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Abstract

Helios 2.0 is an open-source web-based end-to-end verifiable electronic

voting system, suitable for use in low-coercion environments. In this arti-

cle, we analyse ballot secrecy in Helios and discover a vulnerability which

allows an adversary to compromise the privacy of voters. The vulnera-

bility exploits the absence of ballot independence in Helios and works by

replaying a voter’s ballot or a variant of it, the replayed ballot magnifies

the voter’s contribution to the election outcome and this magnification can

be used to violated privacy. We demonstrate the practicality of the attack

by violating a voter’s privacy in a mock election using the software imple-

mentation of Helios. Moreover, the feasibility of an attack is considered in

the context of French legislative elections and, based upon our findings, we

believe it constitutes a real threat to ballot secrecy. We present a fix and

show that our solution satisfies a formal definition of ballot secrecy using

the applied pi calculus. Furthermore, we present similar vulnerabilities in
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other electronic voting protocols – namely, the schemes by Lee et al., Sako

& Kilian, and Schoenmakers – which do not assure ballot independence.

Finally, we argue that independence and privacy properties are unrelated,

and non-malleability is stronger than independence.

Keywords. Applied Pi Calculus, Attack, Ballot Independence, Ballot

Secrecy, Electronic Voting, Helios, Malleability, Privacy.

1 Introduction

Paper-based elections derive security properties from physical characteristics of

the real-world. For example, marking a ballot in the isolation of a polling booth

and depositing the completed ballot into a locked ballot box provides privacy;

the polling booth also ensures that voters cannot be influenced by other votes

and the locked ballot box prevents the announcement of early results, thereby

ensuring fairness; and the transparency of the whole election process from bal-

lot casting to tallying and the impossibility of altering the markings on a paper

ballot sealed inside a locked ballot box gives an assurance of correctness and fa-

cilitates verifiability. Replicating these attributes in a digital setting has proven

to be difficult and, hence, the provision of secure electronic voting systems is an

active research topic.

Informally, privacy for electronic voting systems is characterised by the fol-

lowing requirements [56, 36, 9]:

• Ballot secrecy. A voter’s vote is not revealed to anyone.

• Receipt freeness. A voter cannot gain information which can be used to

prove, to a coercer, how she voted.

• Coercion resistance. A voter cannot collaborate, with a coercer, to gain

information which can be used to prove how she voted.

Verifiability includes three properties [54, 71, 57]:

• Individual verifiability. A voter can check that her own ballot is published

on the election’s bulletin board.

• Universal verifiability. Anyone can check that all the votes in the election

outcome correspond to ballots published on the election’s bulletin board.
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• Eligibility verifiability. Anyone can check that each ballot published on

the bulletin board was cast by a registered voter and at most one ballot

is tallied per voter.

Finally, fairness – summarised by the notion that all voters are equal – has

not be thoroughly studied, but nonetheless we believe the following aspects are

desirable:

• Ballot independence. Observing another voter’s interaction with the elec-

tion system does not allow a voter to cast a meaningfully related vote.

• No early results. A voter cannot change her vote once partial results are

available.

• Pulling out. Once partial results are available a voter cannot abort.

The privacy property helps ensure that voters can express their free-will with-

out fear of retribution, in particular, receipt freeness and coercion resistance

attempt to prevent intimidation of voters. In addition, receipt freeness helps

prevent vote buying. The individual, universal and eligibility verifiability prop-

erties (also called end-to-end verifiability [53, 24, 4, 71, 5]) allow voters and

election observers to verify – independently of the hardware and software run-

ning the election – that votes have been recorded, tallied and declared correctly.

The fairness property prohibits the voting system from influencing a voter’s

behaviour, that is, observation of the voting system does not leak information

that may affect a voter’s vote, for example, ballot independence prevents Bob

from casting the same vote as Alice (possibly without learning Alice’s vote)1.

In this article, we analyse ballot secrecy in Helios 2.0 [7].

Formal definitions of ballot secrecy have been introduced in the context

of the applied pi calculus by Delaune, Kremer & Ryan [56, 36, 37, 38] and

Backes, Hriţcu & Maffei [9]. These privacy definitions consider two voters A,

B and two candidates t, t′. Ballot secrecy is captured by the assertion that

an adversary (controlling arbitrary many dishonest voters) cannot distinguish

between a situation in which voter A votes for candidate t and voter B votes

1Bulens, Giry & Pereira [20, §3.2] question whether ballot independence is a desirable
property of electronic voting systems and highlight the investigation of voting schemes which
allow the submission of meaningfully related votes whilst preserving privacy as an interesting
research direction.
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for candidate t′, from another situation in which A votes t′ and B votes t. This

can be expressed by the following equivalence.

A(t) | B(t′) ≈l A(t′) | B(t)

These formal definitions of ballot secrecy have been used by their respective

authors to analyse the electronic voting protocols due to: Fujioka, Okamoto &

Ohta [49], Okamoto [67], Lee et al. [62], and Juels, Catalano & Jakobsson [53,

54, 55]. It therefore seems natural to check whether Helios satisfies these formal

definitions.

Helios 2.0. Helios is an open-source web-based electronic voting system which

uses homomorphic encryption. The scheme is claimed to satisfy ballot se-

crecy [7], but the nature of remote voting makes the possibility of satisfying

stronger privacy properties difficult and Helios does not satisfy receipt freeness

nor coercion resistance (satisfying these stronger privacy properties typically

increases the voting system’s complexity and, hence, a scheme satisfying ballot

secrecy, rather than coercion resistance, may be preferred due its relative sim-

plicity). In addition to ballot secrecy, the system provides individual and univer-

sal verifiability (cf. [57, 92] and [88, Chapter 3] for an analysis of verifiability in

Helios). Helios is particularly significant due to its real-world deployment: the

International Association of Cryptologic Research (IACR) used Helios to elect

its board members [14], following a successful trial in a non-binding poll [52];

the Catholic University of Louvain adopted the system to elect the university

president [7]; and Princeton University used Helios to elect the student vice

president [76].

1.1 Contribution

Our analysis of Helios reveals an attack which violates ballot secrecy. The at-

tack exploits the system’s lack of ballot independence, and works by replaying

a voter’s ballot or a variant of it (without knowing the vote contained within

that ballot). Replaying a voter’s ballot immediately violates ballot secrecy in an

election with three voters. For example, consider an attack in an election with

three voters – namely, Alice, Bob, and Mallory – as follows: if Mallory replays

Alice’s ballot, then Mallory can reveal Alice’s vote by observing the election

4



outcome and checking which candidate obtained at least two votes. The prac-

ticality of our attack has been demonstrated by violating a voter’s privacy in

a mock election using the software implementation of Helios. Furthermore, the

vulnerability can be exploited in more realistic settings and, as an illustrative

example, we discuss the feasibility of the attack in French legislative elections.

This case study suggests there is a plausible threat to voters’ privacy in elec-

tions using Helios. We also propose variants of the attack which abuse the

malleability of ballots to ensure ballots cast by the adversary are distinct; this

makes detecting the attack non-trivial (that is, checking for exact duplicates is

insufficient to ensure ballot secrecy). Nonetheless, we fix the Helios protocol

by identifying and discarding adversarial ballots. We believe this solution is

particular well-suited because it maintains Benaloh’s principle of ballot casting

assurance [12, 13] and requires a minimal extension to the Helios code-base. The

revised scheme is shown to satisfy a formal definition of ballot secrecy using the

applied pi calculus. In addition, we demonstrate that the absence of ballot inde-

pendence can be exploited in other electronic voting protocols to violate privacy;

in particular, a similar attack is shown against the protocol by Lee et al. [62]

whereby an adversary replays a voter’s ballot or a variant of it, and verbatim

replay attacks are demonstrated against two schemes presented at CRYPTO

(namely, the protocols due to Sako & Kilian [80] and Schoenmakers [83]). Fi-

nally, we present some evidence to demonstrate that independence and privacy

are unrelated properties, and non-malleability is stronger than independence.

Structure of this article. Section 2 presents the Helios electronic voting

scheme. (We remark that this is the first cryptographic description of the He-

lios protocol in the literature and, hence, is an additional contribution of this

article.) Section 3 describes our attack and some variants, in addition to a study

of the attack’s feasibility in the context of French legislative elections. We pro-

pose several solutions for recovering privacy in Section 4 and prove that our

adopted solution formally satisfies ballot secrecy in Section 5. Section 6 demon-

strates that the absence of ballot independence can be similarly exploited in

other electronic voting protocols to violate privacy and Section 7 considers re-

lationships between ballot independence and other security properties. Finally,

Section 8 considers related work and our conclusion appears in Section 9.
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2 Background: Helios 2.0

We provide a full description of Helios 2.0. This scheme exploits the addi-

tive homomorphic [31, 33, 84] and distributed decryption [72, 23] properties of

ElGamal [44]. In addition, signature proofs of knowledge are used to ensure

secrecy and integrity of the ElGamal scheme, and to ensure voters encrypt valid

votes. We will recall these cryptographic primitives before presenting the Helios

protocol.

2.1 Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number n ∈ N of trustees, where

p and q are large primes such that q | p − 1 and g is a generator of the multi-

plicative group Z∗p of order q, the following operations are defined by ElGamal.

Distributed key generation. Each trustee i ∈ n selects a private key share

xi ∈R Z∗q and computes a public key share hi = gxi mod p. The public key is

h = h1 · . . . · hn mod p.

Encryption. Given a message m and a public key h, select a random nonce

r ∈R Z∗q and derive the ciphertext (a, b) = (gr mod p, gm · hr mod p).

Re-encryption. Given a ciphertext (a, b) and public key h, select a random

nonce r′ ∈R Z∗q and derive the re-encrypted ciphertext (a′, b′) = (a·gr′ mod p, b·
hr

′
mod p).

Homomorphic addition. Given two ciphertexts (a, b) and (a′, b′), the ho-

momorphic addition of plaintexts is computed by multiplication (a ·a′ mod p, b ·
b′ mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-

putes the partial decryption ki = axi . The plaintext m = loggM is recovered

from M = b/(k1 · . . . · kn) mod p.

The computation of a discrete logarithm loggM is hard in general. However,

if M is chosen from a restricted domain, then the complexity is reduced, for

example, if M is an integer such that 0 ≤M ≤ n, then the complexity is O(n)
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by linear search or O(
√
n) using the baby-step giant-step algorithm [85] (see

also [63, §3.1]).

For secrecy, each trustee i ∈ n must demonstrate knowledge of a discrete

logarithm logg hi, that is, they prove that hi has been correctly constructed;

this prevents, for example, a trustee constructing their public key share hi =

h. For integrity of decryption, each trustee i ∈ n must demonstrate equality

between discrete logarithms logg hi and loga ki; this prevents, for example, a

trustee constructing the public key share hi = gm+xi and providing the partial

decryption ki = axi . These proofs can be achieved using signatures of knowledge

(see Appendix A for details). In addition, the voter must demonstrate that a

valid vote has been encrypted and we describe a suitable signature of knowledge

scheme in the following section.

2.2 Disjunctive proof of equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g), a signature of

knowledge demonstrating that a ciphertext (a, b) contains either 0 or 1 (without

revealing which), can be constructed by proving that either logg a = logh b or

logg a = logh b/g
m, that is, by application of a signature of knowledge demon-

strating a disjunctive proof of equality between discrete logarithms [31, 84].

Observe for a valid ciphertext (a, b) that a ≡ gr mod p and b ≡ hr · gm mod p

for some nonce r ∈ Z∗q , hence the former disjunct logg g
r = logh h

r ·gm is satisfied

when m = 0, and the latter disjunct logg g
r = logh(hr ·gm)/gm is satisfied when

m = 1. This technique is generalised by Adida et al. [7] to allow a signature

of knowledge demonstrating that a ciphertext (a, b) contains message m, where

m ∈ {min, . . . ,max} for some system parameters min ∈ N and max ∈ N∗ such

that min ≤ max. Formally, a signature of knowledge demonstrating a disjunc-

tive proof of equality between discrete logarithms can be derived, and verified,

as follows [7, 31, 84], where H is a SHA-256 hash function.

Sign. Given ciphertext (a, b) such that a ≡ gr mod p and b ≡ hr · gm mod p

for some nonce r ∈ Z∗q , where plaintext m ∈ {min, . . . ,max}. For all i ∈
{min, . . . ,m−1,m+1, . . . ,max}, compute challenge ci ∈R Z∗q , response si ∈R Z∗q
and witnesses ai = gsi/aci mod p and bi = hsi/(b/gi)ci mod p. Select a random

nonce w ∈R Z∗q . Compute witnesses am = gw mod p and bm = hw mod p, chal-

lenge cm = H(amin, bmin, . . . , amax, bmax) −
∑
i∈{min,...,m−1,m+1,...,max} ci (mod q)
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and response sm = w + r · cm mod q.

Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each

min ≤ i ≤ max check gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p). Fi-

nally, check H(amin, bmin, . . . , amax, bmax) ≡
∑

min≤i≤max ci (mod q).

A valid proof asserts that (a, b) is a ciphertext containing the message m such

that m ∈ {min, . . . ,max}.

2.3 Protocol description

An election is created by naming an election officer, selecting a set of trustees,

and generating a distributed public key pair. The election officer publishes, on

the bulletin board, the public part of the trustees’ key (and proof of correct

construction), the candidate list t̃ = (t1, . . . , t`) ∪ {ε} (where ε represents a

vote of abstention), and the list of eligible voters ĩd = (id1, . . . , idn); the officer

also publishes the election fingerprint, that is, the hash of these parameters.

Informally, the steps that participants take during a run of Helios are as follows.

1. The voter launches a browser script that downloads the election parame-

ters and recomputes the election fingerprint. The voter should verify that

the fingerprint corresponds to the value published on the bulletin board.

(This ensures that the script is using the trustees’ public key, in particular,

it helps prevent encrypting a vote with an adversary’s public key. Such

attacks have been discussed in the context of Direct Anonymous Attesta-

tion by Rudolph [77]; although, the vulnerability was discounted, in the

trusted computing setting, by Leung, Chen & Mitchell [64].)

2. The voter inputs her vote v ∈ t̃ to the browser script, which creates a ballot

consisting of her vote encrypted by the trustees’ public key, and a proof

that the ballot represents a permitted vote (this is needed because the

ballots are never decrypted individually, in particular, it prevents multiple

votes being encoded as a single ballot). The ballot is displayed to the voter.

3. The voter can audit the ballot to check if it really represents a vote for her

chosen candidate; if she decides to do this, then the script provides her with

the random data used in the ballot creation. She can then independently
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reconstruct her ballot and verify that it is indeed well-formed. The script

provides some practical resistance against vote selling by refusing to cast

audited ballots. See Benaloh [12, 13] for further details on ballot auditing.

4. When the voter has decided to cast her ballot, the script submits it to

the election officer. The election officer authenticates the voter and checks

that she is eligible to vote. The election officer also verifies the proof and

publishes the ballot, appended with the voter’s identity id, on the bulletin

board. (In practice, the election officer also publishes the hash of the

ballot, we omit this detail for brevity.)

5. Individual voters can check that their ballots appear on the bulletin board

and, by verifying the proof, observers are assured that ballots represent

permitted votes.

6. After some predefined deadline, the election officer homomorphically com-

bines the ballots and publishes the encrypted tally on the bulletin board.

Anyone can check that tallying is performed correctly.

7. Each of the trustees publishes a partial decryption of the encrypted tally,

together with a signature of knowledge proving the partial decryption’s

correct construction. Anyone can verify these proofs.

8. The election officer decrypts the tally and publishes the result. Anyone

can check this decryption.

Formally, Step 2 is defined in Figure 1. (For simplicity the ballot construc-

tion algorithm in Figure 1 considers a vote v ∈ t̃, this can be generalised [7]

to consider a vote ṽ ⊆ t̃.) Checking voter eligibility (Step 4) is beyond the

scope of Helios and Adida et al. [7] propose the use of existing infrastructure.

The remaining steps follow immediately from the application of cryptographic

primitives (see Section 2.1 for details).

2.4 Software implementation

Helios 3.0 is an extension of Helios 2.0 which adds numerous practical features,

including: integration of authentication with various web-services (for example,

9



Figure 1 Ballot construction by the browser script

Input: Cryptographic parameters (p, q, g), public key h, candidate list t̃ = (t1,
. . . , t`) ∪ {ε} and vote v.

Output: Encrypted vote (a1, b1), . . . , (a`, b`), signatures of knowledge
(ā1, b̄1, c̄1, s̄1, ā

′
1, b̄
′
1, c̄
′
1, s̄
′
1), . . . , (ā`, b̄`, c̄`, s̄`, ā

′
`, b̄
′
`, c̄
′
`, s̄
′
`) and signature of

knowledge (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′), where the signatures are constructed us-
ing the algorithm presented in Section 2.2.

1. If v 6∈ t̃ then the script terminates.

2. Encode the vote v as a bitstring. For all 1 ≤ i ≤ `, let

mi =

{
1 if v = ti
0 otherwise

3. The bitstring representing the vote is encrypted. For all 1 ≤ i ≤ `, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗q .

4. For all 1 ≤ i ≤ `, let (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i) be a signature of knowledge

demonstrating that the ciphertext (ai, bi) contains either 0 or 1, that is,
each candidate can receive at most one vote.

5. Let (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) be a signature of knowledge demonstrating that
the ciphertext (a1 · . . . · a`, b1 · . . . · b`) contains either 0 or 1, that is, at
most one candidate receives one vote.

Facebook, GMail and Twitter), bulk voter registration using pre-existing elec-

toral rolls, and simplification of administration with multiple trustees. Helios 3.0

has been implemented and is publicly available: http://heliosvoting.org/.

3 Attacking ballot secrecy

Ballot secrecy means “a voter’s vote is not revealed to anyone” and this section

shows that Helios does not satisfy this definition by presenting an attack which

allows an adversary to reveal a voter’s vote (Section 5 will show that formal def-

initions of ballot secrecy [56, 37, 9] are also violated). Intuitively, an adversary

may identify a voter’s ballot on the bulletin board (using the voter’s identity id)

and recast this ballot by corrupting dishonest voters. The multiple occurrences
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of the voter’s ballot will magnify the voter’s contribution to the election out-

come, thereby leaking information that can be exploited to violate the voter’s

privacy. The remainder of this section proceeds as follows: a description of the

attack for three voters appears in Section 3.1 and variants are considered in

Section 3.2, the attack is generalised to arbitrary many voters in Section 3.3

and the threat to real elections is also considered.

3.1 Attack description

Let us consider an election with candidates t1, . . . , t` and three eligible voters

who have identities id1, id2 and id3. Suppose that voters id1 and id2 are honest,

and id3 is a dishonest voter controlled by the adversary. Further assume that the

honest voters have cast their ballots. The bulletin board entries are as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

where for i ∈ {1, 2} we have

ciphi = (ai,1, bi,1), . . . , (ai,`, bi,`)

spki = (āi,1, b̄i,1, c̄i,1, s̄i,1, ā
′
i,1, b̄

′
i,1, c̄

′
i,1, s̄

′
i,1),

. . . , (āi,`, b̄i,`, c̄i,`, s̄i,`, ā
′
i,`, b̄

′
i,`, c̄

′
i,`, s̄

′
i,`)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)

The value ciphi is the ith voter’s encrypted vote, spki demonstrates that ci-

phertexts (ai,1, bi,1), . . . , (ai,`, bi,`) contain either 0 or 1 (that is, the voter has

assigned at most one vote to each candidate), and spk′i demonstrates that

(ai,1 · . . . · ai,`, bi,1 · . . . · bi,`) contains either 0 or 1 (that is, the voter has

voted for at most one candidate).

Replaying a ballot. The adversary observes the bulletin board and selects

ciphk, spkk, spk
′
k such that idk is the voter whose privacy will be compromised,

where k ∈ {1, 2}. The adversary casts the ballot ciphk, spkk, spk
′
k and it imme-

diately follows that the bulletin board is composed as follows:

id1, ciph1, spk1, spk
′
1

id2, ciph2, spk2, spk
′
2

id3, ciphk, spkk, spk
′
k

11



It is trivial to observe that each bulletin board entry represents a permitted vote,

that is, spk1, spk
′
1, spk2, spk

′
2, spkk, spk

′
k all contain valid signatures of knowl-

edge. It follows that Helios does not satisfy ballot independence: observing

another voter’s interaction with the election system allows a voter to cast the

same vote. The absence of ballot independence will now be exploited to violate

privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-

crypted tally (a1,1 · a2,1 · ak,1, b1,1 · b2,1 · bk,1), . . . , (a1,` · a2,` · ak,`, b1,` · b2,` · bk,`)
and, given the partial decryptions, these ciphertexts can be decrypted to reveal

the number of votes for each candidate. Since there will be at least two votes

for the candidate voter idk voted for, the voter’s vote can be revealed and hence

privacy is not preserved. Moreover, the vote of the remaining honest voter will

also be revealed.

A video demonstrating the attack against the Helios 3.0 implementation has

been produced [90].

In the aforementioned attack description, the ballots cast by two voters are

identical. This behaviour is not detected by Helios and, prior to our work, hu-

man detection – for example, by auditing – would have been improbable. Of

course, further to our results, the aforementioned attack can be detected by

searching for duplicated ballots. For a covert attack, the adversary may replay

ballots in different elections, when the trustees’ public key is reused and the can-

didate lists for each election are of equal length. However, this is not generally

possible in Helios since fresh keys should be used for each election. The follow-

ing section introduces further variants of our attack that exploit malleability

to derive distinct ballots, thereby demonstrating that searching for duplicate

ballots is insufficient to ensure ballot secrecy.

3.2 Variants exploiting ballot malleability

Let us consider variants of our attack under the assumptions presented in the

previous section: we have an election with candidates t1, . . . , t` and three eligible

voters such that the two honest voters have cast their votes using identities id1

and id2, and the remaining dishonest voter is controlled by the adversary, where

the dishonest voter has the identity id3. Given that we will consider ballot
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malleability, we refine our notation and consider the bulletin board entries of

honest voters as follows:

id1, ciph1,1, . . . , ciph1,`, spk1,1, . . . , spk1,`, spk
′
1

id2, ciph2,1, . . . , ciph2,`, spk2,1, . . . , spk2,`, spk
′
2

where for all i ∈ {1, 2} and j ∈ {1, . . . , `} we have

ciphi,j = (ai,j , bi,j)

spki,j = (āi,j , b̄i,j , c̄i,j , s̄i,j , ā
′
i,j , b̄

′
i,j , c̄

′
i,j , s̄

′
i,j)

spk′i = (āi, b̄i, c̄i, s̄i, ā
′
i, b̄
′
i, c̄
′
i, s̄
′
i)

The value ciphi,j is the ith voter’s encrypted vote for the candidate tj (that

is, ciphi,j is a ciphertext containing the plaintext 1 if the voter voted tj , and 0

otherwise), spki,j demonstrates that the ciphertext ciphi,j contains either 0 or

1, and spk′i is defined as before, namely, it demonstrates that (ai,1 · . . . ·ai,`, bi,1 ·
. . . · bi,`) contains either 0 or 1. In the remainder of this section we shall assume

that the voter under attack casts the Ballot B0, namely,

idk, ciphk,1, . . . , ciphk,`, spkk,1, . . . , spkk,`, spk
′
k (B0)

where k ∈ {1, 2}.

3.2.1 Integer representation attack

Given the Ballot B0, the adversary selects integers r1, r
′
1, . . . , r`, r

′
`, r, r

′ ∈ N and

constructs the following related ballot, namely,

ciphk,1, . . . , ciphk,`,�spkk,1, . . . ,
�spkk,`,

�spk
′
k (B1)

where �spk
′
k = (āk, b̄k, c̄k, s̄k + r · q, ā′k, b̄′k, c̄′k, s̄′k + r′ · q) and for all j ∈ {1, . . . , `}

we have�spkk,j = (āk,j , b̄k,j , c̄k,j , s̄k,j+rj ·q, ā′k,j , b̄′k,j , c̄′k,j , s̄′k,j+r′j ·q). Ballot B1

adds multiples of q to the response components of Ballot B0, this changes the

ballot but not the vote, because the ciphertexts that encrypt the vote remain

unchanged. It follows that Ballot B1 can be cast by the adversary as a vote

for the same candidate as the voter with identity idk selected and privacy can

be violated as described in Section 3.1. This might be considered an oversight,

rather than a theoretical issue, because the ballots are identical if considered as

13



group elements.

3.2.2 Permutation attacks

Given the Ballot B0, the adversary selects a permutation π on {1, . . . , `}, where

π is not the identity, and proceeds as follows.

Constructing a related ballot. The adversary constructs the Ballot B2:

ciphk,π(1), . . . , ciphk,π(`), spkk,π(1), . . . , spkk,π(`), spk
′
k (B2)

Ballot B2 permutes the ciphertexts included in Ballot B0, thereby deriving a

ballot for a different candidate (with the exception of an abstention vote). The

adversary can cast Ballot B2 and it is trivial to witness that this ballot will be

accepted by the bulletin board, since spkk,π(1), . . . , spkk,π(`), spk
′
k are all valid

signatures of knowledge. It follows that we have shown another technique to

violate ballot independence in Helios: observing another voter’s interaction with

the election system allows a voter to cast a different vote, with the exception

of abstention votes which will be the same. (The ability to cast different votes

may be of independent interest, for example, a voter can cast a distinct vote

from their boss.) The absence of ballot independence can be exploited to violate

privacy.

Violating privacy. The decrypted tally reveals the number of votes for each

candidate and this data can be used to discover how each voter voted. First, if

the tally contains votes for three distinct candidates, then there exists integers

i, j ∈ {1, . . . , `} such that π(i) = j and the voter with identity idk voted for

candidate ti. Secondly, if the tally contains two votes for a candidate and

one vote for another candidate, then the voter with identity idk voted for the

candidate with two votes. Finally, in the case where the outcome is unanimous,

every vote is revealed2

2Unanimous election results highlight an inadequacy in our informal definition of privacy:
as stated (Section 1), our definition is unsatisfiable. This issue is overcome in our formal
privacy definition (Section 5.3).
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3.2.3 Malformed ciphertext attack

Given the Ballot B0, the adversary can select an integer v ∈ {1, . . . , `} and

proceed as follows.

Constructing a related ballot. The adversary constructs the Ballot B3,

namely,

(1, 1), . . . , (1, 1)︸ ︷︷ ︸
v − 1 times

, (ak,v, bk,v), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
`− v times

,

�spk1, . . . ,
�spkv−1, spkk,v,

�spkv+1, . . . ,
�spk`, spkk,v (B3)

such that for all j ∈ {1, . . . , v−1, v+1, . . . , `} we have�spkj = (âj , b̂j , ĉj , ŝj , â
′
j , b̂
′
j ,

ĉ′j , ŝ
′
j) where ĉ′j , ŝ

′
j , ŝj ∈R Z∗q and

âj = gŝj mod p

â′j = gŝ
′
j mod p

b̂j = hŝj mod p

b̂′j = hŝ
′
j · gĉ

′
j mod p

ĉj = H(âj , b̂j , â
′
j , b̂
′
j)− ĉ′j mod q

By definition of Ballot B0, it is trivial to witness that spkk,v is a valid proof for

(ak,v, bk,v) and, therefore, spkk,v is a valid proof for the homomorphic combina-

tion of ciphertexts encapsulated in Ballot B3. Moreover, the following lemma

demonstrates that for all j ∈ {1, . . . , v − 1, v + 1, . . . , `} we have �spkj is valid

proof for (1, 1). We stress that Lemma 1 does not violate the soundness property

of our signature of knowledge scheme for disjunctive proofs of equality between

discrete logs (Section 2.2) because logg a = logh b or logg a = logh b/g
m holds

for (a, b) = (g0, h0).

Lemma 1. The signature (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is valid for (1, 1), where c̄′, s̄′, s̄ ∈R
Z∗q , ā = gs̄ (mod p), ā′ = gs̄

′
(mod p), b̄ = hs̄ (mod p), b̄′ = hs̄

′ · gc̄′ (mod p),

and c̄ = H(ā, b̄, ā′, b̄′)− c̄′ (mod q).

Proof. Suppose the signature (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is defined above and let (a, b) =

(1, 1). We must show that (a, b) and (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) satisfy the condi-

tions of the verification algorithm described in Section 2.2. Since ac̄ = 1 and

(b/g0)c̄ = 1, we trivially derive gs̄ ≡ ā ·ac̄ (mod p) and hs̄ ≡ b̄ ·(b/g0)c̄ (mod p).
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Moreover, since ac̄
′

= 1 and (b/g1)c̄
′

= g−c̄
′
, it follows that gs̄

′ ≡ ā′ ·ac̄′ (mod p)

and hs̄
′ ≡ b̄′ · (b/g1)c̄

′
(mod p). Finally, recall c̄ = H(ā, b̄, ā′, b̄′) − c̄′ (mod q)

and therefore H(ā, b̄, ā′, b̄′) ≡ c̄+ c̄′ (mod q), concluding our proof.

It follows immediately that the adversary’s Ballot B3 will be accepted by the

bulletin board, hence, we have shown another technique to violate ballot in-

dependence in Helios: observing another voter’s interaction with the election

system allows a voter to cast a meaningfully related vote, in particular, if a

voter votes for candidate tv or ε, then the same vote can be cast, otherwise, a

different vote (namely, ε) can be cast. The absence of ballot independence can

be exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-

crypted tally (A1, B1), . . . , (A`, B`) defined as follows:

(a1,1 · a2,1, b1,1 · b2,1), . . . , (a1,v−1 · a2,v−1, b1,v−1 · b2,v−1),

(a1,v · a2,v · ak,v, b1,v · b2,v · bk,v),

(a1,v+1 · a2,v+1, b1,v+1 · b2,v+1), . . . , (a1,` · a2,`, b1,` · b2,`)

Given the partial decryptions, the tally can be decrypted to reveal the number

of votes for each candidate. If the tally contains two votes for some candidate,

one vote for some other candidate, and no votes for abstention, then the honest

voter with identity idk must have cast a vote for the candidate with two votes

and hence privacy is not preserved. A straightforward derivative of this attack

allows privacy to be violated when candidate tv receives one vote, since the

adversary learns that the voter with identity idk did not vote for this candidate

and therefore must have voted for the candidate with the remaining vote.

3.2.4 Homomorphic attack

Following from the methodology introduced by the malformed ciphertext attack

(Section 3.2.3), we propose an attack that allows an adversary to construct a

ballot related to an abstention vote cast by an honest voter. The attack proceeds

as follows.
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Constructing a related ballot. The adversary constructs the Ballot B4,

namely,

(ak,1 · . . . · ak,`, bk,1 · . . . · bk,`), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
`− 1 times

, spk′k,
�spk2, . . . ,

�spk`, spk
′
k (B4)

where for all 2 ≤ i ≤ ` the signature �spki is constructed in accordance with

the definition given in Lemma 1. It follows immediately for all 2 ≤ i ≤ ` that

�spki is a valid proof for (1, 1). Moreover, by definition of Ballot B0, it is trivial

to witness that spk′k is a valid proof for (ak,1 · . . . · ak,`, bk,1 · . . . · bk,`) and,

therefore, spk′k is a valid proof for the homomorphic combination of ciphertexts

encapsulated in the Ballot B4. It follows that the adversary’s Ballot B4 will be

accepted by the bulletin board, hence, we have shown another technique to cast

a meaningfully related vote, in particular, if a voter cast an abstention vote,

then the same vote can be cast, otherwise, a different vote (namely, a vote for

candidate t1) can be cast. The absence of ballot independence can again be

exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-

crypted tally (a1,1 · a2,1 · ak,1 · . . . · ak,`, b1,1 · b2,1 · bk,1 · . . . · bk,`), (a1,2 · a2,2, b1,2 ·
b2,2) . . . , (a1,` · a2,`, b1,` · b2,`). If the decrypted tally contains two votes for ab-

stention and one vote for some candidate, then the voter with identity idk cast

a vote for abstention and hence privacy is not preserved.

3.2.5 Further malleability attacks

A further variant that exploits malleability has been introduced by Bernhard [16]

and, concurrently, Desmedt & Chaidos [40]. We recall the details here for com-

pletion. Given the Ballot B0, the adversary selects r1, . . . , r` ∈ N and constructs

the Ballot B5, namely,

�ciphk,1, . . . ,
�ciphk,`,

�spkk,1, . . . ,
�spkk,`,

�spk
′
k (B5)
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such that for all j ∈ {1, . . . , `} we have

�ciphk,j = (ak,j · grj , bk,j · hrj )

�spkk,j = (āk,j , b̄k,j , c̄k,j , s̄k,j + rj · ck,j , ā′k,j , b̄′k,j , c̄′k,j , s̄′k,j + rj · c̄k,j)
�spk
′
k = (āk, b̄k, c̄k, s̄k + r · c̄k, ā′k, b̄′k, c̄′k, s̄′k + r · c̄′k)

where r = r1 + . . .+r`. As shown by Bernhard [16], the signatures of knowledge

�spkk,1, . . . ,
�spkk,`,

�spk
′
k are valid (Lemma 2).

Lemma 2. If (ā, b̄, c̄, s̄, ā′, b̄′, c̄′, s̄′) is a signature for (a, b), then (ā, b̄, c̄, s̄ + r ·
c̄, ā′, b̄′, c̄′, s̄′ + r · c̄′) is a signature for (a · gr, b · hr), where r ∈ N.

It follows that the adversary’s ballot (B5) will be accepted by the bulletin board

and privacy can be violated as described in Section 3.1.

3.2.6 Attacks against the software implementation of Helios

The variants described in Sections 3.2.1 – 3.2.5 have been successfully launched

against the Helios 3.0 implementation. Moreover, given Ballot B0 as input, a

PHP script has been written to construct each of the related Ballots B1 – B5.

3.3 Generalised attack and French election case study

Our attack (Section 3.1) demonstrates that the ballot of an arbitrary voter can

be replayed by any other voter and we have shown how privacy can be violated

in elections with three voters. However, in general, the attack does not apply to

elections with more than three voters, nonetheless, some information is leaked,

and colluding voters can replay sufficiently many ballots to violate a voter’s

privacy. We will now discuss the feasibility of compromising ballot secrecy in

a real-world election, focusing on the cost of an attack in French legislative

elections, where each district elects a representative for the French National

Assembly. (We limit discussion to the replay attack described in Section 3.1 for

simplicity and stress that the variants of our attack presented in Section 3.2 can

be similarly used in elections with more than three voters.) Districts have several

polling stations and each polling station individually announces its tally [47];

these tallies are published in local newspapers. The publication of tallies is

typical of French elections at all levels, for example, from the election of mayor,

to the presidential election.
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In this (standard) voting configuration, an adversary can violate the ballot

secrecy of a given voter by corrupting voters registered at the same polling

station (for example, a coalition of neighbours or a family). The corrupted

voters replay the ballot of the voter under attack, as previously explained. The

motivation for restricting the selection of corrupted voters to the same polling

station is twofold. Firstly, fewer corrupt voters are required to significantly

influence the tally of an individual polling station (in comparison to influencing

the election outcome). Secondly, it is unlikely to change the district’s elected

representative, because a candidate will receive only a few additional votes in the

district, it follows that coercing voters to sacrifice their vote, for the purposes

of the attack, should be easier. In the remainder of this section, we discuss

how many corrupt voters are required to violate ballot secrecy – by making a

significant change in the tally of a polling station – in an arbitrary district of

Aulnay-sous-Bois and a rural district in Toul.

3.3.1 Ballot secrecy in Aulnay-sous-Bois

Using historic data and/or polls, it is possible to construct the expected dis-

tribution of votes. For simplicity, let us assume the distribution of votes per

polling station is the average of the 2010 tally (Table 1), and that if the adver-

sary can increase the number of votes for a particular candidate by more than

σ (by replaying a voter’s ballot), then this is sufficient to determine that the

voter voted for that candidate. In addition, suppose that the adversary corrupts

abstaining voters and therefore we do not consider the redistribution of votes.

We remark that corrupting abstaining voters may be a fruitful strategy, since

abstaining voters do not sacrifice their vote by participating in an attack.

Table 2 presents the expected distribution of votes, and includes the number

of voters that an adversary must corrupt to determine if a voter voted for

a particular candidate, for various values of σ. We shall further assume that

participation in the region is consistent with 2010, that is, 291 of the 832 eligible

voters are expected to participate. It follows that 50 voters corresponds to

approximately 6% of the Aulnay-sous-Bois electorate, and 10 voters corresponds

to approximately 1%. Our results therefore demonstrate that the privacy of a

voter can be compromised by corrupting a small number of voters. In particular,

for medium-size parties (in terms of votes received) – including, for example,

FN and Europe Ecologie – it is sufficient to corrupt 19 voters to see the number
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Party Tally
PS 4120
UMP 3463
FN 1933
Europe Eco. 1921
Front de gauche 880
NPA 697
MODEM 456
Debout la République 431
Alliance école 193
LO 156

Émergence 113
Liste chrétienne 113

Table 1: 2010 legislative election results in Aulnay-sous-Bois [48]

of votes increase by 50%. Furthermore, given the low turn-out (541 voters are

expected to abstain), it seems feasible to corrupt abstaining voters, and therefore

an attack can be launched without any voter sacrificing their vote.

Limitations. For such an attack based upon a statistical model, we acknowl-

edge that this model is rather näıve. For example, the attacker can never be

certain that the distribution of votes follows from a previous election or a poll, in

particular, differences may arise from changes in voter behaviour. Nevertheless,

we believe our model is sufficiently indicative to illustrate the real threat of an

attack against privacy. A definitive mathematical analysis could be considered

in the future.

Cases of complete privacy breach. The probabilistic nature of these at-

tacks may introduce sufficient uncertainty to prevent privacy violations, and we

will consider voting configurations where an adversary can definitively learn a

voter’s vote. Observe that if an attacker can corrupt half of the voters at a

polling station, then the vote of an arbitrary voter can be revealed. Moreover,

the cost of this attack can be reduced. In particular, if n dishonest voter’s replay

voter V’s ballot, then it is possible to deduce that V did not vote for any candi-

date that received strictly less than n + 1 votes. This leaks information about

voter V’s chosen candidate and in cases where exactly one candidate received

more than n votes, the voter’s vote can be deduced.
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3.3.2 Ballot secrecy in small polling stations

The difficulties of large scale corruption may prohibit our attack in the majority

of polling stations, however, our attack is feasible in small polling stations found

in rural districts. For example, let us consider the 2007 legislative elections in

the district of Toul [45]. This district has 75350 eligible voters registered at

193 polling stations. Accordingly, the average polling station has 390 registered

voters, but the variance is large. Indeed, 33 polling stations have between 50

and 99 voters, 9 polling stations have less then 50 voters, and the smallest two

polling stations have 8, respectively 16, voters. Moreover, the attack is simplified

by non-participating voters. In these small polling stations it is thus sufficient

to corrupt a small number of voters to reveal a voter’s vote, furthermore, the

final outcome of the election would not change as it is based on 75350 eligible

voters.

4 Solution: Ballot independence

Our attacks exploit the possibility of replaying a voter’s ballot, or a variant of

the voter’s ballot, without detection, and can be attributed to the lack of ballot

independence in Helios. This section sketches some possible solutions to ensure

ballot independence.

4.1 Ballot weeding

The ballots cast by the adversary in our attacks can all be identified. Accord-

ingly, we propose a solution which identifies and rejects such ballots. First, we

assume that the signature of knowledge scheme (Section 2.2) is revised to ensure

non-malleability, in particular, this will ensure that the response components of

signatures cannot be changed. Secondly, we assume that the decryption algo-

rithm will only decrypt ciphertexts (a, b), where a, b ∈ Z∗p. Finally, the election

officer should reject any ballot that contains a ciphertext that already exists on

the bulletin board (this check can be performed in Step 4 of the protocol execu-

tion, see Section 2.3). Witness that our first constraint eliminates the attacks

described in Sections 3.2.1 & 3.2.5, the second eliminates the attacks described

in Sections 3.2.3 & 3.2.4, and the final constraint eliminates those in Sections

3.1 & 3.2.2 (the attack described in Section 3.2.3 can also be eliminated by the
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final constraint). This solution is simple and can easily be implemented in a

future version of Helios.

4.2 Binding ballots to voters

Ballot weeding requires additional cryptographic assumptions and a special

mechanism to reject ballots meaningfully related to those already present on

the bulletin board. In this section, we propose techniques to prevent the con-

struction of meaningfully related ballots that will be accepted by the bulletin

board, namely, we bind the link between a voter and her ballot; it follows that

any meaningfully related ballot constructed by the adversary will be rejected

by the bulletin board because the ballot is not bound to the adversary.

Unique identifiers. Based upon inspiration from Gennaro [50, §4.2], Cramer,

Gennaro & Schoenmakers [33], and Damg̊ard, Jurik & Nielsen [34, 35], we

use unique identifiers to ensure that signatures of knowledge are associated

with distinct voters. This is achieved by including the voter’s identity in the

challenges used by signatures of knowledge. More precisely, given a voter’s

identity id, the sign algorithm (Section 2.2) is modified as follows: on input

(a, b), such that a ≡ gr mod p and b ≡ hr · gm mod p, let challenge cm =

H(amin, bmin, . . . , amax, bmax, id)−
∑
i∈{min,...,m−1,m+1,...,max} ci (mod q), where val-

ues amin, bmin, . . . , amax, bmax and c1, . . . , cm−1, cm+1, . . . , cm are defined as before.

For correctness, the verification algorithm must also be modified, in particular,

for candidate signatures constructed by the voter with identity id, the verifier

should check H(amin, bmin, . . . , amax, bmax, id) ≡
∑

min≤i≤max ci (mod q).

Eligibility verifiability. The electronic voting protocol proposed by Juels,

Catalano & Jakobsson [54] – which has been implemented by Clarkson, Chong

& Myers [28, 27] as Civitas – requires ballots to be bound to private voter

credentials. This provides eligibility verifiability [57]: anyone can check that

each ballot published on the bulletin board was cast by a registered voter and

at most one ballot is tallied per voter. It is likely that eligibility verifiability

enforces ballot independence, but the provision of eligibility verifiability appears

to be expensive, in particular, Juels, Catalano & Jakobsson and Clarkson, Chong

& Myers assume the existence of an infrastructure for voter credentials.

23



4.3 Critique of our solutions

Our ballot weeding solution is particularly attractive because it adheres to Be-

naloh’s notion of ballot casting assurance [12, 13] which asserts that the ballot

encryption device (the browser script in this instance) does not know the voter’s

identity. The ballot casting assurance principle is important because knowledge

of the voter’s identity could be used to infer the likelihood of auditing and this

information can be used to influence the behaviour of the ballot encryption de-

vice, in particular, if a ballot is unlikely to be audited, then the device may act

maliciously, for example, by encrypting a different vote. By comparison, the

unique identifiers solution would necessarily require that the voter’s identity be

revealed to the ballot encryption device. Moreover, extending Helios to pro-

vide eligibility verifiability would require a considerable extension to the Helios

code-base. Accordingly, we adopt the ballot weeding solution and, in the next

section, we show that this is sufficient to ensure ballot secrecy, in the formal

setting.

5 Formal proof of ballot secrecy

In this section, we formally prove that our solution is sufficient for ballot secrecy

using the applied pi calculus [1, 78].

5.1 Applied pi calculus

Let us recall the applied pi calculus. We assume an infinite set of names

a, b, c, . . . , k, . . . ,m, n, . . . , s, . . ., an infinite set of variables x, y, z, . . ., and a

signature Σ consisting of a finite set of function symbols, each with an asso-

ciated arity. We use metavariables u,w to range over both names and variables.

Terms L,M,N, T, U, V are built by applying function symbols to names, vari-

ables, and other terms. We write {M/x} for the substitution that replaces the

variable x with the term M . Arbitrarily large substitutions can be written as

{M1/x1, . . . ,Ml/xl} and the letters σ and τ range over substitutions. We write

Nσ for the result of applying σ to the free variables of term N . A term is ground

when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is, a set of

equations of the form M = N , where the terms M,N are defined over the
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signature Σ. We define equality modulo the equational theory, written =E , as

the smallest equivalence relation on terms that contains E and is closed under

application of function symbols, substitution of terms for variables and bijective

renaming of names. We write M =E N when the equation M = N is in the

theory E, and keep the signature implicit. When E is clear from its usage, we

may abbreviate M =E N as M = N . The negation of M =E N is denoted

M 6=E N (and similarly abbreviated M 6= N).

Processes and extended processes are defined in the usual way (Figure 2). We

write ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν ul.
The active substitution {M/x} can replace the variable x for the term M in ev-

ery process it comes into contact with and this behaviour can be controlled

by restriction, in particular, the process ν x.({M/x} | P ) corresponds exactly

to let x = M in P . Arbitrarily large active substitutions can be obtained by

parallel composition and we occasionally abbreviate {M1/x1} | . . . | {Ml/xl} as

{M1/x1, . . . ,Ml/xl} or {M̃/x̃}. We also use σ and τ to range over active substi-

tutions, and write Nσ for the result of applying σ to the free variables of N .

Extended processes must have at most one active substitution for each variable

and there is exactly one when the variable is under restriction. The only minor

change compared to [1] is that conditional branches now depend on formulae

φ, ψ ::= M = N |M 6= N | φ ∧ ψ. If M and N are ground, we define [[M = N ]]

to be true if M =E N and false otherwise. The semantics of [[ ]] is then extended

to formulae in the standard way.

The scope of names and variables are delimited by binders u(x) and ν u. The

set of bound names is written bn(A) and the set of bound variables is written

bv(A); similarly we define the set of free names fn(A) and free variables fv(A).

Occasionally, we write fn(M) (and fv(M) respectively) for the set of names (and

respectively variables) which appear in term M . An extended process is closed

when every variable x is either bound or defined by an active substitution.

We define a context C[ ] to be an extended process with a hole. We ob-

tain C[A] as the result of filling C[ ]’s hole with the extended process A. An

evaluation context is a context whose hole is not in the scope of a replication,

a conditional, an input, or an output. A context C[ ] closes A when C[A] is

closed.

A frame, denoted ϕ or ψ, is an extended process built from the null process

0 and active substitutions {M/x}, which are composed by parallel composition
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Figure 2 Syntax for processes

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

and restriction. The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ

exports, that is, the set of variables x for which ϕ contains an active substitution

{M/x} such that x is not under restriction. Every extended process A can be

mapped to a frame ϕ(A) by replacing every plain process in A with 0.

5.1.1 Operational semantics

The operational semantics are defined by three relations: structural equiva-

lence (≡), internal reduction (−→), and labelled reduction (
α−→). These relations

satisfy the rules in Figure 3 and are defined such that: structural equivalence

is the smallest equivalence relation on extended processes that is closed by α-

conversion of both bound names and bound variables, and closed under ap-

plication of evaluation contexts; internal reduction is the smallest relation on

extended processes closed under structural equivalence and application of eval-

uation contexts; and for labelled reductions α is a label of the form c(M), c〈u〉,
or ν u.c〈u〉 such that u is either a channel name or a variable of base type.

5.1.2 Equivalence

The definition of observational equivalence [1] quantifies over all contexts which

makes proofs difficult, therefore we adopt labelled bisimilarity in this article.

Labelled bisimilarity relies on an equivalence relation between frames, called
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Figure 3 Semantics for processes

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u 6∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Comm c〈x〉.P | c(x).Q −→ P | Q

Then if φ then P else Q −→ P if [[φ]] = true

Else if φ then P else Q −→ Q otherwise

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c〈u〉.P c〈u〉−−−→ P

Open-Atom
A

c〈u〉−−−→ A′ u 6= c

ν u.A
ν u.c〈u〉−−−−−→ A′

Scope
A

α−→ A′ u does not occur in α

ν u.A
α−→ ν u.A′

Par
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

Struct
A ≡ B B

α−→ B′ B′ ≡ A′

A
α−→ A′

static equivalence.

Definition 1 (Static equivalence). Two closed frames ϕ and ψ are statically

equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set of names

ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms
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M,N such that ñ∩(fn(M)∪fn(N)) = ∅, we have Mσ =E Nσ holds if and only if

Mτ =E Nτ holds. Two closed extended processes A,B are statically equivalent,

written A ≈s B, if their frames are statically equivalent; that is, ϕ(A) ≈s ϕ(B).

The relation ≈s is called static equivalence because it only examines the current

state of the processes, and not the processes’ dynamic behaviour. The following

definition of labelled bisimilarity captures the dynamic part.

Definition 2 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest

symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;

2. if A −→ A′, then B −→∗ B′ and A′ R B′ for some B′;

3. if A
α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then

B −→∗ α−→−→∗ B′ and A′ R B′ for some B′.

Definitions of observational equivalence and labelled bisimilarity have been shown

to coincide [65].

5.2 Modelling Helios in applied pi

We start by constructing a suitable signature Σ to capture the cryptographic

primitives used by Helios and define an equational theory E to capture the

relationship between these primitives.

5.2.1 Signature

We adopt the following signature.

Σ = {ok, zero, one,⊥, fst, snd, pair, ∗,+, ◦, partial, checkspk, penc, spk, dec}

Functions ok, zero, one, ⊥ are constants; fst, snd are unary functions; dec, pair,

partial, ∗, +, ◦ are binary functions; checkspk, penc are ternary functions; and

spk is a function of arity four. We adopt infix notation for ∗, +, and ◦.
The term penc(T,N,M) denotes the encryption of plaintext M , using ran-

dom nonceN and key T . The term U∗U ′ denotes the homomorphic combination

of ciphertexts U and U ′, the corresponding operation on plaintexts is written

M + M ′ and N ◦ N ′ on nonces. The partial decryption of ciphertext U using
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key L is denoted partial(L,U). The term spk(T,N,M,U) represents a signa-

ture of knowledge that proves U is a ciphertext under the public key T on the

plaintext M using nonce N and such that M is either the constant zero or one.

We introduce tuples using pairings and, for convenience, we occasionally ab-

breviated pair(M1, pair(. . . , pair(Mn,⊥))) as (M1, . . . ,Mn), and fst(sndi−1(M))

is denoted πi(M), where i ∈ N. We use the equational theory E that asserts

functions +, ∗, ◦ are commutative and associative, and includes the equations:

fst(pair(x, y)) = x (E1)

snd(pair(x, y)) = y (E2)

zero + one = one (E3)

zero + zero = zero (E4)

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain (E5)

dec(partial(xsk, ciph), ciph) = xplain (E6)

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain) (E7)

= penc(xpk, yrand ◦ zrand, yplain + zplain)

checkspk(xpk, ball, spk(xpk, xrand, zero, ball))=ok (E8)

where ball = penc(xpk, xrand, zero)

checkspk(xpk, ball, spk(xpk, xrand, one, ball))=ok (E9)

where ball = penc(xpk, xrand, one)

Equation E6 allows plaintext M to be recovered from ciphertext penc(pk(L), N,

M) given partial decryption partial(L, penc(pk(L), N,M)), when the partial de-

cryption is constructed using the private key L. Equation E7 represents the

homomorphic combination of ciphertexts. The Equations E8 and E9 allow

the verification of signatures of knowledge spk(T,N,M, penc(T,N,M)), when

M ∈ {zero, one}. The remaining equations are standard.

Example 1. Given randomness N,N ′, plaintexts (M,M ′) ∈ {(zero, zero), (zero,

one), (one, zero)}, and public key T , one can construct a signature of knowledge

L = spk(T,N ◦N ′,M+M ′, penc(T,N,M)∗penc(T,N ′,M ′)). Then checkspk ap-
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plied to the public key T , the homomorphically combined ciphertexts penc(T,N,

M) ∗ penc(T,N ′,M ′), and the signature L is equal to ok using Equations E3,

E7, E8, and E9

5.2.2 Helios process specification

In the applied pi calculus, it is sufficient to model the parts of the voting system

which need to be trusted for ballot secrecy; all the remaining parts of the system

are controlled by the adversarial environment. Accordingly, we assume the

existence of at least two honest voters A, B; since this avoids the scenario where

ballot secrecy of an individual voter is compromised by collusion amongst all

the remaining voters. In addition, the following trust assumptions are required.

• At least one trustee is honest

• The election officer runs the bulletin board honestly:

– Voters A, B have authentic channels with the bulletin board

– Signatures of knowledge are checked*

– Ballots which contain a ciphertext that already exists on the bulletin

board are rejected*

– The tally is correctly computed*

– The trustees have an authentic channel with the bulletin board

• The browser script is trusted and has the correct public key of the election

(Assumptions marked with * could be performed by an honest trustee, rather

than the bulletin board.) Although neither voters nor observers can verify that

there exists an honest trustee, an assurance of trust is provided by distribution.

The necessity to trust the election officer to run the bulletin board is less de-

sirable and work-in-progress [73] aims to weaken this assumption; moreover, to

further distribute trust assumptions, the trustees could also check signatures

and tallying. Finally, trust in the browser script can be obtained by using

software written by a reputable source or writing your own code.

The trusted components are modelled by the administration process Aφ`,n

and voting process V` defined in Figure 4. For generality, the voting process V`

is parametrised by the number of candidates `. Similarly, the administration
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Figure 4 Helios process specification

Let ` be some number of candidates, n ≥ 2 be some number of voters, and φ
be a Helios process specification. The administration process Aφ`,n and voting
process V` are defined below.

V` = ν r1 .
let ciph1 = penc(zpk, r1, x

vote
1 ) in

let spk1 = spk(zpk, r1, x
vote
1 , ciph1)) in

...
ν r` .
let ciph` = penc(zpk, r`, x

vote
` ) in

let spk` = spk(zpk, r`, x
vote
` , ciph`)) in

let r̂ = r1 ◦ · · · ◦ r` in

let ĉiph = ciph1 ∗ · · · ∗ ciph` in

let v̂ote = xvote1 + · · ·+ xvote` in

let ŝpk = spk(zpk, r̂, v̂ote, ĉiph) in

xauth〈(ciph1, . . . , ciph`, spk1, . . . , spk`, ŝpk)〉

Aφ`,n = ν skT , a1, a2, d . ( | BBφ`,n | T` | {pk(skT )/zpk})

BBφ`,n = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .
a3(y3) . if φ`,2{y3/yballot} then
· · · an(yn) . if φ`,n−1{yn/yballot} then
let tally1 = π1(y1) ∗ · · · ∗ π1(yn) in
· · · let tally` = π`(y1) ∗ · · · ∗ π`(yn) in

d〈(tally1, . . . , tally`)〉 .
d(ypartial) .
c〈ypartial〉 .
c〈(dec(π1(ypartial), tally1), . . . , dec(π`(ypartial), tally`))〉

T` = d(ytally) .

d〈(partial(skT , π1(ytally)), . . . , partial(skT , π`(ytally)))〉

process Aφ`,n is parametrised by the number of candidates `, the number of voters

n, and a formula φ; the formula φ defines the checks performed by the bulletin

board before accepting a ballot. We will consider several variants of Helios

(including the original Helios 2.0 protocol and our fixed scheme) by considering

suitable formula that we call Helios process specifications.

Definition 3 (Helios process specification). A formula φ`,n̄ is a Helios process

specification, if fv(φ`,n̄) ⊆ {y1, . . . , yn̄, yballot, zpk}.
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The voting process V` contains free variables xvote1 , . . . , xvote` to represent the

voter’s vote (which is expected to be encoded using constants zero and one) and

the free variable xauth represents the channel shared by the voter and the bul-

letin board. The definition of the process V` corresponds to the description of

the browser script (Figure 1). The administration process Aφ`,n is parametrised

by the number of candidates `, the number of voters n, and a Helios process

specification φ. The restricted name skT models the tallier’s secret key and the

public part pk(skT ) is included in the process’s frame. The restricted names a1

and a2 model authentic channels between the two honest voters and the bulletin

board, and the channel name d captures the authentic channel with the honest

trustee. To ensure the adversary has access to messages sent on private chan-

nels, communication is relayed on the public channel c. The sub-process BBφ`,n

represents the bulletin board and T` represents the tallier. The bulletin board

accepts ballots from each voter and checks they are valid using the Helios process

specification φ (this predicate will be discussed in more detail below). Once all

ballots have been submitted, the bulletin board homomorphically combines the

ciphertexts and sends the encrypted tallies to the tallier for decryption. (The

necessity for all voters to participate is included for simplicity, in particular,

our bulletin board does not weed ballots containing invalid proofs.) The tallier

receives the homomorphic combinations of ballots ytally and derives a partial

decryption for each candidate; these partial decryptions are sent to the bulletin

board and the election result is published.

The voting process V` is parametrised by a substitution σ, where variables

xvote1 , . . . , xvote` ∈ dom(σ); these variables must be parametrised to encode a vote

for at most one candidate, that is, there exists at most one integer i ∈ {1, . . . , `}
such that Σ ` xvotei σ = one. Formally, we define valid parametrisations using

the notion of candidate substitutions.

Definition 4 (Candidate substitution). Given some number of candidates `

and a substitution σ, we say σ is a candidate substitution if

Σ ` (xvote1 + · · ·+ xvote` )σ = zero ∨ Σ ` (xvote1 + · · ·+ xvote` )σ = one

It follows immediately that bitstrings m1, . . . ,m` generated during Step 2 of

Figure 1 can be modelled as candidate substitutions.

The application of our model is demonstrated in the following example.
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Example 2. Let ` be some number of candidates, n ≥ 2 be some number

of voters, and φ be a Helios process specification. An election with voters A
and B who select candidate substitutions σ and τ , and such that the other

n − 2 voters are controlled by the adversary, can be modelled by the process

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ].

Ballot validity. In Helios 2.0, the election officer considers a ballot to be valid

if the signature proofs of knowledge hold. Accordingly, we can model the Helios

administration by the process Aφ
orig

`,n where the Helios process specification φorig,

parametrised by the number of candidates `, is defined as follows.

φorig` , checkspk(zpk, π1(yballot) ∗ · · · ∗ π`(yballot), π2·`+1(yballot)) = ok ∧

checkspk(zpk, π1(yballot), π`+1(yballot)) = ok ∧ . . . ∧

checkspk(zpk, π`(yballot), π2·`(yballot)) = ok

We have shown that these checks are insufficient to ensure ballot secrecy (Sec-

tion 3). Our ballot weeding solution, proposed in Section 4.1, additionally re-

quires that the ciphertexts inside the ballot do not appear on the bulletin board.

This revised scheme can be modelled using the Helios process specification φsol,

parametrised by the number of candidates ` and number of ballots already on

the bulletin board n̄, defined as follows.

φsol`,n̄ , φorig` ∧ π2·`+2(yballot) = ⊥ ∧
∧

i,j∈{1,...,`},
k∈{1,...,n̄}

πi(yk) 6= πj(yballot)

We can also model a näıve solution that would consist in weeding only identical

ballots by considering the Helios process specification φident, parametrised by

the number of candidates ` and number of ballots already on the bulletin board

n̄, defined below.

φident`,n̄ , φorig` ∧ π6(yballot) = ⊥ ∧
∧

k∈{1,...,n̄}

yballot 6= yk

We have already shown that removing exact duplicates is insufficient because

it would fail to detect variants of our attack whereby the contents of a ballot

are permuted. In the next section, we formally show that Helios 2.0 (modelled
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using φorig) and the näıve solution (modelled using φident) do not satisfy ballot

secrecy, and that our proposed solution (modelled using φsol) does satisfy ballot

secrecy.

5.3 Formal analysis: Ballot secrecy

Based upon [56, 36, 37], and as previous discussed (see related work in Section 1),

we formalise ballot secrecy for two voters A and B with the assertion that an

adversary cannot distinguish between a situation in which voter A votes for

candidate t and voter B votes for candidate t′, from another situation in which

A votes t′ and B votes t. Formally, this is captured by Definition 5.

Definition 5 (Ballot secrecy). Given a Helios process specification φ, we say

ballot secrecy is satisfied if for all integers ` ∈ N∗ and n ≥ 2, and for all

candidates substitutions σ and τ , we have

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ] ≈l Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ]

The ballot secrecy definition proposed by Delaune, Kremer & Ryan considered

a vote to be an arbitrary name, whereas a vote in our setting must be a series of

the constant symbols zero and one, such that their combination by application

of the function + is also a constant zero and one; it follows that Definition 5 is

a straightforward variant of the original.

The Helios 2.0 protocol does not satisfy our privacy definition (Lemma 3)

and näıve weeding solutions are also insufficient (Lemma 4).

Lemma 3. The Helios process specification φorig does not satisfy ballot secrecy.

Intuitively, the proof of Lemma 3 is due to the environment’s ability to replay

A’s ballot, therefore introducing an observable difference: the result will include

two instances of A’s vote. Formally, this follows immediately from the proof

Lemma 4.

Lemma 4. The Helios process specification φident does not satisfy ballot secrecy.

Proof. Consider ` = 2, n = 3, σ = {zero/xvote1
, one/xvote2

} and τ = {one/xvote1
,

zero/xvote2
}. We consider a sequence of transitions where the two voters output

their ballots and then the adversary chooses its ballots to be a permutation of the

first voter’s ballot. Namely, if the first voter’s ballot is (ciph, ciph′, spk, spk′, ŝpk)
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then the adversary outputs (ciph′, ciph, spk′, spk, ŝpk). Formally, this corre-

sponds to the following transitions

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ]

−→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))
−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ1

for some names ñ and substitution τ1, such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ1 =E one + one

This labelled transition has to matched by

Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ]

−→ ν x.c〈x〉−−−−−→−→ ν y.c〈y〉−−−−−→
c((π2(x),π1(x),π4(x),π3(x),π5(x)))
−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c〈z〉−−−−−→ ν ñ.τ2

for some names ñ and substitution τ2, such that:

dec(π1(z), π1(x) ∗ π1(y) ∗ π2(x))τ2 =E one

It follows immediately that ν ñ.τ1 6≈s ν ñ.τ2 and, hence, φident does not satisfy

ballot secrecy.

In contrast, removing duplicates up to permutation ensures ballot secrecy.

Theorem 1. The Helios process specification φsol satisfies ballot secrecy.

ProVerif is an automatic tool that can check equivalence in the applied pi

calculus [19]. Although ProVerif has been successfully used to prove ballot

secrecy (for example, in the Fujioka, Okamoto & Ohta protocol [39]), it can-

not prove Theorem 1, at the time of writing, for two main reasons. Firstly,

ProVerif cannot prove equivalences under the homomorphic equation (Equa-

tion E7). Secondly, our theorem states ballot secrecy for any number n of

participants and ProVerif cannot handle parametrised processes (see Paiola &

Blanchet [70, 69, 68] for some initial progress in this direction). We proceed

by constructing a relation that relates Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ] and

Aφ`,n[V`{a1/xauth}τ | V`{a2/xauth}σ], and all their successors, such that it satis-

fies the three properties of Definition 2. In particular, the two final frames

(containing the result of the election) should be statically equivalent.
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Definition 6 (Valid ballot). A term T is said to be a valid ballot in an election

with ` candidates if [[φsol`,0{T/yballot}]] = true.

By definition, the bulletin board accepts only valid ballots. A key step to proving

static equivalence is to show that any valid ballot submitted to the bulletin board

by the environment is “equivalent” to a term of the form (penc(zpk, N1,M1), . . . ,

penc(zpk, N`,M`), S1, . . . , S`+1), where {M1/xvote1
, . . . ,M`/xvote`

} is a candidate

substitution. This allows us to deduce that the election outcome produced by

Aφ`,n[V`{a1/xauth}σ | V`{a2/xauth}τ ] is exactly the same as in Aφ`,n[V`{a1/xauth}τ |
V`{a2/xauth}σ]. We can then conclude the proof of Theorem 1 by showing that

the partial decryptions and the encrypted ballots of honest voters do not leak

any extra information to the adversary. The full proof appears in Appendix B.

5.4 Limitations

The limitations of our model, which we introduced to simplify the presentation

and proof, are detailed below; we believe a full security proof should follow us-

ing similar reasoning. We make use of a (standard) definition of ballot secrecy

which is limited to elections with two honest voters [56, 36, 37]. In addition, the

definition of ballot secrecy does not consider parallel composition of protocol

executions and we therefore recommend using distinct keys for each election

(although we believe it should be sufficient to include an election identifier –

for example, the election fingerprint – in the challenge hashes included within

signatures of knowledge, similar to the methodology in Section 4.2). The ad-

ministrative process Aφ`,n enforces an ordering on voters (namely, the voter using

private channel a1 must vote first, followed by the voter using private channel

a2, and then any remaining voters – controlled by the adversarial environment

– can vote); this limitation could be overcome by parametrising Aφ`,n with the

channel names to restrict and by a minor unification of the bulletin process

BBφ`,n, however, this generalisation is of limited interest and would come at

the cost of over-complicating the proof. In addition, the administrative pro-

cess Aφ`,n does not permit revoting. The signature and equational theory do

not capture low-level technical details of public keys, in particular, we consider

a single honest tallier and we do not model distributed keys nor signatures of

knowledge to verify correct construction of both keys and partial decryptions

(nonetheless, we include Equation E6 which models decryption of a ciphertext
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using a correctly constructed partial decryption). Finally, we offer the usual

caveat to formal analysis and acknowledge that our result does not imply the

absence of real-world attacks (see, for example, [79, 2, 3, 96, 97]). It may, there-

fore, be possible to modify the ballot in a way that would not be captured by

our analysis. We partly overcome these limitations in our further work [17] by

presenting a variant of Helios that is provably secure in a cryptographic setting.

6 Attacks against other schemes

This section demonstrates that the absence of ballot independence can be ex-

ploited in other electronic voting protocols to violate privacy. In particular, we

demonstrate replay attacks against schemes by Sako & Kilian [80] and Schoen-

makers [83], and we show that the malleable cryptographic scheme adopted by

Lee et al. [62] can be exploited to launch attacks.

6.1 Exploiting replays in the protocol by Sako & Kilian

The Sako & Kilian [80] electronic voting scheme capitalises upon advances in

cryptography to improve the Banaloh & Yung protocol [15]. The scheme is

interesting because it was one of the first electronic voting protocols to adopt

the Fiat-Shamir heuristic to derive non-interactive proofs (this evolution was

key for the development of end-to-end verifiable electronic voting systems): a

three-round zero-knowledge proof consisting of a commitment, challenge and

response can be reduced to a non-interactive proof by replacing the challenge

with a hash on the commitment. However, we show that the application of the

Fiat-Shamir heuristic compromises ballot secrecy. In particular, the interactive

nature of zero-knowledge proofs guarantees freshness, whereas, non-interactive

proofs, derived using the Fiat-Shamir heuristic, do not assure freshness. This

can be exploited by a replay attack to violate ballot secrecy.

6.1.1 Protocol description

The scheme is based upon a pair of partially compatible homomorphic encryption

functions, that is, a pair of functions f1, f2 over Zq, where q is prime, such that

for all i, j ∈ {1, 2} the following properties are satisfied:

• fi(x+ y) = fi(x) · fi(y), where x, y ∈ Zq
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• Distributions (fi(x), fj(y)) and (fi(x), fj(x)) are computationally indis-

tinguishable, where x and y are chosen uniformly in Zq.

The voting protocol is defined for m ∈ N voters as follows.

Setup. Talliers T and T ′ publish public keys k and k′ for a public key en-

cryption scheme E (which need not be homomorphic).

Voting. Given vote vi ∈ {−1, 1}, the voter generates nonces xi, x
′
i ∈ Zq such

that vi = xi + x′i and constructs her ballot as follows:

Yi = f1(xi)

Y ′i = f2(x′i)

Zi = E(k, xi)

Z ′i = E(k′, x′i)

In addition, the voter is required to prove xi + x′i ∈ {1,−1} in zero-knowledge.

However, to avoid an interactive proof, the Fiat-Shamir heuristic is applied to

derive a signature of knowledge σi. (For brevity we omit the construction of σi,

see [80, Figure 1] for details.)

Tallying. Given ballots Y1, Y
′
1 , Z1, Z

′
1, σ1, . . . , Yn, Y

′
n, Zn, Z

′
n, σn, tallier T de-

crypts each Zi to recover x̂i and checks Yi = f1(x̂i), similarly, tallier T ′ decrypts

Z ′i to recover x̂′i and checks Y ′i = f1(x̂′i); the talliers also check the signature

of knowledge σi. The talliers publish V =
∑m
i=1 x̂i and V ′ =

∑m
i=1 x̂

′
i, and the

result is T = V + V ′, which can be verified by checking f1(V ) =
∏m
i=1 Yi and

f2(V ′) =
∏m
i=1 Y

′
i .

6.1.2 Attacking ballot secrecy

We show that the voting protocol by Sako & Kilian does not satisfy ballot se-

crecy, by presenting a replay attack which allows an adversary to reveal a voter’s

vote. Intuitively, an adversary may observe the ballot posted by a particular

voter and recast this ballot by corrupting dishonest voters. The multiple occur-

rences of the voter’s ballot will leak information in the tally and the adversary

can exploit this knowledge to violate the voter’s privacy. An informal descrip-

tion of the attack will now be presented in the case of three eligible voters.
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Let us consider an election with three eligible voters who have identities id1,

id2 and id3. Suppose that voters id1, id2 are honest and id3 is a dishonest voter

controlled by the adversary. Further assume that the adversary has observed

the ballot

Yk, Y
′
k, Zk, Z

′
k, σk

being cast by the voter whose privacy will be compromised.

Replaying a ballot. As shown by Gennaro [50], an adversary can replay the

ballot Yk, Y
′
k, Zk, Z

′
k, σk, thereby violating ballot independence. (The violation

of ballot independence is due to the adversary’s ability to cast the same vote

as the honest voter.) Since the ballot was constructed by an honest voter, it is

trivial to see that it will be considered valid by the talliers. We will now show

how the lack of ballot independence can be exploited to violate privacy.

Violating privacy. The bulletin board will be constructed as follows

Y1, Y
′
1 , Z1, Z

′
1, σ1, Y2, Y

′
2 , Z2, Z

′
2, σ2, Yk, Y

′
k, Zk, Z

′
k, σk, V, V

′

where k ∈ {1, 2}, V = x1 + x2 + xk and V ′ = x′1 + x′2 + x′k. It follows from

the protocol description that vi = xi + x′i, where i ∈ {1, 2, k}, and the result

T = V +V ′ = v1+v2+vk. Since there will be at least two votes for the candidate

voter idk voted for, the voter’s vote can be revealed: if T ≥ 2, then vk = 1;

otherwise vk = −1. It follows that the voter’s privacy has been compromised;

moreover, the vote of the remaining honest voter is T − 2 · vk.

6.1.3 Independence and the Fiat-Shamir heuristic

The interactive nature of zero-knowledge proofs guarantees freshness, because

every proof contains a unique challenge, and this ensures independence. By

comparison, non-interactive proofs, derived using the Fiat-Shamir heuristic, do

not assure freshness, in particular, non-interactive proofs can be replayed. As

a consequence, application of the Fiat-Shamir heuristic may compromise the

security of cryptographic protocols and we have shown how application of the

heuristic erodes privacy in the electronic voting scheme by Sako & Kilian. This

demonstrates that the use of the Fiat-Shamir heuristic requires some care and

highlights the necessity for thorough security analysis.
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6.1.4 Generalising replay attacks

The replay attack against Helios, and the voting protocol by Sako & Kilian, can

be generalised to other schemes where an adversary can observe a ballot cast

by a particular voter and replay this ballot verbatim. In particular, the voting

protocol by Schoenmakers [83] fits this description.

Exploiting replays in the protocol by Schoenmakers. The electronic

voting protocol by Schoenmakers [83] is based upon [32, 33]. The scheme ex-

plicitly aims to provide efficient small-scale elections (for example, boardroom

elections) and, given that our attack is particularly well suited to small-scale

elections, we find it interesting to study the possibility of violating ballot secrecy

in this setting. Ballot independence is not provided [83, §5] and we exploit pri-

vacy using a replay attack. The attack description is straightforward and follows

immediately from our discussion; accordingly, we omit the details and refer the

interested reader to our technical report [91, §3].

6.1.5 Possible solutions: Weeding duplicate ballots

Our attacks against the voting protocols by Sako & Kilian and Schoenmakers

exploit the possibility of replaying a voter’s ballot without detection. We believe

it should be sufficient for the election officer to reject any duplicate ballots to

ensure ballot secrecy, alternatively, the unique identifiers solution (Section 4.2)

may also be suitable. Proving the security of these solutions remains an open

problem.

6.2 Exploiting malleability in the protocol by Lee et al.

The Lee et al. [62] electronic voting scheme adopts an offline tamper-resistant

hardware device to ensure receipt freeness; more precisely, the hardware device

takes an ElGamal encrypted vote as input and outputs a re-encrypted cipher-

text, this prevents a voter proving how she voted by reconstruction as she does

not know the nonce introduced for re-encryption. In addition, the hardware

device provides a Designated Verifier Proof of re-encryption, thereby allowing

the voter to verify that the device behaved correctly. The device is assumed

to be offline and, hence, communication between the voter and the device is

assumed to be untappable.
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6.2.1 Background: Multiplicative homomorphic ElGamal

The scheme uses multiplicative homomorphic ElGamal, rather than the addi-

tive variant presented in Section 2.1. The operations for key generation, ho-

momorphic combination and re-encryption are standard; albeit, the result of

homomorphic combination is the multiplication of plaintexts, rather than the

addition of plaintexts. We recall the operations for encryption and decryption

below.

Encryption. Given a message m and a public key h, select a random nonce

r ∈R Z∗q and derive the ciphertext (a, b) = (gr mod p, m · hr mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-

putes the partial decryption ki = axi . The plaintext m = b/(k1 · . . . · kn) mod p.

The application of these primitives to derive the scheme by Lee et al. will be

discussed in the next section.

6.2.2 Protocol description

An election is created by naming an election officer, selecting a set of mixers,

and choosing a set of trustees. The trustees generate a distributed public key

pair and the election officer publishes the public key on the bulletin board. (For

robustness, threshold ElGamal may be used; we omit these details for brevity.)

The election officer also publishes the candidate list, the public keys of eligible

voters, and the public keys of the tamper-resistant hardware devices. Informally,

the steps that the participants take during an election are as follows.

1. The voter constructs an ElGamal ciphertext (a, b) containing her vote v

and sends the ciphertext to her tamper-resistant hardware device.

2. The hardware device re-encrypts the voter’s ciphertext to produce (a′, b′)

and computes a Designated Verifier Proof of re-encryption τ . The device

also derives a signature σ on the re-encryption. The hardware device

returns (a′, b′), σ, τ to the voter.

3. If the signature and proof are valid, then the voter generates a signature

σ′ on the message σ using her private key. The voter submits her ballot

(a′, b′), σ, σ′ to the bulletin board.
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4. Individual voters can check that their ballots appear on the bulletin board

and can be assured that the ciphertext (a′, b′) contains their vote v by

verifying the Designated Verifier Proof τ .

5. Voters and observers can check that ballots were cast by registered voters

by verifying signatures σ′, and are assured that each voter cast at most

one ballot by checking that no voter signed two values. In addition, voters

and observers should verify signatures σ for receipt freeness.

6. After some predefined deadline, valid ballots (that is, ballots associated

with valid signatures σ and σ′) are submitted to the mixers. Anyone can

check that mixing is performed correctly.

7. Each of the trustees publishes a partial decryption for every ciphertext

output by the mix. Anyone can verify these proofs.

8. The election officer decrypts each ciphertext and publishes the election

result. Anyone can check these decryptions.

See Lee et al. [62] for further details.

6.2.3 Attacking ballot secrecy

We show that the voting protocol by Lee et al. [62] does not satisfy ballot secrecy

by recalling the attack by Dreier, Lafourcade & Lakhnech [43] that exploits

malleability to reveal a voter’s vote. Intuitively, an adversary may identify a

voter’s encrypted vote on the bulletin board, since it is signed by the voter. This

ciphertext can be submitted to a tamper-resistant hardware device (possibly

after re-encryption) and the device will return (â, b̂), σ̂, τ̂ ; the ballot (â, b̂), σ̂, σ̂′

can then be submitted by the adversary to the bulletin board, where σ̂′ is a

signature on σ̂ constructed by a registered voter under the adversary’s control.

As explained in Section 6.1.2, the multiple occurrences of the voter’s ballot will

leak information in the tally and the adversary can exploit this knowledge to

violate the voter’s privacy.

Variant exploiting homomorphic encryption. The adversary can exploit

the homomorphic properties of ElGamal to avoid casting the same vote as an

honest voter. In this variant, suppose the adversary wants to recover the vote

from ballot (a′k, b
′
k), σk, σ

′
k, the adversary derives the ciphertext (c, d) = (a′k, b

′
k)·
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(c′, d′), where (c′, d′) is an ElGamal ciphertext containing some message m. The

adversary submits the ciphertext (c, d) to a tamper-resistant hardware device

and the device will return (ĉ, d̂), σ̂, τ̂ ; the ballot (ĉ, d̂), σ̂, σ̂′ can be submitted by

the adversary to the bulletin board, where σ̂′ is a signature on σ̂ constructed

by a registered voter. The output of the mix will include the adversaries re-

encrypted ciphertext and the election officer will publish m · v on the bulletin

board, where ciphertext (a′k, b
′
k) includes the vote v. This variant of the attack

is interesting because the adversary’s ballots are undetectable, in particular,

weeding ballots would clearly not be sufficient to ensure privacy.

6.2.4 Exploiting replays in protocols based upon mixnets

In homomorphic election schemes, voters encrypt their votes and ciphertexts are

homomorphically combined before decryption. By comparison, in mixnet elec-

tion schemes, voters encrypt their votes, ciphertexts are shuffled, and individual

ciphertexts are decrypted. (The decryption of individual ciphertexts in mixnet

elections can provide an advantage over homomorphic elections, since ballot

construction can be simplified, for example, the number of ciphertexts used

by Helios corresponds to the number of candidates, whereas, one ciphertext

is sufficient in mixnet elections.) Privacy is ensured in homomorphic election

schemes by never revealing the contents of individual ciphertexts, whereas, pri-

vacy is ensured in mixnet election schemes by breaking the link between the

mix’s input and output. As highlighted by Pfitzmann & Pfitzmann [75], inde-

pendence is necessary in mixnets because the input ciphertexts are eventually

decrypted, therefore, any meaningfully related ciphertexts input to the mixnet

can be meaningfully related once the mix’s output is decrypted. In the con-

text of electronic voting, it follows that a voter’s privacy can be violated if an

adversary can construct a ciphertext meaningfully related to the voter’s cipher-

text and the election result contains exactly two votes satisfying the adversary’s

relation.

7 Relationships between security properties

The variants of our attack (Section 3.2) abuse ballot malleability to violate

privacy and our ballot weeding solution achieves privacy by ensuring ballots are

independent. In this section, we study the relationships between independence
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Figure 5 Helios administrator that preserves independence but not privacy

Given the number of voters n ≥ 2 the administration process sAφ
sol

n is defined
below, where process T is presented in Figure 4.

sAφ
sol

n = ν skT , a1, a2, d . ( |�BBφ
sol

n | !T | {pk(skT )/zpk})

�BB
φsol

n = a1(y1) . c〈y1〉 . a2(y2) . c〈y2〉 .
a3(y3) . if φsol{y3/yballot} then
· · · an(yn) . if φsol{yn/yballot} then

d〈(π1(y1), π2(y1))〉 . d(z1) . c〈z1〉 .
· · · . d〈(π1(yn), π2(yn))〉 . d(zn) . c〈zn〉

and privacy, and independence and malleability.

7.1 Independence and privacy are unrelated properties

In the context of Helios, we have shown that ballot independence is sufficient for

ballot secrecy, however, we will now present examples that suggest independence

and privacy are unrelated in a more general context.

A protocol with independence but no privacy. Consider a variant of

the fixed Helios voting scheme in which each of the trustees publish a partial

decryption of individual ciphertexts (rather than a partial decryption of the ho-

momorphically combined ciphertexts, that is, the encrypted tally). Intuitively,

this variant preserves ballot independence but does not satisfy ballot secrecy,

since the partial decryptions allow votes to be recovered from ballots and the

link between a voter and her ballot is known. Formally, this variant is captured

by modelling the Helios administrator process as sAφ
sol

n , defined in Figure 5. The

violation of ballot secrecy can be witnessed since

sAφ
sol

2 [V {a1/xauth}σ | V {a2/xauth}τ ] 6≈l sAφ
sol

2 [V {a1/xauth}τ | V {a2/xauth}σ]

where σ = {zero/xvote1
, one/xvote2

} and τ = {one/xvote1
, zero/xvote2

}. Similarly, a further

variant of the fixed Helios scheme in which each of the trustees publishes their

private key at the end of the voting phase, rather than a partial decryption of

the encrypted tally, also satisfies independence but not ballot secrecy.
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A protocol with privacy but no independence. Consider a voting scheme

in which each voter broadcasts their vote on an anonymous communication

channel. Formally, the voter is modelled by the process P = c〈xvote〉, where

variable xvote is parametrised by the voter’s vote. For ballot secrecy it is sufficient

to show P{M/xvote} | P{N/xvote} ≈l P{N/xvote} | P{M/xvote} for all ground

terms M and N ; this result trivially holds by structural equivalence and hence

the scheme satisfies ballot secrecy. However, independence is intuitively violated

in this setting, because an adversary may observe the voting system and replay

a previously cast vote, that is, an adversary can cast the same vote as another

voter (without knowing which voter). In addition, it follows that early results

are available in this scheme.

We also expect some published electronic voting schemes based upon blind

signatures to satisfy ballot secrecy but not independence; in particular, a more

realistic example of a protocol that satisfies this property is the protocol by

Fujioka, Okamoto & Ohta [49] under the assumption that duplicates are not

rejected. Indeed, independence can be violated by a verbatim replay of the

signed committed vote.

Nonetheless, we believe a weaker property exists: privacy and authenticated

ballots implies independence, where the term authenticated ballot means the

link between an arbitrary ballot and associated voter is known (for example,

our unique identifiers solution uses authenticated ballots). Informally, this can

be witnessed as follows: suppose a system satisfies privacy and authenticated

ballots but not independence, it follows that an adversary can identify a voter’s

ballot and, since there is no independence, replay that ballot; privacy is then

violated, as we have shown in this article, hence deriving a contradiction. In

addition, Bernhard, Pereira & Warinschi [18] propose a context where privacy

implies independence.

7.2 Non-malleability is stronger than independence

Non-malleability asserts that an adversary can only construct meaningfully re-

lated ballots if the related ballots are constructed by the adversary [41, 10, 42].

By comparison, given an election’s bulletin board, ballot independence asserts

that an adversary can only construct a ballot which will be accepted by the bul-

letin board and be meaningfully related to an existing ballot on the board, if the

adversary constructed both ballots. It intuitively follows that non-malleability
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implies ballot independence, since an adversary that is unable to construct a bal-

lot meaningfully related to a non-adversarial ballot, is also unable to construct

a ballot that will be accepted by an election’s bulletin board and be meaning-

fully related to a non-adversarial ballot from the bulletin board. By contrast,

our ballot weeding solution (Section 4.1) suggests that non-malleability is not

necessary for independence. Indeed, we have shown that an adversary can form

several ballots that are meaningfully related to an initial one. All ballots are of

the right format (in particular they contain a valid proof). In that sense, ballots

are malleable. However, the additional checks of the ballot box (weeding du-

plicates) will reject them. Our unique identifier solution (Section 4.2) provides

further evidence to support our claim that non-malleability is not necessary for

independence. In this setting, a non-adversarial ballot from the bulletin board

can be manipulated using all of the techniques defined in Section 3.2 to derive

a meaningfully related ballot, nevertheless, if the adversary constructs such a

ballot, then the ballot will be rejected by the bulletin board, because it is not

bound to the adversary’s identity. Our examples therefore provide evidence to

suggest that non-malleability is not necessary for independence.

7.3 Discussion

In this article, we cannot make any definitive mathematical statements about

the relationships between independence and privacy or independence and non-

malleability, because independence has not been formally defined. Nonetheless,

we hope this section provides some insight into the relationships we expect.

8 Related work

The attack against Helios that we discover relies upon the lack of ballot inde-

pendence. The concept of independence was introduced by Chor et al. [25]

and the possibility of compromising security properties due to the lack of in-

dependence has been considered, for example, in [26, 75, 41, 42, 51]. In the

context of electronic voting, Gennaro [50] demonstrates that the application of

the Fiat-Shamir heuristic in the Sako-Kilian electronic voting protocol [80] vi-

olates ballot independence, and Wikström [98, 99] studies non-malleability for

mixnets to achieve ballot independence. By comparison, we focus on the vio-

lation of ballot secrecy rather than fairness, and exploit the absence of ballot
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independence to compromise privacy. Similar results have been shown against

mixnets [74].

Our attack is also reliant on the voter’s ability to cast a ballot as a function

of another voter’s ballot, for example, our basic attack (Section 3.1) applies the

identity function and our variant in Section 3.2.2 performs a permutation on the

ballot’s internal structure. In related work, Benaloh [11] demonstrates that a

simplified version of his voting scheme allows the administrator’s private key to

be recovered by an adversary who constructs (and casts) a ballot as a function

of other voters’ ballots.

Estehghari & Desmedt [46] claim to present an attack which undermines

privacy and end-to-end verifiability in Helios. However, their attack is depen-

dent on compromising a voter’s computer, a vulnerability which is explicitly

acknowledged by the Helios specification [7]: “a specifically targeted virus could

surreptitiously change a user’s vote and mask all of the verifications performed

via the same computer to cover its tracks.” Accordingly, [46] represents an ex-

ploration of known vulnerabilities rather than an attack.

Other studies of Helios have also been conducted, in particular, Langer et

al. [59, 60] and Volkamer & Grimm [95] study privacy in Helios. Langer et al.

propose a taxonomy of informal privacy requirements [59, 60, 61] to facilitate

a more fine-grained comparison of electronic voting systems, this framework is

used to analyse Helios and the authors claim ballot secrecy is satisfied if the

adversary only has access to public data [59, 60]. Volkamer & Grimm introduce

the k-resilience metric [95, 94] to calculate the number of honest participants

required for ballot secrecy in particular scenarios, this framework is used to

analyse Helios and the authors claim ballot secrecy is satisfied if the software

developers are honest and the key holders do not collude [95]. Our attacks

invalidate these claims. We believe the erroneous results reported by Langer et

al. are due to a lack of formally written proofs, and the approach by Volkamer

& Grimm failed because only some particular scenarios were considered.

In our further work with Bernhard et al. [17], we present a computational

security proof demonstrating that any variant of Helios using an IND-CCA2

secure encryption scheme provides ballot secrecy and, more concretely, propose

a variant using the Naor-Yung paradigm [66] to derive an IND-CCA2 secure en-

cryption scheme from ElGamal. In this setting, independence is achieved using

non-malleable ballots. Intuitively, the use of ElGamal and a suitable signa-
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ture of knowledge scheme allows us to derive an IND-CCA2 secure encryption

scheme; indeed, Tsiounis & Yung [93] and Schnorr & Jakobsson [82] provide

some evidence to support this hypothesis, however, these results are presented

in the generic group model and proving this result under weaker assumptions is

an open problem [86, 87]. Nonetheless, it appears that a more efficient provably

secure variant of Helios can be derived.

In principle, work by Bernhard, Pereira & Warinschi [18] supports the afore-

mentioned proposal that a more efficient variant of Helios exists: Bernhard,

Pereira & Warinschi prove that an IND-CPA encryption scheme and a suitable

signature of knowledge can be combined to derive NM-CPA security, and the

minivoting scheme [17] is shown to satisfy ballot secrecy for any NM-CPA secure

encryption scheme. Bernhard, Pereira & Warinschi argue that the minivoting

scheme forms the basis of Helios and informally claim that Helios is therefore

secure since the transformation from minivoting to Helios does not affect ballot

secrecy. However, the minivoting scheme is restricted to ballots containing a

single ciphertext, hence the security of Helios can only be guaranteed for ballots

that contain a vote for a single candidate (for example, in referendums).

A further variant of Helios is proposed by Bulens, Giry & Pereira [20] using

mixnets rather than homomorphic encryption. As highlighted by Pfitzmann &

Pfitzmann [75], independence is necessary in mixnets because the input cipher-

texts are eventually decrypted and Bulens, Giry & Pereira use an IND-CCA2

secure encryption scheme to derive non-malleability and therefore independence.

Delaune, Kremer & Ryan [36, 37] have shown that a variant of the Lee et

al. protocol satisfies coercion resistance for two honest voters; but, based upon

our preliminary results [30], Dreier, Lafourcade & Lakhnech [43] demonstrate

an attack against privacy for three voters, when one voter is under the adver-

sary’s control3. Furthermore, using a stronger definition of coercion resistance,

Küsters & Truderung [58] have demonstrated a forced abstention attack; in ad-

dition, Küsters & Truderung propose a variant of the scheme by Lee et al. which

is claimed to satisfy their stronger definition. In this article, we show a new at-

tack against the original Lee et al. protocol and show that the revised scheme

by Küsters & Truderung might not be secure under reasonable assumptions.

A preliminary version of this work [30] appeared at the 24th Computer Secu-

3The formal model by Dreier, Lafourcade & Lakhnech includes the voter’s signature on the
signed re-encrypted ciphertext and this is exploited by their attack; by comparison, the model
by Delaune, Kremer & Ryan omits this detail and therefore the attack cannot be witnessed.
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rity Foundations Symposium. By comparison, in this article, we provide further

variants of our attack (a preliminary presentation of these variants appears on

ePrint [89]), a more detailed description of our results, a generalisation of our

ballot secrecy proof to a setting with arbitrary many candidates, and include

complete proofs. In addition, we show that other electronic voting protocols are

vulnerable to our attack and we discuss the relationships between independence

and privacy, and independence and malleability.

9 Conclusion

This article identifies a vulnerability in the Helios 2.0 electronic voting protocol

which can be used to violate ballot secrecy. Critics may argue that an attack

is unrealistic due its high cost; indeed, in some cases, the attack may change

the outcome of an election (that is, the votes introduced for the purposes of

violating privacy may swing the result), and large scale privacy invasions would

be expensive in terms of the required number of dishonest voters. However, if

the views of these critics are to be entertained, then we must revise the standard

definitions of ballot secrecy in the literature – for example, [56, 36, 9] – because

Helios cannot satisfy them. Furthermore, we believe all voters should be consid-

ered equally and, hence, the preservation of ballot secrecy should be universal.

But, for elections using Helios, our case study demonstrates the contrary: in

French legislative elections a coalition of voters can gain some information about

a voter’s vote in an arbitrary polling station and, moreover, if the number of

voters registered at a particular polling station is small (for example, in a rural

setting), then a voter’s privacy can be violated by a few dishonest voters. It

follows that privacy of individual voters can be compromised by a few dishonest

voters and, accordingly, we believe our attack is significant. To address the

problem, we have introduced a variant of the Helios protocol which has been

shown to satisfy definitions of ballot secrecy in the applied pi calculus and in our

further work [17] we present a security proof in the cryptographic setting (Sec-

tion 8 summarises this result). We have also shown that the absence of ballot

independence can be similarly exploited in other electronic voting protocols to

violate privacy; in particular, we demonstrate verbatim replay attacks against

the schemes by Sako & Kilian [80] and Schoenmakers [83], and we show that

the malleable cryptographic scheme adopted by Lee et al. [62] can be exploited
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to replay a voter’s ballot or a variant of it, thereby violating ballot secrecy.

In addition, we argue that independence and privacy are unrelated in general,

and non-malleability is strictly stronger than independence. Finally, with the

exception of Schoenmakers, all of the vulnerabilities in this article have been

acknowledged by the respective protocol authors, in particular, Adida & Pereira

have acknowledged the vulnerability in Helios [6, 8], but since the vulnerability

can only be exploited in elections where voters are willing to forfeit their vote to

compromise another voter’s privacy, they believe an attack would be “without

serious practical impact.” Nonetheless, Adida & Pereira have scheduled a fix for

future Helios releases (at the time of writing, the software implementation of

Helios has been patched to prevent the replay attack described in Section 3.1,

but the software is still vulnerable to the variants described in Section 3.2).
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A Signatures of knowledge

Helios is reliant on signatures of knowledge to ensure secrecy and integrity of

the ElGamal scheme. This appendix presents suitable cryptographic primitives.

A.1 Knowledge of discrete logs

Given the cryptographic parameters (p, q, g) and hash function H (see Section 2

for details), a signature of knowledge demonstrating knowledge of a discrete

logarithm h = logg g
x can be derived, and verified, as defined by [22, 21, 81]:
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Sign. Given x, select a random nonce w ∈R Z∗q . Compute witness g′ =

gw mod p, challenge c = H(g′) mod q and response s = w + c · x mod q.

Verify. Given h and signature g′, s, check gs ≡ g′ · hc (mod p), where c =

H(g′) mod q.

A valid proof asserts knowledge of x such that x = logg h, that is, h ≡ gx mod p.

These proofs are used in distributed ElGamal to ensure secrecy (see Section 2.1).

A.2 Equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g) and hash function

H, a signature of knowledge demonstrating equality between discrete logarithms

logf f
x and logg g

x can be derived, and verified, as defined by [72, 23]:

Sign. Given f, g, x, select a random nonce w ∈R Z∗q . Compute witnesses

f ′ = fw mod p and g′ = gw mod p, challenge c = H(f ′, g′) mod q and response

s = w + c · x mod q.

Verify. Given f, g, h, k and signature f ′, g′, s, check fs ≡ f ′ · hc (mod p) and

gs ≡ g′ · kc (mod p), where c = H(f ′, g′) mod q.

A valid proof asserts logf h = logg k, that is, there exists x, such that h ≡
fx mod p and k ≡ gx mod p.

Signatures of knowledge demonstrating equality between discrete logarithms

are used to ensure integrity of distributed decryption in ElGamal (see Sec-

tion 2.1), moreover, the signature scheme forms the basis of disjunctive proofs

of equality between discrete logs (Section 2.2). Formally, the signature scheme

can be used to ensure integrity of distributed decryption in ElGamal as follows.

Given a ciphertext (a, b), each trustee would derive a signature on g, a, xi, where

xi is the trustee’s private key share. The ith trustee’s signature g′i, a
′
i, ci, si would

be verified with respect to g, a, hi, ki, where hi is the trustee’s share of the public

key and ki is the trustee’s partial decryption. The signature g′i, a
′
i, ci, si asserts

logg hi = loga ki, as required for integrity of decryption.
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B Proof of Theorem 1

B.1 Preliminaries

Before commencing our proof, let us first introduce some useful lemmas for the

applied pi calculus.

Lemma 5. Given frames ϕ,ψ, ground term M and variable x 6∈ dom(ϕ) ∪
dom(ψ), we have ϕ ≈s ψ iff ϕ | {M/x} ≈s ψ | {M/x}.

Lemma 6. Given frames ϕ, ψ, terms M , N , and a variable x 6∈ dom(ϕ) ∪
dom(ψ), such that ϕ = ν m̃.σ and ψ = ν ñ.τ for some names m̃, ñ and substi-

tutions σ, τ , we have ν m̃.(σ | {M/x}) ≈s ν ñ.(τ | {N/x}) implies ϕ ≈s ψ.

The proofs of these lemmas are straightforward.

The following lemma shows when static equivalence implies the same branch-

ing behaviour for conditionals.

Lemma 7. Given extended processes A ≡ C[if M = N then P else Q] and B ≡
C ′[if M = N then P ′ else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ (fn(M) ∪
fn(N)) = ∅, fv(M)∪ fv(N) ⊆ dom(C) and fv(M)∪ fv(N) ⊆ dom(C ′), for some

closing evaluation context C,C ′, terms M,N and processes P, P ′, Q,Q′, then

A −→ C[P ] iff B −→ C ′[P ′] and A −→ C[Q] iff B −→ C ′[Q′].

Proof. Suppose A ≡ C[if M = N then P else Q] and B ≡ C ′[if M = N then P ′

else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ (fn(M) ∪ fn(N)) = ∅, fv(M) ∪
fv(N) ⊆ dom(C) and fv(M)∪fv(N) ⊆ dom(C ′), for some closing evaluation con-

text C,C ′, terms M,N and processes P, P ′, Q,Q′. Further suppose ϕ(C[if M =

N then P else Q]) = ν m̃.σ and ϕ(C ′[if M = N then P ′ else Q′]) = ν ñ.τ , for

some names m̃ and ñ. By Lemma 8 we have ν m̃.σ ≈s ν ñ.τ , because static

equivalence is closed under structural equivalence. Moreover, by the definition

of static equivalence, for all terms U, V such that (m̃∪ ñ)∩ (fn(U)∪ fn(V )) = ∅,
we have Uσ =E V σ iff Uτ =E V τ .

Let us first show A −→ C[P ] iff B −→ C ′[P ′]. For the ⇒ implication, suppose

A −→ C[P ]. Since fv(M)∪fv(N) ⊆ dom(C), it must be the case thatMσ =E Nσ.

We have m̃∪ ñ ⊆ bn(C)∪ bn(C ′) by definition of the function ϕ, and we derive

(m̃∪ñ)∩(fn(M)∪fn(N)) = ∅ because (bn(C)∪bn(C ′))∩(fn(M)∪fn(N)) = ∅; it

follows that Mσ =E Nσ is a special case of Uσ =E V σ. We derive Mτ =E Nτ

from the implication (Uσ =E V σ) ⇒ (Uτ =E V τ). It trivially follows that
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B ≡ C ′[if Mτ = Mτ then P ′ else Q′], and by closure of internal reduction

under structural equivalence we derive B −→ C ′[P ′]. The⇐ implications follows

by symmetry.

We will now show A −→ C[Q] iff B −→ C ′[Q′]. For the⇒ implication, suppose

A −→ C[Q]. It must be the case that Mσ 6=E Nσ and, as before, we derive

Mτ 6=E Nτ . It trivially follows that B ≡ C ′[if Mτ = Nτ then P ′ else Q′],

and since fv(M) ∪ fv(N) ⊆ dom(C ′) we are assured that terms Mτ,Nτ are

ground; by closure of internal reduction under structural equivalence we derive

B −→ C ′[Q′]. The ⇐ implications follows by symmetry.

This result can naturally be extended to formula. Given φ, let us denote the

set of free names, respectively variables, in φ as fn(φ), respectively fv(φ).

Corollary 1. Given extended processes A ≡ C[if φ then P else Q] and B ≡
C ′[if φ then P ′ else Q′] such that A ≈s B, (bn(C) ∪ bn(C ′)) ∩ fn(φ) = ∅,
fv(φ) ⊆ dom(C) and fv(φ) ⊆ dom(C ′), for some closing evaluation context

C,C ′, formulae φ and processes P, P ′, Q,Q′, then A −→ C[P ] iff B −→ C ′[P ′]

and A −→ C[Q] iff B −→ C ′[Q′].

We conclude this subsection with a useful result stated by Abadi & Four-

net [1].

Lemma 8. Static equivalence is closed by structural equivalence.

B.2 Notations and Definitions

For the remainder of this article, let ` be some number of candidates, n ≥ 2 be

some number of voters, and σ and σ′ be candidate substitutions.
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B.2.1 Notations

We introduce the following notations for all 1 ≤ i ≤ n and 1 ≤ j ≤ `:

tallyj = πj(y1) ∗ · · · ∗ πj(yn)

partial j = partial(skT , tallyj)

resultj = dec(partial j , tallyj)

ciphi,j = penc(zpk, ri,j , x
vote
i,j )

spk i,j = spk(zpk, ri,j , x
vote
i,j , ciphi,j)

ŝpk i = spk(zpk, ri,1 ◦ · · · ◦ ri,`, xvotei,1 + · · ·+ xvotei,` , ciphi,1 ∗ · · · ∗ ciphi,`)

ballot i = (ciphi,1, . . . , ciph ′i,`, spk i,1, . . . , spk ′1,`, ŝpk i)

τL = {M/xvote1,i
| for all 1 ≤ i ≤ ` such that{M/xvotei

} ∈ σ}

∪ {N/xvote2,i
| for all 1 ≤ i ≤ ` such that {N/xvotei

} ∈ σ′}

τR = {N/xvote1,i
| for all 1 ≤ i ≤ ` such that{N/xvotei

} ∈ σ′}

∪ {M/xvote2,i
| for all 1 ≤ i ≤ ` such that {M/xvotei

} ∈ σ}

B.2.2 Definitions

Given N3, . . . , Nk terms such that fv(Nj) ⊆ {zpk, y1, . . . , yj−1}, we define

σÑk
= {ballot1/y1, ballot2/y2,Nj/yj | j ∈ {3, . . . , k}}

Given an integer k ∈ N+ and a term N , we define Nk (resp. k.N) to be

N ◦ · · · ◦N (resp. N + · · ·+N) where N is replicated k times.

We associate to the equational theory E a rewriting system RE by orienting

the Equations E1,E2 and E5 to E9 from left to right. We denote by E′ the

equational theory that asserts functions +, ∗, ◦ are commutative and associative

in addition to Equations E3 and E4. RE modulo E′ forms a convergent rewriting

system (modulo E′). We denote by u→E v (or often simply u→ v) if u modulo

E′ can be rewritten to v modulo E′, using RE . We denote by u ↓ a normal

form of u modulo E′.

We will say that a term M is free w.r.t. a set of names ñ if it does not contain

any name of ñ. We simply say that a term is free when the set of names is clear

from the context (typically free w.r.t. to the restricted names of a frame).
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B.3 Some useful lemmas

We prove some useful results about our definitions and notations. We first show

that ballots accepted by the bulletin board must have a particular form due to

the checks performed by φsol`,n̄.

Lemma 9. Let ` be a number of candidates, n̄ ≥ 2 be an integer, and M be term

free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,` and such that fv(M) ⊆ {zpk, y1, y2}. Let

substitution τ ∈ {τL, τR} and substitution σ = {pk(skT )/zpk, ballot1/y1, ballot2/y2}.
If [[φsol`,n̄{M/yballot}στ ]] = true, then there exists a term

M ′ = (penc(zpk, N1,M1), . . . , penc(zpk, N`,M`), S1, . . . , S`+1)

for some terms M1, . . . ,M`, N1, . . . , N`, S1, . . . , S`+1 such that Mστ =E M ′στ ,

M ′ is free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,`, fv(M ′) ⊆ {zpk, y1, y2}, and {M1/xvote1
,

. . . ,M`/xvote`
} is a candidate substitution.

Proof. Let M , τ and σ be defined as in the Lemma, and suppose [[φsol`,n̄{M/yballot}
στ ]] = true. We say that a term N is a minimal recipe if it is minimal (in

size) among the terms N ′ such that Nστ =E N ′στ . It is easy to check by

induction on the size of N that, whenever N = f(N1, . . . , Nk) with f ∈ {dec, πj |
1 ≤ j ≤ `} then either N = πj(x) for some j and variable x or (Nστ) ↓ =

f((N1στ) ↓, . . . , (Nkστ) ↓) (*).

W.l.o.g. suppose M ′ is a minimal recipe such that Mστ =E M ′στ and M ′

is free w.r.t. r1,1, . . . , r1,`, r2,1, . . . , r2,`. Further suppose w.l.o.g. that M ′ is in

normal form. We know [[φsol`,n̄{M
′/yballot}στ ]] = true. Thus it must be the case

that M ′στ is of the form (U1, . . . , U`, V1, . . . , V`,W ), where for 1 ≤ j ≤ ` we

have Uj = penc(pk(skT ), Rj , Cj), Cj ∈ {zero, one} and {C1/xvote1
, . . . ,C`/xvote`

} is

a candidate substitution. Due to the disequality tests in φsol`,n̄, it must be the case

that M ′ is of the form (T1, . . . , T`, S1, . . . , S`, Z ) and Tj 6∈ {πk(yi) | 1 ≤ k ≤ `}.
We have Tjστ = penc(Aj , Bj , Cj). Assume first that Tj = πk(T ′j). Due to (*),

we must have T ′j variable, which is excluded by the fact that Tj 6∈ {πk(yi) | 1 ≤
k ≤ `}. Thus, due to the equational theory and (*), it must be the case that

Tj = penc(Kj , Nj ,Mj) ∗
∏

1≤k≤` πk(y1)αk ∗ πk(y2)βk where each component

is optional and αi ∈ N. By convention αi = 0 or βi = 0 means that the

component is skipped. Assume that one of the αi or βi is not null. Then

Rj = r ◦ R′j with r ∈ {r1,1, . . . , r1,`, r2,1, . . . , r2,`}. Due to the tests in φsol`,n̄, we

know Vj = spk(pk(skT ), Rj , Cj , V
′
j ).
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Let us show that Vj cannot be a signature of knowledge that appears in

either ballot1τL or ballot2τL. Assume (by contradiction) that Vj is a signature

of knowledge that appears in either ballot1τL or ballot2τL. Due to weeding,

we cannot have Vj = spki,k. Indeed, due to the equational theory, this would

imply that Uj is equal to a previsouly received cyphertext, which is excluded by

weeding. Thus we must have Vj = ŝpki for some i ∈ {1, 2}. Then Rj = ri,1 ◦
· · · ◦ri,`. In that case, let us have a look at W . We know W = spk(pk(skT ), R1 ◦
· · · ◦ R`, C1 + · · · + C`, U1 ∗ · · · ∗ U`). Thus W cannot be one of the signatures

of knowledge that appear in ballot1τL or ballot2τL (the depth of R1 ◦ · · · ◦ R`
is too big). Therefore (and due to the equational theory and minimality of Z),

we must have Z = spk(Z1, Z2, Z3, Z4). Since ri,1 ◦ · · · ◦ ri,` is not deducible, we

cannot have Z2στ =E ri,1 ◦ · · · ◦ ri,` ◦R1 ◦Rj−1 ◦Rj+1 ◦R`, contradiction.

We must have Sj = spk(S1
j , S

2
j , S

3
j , S

4
j ), since Vj cannot be one of the sig-

natures of proof of knowledge that appear in ballot1τL or ballot2τL, and due

to the equational theory. Since r is not deducible, we cannot have S2
j στ =E

r ◦ R′j , contradiction. We therefore deduce that Tj = penc(Kj , Nj ,Mj). More-

over, Kjστ =E pk(skT ) implies Kj = zpk and Mjστ =E zero or one implies

Mj ∈ {zero, one} due to the equational theory. Due to the validity check, we

also deduce that {M1/xvote1
, . . . ,M`/xvote`

} is a candidate subsitution.

Lemma 10. Let φ1 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` . ({ballot1/x1} |
{ballot2/x2} | {pk(skT )/zpk}). We have φ1τL ≈s φ1τR.

Proof. First, we decompose φ1 and consider φ = ν ñ.θ, where ñ = {skT , d, r1,1,

. . . , r1,`, r2,1, . . . , r2,`} and θ = {pk(skT )/zpk} |
{
{ciphi,j/xciphi,j

} | {spk i,j/xspki,j
} |

{ŝpk i/x
ŝpki

}
∣∣∣ i ∈ {1, 2} ∧ 1 ≤ j ≤ `

}
. It follows immediately that φ1τL ≈s φ1τR

if and only if φτL ≈s φτR.

Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,`, ciph2,` – with

ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame

φ with any such combination of ciphertexts. Formally, for any αj , βj ∈ N and

terms P,R we define Cα1,...,α`,β1,...,β`,α4,P,R as follows:

penc(pk(skT ), R ◦©1≤j≤`r
αj

1,j ◦ r
βj

2,j , P +
∑

1≤j≤`

αj .x
vote
1,j + βj .x

vote
2,j )

56



We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R
| α1, α2, α3, α4 ∈ N and terms

P,R s.t. (fn(P ) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 6, it is sufficient to show φeτL ≈s φeτR. We

introduce the following two claims.

Fact 1. Let M be a term such that fv(M) ∩ (fv(φe) \ dom(φe)) = ∅ and

fn(M) ∩ ñ = ∅. If Mφeτ → U for some τ ∈ {τR, τL}, then there exists N such

that U =E′ Nφeτ and Mφeτ
′ → Nφeτ

′ for any τ ′ ∈ {τR, τL}.

Fact 2. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φe) \ dom(φe)) =

∅ and fn(M,N) ∩ ñ = ∅. If Mφeτ =E′ Nφeτ for some τ ∈ {τR, τL}, then

Mφe =E′ Nφe.

The above claims allow the construction of our proof. Let M,N be two

terms such that fn(M,N) ∩ ñ = ∅ and MφeσÑk
τL =E NφeσÑk

τL. We assume

(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φe)\dom(φe)) = ∅. We have

MφeτL =E NφeτL. Thus (MφeτL) ↓ =E′ (NφeτL) ↓. Applying repeatedly

Claim 1, we deduce that there exists M ′ such that (MφeτL) ↓ = M ′φeτL and

MφeτR →∗ M ′φeτR. Similarly, there exists N ′ such that (NφeτL) ↓ = N ′φeτL

and NφeτR →∗ N ′φeτR. From M ′φeτL =E′ N ′φeτL and Claim 2, we deduce

M ′φe =E′ N ′φe. Therefore M ′φeτR =E′ N ′φeτR and thus MφeτR =E NφeτR,

that is MφeσÑk
τR =E NφeσÑk

τR.

Proof of Claim 1: This result is proved by inspection of the rewrite rules,

using the fact that the decryption key skT is not deducible. More precisely,

assume that Mφeτ → U for some τ ∈ {τR, τL}. It means that there exists a

rewriting rule l → r ∈ RE and a position p such that Mφeτ |p =E′ lθ for some

θ. p cannot occur below M since φeτ is in normal form. If M |p = lθ′ for some

θ′ then we conclude that we can rewrite M as expected. The only interesting

case is thus when M |p is not an instance of l but Mφeτ |p is. By inspection

of the rules, l → r can only correspond to one of the three equations E5, E6

or E7. The case of Equations E5 or E6 is ruled out by the fact that skT is not

deducible from φeτ . The last case is when the rule corresponding to Equation E7

is applied. Then it must be the case that M |p = x ∗ y with x, y variables of
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dom(φe). By construction of φe, we have that (x ∗ y)φe → zφe (applying the

rule corresponding to Equation E7), thus the result.

Proof of Claim 2: Assume by contradiction that there exist M,N two terms

such that Mφeτ =E′ Nφeτ for some τ ∈ {τR, τL} and Mφe 6=E′ Nφe. Consider

M,N two minimal terms that satisfy this property. By case inspection, it must

be the case that M and N are both variables. Thus we have xφeτ =E′ yφeτ

and xφe 6=E′ yφe with x, y ∈ dom(φe), x 6= y. The head symbol of xφeτ must

be penc. Then by construction of φe, τ does not change the randomness used

in penc and the randomness uniquely determines the variable, which implies

x = y, contradiction.

We now demonstrate that tallying valid ballots yields the same result in

both worlds.

Lemma 11. Let `, be a number of candidates. Let N3, . . . , Nk be terms, free

w.r.t. skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`. Let θÑk
= {Nk/yk | k ∈ {3, . . . , n}}

such that NiθÑk
στ is a valid ballot for any τ ∈ {τL, τR}. Let σ = {pk(skT )/zpk,

ballot1/y1, ballot2/y2}. Then

result i θÑk
στL =E result i θÑk

στR

and both resultj θÑk
στL and resultj θÑk

στR are terms built from constants one

and zero by application of the function symbol +.

Proof. We first define N ′i = NiθÑk
. By Lemma 9, we know that πj(N

′
iστL) =E

penc(zpk, U
i
j , V

i
j )στL for some free terms U ij , V

i
j . By Lemma 10, we know that

φ1τL ≈s φ1τR thus we can deduce πj(N
′
iστR) =E penc(zpk, U

i
j , V

i
j )στR. The

equational theory ensure that penc(K,U, V ) =E penc(K ′, U ′, V ′) implies K =E

K ′, U =E U ′, and V =E V ′. Thus we deduce V ij στL =E V ij στR. Therefore,

we get that resultj θÑk
στL =E xvote1,j τL + xvote2,j τL + +(V 3

j + · · · + V kj )στL =E

xvote1,j τR + xvote2,j τR + +(V 3
j + · · ·+ V kj )στR =E resultj θÑk

στR.

Moreover, V ij στ ∈ {one, zero} is ensured by the fact that NiθÑk
στ is a valid

ballot. Therefore we deduce that both resultj θÑk
στL and resultj θÑk

στR are

terms built from constants one and zero by application of the function symbol +.

We finally show that the encrypted ballots of honest voters and the partial

decryptions do not leak any information to the adversary.
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Lemma 12. Let φ6 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` . ({ballot1/x1} |
{ballot2/x2} | {pk(skT )/zpk} | {partialj/xpartialj

| 1 ≤ j ≤ `}). We have φ6σÑk
τL ≈s

φ6σÑk
τR.

The proof is very similar to the proof of Lemma 10

Proof. First, we decompose φ6 and consider φ = ν ñ.θ where ñ = {skT , d, r1,1,

. . . , r1,`, r2,1, . . . , r2,`} and θ = {pk(skT )/zpk} |
{
{partialj/xpartialj} | {ciphi,j/xciphi,j

}

| {spk i,j/xspki,j
} | {ŝpk i/x

ŝpki

}
∣∣∣ i ∈ {1, 2} ∧ 1 ≤ j ≤ `

}
. It follows immediately

that φ6τL ≈s φ6τR if and only if φτL ≈s φτR.

Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,`, ciph2,` – with

ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame

φ with any such combination of ciphertexts. Formally, for any αj , βj ∈ N and

terms P,R we define Cα1,...,α`,β1,...,β`,α4,P,R as follows:

penc(pk(skT ), R ◦©1≤j≤` r
αj

1,j ◦ r
βj

2,j , P +
∑

1≤j≤`

αj .x
vote
1,j + βj .x

vote
2,j )

We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R
| α1, α2, α3, α4 ∈ N and terms

P,R s.t. (fn(P ) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 6, it is sufficient to show φeτL ≈s φeτR. Let

φ′e = φeσÑk
. We introduce the following two claims.

Fact 3. Let M be a term such that fv(M) ∩ (fv(φ′e) \ dom(φ′e)) = ∅ and

fn(M) ∩ ñ = ∅. If Mφ′eτ → U for some τ ∈ {τR, τL} then there exists N such

that U =E′ Nφ′eτ and Mφ′eτ
′ → Nφ′eτ

′ for any τ ′ ∈ {τR, τL}.

Fact 4. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φ′e) \ dom(φ′e)) =

∅ and fn(M,N) ∩ ñ = ∅. If Mφ′eτ =E′ Nφ′eτ for some τ ∈ {τR, τL} then

Mφ′e =E′ Nφ′e.

The above claims allow the construction of our proof. Let M,N be two

terms such that fn(M,N) ∩ ñ = ∅ and Mφ′eσÑk
τL =E Nφ′eσÑk

τL. We assume

(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φ′e)\dom(φ′e)) = ∅. We have

Mφ′eτL =E Nφ′eτL. Thus (Mφ′eτL) ↓ =E′ (Nφ′eτL) ↓. Applying repeatedly
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Claim 3, we deduce that there exists M ′ such that (Mφ′eτL) ↓ = M ′φ′eτL and

Mφ′eτR →∗ M ′φ′eτR. Similarly, there exists N ′ such that (Nφ′eτL) ↓ = N ′φ′eτL

and Nφ′eτR →∗ N ′φ′eτR. From M ′φ′eτL =E′ N ′φ′eτL and Claim 4, we deduce

M ′φ′e =E′ N ′φ′e. Therefore M ′φ′eτR =E′ N ′φ′eτR and thus Mφ′eτR =E Nφ′eτR,

that is Mφ′eσÑk
τR =E Nφ′eσÑk

τR.

Proof of Claim 3: This result is proved by inspection of the rewrite rules,

using the fact that the decryption key skT is not deducible. More precisely,

assume that Mφ′eτ → U for some τ ∈ {τR, τL}. It means that there exists a

rewriting rule l → r ∈ RE and a position p such that Mφ′eτ |p =E′ lθ for some

θ. p cannot occur below M since φ′eτ is in normal form. If M |p = lθ′ for some

θ′ then we conclude that we can rewrite M as expected. The only interesting

case is thus when M |p is not an instance of l but Mφ′eτ |p is. By inspection of

the rules, l→ r can only correspond to one of the three equations E5, E6 or E7.

The case of Equations E5 is ruled out by the fact that skT is not deducible

from φ′eτ . For Equation E6, it must be the case that Mφ′e|p = resultjσÑk
.

Using Lemma 11, we deduce that Mφ′e|pτ → R modulo E′ where R is a sum

of ones and zero. Therefore Mφ′eτ → M [R]pφ
′
eτ . The last case is when the

rule corresponding to Equation E7 is applied. Then it must be the case that

M |p = x ∗ y with x, y variables of dom(φ′e). By construction of φ′e, we have

that (x ∗ y)φ′e → zφ′e (applying the rule corresponding to Equation E7), thus

the result.

Proof of Claim 4: Assume by contradiction that there exist M,N two terms

such that Mφ′eτ =E′ Nφ′eτ for some τ ∈ {τR, τL} and Mφ′e 6=E′ Nφ′e. Consider

M,N two minimal terms that satisfy this property. By case inspection, it must

be the case that M and N are both variables. Thus we have xφ′eτ =E′ yφ′eτ

and xφ′e 6=E′ yφ′e with x, y ∈ dom(φ′e), x 6= y. The head symbol of xφ′eτ

must be penc or partial. Assume first that the head symbol of xφ′eτ is penc.

Then by construction of φ′e, τ does not change the randomness used in penc

and the randomness uniquely determines the variable, which implies x = y,

contradiction. Assume now that the head symbol of xφ′eτ is partial. Then it must

be the case that tallyj1σÑk
τ =E′ tallyj2σÑk

τ while tallyj1σÑk
6=E′ tallyj2σÑk

.

This would require xciphi,j1
τ = x′ciphi′,j2

τ for some i, i′, which is excluded due

to the randomness.
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Figure 6 Partial evolutions of the Helios process specification

We introduce some partial evolutions of the Helios process specification:

A1 = ν skT , a2, d, r1,1, . . . , r1,`, y1 . ( | {ballot1/y1} | {pk(skT )/zpk})
A2 = A1[ | {ballot1/x1}]
A3 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`, y1, y2 . ( |

{ballot1/y1} | {ballot2/y2} | {ballot1/x1} | {pk(skT )/zpk})
A4 = A3[ | {ballot2/x2}]
A5 = A4[ν ypartial.( | {partials/ypartial}]
A6 = A5[ | {partials/xpartial})]
A7 = A6[{results/xresult}]

BB1
n = c〈y1〉 . BB2

n

BB2
n = a2(y2) . BB3

n

BB3
n = c〈y2〉 . BB

′

3,n

BB
′

j,n = aj(yj) . if φsol`,j−1{yj/yballot} then

· · · an(yn) . if φsol`,n−1{yn/yballot} then

BB4
n

BB
′′

j,n = if φsol`,j−1{yj/yballot} then

aj+1(yj+1) . if φsol`,j{yj+1/yballot} then

· · · an(yn) . if φsol`,n−1{yn/yballot} then

BB4
n

BB4
n = d〈(tally1, . . . , tally`)〉 . BB5

n

BB5
n = d(ypartial) . BB

6
n

BB6
n = c〈ypartial〉 . BB7

n

BB7
n = c〈(dec(π1(ypartial), tally`), . . . , dec(π`(ypartial), tally`))〉

T 1
` = d〈partials〉

where partials = (partial(skT , tally1), . . . , partial(skT , tally`)) and results =
(dec(partial(skT , tally1), tally1), . . . , dec(partial(skT , tally`), tally`)).

B.4 Proof of Theorem 1

We introduce some partial evolutions of the Helios process specification in Fig-

ure 6 and define a relationR between processes in Figure 7. We clearly have that

Aφ`,n[V {a1/xauth}σ | V {a2/xauth}σ′] R Aφ`,n[V {a1/xauth}σ′ | V {a2/xauth}σ]. We now

wish to show that R ∪ R−1 satisfies the three properties of Definition 2. By

symmetry we focus on R. Overwriting the definition, we may say that a term

N is a valid ballot if both NστL and NστR are valid ballots, where σ is defined

Figure 7.
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Figure 7 Definition of the relation R
Consider the smallest relation R which is closed under structural equivalence
and includes the following pairs of extended processes, where for all 3 ≤ j ≤ n,
terms M , terms N1, . . . , Nj , substitutions σ = {Nk/yk | k ∈ {3, . . . , n}} and dis-
tinct variables xpartial, xresult, x1, x2 such that NjστL and NjστR are valid ballot,
fv(M)∪

⋃
3≤i≤j fv(Ni) ⊆ dom(A4) and (fn(M)∪

⋃
3≤i≤j fn(Ni))∩ bn(A4) = ∅.

Aφ
sol

`,n [V {a1/xauth}σ | V {a2/xauth}σ
′], Aφ

sol

`,n [V {a1/xauth}σ
′ | V {a2/xauth}σ] (R1)

A1[V {a2/xauth}σ
′ | BB1

n | T`]τL, A1[V {a2/xauth}σ | BB
1
n | T`]τR (R2)

A2[V {a2/xauth}σ
′ | BB2

n | T`]τL, A2[V {a2/xauth}σ | BB
2
n | T`]τR (R3)

A3[BB3
n | T`]τL, A3[BB3

n | T`]τR (R4)

A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL,

A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τR (R5)

A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL,

A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR (R6)

A4[0 | T`]τL, A4[0 | T`]τR (R7)

A4[BB4
nτ | T`]τL, A4[BB4

nτ | T`]τR (R8)

A4[BB5
n | T 1

` ]ττL, A4[BB5
n | T 1

` ]ττR (R9)

A5[BB6
n]ττL, A5[BB6

n]ττR (R10)

A6[BB7
n]ττL, A6[BB7

n]ττR (R11)

A7ττL, A7ττR (R12)

Static equivalence. We must show for all extended processes A and B, where

A R B, that A ≈s B. By Lemma 6, it is sufficient to show A7ττL ≈s A7ττR

for any N3, . . . , Nn valid ballots. Let φ7 = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,` .

({ballot1/x1} | {ballot2/x2} | {pk(skT )/zpk} | {(partial1, . . . , partialn )/xpartial} |
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{(result1, . . . , resultn )/xresult}). We have to show φ7σN3,...,NnτL ≈s φ7σN3,...,NnτR.

By Lemma 11, we deduce that (result1, . . . , result`)σN3,...,Nn
τL = (result1, . . . ,

result`)σN3,...,Nn
τR and is equal to a constant (always deducible) term. Thus by

Lemma 5, it is sufficient to show that φ6σN3,...,Nn
τL ≈s φ6σN3,...,Nn

τR, where

φ6 as defined in Lemma 12. We conclude by Lemma 12.

Internal reductions. We must show for all extended processes A and B,

where A R B, that if A −→ A′ for some A′, then B −→∗ B′ and A′ R B′

for some B′. We observe that if A ≡ A1[V {a2/xauth}σ′ | BB1
n | T`]τL and

B ≡ A1[V {a2/xauth}σ | BB1
n | T`]τR – that is, A R B by (R2) – then there is no

extended process A′ such that A −→ A′; similarly, for (R4), (R5), (R7), (R10),

(R11) and (R12). We proceed by case analysis on the remaining cases.

(R1) We haveA ≡ Aφ
sol

`,n [V {a1/xauth}σ | V {a2/xauth}σ′] andB ≡ Aφ
sol

`,n [V {a1/xauth}σ′

| V {a2/xauth}σ]. If A −→ A′, then it must be the case that A ≡ C[a1〈y1〉.0 |
a1(y1).BB1

n]τL and A′ ≡ C[0 | BB1
n]τL, where C[ ] = A1[ν a1.( | V

{a2/xauth}σ′ | T`)]. It follows from B ≡ C ′[a1〈y1〉.0 | a1(y1).BB1
n]τR,

that B −→ B′, where C ′[ ] = A1[ν a1.( | V {a2/xauth}σ | T`)] and B′ =

A1[V {a2/xauth}σ | BB1
n | T`]τR. Since A1[V {a2/xauth}σ′ | BB1

n | T`]τL R
B′ and A′ ≡ A1[V {a2/xauth}σ′ | BB1

n | T`]τL, we derive A′ R B′ by the

closure of R under structural equivalence.

(R3) This case is similar to (R1). We have A ≡ A2[V {a2/xauth}σ′ | BB2
n | T`]τL

and B ≡ A2[V {a2/xauth}σ | BB2
n | T`]τR. If A −→ A′, then it must be the

case that A ≡ C[a2〈y2〉.0 | a2(y2).BB3
n]τL and A′ ≡ C[0 | BB3

n]τL, where

C[ ] = A3[ν a2.( | T`)]. It follows from B ≡ C[a2〈y2〉.0 | a2(y2).BB3
n]τR,

that B −→ B′, where B′ = A3[BB3
n | T`]τR. Since A3[BB3

n | T`]τL R B′

and A′ ≡ A3[BB3
n | T`]τL, we derive A′ R B′ by the closure of R under

structural equivalence.

(R6) We have A ≡ A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL and

B ≡ A4[BB
′′

j,n{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR for some integer

j ∈ {3, . . . , n}, valid ballots N3, . . . , Nj−1 and term M such that fv(M) ∪⋃
3≤i≤j−1 fv(Ni) ⊆ dom(A4) and (fn(M)∪

⋃
3≤i≤j−1 fn(Ni))∩bn(A4) = ∅.

If A −→ A′, then it must be the case that A ≡ C[if φsol`,j−1{M/yballot,
ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL, where C[ ] =

A4[ | T`]. Furthermore, if j < n, then P = BB
′

j+1,n{Nk/yk | j > 3 ∧ k ∈
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{3, . . . , j − 1}}{M/yj}; otherwise P = BB4
n{Nk/yk | j > 3 ∧ k ∈ {3, . . . ,

j−1}}{M/yj}. We also have B ≡ C[if φsol`,j−1{M/yballot, ballot1/y1, ballot2/y2,
N3/y3, . . . ,Nj−1/yj−1} then P else 0]τR.

Let σR = {ballot1τR/x1, ballot2τR/x2, pk(skT )/zpk}, we have ballot1τR is syn-

tactically equal to x1σR and ballot2τR is syntactically equal to x2σR, it fol-

lows thatB ≡ C[if φsol`,j−1{M/yballot, x1σR/y1, x2σR/y2,N3/y3, . . . ,Nj−1/yj−1}
then P else 0]τR and, moreover, since ϕ(C[0]τR) = ν skT , d, r1,1, . . . , r1,`,

r2,1, . . . , r2,`, y1, y2.σR we haveB ≡ C[if φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3,

. . . ,Nj−1/yj−1} then P else 0]τR. We proceed by case analysis on the

structure of A′:

– If A′ ≡ C[P ]τL, then by closure of internal reduction under struc-

tural equivalence we have C[if φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,

Nj−1/yj−1} then P else 0]τL −→ C[P ]τL because ballot1τL is syntac-

tically equal to x1σL, ballot2τL is syntactically equal to x2σL and

ϕ(C[0]τL) = ν skT , d, r1,1, . . . , r1,`, r2,1, . . . , r2,`, y1, y2.σL, where σL =

{ballot1τL/x1, ballot2τL/x2, pk(skT )/zpk}.

Assume A and B satisfy the preconditions of Corollary 1, it follows

that B −→ B′ = A4[P | T`]τR. We now prove our assumption. Since

A R B, it follows by Condition 1 of Definition 2 that A ≈s B. Let

φ = φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}. By inspec-

tion of φsol`,j−1, we have fn(φ) = fn(M) ∪
⋃

3≤i≤j−1 fn(Ni) and since

bn(C) = bn(A4) it follows that bn(C) ∩ fn(φ) = ∅; we also have

fv(φ) = {x1, x2, zpk} ∪ fv(M)∪
⋃

3≤i≤j−1 fv(Ni) and since dom(C) =

{x1, x2, zpk} it follows that fv(φ) ⊂ dom(C). We have shown that the

preconditions of Corollary 1 are satisfied, hence B −→ B′ = A4[P |
T`]τR. It remains to show A′ R B′.

We know [[φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σL]] =

true and [[φsol`,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σR]] =

true; it follows, for τ ∈ {τL, τR}, that [[φsol`,j−1{M/yballot}{pk(skT )/zpk,

ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1}τ ]] = true and we know that

M is a valid ballot. We continue by case analysis on the structure of

P :

1. If P = BB
′

j+1,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj},
then we have j < n. Let j′ = j + 1 and Nj = M , observe P =
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BB
′

j′,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j}} and A4[BB
′

j′,n{Nk/yk |
j > 3 ∧ k ∈ {3, . . . , j}} | T`]τL R B′. The result A′ R B′ follows

by closure of R under structural equivalence.

2. If P = BB4
n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj}, then it

must be the case that j = n. Let Nj = M and hence P = BB4
nτ .

Since A4[BB4
nτ | T`]τL R B′ and A′ ≡ A4[BB4

nτ | T`]τL, we

derive A′ R B′ by the closure of R under structural equivalence.

– A′ ≡ C[0]τL, then similarly to above we have C[if φsol`,j−1{M/yballot,
x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL −→ C[0]τL and it

follows by Corollary 1 that B −→ B′ = C[0]τR. Since A4[0 | T`] R B′

and A′ ≡ A4[0 | T`], we derive A′ R B′ by the closure of R under

structural equivalence.

(R8) We have A ≡ A4[BB4
nτ | T`]τL and B ≡ A4[BB4

nτ | T`]τR, where BB4
n =

d〈(tally1, . . . , tally`)〉 . BB5
n and T` = d(ytally) . d〈(partial(skT , π1(ytally)),

. . . , partial(skT , π`(ytally)))〉. If A −→ A′, then it must be the case that

A′ ≡ A4[BB5
n | T 1

` ]ττL. It follows immediately that B −→ B′, where

B′ = A4[BB5
n | T 1

` ]ττR. We derive A′ R B′ by the closure of R under

structural equivalence.

(R9) We have A ≡ A4[BB5
n | T 1

` ]ττL and B ≡ A4[BB5
n | T 1

` ]ττR. If A −→ A′,

then it must be the case that A ≡ A5[d〈ypartial〉.0 | d(ypartial).BB
6
n}]ττL

and A′ ≡ A5[0 | BB6
n]ττL. It follows from B ≡ A5[d(ypartial).BB

6
n |

d〈ypartial〉.0]ττR that B −→ B′, where B′ = A5[BB6
n]ττR. We derive A′ R

B′ by the closure of R under structural equivalence.

Labelled reductions. We must show for all extended processes A and B,

where A R B, that if A
α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅,

then B −→∗ α−→−→∗ B′ and A′ R B′ for some B′. We observe cases (R1), (R3),

(R6), (R7), (R8), (R9) and (R12) cannot be reduced by labelled reductions and

proceed by case analysis on the remaining cases.

(R2) We have A ≡ A1[V {a2/xauth}σ′ | BB1
n | T`]τL and B ≡ A1[V {a2/xauth}σ |

BB1
n | T`]τR. If A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
then it must be the case that A ≡ A1[V {a2/xauth}σ′ | c〈y1〉.BB2

n | T`]τL
and A′ ≡ A2[V {a2/xauth}σ′ | BB2

n | T`]τL for some variable x1 where

α = ν x1.c〈x1〉 and x1 6= zpk. It follows from B ≡ A1[V {a2/xauth}σ |
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c〈y1〉.BB2
n | T`]τR, that B

α−→ B′ where B′ = A2[V {a2/xauth}σ | BB2
n |

T`]τR. We have A2[V {a2/xauth}σ′ | BB2
n | T`]τL R B′ and by closure of R

under structural equivalence A′ R B′.

(R4) We have A ≡ A3[BB3
n | T`]τL and B ≡ A3[BB3

n | T`]τR. If A
α−→ A′ such

that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case

that A ≡ A3[c〈y2〉.BB
′

3,n | T`]τL and A′ ≡ A4[BB
′

3,n | T`]τL for some

variable x2, where α = ν x2.c〈x2〉 and x2 6∈ {x1, zpk}. It follows from

B ≡ A3[c〈y2〉.BB
′

3,n | T`]τR, that B
α−→ B′, where B′ = A4[BB

′

3,n | T`]τR.

Since A4[BB
′

3,n | T`]τL = A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} |
T`]τL and A4[BB

′

3,n | T`]τR = A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j −
1}} | T`]τR when j = 3, we have A4[BB

′

3,n | T`]τL R B′ and derive

A′ R B′ by closure of R under structural equivalence A′ R B′.

(R5) We have A ≡ A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL and

B ≡ A4[BB
′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τR for some in-

teger j ∈ {3, . . . , n} and terms N3, . . . , Nj−1, where
⋃

3≤i≤j−1 fv(Ni) ⊆
dom(A4) and bn(A4) ∩

⋃
3≤i≤j−1 fn(Ni) = ∅. If A

α−→ A′ such that

fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that

A ≡ A4[aj(yj).BB
′′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T`]τL and A′ ≡
A4[BB

′′

j,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj} | T`]τL, where α =

c(M) for some term M . It follows from B ≡ A4[aj(yj).BB
′′

j,n{Nk/yk | j >
3∧k ∈ {3, . . . , j−1}} | T`]τR, that B

α−→ B′, where B′ = A4[BB
′′

j,n{Nk/yk |
j > 3∧ k ∈ {3, . . . , j − 1}}{M/yj} | T`]τR. We have A4[BB

′′

j,n{Nk/yk | k ∈
{3, . . . , j − 1}}{M/yj} | T`]τL R B′, and derive A′ R B′ by closure of R
under structural equivalence.

(R10) We have A ≡ A5[BB6
n]ττL and B ≡ A5[BB6

n]ττR. If A
α−→ A′ such that

fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that

A′ ≡ A6[BB7
n]ττL for some variable xpartial, where α = ν xpartial.c〈xpartial〉

and xpartial 6∈ {x1, x2, zpk}. It follows immediately that B
α−→ B′, where

B′ = A6[BB7
n]ττR. We have A6[BB7

n]ττL R B′ and by closure of R under

structural equivalence A′ R B′.

(R11) This case is similar to (R10). We have A ≡ A6[BB7
n]ττL and B ≡

A6[BB7
n]ττR. If A

α−→ A′ such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
then it must be the case that A′ ≡ A7ττL for some variable xresult, where
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α = ν xresult.c〈xresult〉 and xresult 6∈ {x1, x2, xpartial, zpk}. It follows immedi-

ately that B
α−→ B′, where B′ = A7ττR. We have A7ττL R B′ and by

closure of R under structural equivalence A′ R B′.
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[45] Est Républicain. June, 18th 2007. Meurthe-et-Moselle edition (Daily

French Newspaper).

[46] Saghar Estehghari and Yvo Desmedt. Exploiting the Client Vulnerabil-

ities in Internet E-voting Systems: Hacking Helios 2.0 as an Example.

In EVT/WOTE’10: Electronic Voting Technology Workshop/Workshop on

Trustworthy Elections. USENIX Association, 2010.

[47] Article L65 of the French electoral code. http://www.legifrance.gouv.

fr/.

[48] Résultat par bureau du premier tour des élections régionales, 2010.
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