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Abstract

Although good encryption functions are probabilistic, most symbolic models do not capture this aspect
explicitly. A typical solution, recently used to prove the soundness of such models with respect to com-
putational ones [Cortier and Warinschi, 2005], is to explicitly represent the dependency of ciphertexts on
randomness as labels.
In order to make these label-based models useful, it seems natural to try to extend the underlying decision
procedures and the implementation of existing tools. In this paper we put forth a more practical alter-
native based on the following soundness theorem. We prove that for a large class of security properties
(that includes rather standard formulations for secrecy and authenticity properties), security of proto-
cols in the simpler model implies security in the label-based model. Combined with the soundness result
of [Cortier and Warinschi, 2005], our theorem enables the translation of security results in unlabeled sym-
bolic models to computational security. Based on these results, we have recently implemented an AVISPA
module for verifying security properties in a standard cryptographic model.
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1 Introduction

Designers of mathematical models for computational systems need to find appropri-

ate trade-offs between two seemingly contradictory requirements. Automatic veri-

fication (and thus usability) typically requires a high level of abstraction whereas

prediction accuracy requires a high level of details. From this perspective, the use

of symbolic models for security analysis is particularly delicate since it seems that

the inherent high level of abstraction at which such models operate is not able

to capture all aspects that are relevant to security. This paper is concerned with

one particular such aspect, namely the use of randomization in the construction of

cryptosystems [Goldwasser and Micali, 1984].

A central feature of the computational, complexity-based models is the ability to

capture and reason explicitly about the use of randomness. Moreover, randomness

is essential to achieve any meaningful notion of security for encryption. In contrast,
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symbolic models rarely represent randomness directly. For example, a typical rep-

resentation for the encryption of message m under the public key of entity B is the

term {m}ek(B). Notice that the symbolic representation does not capture the depen-

dency on the randomness used to generate this ciphertext. While this abstraction

may be sufficiently accurate in certain settings [Micciancio and Warinschi, 2004], in

some other settings it is not sufficient.

Consider the following flow in some toy protocol:

A → B : {m}ek(B), {{m}ek(B)}ek(B)

To implement this flow, each occurrence of {m}ek(B) is mapped to a ciphertext. No-

tice however that the pictorial description does not specify if the two occurrences of

{m}ek(B) are equal (created with identical randomness) or different (created with

different randomness). In rich enough protocol specification languages disambiguat-

ing constructs as above can be easily done. For instance, in a language that has

explicit assignments, the two different interpretation for the first message of the

protocol can be obtained as

x := {m}ek(B); send(x, {x}ek(B)) and send({m}ek(B), {{m}ek(B)}ek(B)).

Here, each distinct occurrence of {m}ek(B) is interpreted with different random-

ness. Other approaches adopt a more direct solution and represent the randomness

used for encryption explicitly [Herzog, 2004, Abadi and Jürjens, 2001, Lowe, 2004,

Cortier and Warinschi, 2005]. If we write {m}l
ek(B) for the encryption of m under

the public key of B with randomness l, the two different interpretations of the flow

are:

send({m}l1
ek(B), {{m}l1

ek(B)}
l2
ek(B)) and send({m}l1

ek(B), {{m}l2
ek(B)}

l3
ek(B))

A model that employs labels to capture the randomness used in ciphertexts (and

signatures) has recently been used to establish soundness of symbolic analysis with

respect to computational models [Cortier and Warinschi, 2005]. Their results are

based on an emulation lemma: for protocol executions, every computational trace

can be mapped to a valid symbolic trace. The mapping is then used to translate

security properties that hold in the symbolic model to computational analogues.

Note that the use of labels is necessary even when there is no explicit repetition

of cyphertexts to distinguish for example the encrypted messages generated by the

agents from those generated by the adversary.

The next step towards making the soundness result relevant to practice is to

carry out the security proofs using some (semi-)automated tools for the symbolic

model. However, to the best of our knowledge, none of the popular tools

(ProVerif [Blanchet, 2001], CASPER [Lowe, 1997a], Athena [Song, 1999],

AVISPA [Armando et al., 2005]), offers capabilities for automatically reasoning in

models that use labels. There are at least two solutions to this problem. One possi-

bility is to enhance the symbolic models that underlie existing tools. Unfortunately

such a modification would probably require significant effort that involves adapting
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existing decision procedures, proving their correctness, and verifying and modifying

thousands of lines of code.

In this paper we put forth and clarify an alternative solution, used implicitly

in [Cortier and Warinschi, 2005]. The idea is to keep existing tools unchanged, use

their underlying (unlabeled) model to prove security properties, and then show that

the results are in fact meaningful for the model with labels. The main result of this

paper is to prove that for a large class of security properties the approach that we

propose is indeed feasible.

Results.

We consider the protocol specification language and the execution model de-

veloped in [Cortier and Warinschi, 2005]. The language is for protocols that use

random nonces, public key encryption and digital signatures, and uses labels to

model the randomness used by these primitives. To each protocol Π with labels,

we naturally associate a protocol Π obtained by erasing all labels, and extend the

transformation to execution traces. To each trace tr of Π we associate a trace tr

obtained by erasing labels and we extend this mapping to sets of traces. The first

contribution of this paper is a proof that the transformation is sound. More precisely

we prove that if tr is a valid trace of Π (obtained by Dolev-Yao operations) then

tr is a valid trace of Π. Importantly, this result relies on the fact that the specifi-

cation language that we consider does not allow equality tests between ciphertexts.

We believe that a similar result holds for most (if not all) protocol specification

languages that satisfy the above condition. The language for specifying protocols

(with and without labels) as well as the relation between their associated execution

models are in Section 2.

In Section 3 we give two logics, Ll
1 and L1, that we use to express security prop-

erties for protocols with and without labels, respectively. Informally, the formulas

of L1 are obtained by removing the labels from formulas of Ll
1. Both logics are

quite expressive. For example, it can be used to express standard formulations for

secrecy and authenticity properties.

Next we focus our attention on translating security properties between the two

models. First, notice that the mapping between the model with and that without

labels is not faithful since it looses information regarding inequality of ciphertexts.

To formalize this intuition we give a protocol Π and a formula φ such that Π satisfies

φ (the formula that corresponds to φ in the model without labels), but for which Π

does not satisfy φ. Anticipating, our example indicates that the source of problems

is that φ may contain equality tests between ciphertexts, and such tests may not

be translated faithfully. The counterexample is in Section 4.

The main result of the paper is a soundness theorem. We show that for a large

class of security properties it is possible to carry out the proof in the model without

labels and infer security properties in the model with labels. More precisely, we

identify Ll
2 and L2, fragments of Ll

1 and L1 respectively, such that the following

theorem holds.

Consider an arbitrary protocol Π and formula φ in Ll
2. Let φ be a formula in
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L2 obtained by erasing the labels that occur in φ. Then, it holds that:

Π |= φ =⇒ Π |= φ

The logics Ll
2 and L2 are still expressive enough to contain the secrecy and authen-

tication formulas. The theorem and its proof are in Section 4.

Based on our result, we implemented an AVISPA module [Armando et al., 2005]

that is used to obtain computationally sound automatic proofs and used it to val-

idate the protocols in the AVISPA library. The results of our experiments are

described in Section 5.

2 Protocol

In this section we provide the syntax of protocols with labels. The presentation is

adapted from [Cortier and Warinschi, 2005]. The specification language is similar

to the one of Casrul [Rusinowitch and Turuani, 2001]; it allows parties to exchange

messages built from identities and randomly generated nonces using public key

encryption and digital signatures. Protocols that do not use labels are obtained

straightforwardly.

2.1 Syntax

Consider an algebraic signature Σ with the following sorts. A sort ID for agent

identities, sorts SKey,VKey,EKey,DKey containing keys for signing, verifying, en-

cryption, and decryption respectively. The algebraic signature also contains sorts

Nonce, Label, Ciphertext, Signature and Pair for nonces, labels, ciphertexts, signa-

tures and pair, respectively. The sort Label is used in encryption and signatures

to distinguish between different encryption/signature of the same plaintext. The

sort Term is a supersort containing all other sorts, except SKey and DKey. There

are nine operations: the four operations ek, dk, sk, vk are defined on the sort ID and

return the encryption key, decryption key, signing key, and verification key associ-

ated to the input identity. The two operations ag and adv are defined on natural

numbers and return labels. As explained in the introduction, the labels are used to

differentiate between different encryptions (and signatures) of the same plaintext,

created by the honest agents or the adversary. We distinguish between labels for

agents and for the adversary since they do not use the same randomness. The other

operations that we consider are pairing, public key encryption, and signing.

We also consider sets of sorted variables X = X.n∪X.a∪X.c∪X.s and Xl = X∪X.l.

Here, X.n,X.a,X.c,X.s,X.l are sets of variables of sort nonce, agent, ciphertext,

signature and labels, respectively. The sets of variables X.a and X.n are as follows.

If k ∈ N is some fixed constant representing the number of protocol participants,

w.l.o.g. we fix the set of agent variables to be X.a = {A1, A2, . . . , Ak}, and partition

the set of nonce variables, by the party that generates them. Formally: X.n =

∪A∈X.aXn(A) and Xn(A) = {Xj
A | j ∈ N}. This partition avoids to specify later, for

each role, which variables stand for generated nonces and which variables stand for

expected nonces.
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Labeled messages that are sent by participants are specified using terms in T l

L ::= X.l | ag(i) | adv(i)

T l ::= X | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a, j, s)

| 〈T l , T l〉 | {T l}L
ek(a) | [T l]L

sk(a)

where i, j, s ∈ N and a ∈ ID.

Unlabeled messages are specified similarly as terms in the algebra T defined by

T ::= X | a | ek(a) | dk(a) | sk(a) | vk(a)

| n(a, j, s) | 〈T , T 〉 | {T}ek(a) | [T ]sk(a)

where j, s ∈ N and a ∈ ID.

A mapping · : T l → T from labeled to unlabeled terms is defined by removing

the labels: {k}l
m = {k}m, [k]lm = [k]m, f(t1, . . . , tn) = f(t1, . . . , tn) otherwise. The

mapping function is extended to sets of terms as expected.

The individual behavior of each protocol participant is defined by a role that

describes a sequence of message receptions/transmissions. A k-party protocol is

given by k such roles.

Definition 2.1 [Labeled roles and protocols] The set Rolesl of roles for labeled

protocol participants is defined by Rolesl = (({init} ∪ T l) × (T l ∪ {stop}))∗. A k-

party labeled protocol is a mapping Π : [k] → Rolesl, where [k] denotes the set

{1, 2, . . . , k}.

Unlabeled roles and protocols are defined very similarly. The mapping function

is extended from labeled protocols to unlabeled protocols as expected.

We assume that a protocol specification is such that Π(j) = ((lj1, r
j
1), (lj2, r

j
2), . . .),

the j’th role in the definition of the protocol being executed by player Aj. Each

sequence ((l1, r1), (l2, r2), . . .) ∈ Rolesl specifies the messages to be sent/received

by the party executing the role: at step i, the party expects to receive a message

conforming to li and returns message ri. We wish to emphasize that terms lji , r
j
i are

not actual messages, but specify how the message that is received and the message

that is output should look like.

Example 2.2 The Needham-Schroeder-Lowe protocol [Lowe, 1996] is specified as

follows: there are two roles Π(1) and Π(2) corresponding to the sender’s and re-

ceiver’s role.

A → B : {Na, A}ek(B)

B → A : {Na, Nb, B}ek(A)

A → B : {Nb}ek(B)

Π(1) = (init, {X1
A1

, A1}
ag(1)
ek(A2)), ({X

1
A1

, X1
A2

, A2}
L
ek(A1), {X

1
A2

}
ag(1)
ek(A2))

Π(2) = ({X1
A1

, A1}
L1

ek(A2), {X
1
A1

, X1
A2

, A2}
ag(1)
ek(A1)), ({X

1
A2

}L2

ek(A2)
, stop)
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Clearly, not all protocols written using the syntax above are meaningful. In

particular, some protocols might be not executable. This is actually not relevant

for our result (our theorem also holds for non executable protocols).

2.2 Execution Model

We define the execution model only for labeled protocols. The definition of the

execution model for unlabeled protocols is then straightforward.

If A is a variable or constant of sort agent, we define its knowledge by kn(A) =

{dk(A), sk(A)}∪X.n(A), i.e. an agent knows its secret decryption and signing key as

well as the nonces it generates during the execution. The formal execution model

is a state transition system. A global state of the system is given by (SId, f,H)

where H is a set of terms of T l representing the messages sent on the network and f

maintains the local states of all session ids SId. We represent session ids as tuples of

the form (n, j, (a1, a2, . . . , ak)) ∈ (N × N × IDk), where n ∈ N identifies the session,

a1, a2, . . . , ak are the identities of the parties that are involved in the session and

j is the index of the role that is executed in this session. Mathematically, f is a

function f : SId → ([X → T l] × N × N), where f(sid) = (σ, i, p) is the local state

of session sid. The function σ is a partial instantiation of the variables occurring

in role Π(i) and p ∈ N is the control point of the program. Three transitions are

allowed.

• (SId, f,H)
corrupt(a1 ,...,al)
−−−−−−−−−−−→ (SId, f,∪1≤j≤lkn(aj) ∪ H). The adversary corrupts

parties by outputting a set of identities. He receives in return the secret keys

corresponding to the identities. It happens only once at the beginning of the

execution. We focus on static corruption because the soundness result using

explicit labels in [Cortier and Warinschi, 2005] only considers this kind of cor-

ruption. However, in our formal context, our reduction result should be easily

extended to the case of adaptive corruption (when agents are corrupted at any

time during the execution) since we can map traces with dynamic corruption to

traces where all corrupted agents are so at the beginning.

• The adversary can initiate new sessions: (SId, f,H)
new(i,a1,...,ak)
−−−−−−−−−→ (SId′, f ′,H ′)

where H ′, f ′ and SId′ are defined as follows. Let s = |SId| + 1, be the session

identifier of the new session, where |SId| denotes the cardinality of SId. H ′ is

defined by H ′ = H and SId′ = SId ∪ {(s, i, (a1, . . . , ak))}. The function f ′ is

defined as follows.

· f ′(sid) = f(sid) for every sid ∈ SId.

· f ′(s, i, (a1, . . . , ak)) = (σ, i, 1) where σ is a partial function σ : X → T l and:







σ(Aj) = aj 1 ≤ j ≤ k

σ(Xj
Ai

) = n(ai, j, s) j ∈ N

We recall that the principal executing the role Π(i) is represented by Ai thus, in

that role, every variable of the form X j
Ai

represents a nonce generated by Ai.

• The adversary can send messages: (SId, f,H)
send(sid,m)
−−−−−−−→ (SId, f ′,H ′) where sid ∈

SId, m ∈ T l, H ′, and f ′ are defined as follows. We define f ′(sid′) = f(sid′) for
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m ∈ S
S `l m

b ∈ X.a
S `l b, ek(b), vk(b) Initial knowledge

S `l m1 S `l m2

S `l 〈m1 ,m2〉

S `l 〈m1 ,m2〉
i ∈ {1, 2}

S `l mi

Pairing and un-

pairing

S `l ek(b) S `l m
i ∈ N

S `l {m}
adv(i)
ek(b)

S `l {m}l
ek(b) S `l dk(b)

S `l m

Encryption and

decryption

S `l sk(b) S `l m
i ∈ N

S `l [m]
adv(i)
sk(b)

S `l [m]lsk(b)

S `l m
Signature

Fig. 1. Deduction rules.

every sid′ 6= sid. We denote Π(j) = ((lj1, r
j
1), . . . , (l

j
kj

, rj
kj

)). f(sid) = (σ, j, p) for

some σ, j, p. There are two cases.

· Either there exists a least general unifier θ of m and ljpσ. Then f ′(sid) =

(σ ∪ θ, j, p + 1) and H ′ = H ∪ {rj
pσθ}.

· Or we define f ′(sid) = f(sid) and H ′ = H (the state remains unchanged).

If we denote by SID = N×N× IDk the set of all sessions ids, the set of symbolic exe-

cution traces is SymbTrl =(SID×(SID→([X→T l]×N×N))×2T l

)∗. The set of corre-

sponding unlabeled symbolic execution traces is denoted by SymbTr. The mapping

function · is extended as follows: if tr = (SId0, f0,H0), . . . , (SIdn, fn,Hn) is a trace

of SymbTrl, tr = (SId0, f0,H0), . . . , (SIdn, fn,Hn) ∈ SymbTr where SIdi simply equal

SIdi and fi : SID→ ([X→T ]×N×N)) with fi(sid) = (σ, i, p) if fi(sid) = (σ, i, p) and

σ(X) = σ(X).

The adversary intercepts messages between honest participants and computes

new messages using the deduction relation `l defined in Figure 1. Intuitively, S `l

m means that the adversary is able to compute the message m from the set of

messages S. All deduction rules are rather standard with the exception of the last

one: The last rule states that the adversary can recover the corresponding message

out of a given signature. This rule reflects capabilities that do not contradict the

standard computational security definition of digital signatures, may potentially be

available to computational adversaries and are important for the soundness result

of [Cortier and Warinschi, 2005].

Next, we sketch the execution model for unlabeled protocols. As above, the

execution is based on a deduction relation ` that captures adversarial capabilities.

The deduction rules that define ` are obtained from those of `l (Figure 1) as follows.

The sets of rules Initial knowledge and Pairing and unpairing in are kept unchanged

(replacing `l by `, of course). For encryption and signatures we suppress the labels

adv(i) and l in the encryption function { } and the signature function [ ] for rules

Encryption and decryption and rules Signature. That is, the rules for encryption
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are:
S ` ek(b) S ` m

S ` {m}ek(b)

S ` {m}ek(b) S ` dk(b)

S ` m
and those for signatures are:

S ` sk(b) S ` m

S ` [m]sk(b)

S ` [m]sk(b)

S ` m

We use the deduction relations to characterize the set of valid execution traces.

We say that the trace (SId1, f1,H1), . . . , (SIdn, fn,Hn) is valid if the messages sent

by the adversary can be computed by Dolev-Yao operations. More precisely, we

require that in a valid trace whenever (SIdi, fi,Hi)
send(s,m)
−−−−−−→ (SIdi+1, fi+1,Hi+1),

we have Hi `l m. Given a protocol Π, the set of valid symbolic execution traces

is denoted by Exec(Π). The set Exec(Π) of execution traces in the model without

labels is defined similarly. We thus require that every sent message m′ satisfies

Hi ` m′.

Example 2.3 Playing with the Needham-Schroeder-Lowe protocol described in

Example 2.2, an adversary can corrupt an agent a3, start a new session for the

second role with players a1, a2 and send the message {n(a3, 1, 1), a1}
adv(1)
ek(a2)

to the

player of the second role. The corresponding valid trace execution is:

(∅, f1, ∅)
corrupt(a3)
−−−−−−−−→ (∅, f1,kn(a3))

new(2,a1,a2)
−−−−−−−−→

({sid1}, f2,kn(a3))
send(sid1,{n3,a1}

adv(1)
ek(a2)

)

−−−−−−−−−−−−−−−→
(

{sid1}, f3,kn(a3) ∪ {{n3, n2, a2}
ag(1)
ek(a1)

}
)

,

where sid1 = (1, 2, (a1, a2)), n2 = n(a2, 1, 1), n3 = n(a3, 1, 1), and f2, f3 are defined

as follows: f2(sid1) = (σ1, 2, 1), f3(sid1) = (σ2, 2, 2) where σ1(A1) = a1, σ1(A2) = a2,

σ1(X
1
A2

) = n2, and σ2 extends σ1 by σ2(X
1
A1

) = n3 and σ2(L1) = adv(1).

2.3 Relating the labeled and unlabeled execution models

The following lemma (which can be easily proved by structural induction) states

that, whenever a message is deducible, the corresponding unlabeled message is also

deducible.

Lemma 2.4 S `l m ⇒ S ` m

Based on the above property we show that whenever a trace corresponds to an

execution of a protocol, the corresponding unlabeled trace corresponds also to an

execution of the corresponding unlabeled protocol.

Lemma 2.5 tr ∈ Exec(Π) ⇒ tr ∈ Exec(Π).

Proof. The key argument is that only pattern matching is performed in protocols

and when a term with labels matches some pattern, the unlabeled term matches

the corresponding unlabeled pattern. The proof is done by induction on the length

of the trace. Full details are provided in Appendix A. 2
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3 A logic for security properties

In this section we define a logic for specifying security properties. We then show

that the logic is quite expressive and, in particular, it can be used to specify rather

standard secrecy and authenticity properties.

3.1 Preliminary definitions

We define the set of local states LS i,p(tr) of a trace tr for role i at step p by

LSi,p((SIdk, fk,Hk)1≤k≤n) = {(σ, i, p) | ∃s ∈ SIdk, s.t. fk(s) = (σ, i, p), 1 ≤ k ≤ n}.

We assume an infinite set Sub of meta-variables for substitutions. Our logic

contains tests between terms with variables substituted by variable substitutions.

More formally, let T l
Sub be the algebra defined by:

L ::= ς(xl) | ag(i) | adv(j)

T l
Sub ::= ς(x) | a | ek(a) | dk(a) | sk(a) | vk(a) | n(a, j, s)

| 〈T l
Sub , T l

Sub〉 | {T
l
Sub}

L
ek(a) | [T l

Sub ]
L
sk(a)

where xl ∈ X.l, ς ∈ Sub, i, j ∈ N, x ∈ X, a ∈ ID. The unlabeled algebra TSub is

defined accordingly. The mapping function between the two algebras is defined by:

ς(x) = ς(x), {k}l
m = {k}m, [k]lm = [k]m, f(t1, . . . , tn) = f(t1, . . . , tn) otherwise.

3.2 Security Logic

In this section we describe a logic for security properties. Besides standard propo-

sitional connectors, the logic has a predicate to specify honest agents, equality tests

between terms, and existential and universal quantifiers over the local states of

agents.

Definition 3.1 The formulas of the logic Ll
1 are defined by induction as

follows:

F (tr) ::= NC(tr, t1) | (t1 = t2) | ¬F (tr) | F (tr) ∧ F (tr) | F (tr) ∨ F (tr)

| ∀LSi,p(tr).ς F (tr) | ∃LS i,p(tr).ς F (tr)

where tr is a parameter of the formula, i, p ∈ N, ς ∈ Sub, t1 and t2 are terms of

T l
Sub . Note that formulas are parametrized by a trace tr. As usual, we may use

φ1 → φ2 as a shortcut for ¬φ1 ∨ φ2.

We similarly define the corresponding unlabeled logic L1: the tests (t1 = t2) are

between unlabeled terms t1, t2 over Tsub . The mapping function · is extended as ex-

pected. In particular NC(tr, t) = NC(tr, t), (t1 = t2) = (t1 = t2), ∀LS i,p(tr).ς F (tr) =

∀LSi,p(tr).ς F (tr) and ∃LS i,p(tr).ς F (tr) = ∃LS i,p(tr).ς F (tr).

Here the predicate NC(tr, t) of arity 2 is used to specify non corrupted agents.

The quantifications ∀LS i,p(tr).ς and ∃LSi,p(tr).ς are over local states of agent i

9
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[[NC(tr, t)]] =























1 if t ∈ ID and t does not appear in a cor-

rupt action, i.e. tr = e1, e2, ..., en and

∀a1, . . . , ak, s.t. e1
corrupt(a1 ,...,ak)
−−−−−−−−−−−→ e2, t 6= ai,

0 otherwise

[[∀LS i,p(tr).ς F (tr)]] =















1 if ∀(θ, i, p) ∈ LS i,p(tr), we have

[[F (tr)[θ/ς]]] = 1,

0 otherwise.

[[∃LS i,p(tr).ς F (tr)]] =







1 if ∃(θ, i, p) ∈ LS i,p(tr), s.t. [[F (tr)[θ/ς]]] = 1,

0 otherwise.

Fig. 2. Interpretation.

at step p in trace tr. The semantics of our logic is defined for closed formula as

follows: standard propositional connectors and negation are interpreted as usual.

Equality is syntactic equality. The interpretation of quantifiers and the predicate

NC is shown in Figure 2.

Next we define when a protocol Π satisfies a formula φ ∈ Ll
1. The definition for

the unlabeled execution model is obtained straightforwardly. Informally, a protocol

Π satisfies φ(tr) if φ(tr) is true for all traces of Π. Formally:

Definition 3.2 Let φ(tr) be a formula and Π be a protocol. We say that Π satisfies

security property φ, and write Π |= φ if for any trace tr ∈ Exec(Π), [[φ(tr)]] = 1.

Abusing notation, we occasionally write φ for the set {tr | [[φ(tr)]] = 1}. Then,

Π |= φ precisely when Exec(Π) ⊆ φ.

3.3 Examples of security properties

In this section we exemplify the use of the logic by specifying secrecy and authen-

ticity properties.

3.3.1 A secrecy property

Let Π(1) and Π(2) be the sender’s and receiver’s role of a two-party protocol. To

specify our secrecy property we use a standard encoding. Namely, we add a third

role to the protocol, Π(3) = (X1
A3

, stop), which can be seen as some sort of witness.

Informally, the definition of the secrecy property Ps states that, for two non

corrupted agents a1 and a2, where a1 plays role Π(1) and a2 plays role Π(2), a third

agent playing role Π(3) cannot gain any knowledge on nonce X 1
A1

sent by role Π(1)

(played by A1), when A1 is honest and is talking with an honest agent A2.

φs(tr) = ∀LS1,1(tr).ς ∀LS3,2(tr).ς
′

[NC(tr, ς(A1)) ∧ NC(tr, ς(A2)) → ¬(ς ′(X1
A3

) = ς(X1
A2

))]

10
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3.3.2 An authentication property

Consider a two role protocol, such that role 1 finishes its execution after n steps

and role 2 finishes its execution after p steps. For this kind of protocols we give

a variant of the week agreement property [Lowe, 1997b]. Informally, this property

states that whenever an instantiation of role 2 finishes, there exists an instantiation

of role 1 that has finished and they agree on some value for some variable and they

have indeed talked to each other. In our example we choose this variable to be X 1
A1

.

Note that we capture that some agent has finished its execution by quantifying

appropriately over the local states of that agent. More precisely, we quantify only

over the states where it indeed has finished its execution.

φa(tr) = ∀LS2,p(tr).ς ∃LS1,n(tr).ς ′ [NC(tr, ς(A1)) ∧ NC(tr, ς ′(A2)) →

(ς(X1
A1

) = ς ′(X1
A1

)) ∧ (ς(A2) = ς ′(A2)) ∧ (ς(A1) = ς ′(A1))]

Notice that although in its current version our logic is not powerful enough to

specify stronger versions of agreement (like injective or bijective agreement), it could

be appropriately extended to deal with this more complex forms of authentication.

4 Main Result

Recall that our goal is to prove that Π |= φ ⇒ Π |= φ. However, as explained in the

introduction this property does not hold in general. The following example sheds

some light on the reasons that cause the desired implication to fail.

Example 4.1 Consider the first step of some protocol where A sends a message to

B where some part is intended for some third agent.

A → B : {Na, {Na}ek(C), {Na}ek(C)}ek(B)

The specification of the roles of A and B that corresponds to this first step is as

follows (in the definition below C1
A2

and C2
A2

are variables of sort ciphertext).

Π(1) = (init, {〈X1
A1

, 〈{X1
A1

}
ag(1)
ek(A3), {X

1
A1

}
ag(2)
ek(A3)〉〉}

ag(3)
ek(A2)

)

Π(2) = ({〈X1
A1

, 〈C1
A2

, C2
A2

〉〉}L
ek(A2), stop)

We assume that A generates twice the message {Na}ek(C). Notice that we stop

the execution of B after it receives the first message since this is sufficient for our

purpose, but its execution might be continued to form a more realistic example.

Consider the security property φ1 that states that if A and B agree on the nonce

X1
A1

then B should have received twice the same ciphertext.

φ1(tr) = ∀LS1,2(tr).ς ∀LS2,2(tr).ς
′

NC(tr, ς(A1)) ∧ NC(tr, ς(A2))∧

(ς(X1
A1

) = ς ′(X1
A1

)) → (ς ′(C1
A2

) = ς ′(C2
A2

))

11
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This property clearly does not hold for any normal execution of the labeled protocol

since A always sends ciphertexts with distinct labels. Thus Π 6|= φ1.

On the other hand, one can show that we have Π |= φ1 in the unlabeled execution

model. Intuitively, this holds because if A and B are honest agents and agree on

X1
A1

, then the message received by B has been emitted by A and thus should contain

identical ciphertexts (after having removed their labels).

4.1 Logic Ll
2

The counterexample above relies on the fact that two ciphertexts that are equal in

the model without labels may have been derived from distinct ciphertexts in the

model with labels. Hence, it may be the case that although t1 6= t2 ⇒ t1 6= t2, the

contrapositive implication t1 = t2 ⇒ t1 = t2 does not hold, which in turn entails

that formulas that contain equality tests between ciphertexts may be true in the

model without labels, but false in the model with labels. In this section we identify

a fragment of Ll
1, which we call Ll

2 where such tests are prohibited. Formally, we

avoid equality tests between arbitrary terms by forbidding arbitrary negation over

formulas and allowing equality tests only between simple terms.

Definition 4.2 A term t is said simple if t = ς(x) where x ∈ X.a∪X.n and ς ∈ Sub,

or t = a for some a ∈ ID or t = n(a, j, s) for some a ∈ ID, j, s ∈ N.

An important observation is that for any simple term t it holds that t = t.

Definition 4.3 The formulas of the logic Ll
2 are defined as follows:

F (tr) ::= NC(tr, t1) | ¬NC(tr, t1) | F (tr) ∧ F (tr) | F (tr) ∨ F (tr) | (t1 6= t2)

| (u1 = u2) | ∀LSi,p(tr).ς F (tr) | ∃LS i,p(tr).ς F (tr),

where tr ∈ SymbTr is a parameter, i, p ∈ N, t1, t2 ∈ T l
Sub and u1, u2 are simple

terms.

Since simple terms also belong to T l
Sub , both equality and inequality tests are

allowed between simple terms.

The corresponding unlabeled logic L2 is defined as expected. Note that Ll
2 ⊂ Ll

1

and L2 ⊂ L1.

4.2 Theorem

Informally, our main theorem says that to verify if a protocol satisfies some security

formula φ in logic Ll
2, it is sufficient to verify that the unlabeled version of the

protocol satisfies φ.

Theorem 4.4 Let Π be a protocol and φ ∈ Ll
2, then Π |= φ ⇒ Π |= φ.

Proof. Assume Π |= φ. We have to show that for any trace tr ∈ Exec(Π), [[φ(tr)]] =

1. From Lemma 2.5 it follows that tr ∈ Exec(Π), thus [[φ(tr)]] = 1, since Π |= φ.

Thus, it is sufficient to show that [[φ(tr)]] = 1 ⇒ [[φ(tr)]] = 1. The following lemma

offers the desired property. 2

12
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Public keys only symbolically secure computationally secure

13 9 9

Fig. 3. Summary of our experiments.

Lemma 4.5 Let φ(tr) ∈ Ll
2 for some tr ∈ SymbTr, [[φ(tr)]] = 1 implies [[φ(tr)]] = 1.

Proof. The proof of the lemma is by induction on the structure of φ(tr). Full

details are provided in Appendix B. 2

5 Implementation and Experiments

The AVISPA project [Armando et al., 2005] provides a platform for automatic ver-

ification of security protocols. The platform includes a specification language called

HLPSL that can be used for specifying both protocols and security properties. Pro-

tocols specified in this language can be verified with four different tools. Three

of them, OFMC, ATSE, and SATMC, use symbolic models where the number of

sessions that can be executed in parallel is bounded. The fourth tool, TA4SP, pro-

vides verification abilities for an unbounded number of sessions. The tools can be

used to verify three security properties: secrecy, weak authentication, and replay

protection.

Based on the results of [Cortier and Warinschi, 2005] and this paper, we imple-

mented a module for the AVISPA with the purpose of obtaining computationally

sound security guarantees. The module works as follows. First, the module ver-

ifies that the protocol (specified in HLPSL) can be translated in our formalism.

In particular, it verifies that the protocol uses only asymmetric encryption in its

pure form (that is: we do not consider protocols that model digital signatures via

decryption-with-the-private key approach.) Notice that although we forbid proto-

cols that encrypt messages using symmetric keys, such keys can still be sent around.

Next, the module checks whether the security property that is verified can be trans-

lated in our L2 logic. In particular, weak authentication should only be done on

atomic messages like agents and nonces. Finally, if the verification succeeds the logi-

cal formula that states the security property is printed out, together with a messages

that states that the protocol satisfies the security property computationally.

We executed the module on the protocols in the library of the AVISPA plat-

form. The results are summarized in Figure 3. Of the 13 public-key encryption

based protocols in the library of the AVISPA platform the tool concludes that 9 are

symbolically secure, and all 9 pass our syntactic validation tests. We conclude that

all these 9 protocols are computationally secure.

The new module will be included in the next version of the AVISPA tool.

6 Discussion

We conclude with a brief discussion of two interesting aspects of our result. First, as

mentioned in the introduction our main theorem should hold for all execution models

for which the underlying deduction systems satisfy the condition in Lemma 2.4, that

13



Cortier, Hördegen, Warinschi

is S `l m ⇒ S ` m. For example, it should hold for the deduction systems obtained

after removing the rule
S `l [m]lsk(b)

S `l m
and its corresponding unlabeled variant. In fact, an interesting result would be to

prove a more abstract and modular version of our theorem.

Secondly, one may ask if the converse of our main theorem holds. We argue

that this is not the case. More precisely, we show that there exists a protocol Π

and a property φ such that Π |= φ but Π 6|= φ. Let Π be the protocol defined

in Example 4.1. Consider a security property φ2 that states on the contrary that

whenever A and B agree on the nonce X1
A1

then B should have received two distinct

ciphertexts. Formally:

φ2(tr) = ∀LS1,2(tr).ς ∀LS2,2(tr).ς
′

NC(tr, ς(A1)) ∧ NC(tr, ς(A2))∧

(ς(X1
A1

) = ς ′(X1
A1

)) → (ς ′(C1
A2

) 6= ς ′(C2
A2

))

where C1
A2

and C2
A2

are variables of sort ciphertext.

This property clearly does not hold for any honest execution of the unlabeled

protocol since A always sends twice the same ciphertext, and thus Π 6|= φ2. On the

other hand however, one can show that this property holds for labeled protocols

since, if A and B are honest agents and agree on X 1
A1

, it means that the message

received by B has been emitted by A and thus contains two distinct ciphertexts.

Thus, Π |= φ2. We conclude that, in general, Π |= φ does not imply Π |= φ.
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A Proof of Lemma 2.5

Lemma 2.5 tr ∈ Exec(Π) ⇒ tr ∈ Exec(Π).

Proof. The key argument is that only pattern matching is performed in protocols

and when a term with labels matches some pattern, the unlabeled term matches

the corresponding unlabeled pattern.

• Let tr = (SId0, f0,H0), where SId0 and H0 are empty sets. We have H0 = H0. f0

is defined nowhere, and so is f0. Clearly, tr = (SId0, f0,H0) is in Exec(Π).

• Let tr ∈ Exec(Π), tr = e0, ..., en = (SId0, f0,H0), ..., (SIdn, fn,Hn), such that

tr ∈ Exec(Π). We have to show that if tr ′ = tr, (SIdn+1, fn+1,Hn+1) ∈ Exec(Π),

then we have tr′ ∈ Exec(Π). There are three possible operations.

(i) corrupt(a1, ..., ak). It means that tr = (SId0, f0,H0), (SId1, f1,H1). In this case,

we have SId1 = SId0 = ∅, f1 = f0 and H1 = H0 ∪
⋃

1≤i≤k kn(ai). We can

conclude that tr = (SId0, f0,H0), (SId1, f1,H1) is in Exec(Π), because there are

no labels in H1 and f1 is still not defined.

(ii) new(i, a1, ..., ak). No labels are involved in this operation. The extension made

to fn is the same as is made to fn. Neither Hn nor Hn are modified. tr′ =

tr, (SIdn+1, fn+1,Hn+1) is a valid trace.

(iii) send(s,m).

First, we have to be sure that if m can be deduced from Hn, then m can be

deduced from Hn. This is Lemma 2.4.

Note that SIdn = SIdn+1 thus SIdn = SIdn+1. Let fn(s) = (σ, i, p) and

Π(i) = (..., (lp, rp), ...). We have two cases.

· Either there is a substitution θ with m = lpσθ. Then fn+1(s) = (σ∪θ, i, p+1).

Thus fn(s) = (σ, i, p) and fn+1(s) = (σ ∪ θ, i, p + 1). By induction hypothesis,

tr is a valid trace. From m = lpσθ follows m = lpσθ. We conclude that

tr, (SIdn+1, fn+1,Hn+1) = tr′ is a valid trace, thus a member of Exec(Π).

· Or no substitution θ with m = lpσθ exists. Then tr′ = e0, ..., en, en+1 with

en = en+1. We must show that it is always possible to construct a message

m′ ∈ T , such that there exists no substitution θ ′ with m′ = lpσθ′. Then, from

the validity of tr′ and tr we can deduce the validity of tr ′, because en = en+1.

Either there exists no substitution θ ′ such that m = lpσθ′. In that case, we

choose m′ = m.

Or let θ′ be a substitution such that m = lpσθ′. Then the matching for m

fails because of labels. This can be shown by contradiction. Assume m contain

no label, i. e. m does not contain subterms of the form {t}l
ek(ai)

or [t]l
sk(ai)

,

t ∈ T . In that case, we have m = m by definition. From m = lpσθ′, we deduce

that m = lpσθ′, contradiction.

We deduce that m contains some subterm of the form {t}ek(ai) or [t]sk(ai).

The fact m = lpσθ′ implies that lp has to contain one of the following subterms:

{t′}ek(Ai), [t′]sk(Ai) with t′ ∈ T or, a variable of sort ciphertext or signature.

Then, we choose m′ = a for some agent identity a ∈ X.a. The term a is de-

ducible from Hn. Now, the matching of m′ with lp always fails, either because

of the encryption or signature occurring in lp or because of type mismatch for

a variable of type ciphertext or signature in lp.
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2

B Proof of Lemma 4.5

Lemma 4.5 Let φ(tr) ∈ Ll
2 for some tr ∈ SymbTr, [[φ(tr)]] implies [[φ(tr)]].

Proof.

• φ(tr) = NC(tr, t) or φ(tr) = ¬NC(tr, t). [[NC(tr, t)]] = 1, if and only if t ∈ ID and

t does not occur in a corrupt event for the trace tr. This is equivalent to t ∈ ID

and t does not occur in a corrupt event for the trace tr. Thus [[NC(tr, t)]] = 1

if and only if [[NC(tr, t)]] = [[NC(tr, t)]] = 1.

• φ(tr) = (t1 6= t2). We have that φ(tr) = (t1 6= t2) holds. Assume by contradiction

that φ(tr) does not hold, i.e t1 = t2. This implies t1 = t2, contradiction.

• φ(tr) = (u1 = u2) with u1, u2 simple terms. We have that φ(tr) = (u1 = u2)

holds. Since u1 and u2 are simple terms, we have ui = ui, thus u1 = u2. We

conclude that φ(tr) holds.

• The cases φ(tr) = φ1(tr)∨φ2(tr) and φ(tr) = φ1(tr)∧φ2(tr) are straightforward.

• φ(tr) = ∀LSi,p(tr).ς F (tr). If φ(tr) holds, this means that for all (θ, i, p) ∈
LSi,p(tr), [[F (tr)[θ/ς]]] = 1.

Let (θ′, i, p) ∈ LS i,p(tr). We consider [[F (tr)[θ′/ς]]]. Since tr ∈ Exec(Π) implies

tr ∈ Exec(Π) (Lemma 2.5), we have (θ′, i, p) ∈ LS i,p(tr). By induction hypothesis,

[[F (tr)[θ′/ς]]] = 1 implies that [[F (tr)[θ′/ς]]] = 1. It follows that

∀(θ′, i, p) ∈ LS i,p(tr) [[F (tr)[θ′/ς]]] = 1.

Thus, φ(tr) holds.

• φ(tr) = ∃LSi,p(tr).ς F (tr). If φ(tr) holds, this means that there exists (θ, i, p) ∈
LSi,p(tr), such that [[F (tr)[θ/ς]]] = 1.

By definition of the mapping function, there exists (θ ′, i, p) ∈ LSi,p(tr) such

that θ′ = θ. By induction hypothesis, [[F (tr)[θ ′/ς]]] = 1. Thus there exists θ′,

such that [[F (tr)[θ′/ς]]] = 1. Thus, φ(tr) holds.

2
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