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Abstract. Electronic voting should offer at least the same guarantees than tra-
ditional paper-based voting systems. In order to achieve this, electronic voting
protocols make use of cryptographic primitives, as in the more traditional case
of authentication or key exchange protocols. All these protocols are notoriously
difficult to design and flaws may be found years after their first release. Formal
models, such as process algebra, Horn clauses, or constraint systems, have been
successfully applied to automatically analyze traditional protocols and discover
flaws. Electronic voting protocols however significantly increase the difficulty of
the analysis task. Indeed, they involve for example new and sophisticated cryp-
tographic primitives, new dedicated security properties, and new execution struc-
tures.
After an introduction to electronic voting, we describe the current techniques
for e-voting protocols analysis and review the key challenges towards a fully
automated verification.

1 Context

Electronic voting promises a convenient and efficient way for collecting and tallying
votes, avoiding human counting errors. Several countries now use electronic voting for
politically binding elections. This is for example the case of Argentina, United States,
Norway, Canada, or France. However electronic voting also causes controversy. Indeed
these systems have been shown to be vulnerable to attacks. For example, the Diebold
machines as well as the electronic machines used in India have been attacked [44, 58].
Consequently, some countries like Germany, Netherlands, or the United Kingdom have
stopped electronic voting, at least momentarily [47].

Electronic voting covers two distinct families of voting systems: voting machines
and Internet voting. Voting machines are computers placed at polling stations. They
provide an interface for the voters to cast their vote and they process the ballots. Internet
voting do not need physical polling stations: voters may simply vote using their own
device (computers, smartphones, etc.) from home. In this paper we focus on Internet
voting.

Internet voting raises several security challenges. Firstly, since votes need to be sent
through the Internet, they obviously cannot be sent in clear. A simple solution would
therefore to have all the voters encrypt their votes with the key of the voting server. At
the end of the election, the server can then simply decrypt all the votes and announce the
? The research leading to these results has received funding from the European Research Council

under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 258865, project ProSecure.



result. This is however not at all satisfactory since voters have no privacy with respect
to the voting authority who could easily learn the vote of everyone. Moreover, such a
solution offers no transparency: voters have no way to check that the announced out-
come corresponds to the votes casted by voters. Therefore, two main security properties
are put forward in the context of Internet voting: confidentiality and verifiability.

– Confidentiality or vote privacy ensures that no one can learn someone else’ vote.
Stronger than vote privacy is receipt-freeness: a voter should not be able to prove
how she voted, even if she is willing to. In particular, she should not be given a re-
ceipt that can prove to a third-party for who she voted. This is to prevent vote buying
for example. Even stronger than receipt-freeness is coercion resistance: even if a
voter is temporarily under the control of a coercer, she should be able to cast the
vote of her choice. This is typically achieved by letting voters re-vote (without the
coercer being able to notice it).

– Verifiability ensures that anyone can check that the final result corresponds to the
votes. In the literature, verifiability is typically split into sub-properties: individual
verifiability states that a voter can check that her ballot appears on the bulletin
board while universal verifiability states that the announced result corresponds to
the ballots on the bulletin board. An additional property is eligible verifiability:
only legitimate voters can vote, at most once. Of course, all these three properties
are highly desirable.

A voting system should ensure all these properties despite the presence of attackers who
may intercept communications and control some of the voters. Ideally, these properties
should also hold when some voting authorities are corrupted too since it is desirable
that voters can trust the result without having to trust all the authorities.

There is therefore a need for rigorous foundations for formalizing and reasoning
about security of voting systems. In a slightly different context, formal methods have
shown their usefulness in the analysis of security protocols. This line of research has
started in the late 70’s with the seminal work of Dolev and Yao [42] and Even and
Goldreich [43]. Since then, many decision procedures have been developed to auto-
matically analyse security properties such as authentication or confidentiality. Current
leading tools include e.g. ProVerif [20, 21], Avispa [11], and Scyther [36]. They have
been successfully applied to protocols of the literature as well as well-deployed proto-
cols such as SSL and Kerberos, yielding the discoveries of flaws. A famous flaw is the
“man-in-the-middle” attack found by Lowe [51] on the Needham-Schroeder asymmet-
ric key protocol. More recently, an automated analysis [23] proved most of the secure
tokens implementing the PKCS#11 standard to be broken. Similarly, a flaw was dis-
covered using the Avispa tool on the Single-Sign-On protocol [12], used by many sites
including Google.

Despite the similarities between standard security protocols and voting protocols,
the current analysis techniques for standard protocols do not apply very well to voting
systems. This is due to two main reasons. First, the cryptographic primitives used in
e-voting are often ad-hoc and more complex than standard encryption and signatures.
Second, privacy properties such as vote privacy or coercion-resistance are typically ex-
pressed as equivalence properties while the techniques developed so far mostly apply



to reachability properties. We survey here the particularities of Internet voting and de-
scribe the current limitations of existing techniques.

2 Existing systems for Internet voting

We first start by a short overview of some existing voting systems. This list is not meant
to be exhaustive. Many systems used by companies are proprietary and there is few
information available. We focus here on publicly available Internet voting systems, de-
signed for achieving both privacy and verifiability.

Helios [8] is based on a protocol proposed by Cramers et al [35] with a variant
proposed by Benaloh [16]. It has been used at the University of Louvain-la-Neuve to
elect its president (recteur) and also in student elections. The IACR (International As-
sociation for Cryptologic Research) now uses Helios to elect its board, since 2010 [1].
It makes use of homomorphic encryption and zero-knowledge proofs. Helios has been
proved to offer ballot privacy [33, 17, 18] (provided some fix is implemented [33]) and
verifiability [32]. Several variants of Helios have then been proposed to enforce more
properties. For example, [37] is a variant of Helios that guarantees everlasting privacy,
that is, vote privacy is guaranteed even if the keys of the election get broken after the
election. Belenios [32] offers better verifiability, in particular even if the election server
is corrupted. However, Helios is not receipt-free (nor its variants): a voter may prove
how she voted. It should therefore be used in low-coercion environment only.

Civitas [29] is one of the only implemented scheme (if not the only one) that offers
both verifiability and coercion-resistance. It makes use of plaintext equivalence tests,
re-encryption and mixnets. Civitas is still quite complex, both in terms of usability and
computational complexity. It is therefore still unclear whether it is scalable to large
elections.

Norwegian protocol [46]. Norway has conducted Internet voting trials during the
parliamentary election of 2013 and 2011. For the last election in 2013, about 250 000
voters of twelve selected municipalities were offered the possibility to use Internet vot-
ing [2]. The underlying voting protocol is developed by Scytl [3, 4] and is designed for
both privacy and verifiability: voters are given a receipt that allow them to check that
their vote has been counted, under some rather strong trust assumptions.

Several more academic voting protocols have been proposed in the literature such
as the FOO protocol [45] or the Okamoto protocol [53].

3 Cryptographic primitives

Different formal models have been designed to reason about security protocols. Most
popular ones include process algebra (e.g. CSP [55], applied-pi [5], spi-calculus [7]),
strand spaces [56], Horn clauses [19], or constraint systems [52, 30]. They all have in
common the fact that messages are represented by terms.



3.1 Terms

Given a signature F , that is, a finite set of function symbols with their arity, given a set
of variables X , the set of terms T (F ,X ) is defined by the following grammar:

t, t1, . . . , tn ::= x | f(t1, . . . , tn) x ∈ X

For example, a typical signature for security protocols is

Fenc = {enc, dec, pair, proj1, proj2}

The function symbol enc represents encryption with associated decryption operator
dec while pair represents concatenation with associated projectors proj1 and proj2. The
properties of the primitives are then expressed through an equational theory. For (sym-
metric) encryption and concatenation, the usual equations are the following ones:

dec(enc(x, y), y) = x
proj1(pair(x, y)) = x
proj2(pair(x, y)) = y

For example, proj2(dec(enc(pair(a, n), k), k) = n.

The equational theories are rather simple and belong to the class of subterm conver-
gent theories [6]: they are convergent and the right member of an equational is always a
subterm of the left member, or a constant. Deciding secrecy or authentication properties
have been shown to be decidable both for passive [6] and active adversaries [15], for a
bounded number of sessions. Some tools such as ProVerif [20] or Akiss [25] can handle
arbitrary theories (with no termination guarantee of course) and typically behave well
for subterm convergent theories.

3.2 Equational theories for e-voting.

Cryptographic primitives for e-voting systems are however more complex than standard
primitives such as encryption or signatures. We review here some examples.

A rather standard primitive is blind signature, used for example in the FOO proto-
col [45]. While signatures are typically designed to be non malleable, blind signatures
support some form of malleability. In FOO, voters send a blinded version of their vote
to the voting authority, get it signed and then retrieve the signature of the authority on
their (unblinded) vote. This property can be formalised as follows [41]:

unblind(sign(blind(x, z), y), z) = sign(x, y)

This equation means intuitively that knowing the blinding factor and the signature
of a blinded message, anyone can compute the signature of the original message.

Another example comes from the Helios protocol described in Section 2. This pro-
tocol involves homomorphic encryption, that is, the combination of two encrypted votes
yields the encryption of the sum of the votes. This property is at the heart of the Helios



proj1(pair(x, y)) = x (1)

proj2(pair(x, y)) = y (2)

dec(aenc(xplain, xrand, pk(xsk)), xsk) = xplain (3)

dec(blind(aenc(xplain, xrand, pk(xsk)), xblind), xsk) = blind(xplain, xblind) (4)

aenc(xpl, xrand, xpub) ◦ aenc(ypl, yrand, xpub) =

aenc(xpl � ypl,xrand ∗ yrand, xpub) (5)

renc(aenc(xplain, xrand, pk(xsk)), ysk) =

aenc(xplain,xrand, pk(xsk + ysk)) (6)

unblind(blind(xplain, xblind), xblind) = xplain (7)

Checksign(xplain, vk(xid), sign(xplain, xid)) = ok (8)

Checkpfk(vk(xid), ball, pfk(xid, xrand, xplain, ball)) = ok

where ball = aenc(xplain, xrand, xpub) (9)

Checkpfkk(vk(xid), ball, pfkk(vk(xid), xbk, xplain, ball)) = ok

where ball = renc(xplain, xbk) or ball = blind(xplain, xbk) (10)

The symbols +, ∗, �, and ◦ are assumed to be commutative and associative.

Fig. 1. Equations used in [34] to model the protocol used in Norway.

protocol since anyone can combine the votes to obtain the result (in an encrypted form).
This homomorphic property can be expressed by the following equation:

aenc(v1, r1, pk) ∗ aenc(v2, r2, pk) = aenc(v1 + v2, r1.r2, pk)

where ∗, +, and . are associative and commutative functional symbols. Note that aenc is
a ternary symbol that represents (randomized) asymmetric encryption. The second ar-
gument r represents the randomness used for encrypting. Using randomized encryption
is crucial in e-voting to prevent an attacker to compare encrypted votes. However, as-
sociativity and commutativity are typically not supported by existing tools for security
protocols.

Other examples of primitives used in e-voting are trapdoor commitments schemes,
zero-knowledge proofs, designated verifier zero-knowledge proofs, or plaintext equiva-
lence tests. Of course, voting systems may mix several of those primitives. For the sake
of illustration, we display in Figure 1 the complete equational theory used in [34] to
model the protocol used in Norway. It is clearly out of reach of existing tools.

4 Security properties

Most existing techniques developed so far for security protocols focus on reachability
properties, that is, properties of the form: “for any execution trace, nothing bad hap-
pens”. Confidentiality of keys or nonces as well as authentication properties are typical
security properties that fall into the category of reachability properties. Ballot secrecy is



however not expressed as a reachability property. Indeed, ballot privacy does not mean
that the value of the vote remains secret. On the contrary, all the possible values of a
vote (for example 0 or 1 in case of a referendum) are well-known by anyone. Therefore
ballot secrecy is typically stated as an indistinguishability property [41]: an attacker
should not notice any difference when Alice is voting 0 and Bob is voting 1 from the
converse scenario where votes are swapped (Alice votes 1 and Bob votes 0). This can be
easily expressed in process algebra calculus that has a notion of behavioral equivalence
≈.

VAlice(0) | VBob(1) ≈ VAlice(1) | VBob(0)

where the process Vα represents voter α.
Coercion-resistance and receipt-freeness are also stated using equivalence proper-

ties [40].

ProVerif is one of the only tools that can check equivalence properties. It actually
tries to prove a stronger property than behavioral equivalence [21] for couple of proto-
cols that have a very similar structure. However ProVerif does not work very well on
vote privacy, although it has recently improved [27]. Several recent (and preliminary)
tools have been proposed to check equivalence of protocols, for a bounded number
of sessions. AKiSs [25] can check (trace) equivalence for arbitrary (convergent) the-
ories but is not guaranteed to terminate. APTE [26] checks (trace) equivalence for a
large family of standard primitives (encryption, signatures, hashes, concatenation) and
can handle non determinism and else branches. SPEC [38] implements a procedure for
open bisimulation, a notion of equivalence stronger than the standard notion of trace
equivalence.

Verifiability has not yet reached the same level of maturity than ballot privacy in
terms of modeling. A first proposal has been made in [49] that provides formal def-
initions of both individual, universal, and eligibility verifiability. A much simpler yet
probably weaker definition [48, 32] states that the final outcome should contain:

– the votes of all voters that have voted and performed appropriate checks;
– a subset of the votes of the voters that did vote but did not check anything;
– at most k arbitrary valid votes where k is the number of voters under the control of

the attacker.

Another approach [50] proposes a very general framework to define verifiability and
also accountability, a notion that captures that a system should not only be verifiable
but in case something wrong happened, it should be possible to blame who misbehaved.
Due to its generality, the approach developed in [50] does not provide with a unique
definition of verifiability. Instead one has to instantiate the framework for each voting
system.

It is likely that new alternative definitions will still emerge to formally define veri-
fiability.

5 Conclusion

Voting systems raise challenging issues to the area of formal verification of security
protocols. First, tools and techniques need to shift from reachability to equivalence-



based properties. The interest of equivalence-based properties is not confined to voting
systems. Indeed behavioural equivalences are used more generally to formalize privacy
properties such as anonymity or unlinkability in many different contexts (RFIDs [24,
10], passports [28], mobile telephony systems[9]). They may also express security prop-
erties closer to game-based definitions used in cryptography. For example, learning even
a single bit of a key is considered as an attack in cryptography. The fact that not even
a bit of the secret shall be linked is called strong secrecy in symbolic models and is
defined through the equivalence of two processes. More generally, game-based crypto-
graphic definitions can be defined in symbolic models through equivalences [31, 39].
New tools have been designed to automatically check equivalence of security proto-
cols, for a bounded number of sessions. This is in particular the case of AKiSs [25],
APTE [26], and SPEC [38]. For an unbounded number of sessions, the only available
tool is ProVerif [20, 21] which can check equivalence for pairs of protocols that have
the same structure and for reasonably general equational theories.

Another major issue of e-voting systems is the complexity and variety of crypto-
graphic primitives that include homomorphic encryption, re-encryption mixnets, zero-
knowledge proofs, and trapdoor commitments. These primitives may be formalized
through equational theories. However, most of them include associative and commu-
tative symbols and are out of reach of existing tools, even for reachability properties.

Moreover, the primitives used in e-voting challenge the abstractions made in sym-
bolic models: although the resulting equational theories are already quite complex,
some equations may still be missed. In cryptography, more accurate models are used:
instead of using process algebra with terms, protocols and attackers are simply any
(polynomial) Turing machines. While cryptographic and symbolic models largely dif-
fer, symbolic models were shown to be sound with respect to cryptographic ones, that is,
any protocol proved to be secure in symbolic models is deemed secure in cryptographic
ones. Such a soundness result holds for most standard primitives [13, 22] but very few
results exist outside these standard primitives ([54] being one of the few exceptions).
Some primitives like the Exclusive Or were even shown to be impossible to soundly
abstract [57]. It may be therefore preferable in some cases to analyse e-voting protocols
directly in cryptographic models, possibly using recently developed techniques that as-
sist and partially automate the proof (see for example the line of research developed on
EasyCrypt [14]).

To conclude, we expect e-voting to continue to foster the development of new tech-
niques and tools in both symbolic and cryptographic approaches.
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