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Abstra
tIn this paper we prove de
idability results of restri
ted fragments of simul-taneous rigid rea
hability or SRR, that is the nonsymmetri
al form of simul-taneous rigid E-uni�
ation or SREU. The absen
e of symmetry for
es us touse di�erent methods, from the ones that have been su

essful in the 
ontextof SREU in the past (for example word equations). The methods that weuse instead involve �nite (tree) automata te
hniques, and the de
idabilityproofs provide pre
ise 
omputational 
omplexity bounds. The main resultsare 1) monadi
 SRR with ground rules is PSPACE-
omplete, and 2) balan
edSRR with ground rules is EXPTIME-
omplete. The �rst result indi
ates thedi�eren
e in 
omputational power between fragments of SREU with groundrules and nonground rules, respe
tively, due to a straightforward en
odingof word equations in monadi
 SREU (with nonground rules). The se
ond re-sult establishes the de
idability and pre
ise 
omplexity of the largest knownsubfragment of nonmonadi
 SREU.

KeywordsRigid Uni�
ation, Term Rewriting, Rea
hability.



1 Introdu
tionRigid rea
hability (RR) is the problem, given a rewrite system R and twoterms s and t, whether there exists a substitution � su
h that s�, t�, and R�are ground, and s� rewrites in some number of steps via R� into t�. Theterm \rigid" stems from the fa
t that for ea
h rule only one instan
e 
anbe used in the rewriting pro
ess. Simultaneous rigid rea
hability (SRR) isthe problem in whi
h a substitution is sought whi
h simultaneously solvesea
h member of a system of rea
hability 
onstraints (Ri; si; ti). A spe
ial
ase of [simultaneous℄ rigid rea
hability arises when the Ri are symmetri
,
ontaining for ea
h rule s! t also its 
onverse t! s. Su
h systems arise forexample by orienting a set of equations in both dire
tions. The latter problemwas introdu
ed by Gallier, Raatz & Snyder [1987℄ as \simultaneous rigid E-uni�
ation" (SREU) in the 
ontext of extending tableaux or matrix methodsin automated theorem proving to logi
 with equality. Rigid rea
hability wasinitially introdu
ed in the 
ontext of se
ond-order uni�
ation [Farmer 1991,Levy 1998℄.Although the non-simultaneous 
ase of SREU (rigid E-uni�
ation) wasproved NP-
omplete by Gallier, Narendran, Plaisted & Snyder [1988℄, SREUin general was shown by Degtyarev & Voronkov [1995℄ to be unde
idable.Further impli
ations of the latter result are dis
ussed in [Degtyarev, Gure-vi
h & Voronkov 1996℄. In a series of papers, SREU has been studied ex-tensively and several sharp boundaries have been laid between its de
id-able and unde
idable fragments. Most re
ent developments are dis
ussed byVoronkov [1998℄ and Veanes [1998℄. Rigid rea
hability was shown unde
id-able by Ganzinger, Ja
quemard & Veanes [1998℄.The, arguably, most diÆ
ult remaining open problem regarding SREUis the de
idability of \monadi
" SREU, or SREU restri
ted to signatureswhere all non
onstant fun
tion symbols are unary. The importan
e of thisfragment stems from its 
lose relation to word equations [Degtyarev, Matiya-sevi
h & Voronkov 1996℄, and to fragments of intuitionisti
 logi
 [Degtyarev& Voronkov 1996℄. What is known about monadi
 SREU in general isthat it redu
es to a nontrivial extension of word equations [Gurevi
h &Voronkov 1997℄. In the 
ase of ground rules, the de
idability of monadi
SREU was established in [Gurevi
h & Voronkov 1997℄ by redu
ing it to \wordequations with regular 
onstraints". The de
idability of the latter prob-lem is an extension of Makanin's [1977℄ result by S
hulz [1990℄. Conversely,word equations redu
e in polynomial time to monadi
 SREU [Degtyarev,Matiyasevi
h & Voronkov 1996℄. The �rst main result of this paper (in Se
-tion 3) is that monadi
 SRR with ground rules is in PSPACE, improving theEXPTIME result in Ganzinger et al. [1998℄. Hen
e, it is unlikely that there1



is a simple redu
tion, if any redu
tion at all, from monadi
 SREU to monadi
SREU with ground rules, or else one would get a 
onsiderable simpli�
ationof Makanin's [1977℄ proof. The PSPACE-hardness of monadi
 SREU withground rules was shown by Goubault [1994℄.To obtain the PSPACE result we use an extension of the interse
tionnonemptiness problem of a sequen
e of �nite automata that we prove to bein PSPACE. Moreover, using the same proof te
hnique, we 
an show thatsimultaneous rigid rea
hability with ground rules remains in PSPACE, evenwhen just the rules are required to be monadi
. Furthermore, in this 
asePSPACE-hardness holds already for a single 
onstraint with one variable,
ontrasting the fa
t that SREU with one variable is solvable in polynomialtime [Degtyarev, Gurevi
h, Narendran, Veanes & Voronkov 1998b℄.Our se
ond main result 
on
erns (nonmonadi
) SRR with ground rules.In se
tion 4, we show that SRR with ground rules is EXPTIME-
omplete for\balan
ed" systems of rea
hability 
onstraints. Under balan
ed systems fallfor example systems where all o

urren
es of ea
h variable are at the samedepth. It is possible to obtain unde
idability of (nonsimultaneous) rigidrea
hability with ground rules where all but one o

urren
e of all variableso

ur at the same depth [Ganzinger et al. 1998℄. Moreover, our de
idabilityresult generalizes the de
idability result by Degtyarev, Gurevi
h, Narendran,Veanes & Voronkov [1998a℄ of the largest known de
idable fragment of SREUwith ground rules and implies EXPTIME-
ompletess of the 
omplexity ofthis fragment (whi
h is left open in [Degtyarev et al. 1998a℄). We use �nitetree automata te
hniques over produ
t languages, that have been used inde
ision pro
edures for \automata with 
onstraints between brothers" [
f.Comon, Dau
het, Gilleron, Lugiez, Tison & Tommasi 1998℄.2 PreliminariesA signature � is a 
olle
tion of fun
tion symbols with �xed arities � 0 and,unless otherwise stated, � is assumed to 
ontain at least one 
onstant, thatis, one fun
tion symbol with arity 0. We use a; b; 
; d; a1; : : : for 
onstants andf; g; f1; : : : for fun
tion symbols in general. A signature is 
alled monadi
 ifall fun
tion symbols in it have arity � 1. A ground term is one that 
ontainsno variables. The set of all ground terms over a signature � is denoted byT�.We use s; t; l; r; s1; : : : for terms. The size ktk of a term t is de�nedre
ursively by: ktk = 1 if t is either a variable or a 
onstant andkf(t1; : : : ; tn)k = kt1k+ : : :+ ktnk+ 1:2



Positions in terms are sequen
es of integers. We use p; p1 et
 for positions,� for the empty sequen
e (root position) and pp0 for the 
on
atenation prod-u
t of two positions p and p0. We will also use the pre�x ordering � onpositions. Some positions p1; : : : ; pn are 
alled parallel if they are pairwiseun
omparable with respe
t to �.We assume that the reader is familiar with the basi
 
on
epts in termrewriting [e.g. Dershowitz & Jouannaud 1990, Baader & Nipkow 1998℄. Wewrite u[s℄ when s o

urs as a subterm of u. In that 
ase u[t℄ denotes the re-pla
ement of the indi
ated o

urren
e of s by t. An equation is an unorderedpair of terms, denoted by s � t. A rule is an ordered pair of terms, denotedby s ! t. An equation or a rule is ground if the terms in it are ground. Asystem is a �nite set. Let R be a system of ground rules, and s and t twoground terms. Then s rewrites in R to t, denoted by s�!R t, if t is obtainedfrom s by repla
ing an o

urren
e of a term l in s by a term r for some rulel ! r in R. The term s redu
es in R to t, denoted by s�!�R t, if either s = tor s rewrites to a term that redu
es to t. R is 
alled symmetri
 if, with anyrule l ! r in R, R also 
ontains its 
onverse r ! l. Below we shall notdistinguish between systems of equations and symmetri
 systems of rewriterules. The size of a system R is the sum of the sizes of its 
omponents:kRk =Pl!r2R(klk+ krk).Rigid Rea
hability. A rea
hability 
onstraint, or simply a 
onstraint, ina signature � is a triple (R; s; t) where R is a set of rules in �, and s andt are �-terms. We refer to R, s and t as the rule set, the sour
e termand the target term, respe
tively, of the 
onstraint. A substitution � in �,solves (R; s; t) if � is grounding for R, s and t, and s��!�R� t�: The problemof solving 
onstraints is 
alled rigid rea
hability. A system of 
onstraints issolvable if there exists a substitution that solves all 
onstraints in that system.Simultaneous rigid rea
hability or SRR is the problem of solving systemsof 
onstraints. Monadi
 (simultaneous) rigid rea
hability is (simultaneous)rigid rea
hability for monadi
 signatures.Rigid E-uni�
ation is rigid rea
hability for 
onstraints (E; s; t) with setsof equations E. Simultaneous Rigid E-uni�
ation or SREU is de�ned a
-
ordingly.Finite tree automata. Finite bottom-up tree automata, or simply, treeautomata, from here on, are a generalization of 
lassi
al automata [Doner1970, That
her & Wright 1968℄. Using a rewrite rule based de�nition [e.g.Coquid�e, Dau
het, Gilleron & V�agv�olgyi 1994, Dau
het 1993℄, a tree au-tomaton (or TA) A is a quadruple (Q;�; R; F ), where (i) Q is a �nite set3



of 
onstants 
alled states, (ii) � is a �nite signature that is disjoint from Q,(iii) R is a system of rules of the form f(q1; : : : ; qn) ! q, where f 2 � hasarity n � 0 and q; q1; : : : ; qn 2 Q, and (iv) F � Q is the set of �nal states.The size of a TA A is kAk = jQj+ j�j+ kRk.We denote by L(A; q) the set ft 2 T� �� t�!�R qg of ground terms a

epted byA in state q. The set of terms re
ognized by the TA A is the set Sq2F L(A; q).A set of terms is 
alled re
ognizable or regular if it is re
ognized by some TA.A monadi
 TA is a TA with a monadi
 signature.Finite string automata. For monadi
 signatures, we use the traditional,equivalent 
on
epts of alphabets, strings (or words), �nite automata, andregular expressions. We will identify an NFA A with alphabet � with the setof all rules a(q) ! p, also written as q�!aA p, where there is a transition withlabel a 2 � from state q to state p in A, and we denote this set of rules alsoby A. A monadi
 term a1(a2(: : : an(q))) is written, using the reversed Polishnotation, as the string qan : : : a1.Then A a

epts a string a1a2 � � �an if and only if, for some �nal state qand the initial state q0 of A, an(� � �a2(a1(q0)) � � � )�!�A q, i.e.,q0�!a1A q1�!a2A � � � �!Aan q:The set of all strings a

epted by A is denoted by L(A).Produ
t automata. Let � be a signature, m a positive integer, and ? anew 
onstant. We write �? for � [ f?g and �m? denotes the signature 
on-sisting of, for all f1; f2; : : : ; fm 2 �?, a unique fun
tion symbol hf1f2 � � � fmiwith arity equal to the maximum of the arities of the fi's.Let ti 2 T� [ ?, ti = fi(ti1; : : : ; tiki), where ki � 0, for 1 � i � m. Letk be the maximum of all the ki and let tij = ? for ki < j � k. The produ
tt1 
 � � � 
 tm of t1; : : : ; tm is de�ned by re
ursion on the subterms:t1 
 � � � 
 tm = hf1f2 � � � fmi(t11 
 � � � 
 t1k; : : : ; tm1 
 � � � 
 tmk) (1)For example:f(
; g(
))
 f(g(d); f(
; g(
))) = hffi(

 g(d); g(
)
 f(
; g(
)))= hffi(h
gi(?
 d); hgfi(

 
;?
 g(
)))= hffi(h
gi(h?di; hgfi(h

i; h?gi(?
 
)))= hffi(h
gi(h?di; hgfi(h

i; h?gi(h?
i)))4



We write T m� for the set of all t in T�m? su
h that t = t1 
 � � � 
 tm for somet1; : : : ; tm 2 T� [ ?. If s 2 T m� and t 2 T n� , where s = s1 
 � � � 
 sm andt = t1 
 � � � 
 tn, then s
 t denotes the term s1 
 � � � 
 sm 
 t1 
 � � � 
 tn inT m+n� . Given a sequen
e ~t = t1; : : : ; tm of terms in T� [?, we writeN~t forthe produ
t term t1 
 � � � 
 tmGiven two automata A1 and A2 over �m? and �n?, respe
tively, the produ
tof A1 and A2 is an automaton A1 
 A2 over �m+n? su
h thatL(A1 
 A2) = L(A1)
 L(A2) = ft1 
 t2 : t1 2 L(A1); t2 2 L(A2)gThe 
onstru
tion of A1 
 A2 is straightforward, with a state q(q1;q2) for allstates q1 in A1 and q2 in A2, [see e.g. Comon et al. 1998℄. In general,Nni=1Aiis de�ned a

ordingly.We will use the following 
onstru
tion of Dau
het, Heuillard, Les
anne &Tison [1990℄ in our proofs.Lemma 1 Let R be a ground rewrite system over a signature �. There is aTA A su
h that L(A) = fs
 t : s; t 2 T�; s�!�R tg that 
an be 
onstru
ted inpolynomial time from R and �.3 Monadi
 SRRWe prove that monadi
 SRR with ground rules is PSPACE-
omplete. Ourmain tool is a de
ision problem of NFAs that we de�ne next. In this se
tionwe 
onsider only monadi
 signatures.3.1 Constrained produ
t nonemptiness of NFAsGiven a signature � and a positive integer m, we want to sele
t only a
ertain subset from �m through sele
tion 
onstraints (bounded by m). Theseare unordered pairs of indi
es written as i � j, where 1 � i; j � m, i 6= j.Given a signature � and a set I of sele
tion 
onstraints, we write �m⇂I forthe following subset of �m:�m⇂I = fha1a2 � � �ami 2 �m : (8i � j 2 I) ai = ajgFor an automaton A, let A⇂I denote the redu
tion of A to the alphabet �m⇂I.We write also L(A)⇂I for L(A⇂I). The automaton A⇂I has the same statesas A, and the transitions of A⇂I are pre
isely all the transitions of A withlabels from �m⇂I.We 
onsider the following de
ision problem, that is 
losely related to thenonemptiness problem of the interse
tion of a sequen
e of NFAs. Consider5



an alphabet �. Let (Ai)1�i�n, n � 1, be a sequen
e of (string produ
t)NFAs over the alphabets �mi? for 1 � i � n, respe
tively. Let m be thesum of all the mi and let I be a set of sele
tion 
onstraints. The 
onstrainedprodu
t nonemptiness problem of NFAs is, given (Ai)1�i�n, and I, to de
ide if(Nni=1 L(Ai))⇂I is nonempty. Our key lemma is the following one. Its proof isa straightforward extension of the in
lusion part of Kozen's [1977℄ PSPACE-
ompletess result of the interse
tion nonemptiness problem of DFAs: givena sequen
e (Ai)1�i�n of DFAs, is Tni=1 L(Ai) nonempty?Lemma 2 Constrained produ
t nonemptiness of NFAs (or monadi
 TAs) isin PSPACE.Proof. Let (Ai)1�i�n, mi, m, �, and I be given as above. Assume also thatmi = 2 for 1 � i � n, i.e., m = 2n and ea
h automaton has alphabet �2?.(Proof of the general 
ase is analogous.)Furthermore, we 
an assume, without loss of generality, that none of theautomata a

epts the empty string and that, for ea
h string v that is a

eptedby Ai also h??iv is a

epted by Ai, e.g., we 
an assume that ea
h automatonhas a transition with label h??i from the initial state to the initial state.Consider the following nondeterministi
 de
ision pro
edure.I (Initialize) Cal
ulate the number of states in Nni=1Ai and save it inIterationLimit.(This 
al
ulation is easy, be
ause ea
h state ofNni=1Ai 
orresponds toa sequen
e of states (qi)1�i�n, where qi is a state of Ai.)Save in Statei the initial state of Ai for 1 � i � n.II (Guess the next letter from �m?⇂I) Sele
t (a1; : : : ; am) 2 �m?⇂I andstore ai in Letteri.III (Guess the next transition of (Nni=1Ai)⇂I) For 1 � i � n, guessnondeterministi
ally a state qi from Ai.Che
k that, for 1 � i � n, there is a hLetter2i�1Letter2ii-transitionin Ai from Statei to qi, and if so, save qi in Statei. If there is no su
htransition then terminate and reje
t.IV (Che
k a

eptan
e of (Nni=1Ai)⇂I) If, for 1 � i � n, Statei is ana

epting state of Ai then terminate and a

ept.V (Iterate) If IterationLimit is 0 then terminate and reje
t, else de-
rease IterationLimit by one and return to Step II.6



The pro
edure 
orresponds to walking through the graph of (Nni=1Ai)⇂I, bystarting from the initial state, at ea
h step just remembering the 
urrent stateand guessing a valid transition from that state to the next state. We onlyneed to 
he
k if there exists a path of at most IterationLimit transitions(as initialized in Step I) in L(Nni=1Ai)⇂I from the initial state to a �nal state.It is evident that the pro
edure always terminates, and that it a

epts if andonly if L(Nni=1Ai)⇂I is nonempty.It is obvious, through straightforward binary en
odings, that no morethan polynomial spa
e is required, in order to meet the spa
e requirementsof the pro
edure. Hen
e, the pro
edure runs in nondeterministi
 polynomialspa
e and thus in PSPACE, by using the result of Savit
h [1970℄.Finally, note that the only di�eren
e between NFAs and monadi
 TAs isthat in the latter we may have several transitions of the form 
 ! q, where
 is a 
onstant and q a state. This 
orresponds roughly to allowing severalinitial states in NFAs. ⊠The proof of Lemma 2 
an be extended in a straightforward manner to�nite tree automata. The only di�eren
e will be that the algorithm willdo \universal 
hoi
es" when the arity of fun
tion symbols (letters) in the
omponent automata is > 1. This leads to alternating PSPACE, and thus,by the result of Chandra, Kozen & Sto
kmeyer [1981℄, to EXPTIME upperbound for the 
onstrained produ
t nonemptiness problem of TAs.Although we will not use this fa
t, it is worth noting that the 
onstrainedprodu
t nonemptiness problem is also PSPACE-hard, and this so already forDFAs (or monadi
 DTAs). It is easy to see that Tni=1 L(Ai) is nonempty ifand only if L(Nni=1Ai)⇂fi � i + 1 : 1 � i < ng is nonempty.3.2 Redu
tion of monadi
 SRR with ground rules to
onstrained produ
t nonemptiness of NFAsWe need the following notion of normal form of a system of rea
hability
onstraints. We say that a system S of rea
hability 
onstraints is 
at, if ea
h
onstraint in S is either of the form� (R; x; t), R is nonempty, x is a variable, and t is a ground term or avariable distin
t from x, or of the form� (;; x; f(y)), where x and y are distin
t variables and f is a unary fun
-tion symbol.Note that solvability of a rea
hability 
onstraint with empty rule set is simplyuni�ability of the sour
e and the target. The following simple lemma is useful.7



Lemma 3 Let S be a system of rea
hability 
onstraints. There is a 
atsystem that 
an be obtained in polynomial time from S, that is solvable ifand only if S is solvable.Proof. Let S be a given system of rea
hability 
onstraints and 
onsider thefollowing pro
edure.1. Repla
e ea
h 
onstraint (R; s; t), where s is not a variable, or whens = t, by the 
onstraints (R; x; t) and (;; x; s), where x is a new variable.2. Repla
e ea
h 
onstraint (R; x; t), where R is nonempty, x is a variableand t is neither ground nor a variable, by the 
onstraints (R; x; y) and(;; y; t), where y is a new variable.3. Repla
e ea
h 
onstraint (;; x; f(s)), where s is not a variable and notground, by the 
onstraints (;; x; f(y)) and (;; y; s), where y is a newvariable.4. Repeat the above steps until the system is 
at.It is easy to 
he
k that ea
h step preserves solvability, and 
learly, the time
omplexity of this pro
edure is polynomial in the size of S. ⊠By using Lemma 2 and Lemma 3 we 
an now show the following theorem,that is the main result of this se
tion.Theorem 1 Monadi
 SRR with ground rules is PSPACE-
omplete.Proof. The PSPACE-hardness has been proved already in the 
ase whenthe rule sets are symmetri
 [Goubault 1994℄ and there is only one variable[Gurevi
h & Voronkov 1997℄. We prove in
lusion in PSPACE by giving apolynomial time redu
tion to the 
onstrained produ
t nonemptiness problemof monadi
 TAs.Let S be a system of rea
hability 
onstraints with ground rules. Let� be the signature of S. We may assume, by using Lemma 3, that S is
at. Enumerate all the 
onstraints in S as �1; : : : ; �m; �m+1; : : : ; �n, whereall the 
onstraints of the form (;; x; f(y)) are enumerated as �m+1; : : : ; �n.Let �i = (Ri; xi; ti) for 1 � i � m and �i = (;; xi; fi(yi)) for m < i � n.For 1 � i � m, 
onstru
t a TA Ai su
h that,L(Ai) = fxi� 
 ti� : � solves �ig:For m < i � n, 
onstru
t a TA Ai su
h that,L(Ai) = fxi� 
 yi� : � solves �ig:8



q0 qg qf
qh

h
?i hg
i hfgihgfihghi hhgi hfhi hhfihh
i
hf
ihggi hffi
hhhiFigure 1: A DFA (or monadi
 DTA) A that re
ognizes ff(s)
s : s 2 T�g, where� 
onsists of the unary fun
tion symbols f , g, and h, and the 
onstant 
.For example A re
ognizes the string h
?ihg
ihggihhgihfhi, i.e., the termhfhi(hhgi(hggi(hg
i(h
?i)))) that is the same as f(h(g(g(
)))) 
 h(g(g(
))).(Su
h an automaton is illustrated in Figure 1.) It follows from Lemma 1 thatall these TAs 
an be 
onstru
ted in polynomial time.Let I be the set of all the following sele
tion 
onstraints (where 1 � i; j �n and i 6= j):1. If the sour
e of a �i is a variable that o

urs as the sour
e of a �j, then2i� 1 � 2j � 1 2 I.2. If the sour
e of a �i is a variable that o

urs in the target of a �j, then2i� 1 � 2j 2 I.3. If the target of a �i is a variable that o

urs in the target of a �j, then2i � 2j 2 I.It remains to be proved that L(Nni=1Ai)⇂I is nonempty if and only if S issolvable. (This proof is straightforward, and is illustrated in Example 1.)The theorem follows then from Lemma 2. ⊠The 
ru
ial step in the proof of Theorem 1 is the 
onstru
tion of anautomaton that re
ognizes the language ff(s)
 s : s 2 T�g. (See Figure 1.)The reason why the proof does not generalize to TAs is that the languageff(s) 
 s : s 2 T�g is not regular for nonmonadi
 signatures. The nextexample illustrates how the redu
tion in the proof of Theorem 1 works.Example 1 Consider a 
at system S = f�1; �2; �3g with �1 = (R; y; x), �2 =(;; y; f(z)) and �3 = (;; z; g(x)), over a signature � = ff; g; 
g, where 
 is a
onstant. (This system is solvable if and only if the 
onstraint (R; f(g(x)); x)is solvable.) 9



The 
onstru
tion in the proof of Theorem 1 gives us the monadi
 TAsA1, A2 and A3 su
h thatL(A1) = fs
 t : s�!�R t; s; t 2 T�g;L(A2) = ff(s)
 s : s 2 T�g;L(A3) = fg(s)
 s : s 2 T�g;and a set I = f1 � 3; 5 � 4; 6 � 2g of sele
tion 
onstraints. So L(N3i=1Ai)⇂Iis as follows.L(A1 
 A2 
 A3)⇂I = fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T�; s�!�R tg⇂f1 � 3; 5 � 4; 6 � 2g= fs
 t
 f(u)
 u
 g(v)
 v :s; t; u; v 2 T�; s�!�R t; s = f(u); g(v) = u; v = tg= ff(g(t))
 t
 f(g(t))
 g(t)
 g(t)
 t :t 2 T�; f(g(t))�!�R tgSo, solvability of S is equivalent to nonemptiness of L(A1 
 A2 
 A3)⇂I.3.3 Some de
idable extensions of the monadi
 
aseSome restri
tions imposed by only allowing monadi
 fun
tion symbols 
anbe relaxed without losing de
idability of SRR for the resulting 
lasses of
onstraints. One de
idable fragment of SRR is obtained by requiring onlythe rules to be ground and monadi
. It 
an be shown that SRR for this
lass is still in PSPACE. Furthermore, an easy argument using the inter-se
tion nonemptiness problem of DFAs shows that PSPACE-hardness of thisfragment holds already for a single 
onstraint with one variable. This is in
ontrast with the fa
t that SREU with one variable and a �xed number of
onstraints 
an be solved in polynomial time [Degtyarev et al. 1998b℄.4 A de
idable nonmonadi
 fragmentIn this se
tion, we 
onsider general signatures and give a 
riteria on thesour
e and target terms of a system of rea
hability 
onstraints for the de
id-ability of SRR when the rules are ground. Moreover, we prove that SRR isEXPTIME-
omplete in this 
ase. Our de
ision algorithm involves essentiallytree automata te
hniques. Let � be a signature �xed for the rest of these
tion. 10



4.1 Semi-linear sequen
es of termsWe say that a sequen
e of terms (t1; t2; : : : ; tm) of (possibly non ground)�-terms or ? is semi-linear if one of the following 
onditions holds for ea
hti: 1. ti is a variable, or2. ti is a linear term and no variable in ti o

urs in tj for i 6= j.Note that if ti is ground then it satis�es the se
ond 
ondition trivially.Lemma 4 Let (s1; s2; : : : ; sk) be a semi-linear sequen
e of �-terms. Thenthe subset �s1� 
 s2� 
 � � � 
 sk� : � is a grounding �-substitution	 � T m� isre
ognized by a TA the size of whi
h is in O((ks1k+ k�k) : : : (kskk+ k�k)).Proof. Let � and ~s = s1; s2; : : : ; sk be given. Let Ai be the TA that re
og-nizes fsi� : si� 2 T�g for 1 � i � k. The desired TA is (NAi)⇂I, where Iis the set of all sele
tion 
onstraints i � j su
h that si and sj are identi
alvariables. ⊠We shall also use the following lemma.Lemma 5 Let A = (�; Q;R; F ) be a TA, s 2 T�, and p1; : : : ; pk parallelpositions in s. Then there is a TA A0, with kA0k 2 O�kAk2k�, that re
ognizesthe set �s1 
 � � � 
 sk : s1; : : : ; sk 2 T�; s[p1  s1; : : : ; pk  sk℄ 2 L(A)	Proof. For all states q 2 Q, let Aq be the automaton (�; Q;R; fqg). Letf~qig1�i�m be the 
olle
tion of all sequen
es ~qi = qi1; : : : ; qik 2 Q su
h that,for some qf 2 F , s[p1  qi1; : : : ; pk  qik℄�!�R qf . For all su
h sequen
es ~qi,1 � i � m, 
onstru
t a TA Ai that re
ognizesL(Aqi1)
 � � � 
 L(Aqik):Here we 
an assume that ea
h L(Aqij ) is nonempty, or else L(Ai) is empty.Assume that all the Ai's have disjoint sets of states and let A0 be the union ofall the Ai's. It is easy to 
he
k that A0 re
ognizes the given set of terms. Notethat m � jQjk. The size of A0 is therefore kA0k �Pmi=1 kAik �Pmi=1 kAkk �jQjk � kAkk ⊠

11



4.2 Parallel de
omposition of sequen
es of termsFor te
hni
al reasons, we generalize the notion of a produ
t of m terms byallowing nonground terms. The resulting term is in an extended signaturewith 
 as an additional variadi
 fun
tion symbol. The de�nition is the sameas for ground terms (see (1)), with the additional 
ondition that if one of theti's is a variable then t1 
 � � � 
 tm = 
(t1; : : : ; tm):Consider a sequen
e ~s = s1; : : : ; sm of terms and let (
(~ti))1�i�k be thesequen
e of all the subterms of the produ
t termN~s whi
h have head symbol
. The parallel de
omposition of ~s = s1; : : : ; sm or pd(~s) is the sequen
e(~ti)1�i�k, i.e., we forget the symbol 
. We need the following te
hni
alnotion in the proof of Lemma 6: pdp(~s) is the sequen
e (pi)1�i�k, where pi isthe position of 
(~ti) inN~s.The following example illustrates these new de�nitions and lemmas andhow they are used.Example 2 Let s = f(g(z); g(x)) and t = f(y; f(x; y)) be two �-terms, andlet R be a ground rewrite system over �. We will show how to 
apture allthe solutions of the rea
hability 
onstraint (R; s; t) as a 
ertain regular set of�2?-terms. First, 
onstru
t the produ
t s
 t.s
 t = f(g(z); g(x))
 f(y; f(x; y))= hffi(g(z)
 y; g(x)
 f(x; y))= hffi(
(g(z); y); hgfi(x
 x;?
 y))= hffi(
(g(z); y); hgfi(
(x; x);
(?; y)))The preorder traversal of s 
 t yields the sequen
e 
(g(z); y), 
(x; x),
(?; y).Finally, pd(s; t) is the semi-linear sequen
e g(z); y; x; x;?; y. (Notethat pdp(s; t) is the sequen
e 1; 21; 22.) It follows from Lemma 4 thatthere is a TA A1 su
h that L(A1) = �g(z�) 
 y� 
 x� 
 x� 
 ? 
 y� :� is a grounding �-substitution	.Now, 
onsider a TA AR that re
ognizes the produ
t of �!�R , see Lemma 1,i.e., L(AR) = fu
v : u�!�R v; u; v 2 T�g: From AR we 
an, by using Lemma 5,
onstru
t a TA A2 su
h thatL(A2) = �s1 
 s21 
 s22 : s1; s21; s22 2 T 2� ; hffi(s1; hgfi(s21; s22)) 2 L(AR)	12



Let A re
ognize L(A1) \ L(A2). We get thatL(A) = L(A1) \ L(A2)= 8<: s1 
 s21 
 s22 : (9x�; y�; z� 2 T�)s1 = g(z�)
 y�; s21 = x� 
 x�; s22 = ?
 y�;hffi(s1; hgfi(s21; s22)) 2 L(AR)= fg(z�)
 � � � 
 y� : hffi(g(z�)
 y�; hgfi(x� 
 x�;?
 y�)) 2 L(AR)g= fg(z�)
 � � � 
 y� : � solves (R; s; t)gHen
e L(A) 6= ; if and only if (R; s; t) is solvable.The 
ru
ial property that is needed in the example to prove the de
id-ability of the rigid rea
hability problem is that the parallel de
omposition ofthe sequen
e 
onsisting of its sour
e and target terms is semi-linear. Thisobservation leads to the following de�nition.4.3 Balan
ed systems with ground rulesA system �(R1; s1; t1); : : : ; (Rn; sn; tn)� of rea
hability 
onstraints is 
alledbalan
ed if the parallel de
omposition pd(s1; t1; s2; t2; : : : ; sn; tn) is semi-linear. The proof of Lemma 6 is a generalization of the 
onstru
tion inExample 2.Lemma 6 From every balan
ed system S of rea
hability 
onstraints withground rules, we 
an 
onstru
t in EXPTIME a TA A su
h L(A) 6= ; i� S issatis�able.Proof. Let S = �(R1; s1; t1); : : : ; (Rn; sn; tn)� be a given a balan
ed systemof rea
hability 
onstraints su
h that R1, : : : ,Rn are ground.Using Lemma 1, we 
an asso
iate a TA Ai to ea
h Ri (i � n) su
h thatL(Ai) = �u
 v : u�!�Ri v; u; v 2 T�	The ground terms s?i and t?i are obtained from the sour
e and target termsby repla
ement of every variable by the 
onstant ?.Let U = s?1 
 t?1 
 : : :
 s?n 
 t?n and (p1; : : : ; pk) = pdp(s1; t1; : : : ; sn; tn). We
an use Lemma 5 to 
onstru
t a TA A0 su
h thatL(A0) = nv1 
 : : :
 vk : v1; : : : ; vk 2 T n� ;U [p1  v1; : : : ; pk  vk℄ 2 L( nOi=1 Ai)o13



By hypothesis, the sequen
e pd(s1; t2; : : : ; sn; tn), denoted (u1; : : : ; ukn), issemi-linear. Therefore, it follows from Lemma 4 that there is a TA A00 su
hthat L(A00) = �u1� 
 : : :
 ukn� : � is a grounding �-substitution	Note that both L(A0) and L(A00) are subsets of T kn� . Let A be a TA re
og-nizing L(A0) \ L(A00). We have that L(A) 6= ; if and only if S is satis�able.Let t 2 T kn� . Then t 2 L(A)i� t = u1�
 : : :
ukn� for some grounding �-substitution � (t 2 L(A00)), andU [p1  w1; : : : ; pk  wk℄ 2 L(Nni=1Ai), where wi = Ni:nj=(i�1)n+1 uj�(t 2 L(A00)),i� s?1 
 t?1 
 : : :
 s?n 
 t?n [p1  w1; : : : ; pk  wk℄ 2 L(Nni=1Ai),i� s1� 
 t1� 
 : : : 
 sn� 
 tn� 2 L(Nni=1Ai), be
ause every variable of So

urs in one of the u1; : : : ; uk, by de�nition of pd ,i� s1��!�R1 t1�; : : : ; sn��!�Rn tn�.Lets now �nally evaluate the size of A, the 
omplexity of its 
onstru
tionbeing linearly proportional to its size. For ea
h i � n, the size of Ai ispolynomial in kRik, thus 


Nni=1Ai


 � M 
n where M = maxfkRik : i � ngand 
 is one 
onstant independent from the problem size Therefore, kA0k �M2
nk, see Lemma 5. A

ording to Lemma 4,kA00k � ku1k � : : :� kuknk � �ni=1ksik � �ni=1ktik � N2n;where N = maxfksik; ktik : i � ng. Hen
e,kAk = kA00k � kA0k � N2n �M2
nk � kSk2n(
k+1):
⊠Theorem 2 SRR is EXPTIME-
omplete for balan
ed systems with groundrules.Proof. The EXPTIME-hardness follows from [Ganzinger et al. 1998℄, wherewe have proved that one 
an redu
e the emptiness de
ision for interse
tionof n tree automata to the satis�ability of a rigid rea
hability 
onstraint�R; f(x; : : : ; x); f(q1; : : : ; qn)�, where R is ground and q1, : : : ,qn are 
on-stants. ⊠The balan
ed 
ase 
an easily be used to show the de
idability of the following
ase: for ea
h variable x there exists an integer dx su
h that x o

urs only atpositions of length dx. For example with s1 = f(x; g(y)), t1 = f(f(y; y); x),s2 = g(x), and t2 = g(f(a; y)), �rst \guess" a term a, g(x1), or f(x1; x2) forx to obtain a system where all variables o

ur at the same depth.14
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