended to set of terms and protocols as expected .

Some weird protocols may still reveal critical keys in a hidden way. Consider
for example the following one role (a-tagged) protocol.

I1(1) = (init — enc({a, a), kap)), (enc({c,a),x) — x)

While the long-term key k., does not appear in plaintext, the key k,p is revealed
after simply one normal execution of the role. This protocol is however not
realistic since an unknown value cannot be learned (and sent) if it does not
appear previously in plaintext. Thus we will further require (Condition 2 of
Theorem 1) that a variable occurring in plaintext in a sent message, has to
previously occur in plaintext in a received message.

3.2 Composition theorem

We show that any two well-tagged protocols can be safely composed as soon
as they use different tags and that critical long-term keys do not appear in
plaintext.

Theorem 1. Let II; and Il be two well-tagged protocols such that IT; is a-
tagged and IT5 is B-tagged with o # (3. Let Ty (intuitively the initial knowledge
of the intruder) be a set of extended names. Let KC = (n(Il1) Un(Il2)) \ T be
the set of critical extended names. Let m be a term constructed from II; such
that m is a-tagged and wars(m) C vars(Il1). Moreover, we assume that

1. critical extended names do not appear in plaintext, that is
KC N (plaintext(I11) U plaintext(I15)) = 0.

2. for any role (rcvy M sndq) - - - (revg N sndy) of II1 or I, for any variable
z € plaintext(snd;), we have x € (U, ;; N; U {plaintext(rcv;)}.

Then I1; preserves the secrecy of m for the initial knowledge Tp if and only
if IT; | I1; preserves the secrecy of m for Tp.

We have seen in Section 3.1 that conditions 1 and 2 are necessary conditions.
Moreover, condition 2 will be satisfied by any realistic (executable) protocol. We
require that terms from II; and I1y are tagged with distinct tags for simplicity.
The key condition is actually that for any encrypted (or signed) subterm ¢; of ITy
and for any encrypted (or signed) subterm t5 of IT5, the terms ¢; and t5 cannot
be unified.

Theorem 1 is proved by contradiction. Assume that I1; | IT; does not preserve
the secrecy of m for Tj. It means that there exists a scenario sc for IT; | IT5 such
that the constraint system associated to sc, Ty and m is satisfiable. Proposition 1
ensures that in this case, there exists a scenario sc’ for IT; such that the constraint
system associated to sc¢’, Ty and m is satisfiable, which means that IT; does not
preserve the secrecy of m for some initial knowledge T}, contradiction.

Proposition 1. Let II; = [k1] — Roles, II5 = [ka] — Roles, Tp and m defined as
in Theorem 1 and satisfying the conditions 1 and 2. Let k = k1 + k2 and sc be
a scenario for Iy | IT. For any role number 1 < ¢ < k, let s; € N such that
(i,8;) € sc or V7, (], ;) & sc. Let C be the constraint system associated to sc, Ty
and mo1s, - Ok,s, - Let s¢’ = sc|, and C’ be the constraint system associated
to sc/, Ty and moq g, - - - Oky sy, - 1 C is satisfiable, then C’ is also satisfiable.

The next section is devoted to the (sketch of) proof of this proposition.

4 Proof of our combination result

To prove our decision procedure, we first refine an existing decision procedure
for solving constraint systems. Several decision procedures already exist [15,7,
8,17] for solving constraint systems. Some of them [15,7,8] are based on a
set of simplification rules allowing a general constraint system to be reduced to
some simpler one, called solved, on which satisfiability can be easily decided. A
constraint system is said solved [8] if it is different from L and if each of its
constraints is of the form T IF x, where x is a variable. Note that the empty
constraint system is solved. Solved constraint systems are particularly simple
since they always have a solution. Indeed, let T; be the smallest (w.r.t. inclusion)
left hand side of a constraint. From the definition of a constraint system we have
that 77 is non empty and has no variable. Let ¢t € T}. Then the substitution 7
defined by x7 = t for every variable x is a solution since T' F z6 for any constraint
T |F x of the solved constraint system.

The simplification rules we consider are given below. All the rules are in-
dexed by a substitution (when there is no index then the identity substitution
is implicitly considered). We write C ~»* C’ if there are Cy,...,C, such that
C gy C1 ~gy oo~y C' and 0 = 0goy...0,. Our rules are the same than
in [8] except that we forbid unification of terms headed by (). We show that
it still forms a complete decision procedure (see Appendix A). Correction and
termination are still ensured by [8].

Ry : CATIFu ~ C fTU{z |T'FzeCT CT}Fu

Rs : CATIFu~,CoAToluo if o = mgu(t, u) where ¢t € St(T), t # u,
and ¢, u are neither variables nor pairs

R3 : CANTIku~yCoANTolkuo if o = mgu(tl,tg), t1,t2 € St(T), t1 7é ta,
and t1,ty are neither variables nor pairs

Ry : CATIFu ~ L if vars(T,u) =0 and T t/ u

Rs:CATIF fu,v) ~» CATIFu ATIFv for f e {(),enc,enca,sign}

10

Theorem 2. Let C be an unsolved constraint system.

1. (Correctness) If C ~* €’ for some constraint system C’ and some substitu-
tion o and if 0 is a solution of C’ then o#@ is a solution of C.

2. (Completeness) If 0 is a solution of C, then there exist a solved constraint
system C’' and substitutions o, 8’ such that § = ¢6’, C ~* C’ and ¢ is a
solution of C'.

3. (Termination) There is no infinite chain C ~+4, C; ... ~4

. Ch.

Proving that forbiding unification between pairs still leads to a complete decision
procedure required in particular to introduce a new notion of minimality for tree
proofs for deduction. Note that this result is of independent interest. Indeed, we
provide a more efficient decision procedure for solving constraint systems, thus
for deciding secrecy for a bounded number of sessions. Of course, the theoretical
worst-case complexity remains the same (NP).

Proposition 1 is then proved in three main steps (see Appendix). First, The-
orem 2 serves as a key result for proving that if C is satisfiable, then there exists
a solution # such that every term in C@ is well-tagged. Intuitively, it shows that
there is a solution where messages from I1; and II> are not mixed up.

Second, conditions 1 and 2 ensure that for any solution 8 of C, the critical
extended names of KC do not appear in plaintext in C6.

Third, thanks to the two previous steps, we prove that S-tagged terms (in-
tuitively messages from IT3) are not useful for deducing a-tagged terms. The
proof required in particular the introduction of a new locality lemma for deduc-
tion of ground terms. We deduce that, removing from C all constraints inherited
from IT; and all S-tagged terms, we obtain a satisfiable constraint C’ that is
associated to a scenario of I1;.

5 Conclusion

In this paper, we have shown how to safely compose secure protocols by tagging
encryption, focusing on secrecy properties. Whenever a protocol preserves the
secrecy of some data s, it still preserves s secrecy when other tagged protocols are
executed in the same environment. We plan to consider the protocol composition
problem for larger classes of security properties. In particular, we believe that
our result can be extended to authentication-like properties.

More broadly, we foresee composition results in a more general way. In this
paper, protocols are composed in the sense that they can be executed in the
same environment. We plan to develop composition results where protocols can
use other protocols as sub-programs. For example, a protocol could use a secure
channel, letting the implementation of the secure channel underspecified. This
secure channel could be then possibly implemented by any protocol establishing
session keys.

11

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

M. Abadi and R. M. Needham. Prudent engineering practice for cryptographic
protocols. IEEE Trans. Software Eng., 22(1):6-15, 1996.

R. Amadio and W. Charatonik. On name generation and set-based analysis in
the Dolev-Yao model. In Proc. Inter. Conference on Concurrency Theory (CON-
CUR’02), volume 2421 of LNCS, pages 499-514. Springer-Verlag, 2002.

B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01), pages 82-96.
IEEE Comp. Soc. Press, 2001.

B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging
enforces termination. In Foundations of Software Science and Computation Struc-
tures (FoSSaCS’03), volume 2620 of LNCS. Springer, 2003.

R. Canetti, C. Meadows, and P. F. Syverson. Environmental requirements for
authentication protocols. In Proc. Symposium on Software Security — Theories
and Systems, volume 2609 of LNCS, pages 339-355. Springer, 2002.

H. Comon-Lundh and V. Cortier. Security properties: two agents are sufficient.
Science of Computer Programming, 50(1-3):51-71, 2004.

H. Comon-Lundh and V. Shmatikov. Intruder deductions, constraint solving and
insecurity decision in presence of exclusive or. In Proc. 18th Annual Symposium
on Logic in Comp. Sc. (LICS’03), pages 271-280. IEEE Comp. Soc. Press, 2003.
V. Cortier and E. Zalinescu. Deciding key cycles for security protocols. In Proc.
13th Inter. Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR’06), volume 4246 of LNCS, pages 317-331. Springer, 2006.

A. Datta, A. Derek, J. Mitchell, and D. Pavlovic. A derivation system and com-
positional logic for security protocols. Journal of Computer Security, 13(3), 2005.
A. Datta, A. Derek, J. C. Mitchell, and A. Roy. Protocol composition logic (PCL).
Electr. Notes Theor. Comput. Sci., 172:311-358, 2007.

L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure
protocols. In Proc. 5th Inter. Working Conference on Dependable Computing for
Critical Applications, pages 44-55, 1995.

J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryp-
tion. In Proc. 13th Computer Security Foundations Workshop (CSFW’00), pages
24-34. IEEE Comp. Soc. Press, 2000.

J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and the chosen pro-
tocol attack. In Proc. 5th Inter. Workshop on Security Protocols, volume 1361 of
LNCS, pages 91-104. Springer, 1997.

G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th
Computer Security Foundations Workshop (CSFW’97). IEEE Comp. Soc. Press,
1997.

J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryp-
tographic protocol analysis. In Proc. 8h ACM Conference on Computer and
Communications Security (CCS’01), pages 166-175, 2001.

R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communication of the ACM, 21(12):993-999, 1978.

M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions
and composed keys is NP-complete. Theoretical Comp. Sc., 299:451-475, 2003.
H. Seidl and K. N. Verma. Flat and one-variable clauses: Complexity of verifying
cryptographic protocols with single blind copying. In Proc. 11th Inter. Confer-
ence on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’04),
volume 3452 of LNCS. Springer, 2005.

12

A Proof of completeness

Let Ty C Ty C ... C T,,. We say that a proof w of T; F u is left-minimal if for
any j < i such that Tj - u, 7’ is a proof of T; F u where 7’ is obtained from 7 by
replacing T; with 7 in the left hand side of each node of w. Given a left-minimal
proof m of T; - u. We say that 7 is a proof of level j if j = min{k | T} F u}.

Definition 8 (simple). We say that a proof 7 is simple if

1. any subproof of 7 is left-minimal,

2. a composition rule is not directly followed by a decomposition rule,

3. any term of the form (uy,us) obtained by application of a decomposition
rule or an axiom rule is followed by a projection rule.

Example 4. Let Ty = {a} and T5 = {a, enc({a, b), k), k}. We have that Ts F (a, b).

Ty Fenc({a,b), k) To bk
T2 + <a7b>

The proof above is not a simple proof of T5 F (a,b). The term (a,b) has been
obtained by an application of a decomposition rule. Thus we have to decompose
it. A simple proof of T F {(a, b) is described below:

Ty Fenc({a,b), k) Tokk
>+ (a,b)
Toka To b
Ts F {a,b)

Lemma 1. If T; - u then there is a simple proof of it.

Proof. The notion of simple proof given in [8] is weaker than ours. They only
consider the two first conditions given in our definition. Hence by using their
result, we know that if 7; - u then there is a proof 7 of it which satisfies the
conditions 1 and 2 of our definition. Now, let 7 be a proof of level j that satisfies
the conditions 1 and 2 of our definition (Definition 8). We show that there exists
a simple proof 7’ of T; - u having the same level, i.e. 7. We show this result by
induction on (j,m) where m represents the number of nodes in 7 that violates
condition 3.

Base case: (7,0) with 1 < j <n. In such a case, we easily conclude. Indeed since
m = 0, we have that 7 satisfies the condition 3. Thus, by definition, 7 is a simple
proof.

Induction step: (j,m) with 1 < j <n and m > 0. In such a case, we show that
we can transform the proof 7 in a proof 7’ having the same level and such that
the number of nodes violating condition 3 is m — 1. Then, it will be easy to

13

conlude by applying the induction hypothesis. Let 71 be a subproof of m whose
root corresponds to the node that violates condition 3. We consider, among all
the subproofs satisfying such a condition, one which is minimal in the sense that
in 71, the only node that violates the condition is the root.

The term (u1, ug) that violates the condition is obtained by a decomposition
rule whereas it is not immediately followed by a projection rule. Note that the
last rule of 7y is necessarily a composition rule. We illustrate the situation when
the last rule is an instance of the encryption rule. The proof m; is of the form

S decompo.
Ti H <'LL1,'LL2> Ti Fov

T; = {(u1,u2) to

T =

compo.

The idea is to replace this subproof w1 of m by 7} obtained by decomposing
the term (u1,us) with the projection rules until we obtain terms not headed
with the symbol (). Then, by using the pairing rule, we can build again the
term (uq,us). Lastly, we apply the composition rule as in 1. The proof 7] ob-
tained in this way has the same level that 1. Hence, the proof 7/, obtained from
7 by replacing the subproof 71 by 7}, is left-minimal. Tt is also clear that condi-
tion 2 is satisfied since the composition rules introduced in 7} are not directly
followed by a decomposition rule. Laslty, we have removed one node violating
condition 3 without introducing any such node. This allows us to conlude by
applying our induction hypothesis. O

Given a constraint system C, we say that T; is a minimal unsolved left hand
side of C if T; is a left hand side of C and for all T'IF w € C such that T'C T;, u
is a variable.

Lemma 2. Let C be an unsolved constraint system, 6 be a solution to C and T;
be a minimal unsolved left hand side of C. If there is a simple proof of T;6 - u
having the last rule an axiom or a decomposition then there is t € St(T;) ~ X
such that t0 = u.

Proof. Consider a simple proof m of T30 F u. Let j be minimal such that the
proof 7’ obtained from 7 by replacing T; with T is a proof of T;6 - u. According
to the last applied rule in the proof, we have:

— The last rule is an axiom.
Then w € T;0 and hence there is t € T; such that t§ = u. If ¢ is a variable
then T} I t is a constraint in C with T; C T} (see the definition of a constraint
system). Hence T30 + t0, that is T30 F u, which contradicts the minimality
of j.

— The last rule is a decomposition.
Suppose that it is a symmetric decryption. Then, in such a case, there ex-
ists w such that 7,60 F enc(u, w) and T;6 - w. By simplicity of the proof, the
last rule applied to obtain enc(u,w) can not be a composition. Hence, it is
either an axiom or a decomposition. Then, applying the induction hypothesis

14

we have that there is ¢ € St(T}), t not a variable, such that t0 = enc(u, w).
It follows that ¢t = enc(t',¢”) with 6 = u. If ¢’ is a variable then T30 F ¢'0,
that is 730 F u which contradicts the minimality of j. Hence ¢’ is not a
variable. For the other decomposition rules, the same reasoning holds. [

Let ¢ be a term, we denote by comp(t) the components of the term ¢. This
notion is formally defined as follows: comp((t1,t2)) = comp(t1) U comp(t2) and
comp(t) = t otherwise.

Lemma 3. Let C be an unsolved constraint system, 6 be a solution of C and T;
be a minimal unsolved left hand side of C such that for all ¢1,ts € St(T;)

t10 = t26 implies t; or to is a variable or a pair
Ifu; € St(T;)N\X and T;0 - ;0 then T) b w; where T) = T; U{x | T2 € C,T C T;}.

Proof. Let j be minimal such that 760 - u;0. Thus j < ¢ and T; C T;. Consider
a simple proof of 710 - u;0. We reason by induction on the depth of the proof.
We can have that:

— The proof is reduced to an application of the rule axiom that might be

followed by several application of the projection rules until the resulting
term is not a pair. Since the proof is a simple proof, we have that u;0 is not
a pair. Hence, u; is not a pair.
There exists ¢ € T; such that w0 € comp(t0). Either u;,6 = t'6 for some
t' € comp(t) N X or u;0 € comp(zf) for some x € comp(t) N X. In the first
case, we easily deduce that neither u; nor t is a pair or a variable and hence
by hypothesis, we have that u; = t' and hence T} F u;. In the second case,
we have that 7,60 - z6. Thus T,0 - u;0 which contradicts the minimality of
J, since T, C Tj.

— The proof ends with an application of a decomposition rule that might be
followed by several application of the projection rules until the resulting term
is not a pair. Note that, since the proof is a simple proof, we have that u;6
is not a pair. Hence u; is not a pair.

Suppose for example that it is the symmetric decryption rule. That is, there
exist wy,wp such that T;0 - enc(wi,ws), T;0 - we and u;6 € comp(w).
The last rule applied to obtain 76 - enc(wi, w2) was not a composition by
simplicity of the proof. We can hence apply Lemma 2 and obtain that there
is t € St(Tj) \ X such that t6 = enc(ws,ws). Since ¢ is not a variable, we
have that ¢ = enc(t1,t2) with t10 = wy and t260 = ws. Either u;0 = pf for
some p € comp(t1) N X or u;0 € comp(xf) for some x € comp(ty) N X. In
the second case, we have that 1,6 - z6. Thus T,0 F u;# which contradicts
the minimality of j, since T, C Tj. In the first case, we easily deduce that
neither u; nor p is a variable or a pair and hence by hypothesis, we have that
u; = p. We can apply the induction hypothesis on T30 F enc(ty,t2)6 (this
subproof is simple) to obtain that T} F enc(t1, t2).

Now, it to is a variable then to € T/, thus T/ - to. Otherwise, if t2 is not a
variable then, by induction hypothesis on T;6 t- t26 (this subproof is a simple

15

one), we obtain T7 - to. Hence, in both cases, we obtain that T} ¢5. Then,
together with T} F enc(t1,t2) and u; € comp(ty), it follows that T} F u;. For
the other decomposition rules the same reasoning holds.
— The last rule is a composition.

Suppose that it is the symmetric encryption rule. Then u;0 = enc(w;, ws)
and 70 - w; and T30 F ws. Since u; is not a variable, we have that u; =
enc(vy,vh), v10 = wy and v50 = ws. If v} (resp. v4) is a variable then v} (resp.
vh) is in T7 (this is because v; € St(T;)). Otherwise, we apply our induction
hypothesis (note that the two subproofs are simple). Hence, in both cases,
we have that T/ F v} and also that T F v}. Hence, we easily deduce that
T! F u;. For the other composition rules the same reasoning holds. O

Proposition 2 (completeness). Let C be an unsolved constraint system and 6 be
a solution of C. Then, there is a constraint system C’ and a solution 7 of C’ such
that C ~, C' and 0 = o7.

Proof. Consider the minimal unsolved constraint 7; IF u;. Hence, we have that
u; is not a variable whereas u; is a variable for all j < 4. Firstly, assume that
u; = (v1,v2) for some terms vy, ve. In such a case, let C’' be the constraint system
obtained from C by applying Ry and 7 = 6. Since T;0 - u;6, we have also that
T;0 F v10 and T;0 F vo6 meaning that 7 = 6 is a solution of C’.

Now, assume that wu; is neither a variable nor a pair and consider a simple
proof of T;0 F u;0. According to the last applied rule in this proof, we have:

1. The last rule is a composition.
Suppose that it is the symmetric encryption rule. Hence, there are wy, ws
such that T;0 F wy and T;0 F wy and enc(wy,ws) = u;0. Since u; is not a
variable, there exist vy, vo such that u; = enc(vy,v2). Let C’ be the constraint
system obtained from C by applying the simplification rule Repe on T IF
enc(v1,v2). Since 110 = w; and v20 = wa, the substitution @ is also a solution
to C'. For the other composition rules the same reasoning holds, applying
this time the corresponding Ry rule.

2. The last rule is an axiom or a decomposition.
Applying Lemma 2 we obtain that there is ¢t € St(T;)\ X such that t6 = u;0.
We distinguish two cases:

— t # u;. Note that u; is neither a pair nor a variable. Since t0 = u;0 and
t is not a variable, we easily deduce that ¢ is not a pair. Hence, we can
apply the simplification rule R,.

— t = u;. In such a case, we have that u; € St(T;). Either there are two
distinct non variable and non pair terms t1,to € St(T;) such that ¢16 =
t20 and we apply the simplification rule R3. Otherwise, the simplification
rule Ry can be applied. This follows from Lemma 3. (]

B Proof of our combination result

The left-hand side of a constraint system C, denoted by lhs(C), is the maxi-
mal left-hand side of the constraints of C. The right-hand side of a constraint

16

system C, denoted by rhs(C), is the set of right-hand sides of its constraints.
The set vars(C) denotes the set of variables occurring in C and L denotes the
unsatisfiable system.

B.1 Existence of a solution without any mixing

Consider a constraint system C issued from II; | II5. The goal of this subsec-
tion is to establish the existence of a solution of C having some features (see
Proposition 3).

Lemma 4. Let T, and T3 be two sets of terms which are respectively a-tagged
and (-tagged and such that vars(Ty) N wvars(Tg) = 0. Let C be a constraint
system such that lhs(C) Urhs(C) C St(T, U T3). Let C’ be a constraint system
such that C ~% C’ for some substitution o. We have that Ihs(C") U rhs(C’) C
St(Too U Tgo). Moreover, terms in T,o and Tgo are respectively a-tagged and
p-tagged, n(T,o) C n(Ty), n(Ts0) C n(T) and vars(Tao) Nvars(Tgo) = 0.

Proof. This result is easy to prove by induction on the length ¢ of the derivation
from C to C’. When ¢ = 0, the result is obvious. Now, assume that £ > 1. In
such a case, we have that there exists C1, o1 and o3 such that C ~5, C1 ~7, c’
and ¢ = o0102. If the rule involved in the first step is Ry, Ry or Ry, then we
easily conclude by applying the induction hypothesis. Now, assume that the
simplification rule involved in the first step is either Ry or R3. In such a case, we
know that o1 = mgu(t1,ts) with t1,t2 € St(T,, U Tp) Actually, it is impossible
that t; € St(T,) and te2 € St(Tg) (or the converse). Indeed, t1,t2 are neither
variables, nor pairs and have to contain the same tag to be unifiable. Hence, we
know that t1,t2 € St(Ty) (or t1,t2 € St(Tp)). Now, it is easy to see that oy is
a-tagged (or S-tagged), thus T,,o1 (or Tgoq) too. Since vars(Ty) Nvars(Ts) = 0,
we have that Tgoy = T (or Tuo1 = T,). Moreover, it is easy to see that
n(Tho1) C n(Ty) and n(Tso1) € n(Tg). Then, we can apply our induction
hypothesis on C; ~%, C'. Putting all together we easily conclude. ([l

Lemma 5. Let T be a set of ground terms and u be a ground term such that
T + u. Then, we have that plaintext(u) C plaintext(T).

Proof. let m be a proof of T'F u. We prove this result by induction on the depth
of m. We can have:

— The last rule is an axiom. Then u € T and we have that plaintezt(u) C
plaintext(T).

— The last rule is a composition. Suppose for example that it is the symmetric
encryption rule. Then u = enc(uy,uz2), T+ u; and T F us. By definition,
we have that plaintext(u) = plaintext(uy). Hence, we easily conclude by
applying our induction hypothesis on T' - u;.

— The last rule is a decomposition. Suppose for example that it is the symmet-
ric decryption rule. In such a case, we have that T F enc(u,v) and T + v for
some term v. By induction hypothesis, plaintext(enc(u,v)) C plaintext(T).
Hence, we easily conclude that plaintezt(u) C plaintext(T). O

17

Definition 9. Let C be a constraint system. We say that C satisfies the origination
property if the following holds

it x € plaintext(T) N X for some (T I+ u) € C then

Tr & min{7" | (T' - ') € C and = € plaintext(u’)}

x

exists and T? C T.

Intuitively, this means that when a variable x appears at a plaintext position
on the left-hand side of a constraint, then x appears also at a plaintext position
on the right-hand side of a smaller constraint (w.r.t. the inclusion ordering of
the left-hand sides of the constraints)

Proposition 3. Let T and KC be two sets of extended names such that init € Tj.
Let T,, and T3 be two sets of terms which are respectively a-tagged and B-tagged
and such that vars(Ty)Nwars(Ts) = 0 and (plaintext(Ty)Uplaintext(Tz))NKC =
0.

Let C be a constraint system such that lhs(C) C ToUT,UT3, rhs(C) C To,UT}s
and which satisfies the origination property. If C is satisfiable, then there exists
a solution 6’ of C such that

1. T,0' is a set of a-tagged terms and n(7,0") C n(T,) U {init},
2. Tg0' is a set of -tagged terms and n(736") C n(7p) U {init},
3. for all z € plaintext(T, U Ts), we have that plaintext(z0") NKC = 0.

Proof. Let Ty, Ty, T3 and C be as described in the proposition and let § be a
solution of C. Thanks to our completeness result (Theorem 2), we know that
there exists a constraint system C’ in solved form and a substitution o such
that C ~% C'. Let ¢’ = o7 where z7 = init for every x € vars(C’). It is clear
that 6’ is a solution of C, it remains to show that 6’ satisfies the requirements.

Thanks to Lemma 4, it is easy to establish that

— terms in T,0 are a-tagged and also that n(T,0) C n(7y),
— terms in Tgo are B-tagged and also that n(Tgo) C n(73).

From this, it is easy to establish the two first conditions.

— terms in To0' = T, o7 are a-tagged and n(T,0") C n(T,) U {init},
— terms in 76’ = TgoT are B-tagged and n(T360") C n(Tg) U {init}.

Now, let V' = {z € plaintext(T, UTg) N X | plaintext(x0') NKC # 0}. If V = 0,
then the condition holds. Otherwise, let € V' such that T? is minimal w.r.t.
the inclusion ordering (see Definition 9 for the definition of T?). Since C satisfies
the origination property, there exists (TP IF u) € C such that x € plaintext(u)
and = ¢ plaintext(TF). We have that plaintext(uf’) N KC # () and thanks to
Lemma 5, we deduce that plaintext(TF0) N KC # (0. It is easy to see that
plaintext(TP) N KC = since this property holds for Ty, T and Ty. Hence,
we deduce that there exists y € wvars(TP) such that y € plaintext(TP) and
plaintext(yf) N KC # @. This means that there exists a variable y € V such that
TP C TP, contradiction. d

18

B.2 Getting rid of the terms coming from IT,

We define a function, denoted by =, whose goal is to project terms which come
from I (and which are 3-tagged) onto a special term init. Given a set Names
of names, we define the function = inductively as follows:

— u =nit if u € Names,

-u=u if u is a name and u ¢ Names,

- f({B,u1),uz) = init if f € {enca, enc, sign}
- flur,...,un) = f(@g,...,an) otherwise

Before to prove Lemmas 7 and 8 which will be useful to establish our main
result (Proposition 1), we need to show a locality lemma (Lemma 6). This locality
lemma relies on the following definition.

Definition 10 (Stpiain (t)). Let t be a ground term. The set Stpiqin () of subterms
of t that appear at a plaintext position is inductively defined as follows:

— Stpigin(u) = {u} if u € n(u)
= Stprain (f(u1,u2)) = {f(u1, u2)} U Styiain (u1) if f € {enc,enca,sign}
- Stplain(<u17 ’U,2>) = {<U,1, U2>} U Stplain(ul) U Stplain(U'Q)-

Lemma 6 (locality). Let T be a set of ground terms and u be a ground term
such that T+ u. Let m be a proof of T+ u which is minimal w.r.t. its number
of nodes. Then 7 only involves terms in St(7T',u). Moreover, if 7 ends with an
instance of a decomposition rule or an instance of the axiom rule then 7 only
involves terms in St(T') and u € Stpjgin (T).

Proof. Let 7 be a proof of T+ u which is minimal w.r.t. to its number of nodes.
We will show the result by induction on 7. We can have that:

— The last rule is an axiom. In such a case, we easily conclude.

— The last rule is a composition. Suppose for example that it is the symmet-
ric encryption rule. In such a case, we have that u = enc(uj,us). Let m
(resp. m2) be the subproof of m ending on 7'+ uq (resp. T F ug). By induc-
tion hypothesis, we know that 7 (resp. m2) only involves terms in St(T',u1)
(resp. St(T,u2)). Hence, we easily deduce that 7 only involves terms in St(T', u).
The same reasoning holds for the other composition rules.

— The last rule is a decomposition. Suppose for example that it is the symmet-
ric decryption rule. In such a case, we have that

le{Tl—enc(u,v) WQZ{T'_'U

THu

Note that, by minimality of 7, the proof m; necessarily ends with a decom-
position rule. Hence, by induction hypothesis, we know that 7; only involves
terms in St(T) and also that enc(u,v) € Stpigin(T). Then, we easily de-
duce that 7 only involves terms in St(T") and also that u € Sty (T). For

19

the other decomposition rules a similar reasoning holds. In the case of the
asymmetric decryption rule, we have that v € St(7T') since a term of the
form priv(v’) can only be obtained by the axiom rule or an instance of a
decomposition rule. O

Lemma 7. Let Ty be a set of extended names and Names be a set of names
such that n(7Tp) N Names = @) and init € T. Let v be a 3-tagged term such that
plaintext(v) C Ty U Names. Then, we have that Ty - .

The proof below relies on the notion of component which is formally defined in
Appendix A.

Proof. We will show that for every p € comp(v), we have that Tp F p. By
definition of =, we have that

{p|pecomp(v)} ={p"|p € comp(®)}.
Then, we easily deduce that Ty b p’ for every p’ € comp(7), and thus Tp - .
Let p € comp(v). We distinguish three cases:

1. p is of the form enc(w,ws), enca(wy,ws) or sign(wi,ws). In such a case,
since p is f-tagged, we have that p = init, thus Ty F p.

2. pis of the form pub(t) (or priv(¢)), thus pub(t) € To UNames. We have that
p € Ty and thus p € Ty since n(Tp) N Names = ().

3. pis a name. We have that p € plaintezt(v) and p € Top UNames, thus Ty + .
This allows us to conclude. O

Remark. The condition Ty N Names = §) is not sufficient to prove Lemma 7.
For instance, let v = pub(a), Names = {a} and Ty = {pub(a)}. We have that
T = pub(init) and T is not deducible from Tp.

Lemma 8. Let T be a set of extended Names and Names be a set of names such
that n(7p) N Names = () and init € Tp. Let Ty, be a set of a-tagged terms and T
be a set of S-tagged terms such that plaintext(Tg) C To U Names. Let u be a

ground term such that Ty, T,,Tg = w. Then we have that 1o, T,,, T - u.

Proof. By hypothesis, we have Ty, T, T3 - u. Let 7 be a proof of Ty, Ty, T - u

which is minimal w.r.t. its number of nodes. We will show that Ty, T, T - u
by induction on the proof. We can have that:

— The last rule is an axiom. In such a case, we have that v € Ty U T, U Tjs.
We easily deduce that w € To,UT, U T_g This allows us to conclude that
Ty To, Ts - .

— The last rule is a composition. Either @ = init and we easily conclude. Oth-
erwise, suppose for example that the last rule is the symmetric encryption
rule. In such a case, we have that u = enc(ui,u2) and w = enc(uy, uz). By

induction hypothesis, we know that Ty, To, T = ur and Ty, To, T - us.
Hence, we deduce that Ty, T, T b= enc(uy, uz), that is Ty, Tn, T -

20

— The last rule is a decomposition. Suppose for example that it is the symmet-
ric decryption rule. In such a case, we have that

™ = { To,To, Ts F enc(u,v) mo = { To,To,Ts F v

Ty, To,Tg Fu

If w is not of the form (3, ;) for some term wy, then by applying our induc-
tion hypothesis, we easily conclude since enc(u,v) = enc(w, v).

Now, we have to consider the case where u is of the form (3, u1). By mini-
mality of the proof we know that 71 ends either with an instance of axiom or
with an instance of a decomposition rule. Hence, by Lemma 6, we have that
enc(u,v) € Stpain(To U Ty U Tg). Moreover, since enc(u,v) is f-tagged, we
finally deduce that enc(u,v) € Stpiin(T3) and hence u € Stpqin (T3). Since
plaintext(Tg) C Ty U Names, we deduce that plaintezt(u) C Tp U Names and
Lemma 7 allows us to conclude that Ty F w.

For the other decomposition rules, a similar reasoning holds. Il

B.3 Proof of the Proposition 1

Proposition 1. Let IT; = [k1] — Roles, IIy = [kz] — Roles, Ty and m defined as
in Theorem 1 and satisfying the conditions 1 and 2. Let k = k1 + k2 and sc be
a scenario for Iy | IT. For any role number 1 < ¢ < k, let s; € N such that
(i,8;) € scor Vj, (4,s:) &€ sc. Let C be the constraint system associated to sc, Ty
and mo1s, - Ok,s, - Let s¢’ = sc|, and C’ be the constraint system associated
to sc/, Ty and moy g, - - - Oky sy, - 1 C is satisfiable, then C’ is also satisfiable.

Proof. Let IT; : [k1] — Roles, IIs : [ka] — Roles, Ty and m defined as in
Theorem 1. Let k = ki + ko and sc be a scenario for II; | II5. For any role
number 1 < ¢ < k, let s; € N such that (i,s;) € sc or Vj,(j,s;) & sc. Let
(u1,v1) - - (un,v,) be the sequence of rules associated to sc. Let C be the con-
straint system associated to sc, To and mq = moi, - - - Ok, - Let s¢’ = sc|p,,
i.e. the sequence obtained from sc by removing any element (r,s) where r is a
role of IT5. Let C' be the constraint system associated to sc’, Ty and the term
M2 = MO1s, *** Ok s, - Note that m1 = my since vars(m) C wars(Il1). In
the remainder, we will denote it by m’. For sake of simplicity, we will assume
that init € Ty. The constraint systems C and C’ are as follows:

T() H‘ ul TO ”‘ uil
T(),’Ul H‘ us To,vil ”‘ uig
C = T(), V1,02 H— us C/ = To, Uiy 5 Vig ”— uis
To,v1,...,v, IF m/ To,Viyy---,05, IF m/

21

where i1 - - -4, is a sequence obtained from 1---n by removing any element j
when the ;" element, say (r,s), of the sequence sc is such that k; < r < k.
Intuitively, we remove the elements corresponding to a step of the protocol I15.

Now, before to apply Proposition 3, we have to check that all the hypothesis
are satisfied. Let

— da = {uilaviu---7uinvvin7m,}a and
~Tg={uj,vj | 1<j<nandjé&{ir,...,in}}.

First of all, we have that T, and T are two sets of terms which are respectively
a-tagged and [-tagged. We have that vars(Ty) Nwvars(Tz) = 0. Intuitively, this
is because, terms in T;, come from II; whereas terms in T3 come from Il;. We
have also that lhs(C) C Ty U T, U T and rhs(C) C T, U Tjs. Moreover, C satisfies
the origination property thanks to the condition 2 given in Theorem 1 and by
hypothesis, we know that C is satisfiable. Hence, we can apply Proposition 3 to
deduce that there exists a solution 6 of C such that:

— T,0 is a set of a-tagged terms and n(T,0) C n(T,) U {init}, (%)
— T30 is a set of S-tagged terms and n(736) C n(Zs) U {init}, (%%)
— for all z € plaintext(T, U Tg), we have that plaintext(x6) N KC = 0.

Let 6/ = 0| yqars(C"). We will show that ¢’ is a solution of C’. Let (T" I+ u’) € C’
be the ;" constraint of C’. We have that 7' = Ty U {v;,, . . . Ui,y pand v = uy;.
By construction of C’ and thanks to the fact that € is a solution of C, we know
that the constraint To, v1,v2,...,v;;—1 IF u;; is a constraint of C and also that

T(), U10, UQG, e 7'Uz'j—19 = U,zje

Let Names = {img(o,s) NN | (r,s) € sc and r > ki }. Intuitively, Names are
the fresh names generated during the execution of IT5. Hence, we have that
Names N n(7p) = @ and Names N KC = 0.

In the remainder of this proof, we will show that

1. Ty, m, @, .oy 0;;,—10 = u;, 0, and then
2. To U {’Uz'le7 - ,’Uz'j@} + U,zje

From this, we easily obtain that ToU{v;, 0',...,v;,0'} - u;,0" since 6 = 0|,q7(c1)
and vars({vs,,...,vi;,u;, }) C vars(C’). This allows us conclude that 70" - u'¢’
for any (I” I+ u') € C’, and thus 6’ is a solution of C’.

I T, 010, 530, .., 010+ 0, 0.
By hypothesis, we have that plaintext(Ils) N KC = (, from this, we easily
deduce that plaintext(T3) N KC = . Thanks to Proposition 3, we have that
plaintext(x0) N KC = (for every x € wvars(Ts). Hence, we easily deduce
that plaintext(Tp0) N KC = (. Thanks to Proposition 3, we have also that
n(T30) C n(Tp) U {init}. Hence, we have that n(736) C Names U T U KC.
Putting all together, we obtain that plaintext(T30) C Tp U Names. Now,
thanks to Lemma 8, we obtain that

0,010,1}29, e ,'Uij,19 H ulﬁ

22

2. To U {Uilg, R ,Uije} H uije.

We have that T, = Tp. Moreover, thanks to Lemma 7, we deduce that
To F v;0 for every i such that i € iy - --i,. To conclude, it remains to show
that

— v;0 = v;0 and u;0 = u;0 for every i € {i1,...,4,}, and

- m'0 =m'f
In other words, we have to show that wf = w for any w € T,,. This fact is
trivially true as soon as wé is an a-tagged term such that n(w6) N Names = .
To conclude, it remains to show that n(wf) N Names = (§ for any w € T,.
Let w € Ty, we have that n(wf) C n(7T,0). Moreover, thanks to (x), we have
that n(7,0) C n(T,) U {init}. Hence, we deduce that n(wf) C n(T,) U {init}.
Thus, n(wf) N Names = (.
Hence, we easily deduce that Tp U {v;,0,...,v;,0} F u;,0 by relying on the
fact that T, v10, W_ﬁ,...,vij,lﬁl—uijﬁ. O

23

