
A Formal Analysis of
the Norwegian E-Voting Protocol∗

Véronique Cortier and Cyrille Wiedling

March 22, 2017

Abstract

Norway used e-voting in its last political election both in September 2011 and September 2013, with
more than 28,000 voters using the e-voting option in 2011, and 70,000 in 2013. While some other coun-
tries use a black-box, proprietary voting solution, Norway has made its system publicly available. The
underlying protocol, designed by Scytl, involves several authorities (a ballot box, a receipt generator, a
decryption service, and an auditor). Of course, trusting the correctness and security of e-voting protocols
is crucial in that context. In this paper, we propose a formal analysis of the protocol used in Norway,
w.r.t. ballot secrecy, considering several corruption scenarios. We use a state-of-the-art definition of
ballot secrecy, based on equivalence properties and stated in the applied pi-calculus.

Used in September 2011 and September 2013 for municipality and county elections in Norway [25],
E-voting was tested in ten municipalities. During this nationwide local elections, more than 28,000 vot-
ers did use internet to cast their vote in 2011 and 70,000 in 2013. While many countries use black-box
proprietary solutions, Norway made the protocol publicly available [23]. One key feature of this system
is that voters can check that their votes have correctly reached the ballot box (“cast-as-intended” property)
without anyone else knowing their vote. The goal of this paper is to conduct a thorough analysis of the
Norwegian protocol for the ballot secrecy property: does this system guarantee that no one can know how
some voter voted?

Formal methods have been successfully applied to security protocols with the development of several
tools such as ProVerif [10], Avispa [4], or Scyther [20] that can automatically analyse both protocols of
the literature and fully deployed protocols such as TLS [9]. We therefore chose to model and analyse the
Norwegian protocols in a symbolic model named the applied pi-calculus model [1]. A first issue comes
from the fact that the underlying encryption primitive is non standard and rather complex. Indeed, the
decryption key is split in two shares a1 and a2 with a3 = a1 + a2. Each of these three keys a1, a2, a3 is
given to one administration authority. As further explained in Section 1, this allows for re-encryption and
is crucial for the “cast-as-intended” property of the protocol.

Contributions. Our first contribution is a detailed symbolic model for this particular encryption primi-
tive. More precisely, we provide a rewriting system that models El Gamal encryption, re-encryption, blind-
ing function, signatures and zero-knowledge proofs reflecting the primitives used in the protocol. Then, we
model the whole system as a process in the applied pi-calculus model. Our second main contribution is a
proof of ballot secrecy for several corruption scenarios. Ballot secrecy is typically modeled as follows [21]:
an attacker should not be able to distinguish the case where Alice is voting a and Bob is voting b from the
converse scenario where Alice is voting b while Bob is voting a. Such a property is typically described by
an equivalence of the form

Alice(a) | Bob(b) ≈ Alice(b) | Bob(a)

where Alice(v) represents voter Alice voting for v. Such indistinguishability properties are formalized
through behavioral equivalence. Here we use observational equivalence ≈ as defined in [1]. Combined
with complex equational theories (in particular equational theories with associative and commutative -

∗The research leading to these results has received funding from the European Research Council under the European Union’s
Seventh Framework Program (FP7/2007-2013) / ERC grant agreement n◦258865, project ProSecure.

1

AC - operators), no existing tool can check for equivalence. Indeed, dedicated tools such as SPEC [34],
APTE [15], or AkisS [13] can only handle standard primitives, with the exception of AkisS which covers
more primitives but no AC operators. All three tools are moreover limited to a fixed (and small) number
of sessions. Recently, the tool Tamarin has been enhanced to cope with equivalence properties [5] but for
the moment it requires a high level of interactions. Therefore, the only natural candidate for an automatic
analysis of ballot secrecy is the tool ProVerif [10], one of the most generic tools for security protocols. It
can check for equivalence [12] for an unbounded number of sessions. However, ProVerif cannot handle
equational theories with AC operators either. [2] devises a technique that transforms an equational theory
with AC operators into an equational theory without AC operators, that ProVerif can handle. However,
[2] is particular to the re-encryption theory (together with any non AC theory) and it is unclear whether it
can be adapted to the complex equational theory needed for the Norwegian protocol. Thus we conducted
a preliminary analysis of the Norwegian protocol for a simplified - more abstract - model of the protocol
(without AC operators), and finite number of voters.

In order to obtain stronger security guarantees, the full equational theory of the cryptographic primi-
tives should be considered. Therefore, the main contribution of the paper is a proof “by hand” of ballot
secrecy for two main corruption scenarios: when all authorities are honest (but all but two voters are cor-
rupted) and when the ballot box is corrupted (and again all but two voters are corrupted). We believe that
ballot secrecy can be established in a similar way when the receipt generator is corrupted. A preliminary
version of ballot secrecy under the first corruption scenario was presented in [18]. While the encryption
scheme used in the Norwegian system is particular to the protocol, the Norwegian system also make use of
more standard primitives such as signatures or zero-knowledge proofs. When proving ballot secrecy, we
developed generic lemmas that could be re-used in subsequent works (e.g [3]).

Related Work. Since our initial study of the Norwegian protocol [18], Gjøsteen has proposed a de-
tailed security analysis of the protocol [24] for both ballot secrecy and verifiability, under several trust
assumptions (a first model and security definitions already appeared in [23]). A first main difference be-
tween the two approaches is the security model: we consider a symbolic model while [23, 24] rely on a,
more concrete, computational model where the attacker is any polynomial probabilistic Turing machine.
In that respect, the study in [23, 24] is less abstract and provides more precise security assumptions on the
underlying primitives. In contrast, one advantage of symbolic models is that they are more amendable for
automation as demonstrated by our use of ProVerif for a simplified model. Ballot secrecy is formalized in
two different ways in these two approaches: here, we use a definition of ballot secrecy that is the standard
ballot secrecy definition in symbolic models [21]. [23, 24] model ballot secrecy (and verifiability) through
an ideal functionality that needs to be adapted to the protocol under consideration. Another difference
between [23, 24] and this work lies in the trust assumptions and the properties that are considered. [23, 24]
consider both ballot secrecy and verifiability while we focus here on ballot secrecy. Regarding trust as-
sumptions and as it is often the case in other studies of e-voting protocols, at least in symbolic models,
we assume that the communications between the voter’s computer and the server can be eavesdropped by
an attacker, although in practice, these communications typically happen under some secure channel (eg
TLS). Whenever possible, it is interesting to prove security without relying on external secure channels
since their security is typically not under the control of the authorities, as recently exemplified in an Aus-
tralian election [26]. In contrast, [23, 24] assume private communications between the voter and the server
and consider all the cases where one of the authorities is corrupted (while we do not consider the case of
a corrupted receipt generator). Interestingly, [23, 24] shows that the Norwegian protocol remains secure
when the decryption device is corrupted while we show this is not the case. This indicates that, when the
decryption device is corrupted, ballot secrecy solely relies on the security of the secure channels used by
voters.

Several other e-voting protocols have been studied using formal methods. The FOO [22], Okamoto [32],
and Lee et al. [30] voting protocols have been analysed in [21]. Similarly, Helios has been recently proved
secure both in a formal [17] and a computational [7, 8] model. Helios is actually an implementation of a
voting system proposed and analyzed (for the available definitions at that time) by Cramer et al [19]. All
these protocols were significantly simpler to analyse in a symbolic model due to the fact that the crypto-
graphic primitives were easier to abstract as a term algebra and due to the fact that these protocols involve
less steps. Civitas has been analyzed in [29] in a symbolic model, for a rather rich equational theory. The

2

analysis of this protocol remains simpler than the case of the Norwegian protocol, due to the fact that in
Civitas, the voting phase does not involve any interaction with the bulletin board. Our study (together
with [23, 24]) forms the first security proof of a fully deployed Internet protocol in politically binding elec-
tions. Enlarging the scope to voting systems that may take place in polling stations (that is not just Internet
voting), security analyses include Scantegrity II [33, 14, 29], Prêt-à-voter [27], and STAR-Vote [6].

Outline of the paper. We provide an informal description of the protocol in Section 1, including details
about the different phases of the voting process. Section 3 presents our formal model of the protocol in
the applied pi-calculus. The protocol makes use of a special encryption function in combination with
signatures, zero-knowledge proofs, blinding functions, and coding functions. We therefore propose a new
equational theory reflecting the unusual behavior of the primitives. The main results and corresponding
proofs are presented in Section 4. Section 5 gathers the main lemmas needed for the proofs. We believe
these lemmas to be of independent interest in the sense they can be useful for further formal studies of
different protocols. Most of the proofs are detailed in Sections F and 6 with some additional lemmas
postponed to the appendix. Finally, in Section 7, we present a simplified model of the Norwegian protocol
and the corresponding security analysis using ProVerif.

1 The Norwegian E-Voting Protocol
The Norwegian protocol features four players that define the electronic poll’s infrastructure: a Ballot box
(B), a Receipt generator (R), a Decryption service (D) and an Auditor (A). Each Voter (V) can log in
using a Computer (P) in order to submit his vote. Channels between computers (voters) and the Ballot box
are considered to be authenticated channels, channels between infrastructure’s player are untappable, and
channels between voters and receipt generator are unidirectional out-of-band channels. (Example of SMS
is given in [23].) The protocol can be divided in three phases: the setting phase, the submission phase,
where voters submit their votes, and the counting phase, where ballots are counted and the auditor verifies
the correctness of the election.

1.1 Setting Phase
Before the election, a finite cyclic group G of some prime order q and generator by g is selected, three
private keys a1, a2, and a3 (such that a1 +a2 ≡ a3 [q]) are generated and distributed over respectively D, B,
and R, while the corresponding public keys y1 = ga1 , y2 = ga2 and y3 = ga3 are made publicly available.
Each voter V is assumed to have a signing key idV, with a corresponding verification key, vk(idV), which
is public. The Ballot box B is provided with a table V 7→ sV that associates each voter with a blinding
factor sV. The Receipt generator R is also assumed to have a signing key idR, with a corresponding public
verification key, vk(idR); and it is given, for each voter V , a pseudo-random function dV : G → C, where
C is the set of receipts. Finally, each voter V is assumed to receive by surface mail a table that associates to
any voting option o (from the set O), a precomputed receipt code dV (f(o)sV) ∈ C, where f : O → G is an
injective encoding function.

1.2 Submission Phase
The submission phase is summarized in Figure 1. We detail in this section the expected behavior of each
participant.

Voter (V). Each voter tells his computer what voting option o to submit and allows it to sign the corre-
sponding ballot on his behalf. Then, he has to wait for an acceptance message coming from the computer
and a receipt ř sent by the receipt generator through some out-of-band channel (typically a SMS message).
Using the receipt, he verifies that the correct vote was submitted, that is, he checks that ř = dV (f(o)sV) by
verifying that the receipt code ř indeed appears in the line associated to the voting option o he has chosen.

This check ensures in particular the “cast-as-intended” property. In case the voter’s computer is cor-
rupted and encrypts another vote (say the computer wishes to cast a vote for the Pirate party) then this
would be eventually discovered by the voter when receiving the receipt.

3

V P B R

(o, dV (f(o)sV))

x gr

w yr
1f(o)

p pfkV

si sign((x, w, p), idV)

o

ok

ř

siR

b = (x, w, p, si)

ř dV (w̌x̌�a3)

h hash((vk(idV), b))

siR sign(h, idR)

siR

b0 = (b, x̌, w̌, p̌)

g, idV, y1
a2, vk(idV), (V, sV)

V 2 EV

a3, idR, vk(idV)
(V, dV), V 2 EVo 2 O

x̌ xsV

w̌ wsV x̌a2

p̌ pfkB

Figure 1: Submission of one vote.

Computer (P). Voter’s computer encrypts voter’s ballot with the public key y1 using standard El Gamal
encryption. The resulting ballot is 〈gr, yr1f(o)〉. P also proves that the resulting ciphertext corresponds to a
valid voting option, by computing a standard proof of knowledge pfkV. (This proof is formally presented
in Section 3, but a detailed description can be found in [23].). P also signs, on the behalf of the Voter,
the ballot with idV and sends it to the Ballot box. It then waits for a confirmation siR coming from the
latter, which is a hash of the initial encrypted ballot, signed by the Receipt generator. After checking this
signature, the computer notifies the voter that his vote has been taken into account.

Ballot box (B). Upon receiving an encrypted and signed ballot b from a computer, the Ballot box first
checks the correctness of signatures and proofs before re-encrypting the original encrypted ballot with a2
and blinding it with sV. B also generates a proof pfkB, showing that its computation is correct. B then
sends the new modified ballot b′ to the Receipt generator. Once the Ballot box receives a message siR from
R, it simply checks that the Receipt generator’s signature is valid, and sends it to the computer.

Receipt generator (R). Upon receiving an encrypted ballot b′ = 〈b, x̌, w̌, p̌〉 from the Ballot box, the
Receipt generator first checks signature and proofs (from the computer and the Ballot box). If the validity
checks are successful, it generates:

• a receipt code ř = dV (w̌x̌−a3) sent by out-of-band channel directly to the Voter. Intuitively, the
Receipt generator decrypts the (blinded) ballot, applying the function dV associated to the voter.
This receipt code gives assurance to the voter that the correct vote was submitted to the Ballot box.

• a signature on a hash of the original encrypted ballot for the Ballot box. Once transmitted by B, it
is checked and passed on to the Voter’s Computer, which checks it once more and informs the Voter
that his vote has been taken into account.

1.3 Counting Phase
Once the voting phase is over, the counting phase begins (Figure 2). The Ballot box selects the encrypted
votes x1, . . . , xk which need to be decrypted (if a voter has voted several times, all the submitted ballots
remain in the memory of the Ballot box but only the last ballot should be sent) and sends them to the
Decryption service. The whole content of the Ballot box b1, . . . , bn (n ≥ k) is revealed to the Auditor,
including previous votes from re-voting voters. The Receipt generator sends to the Auditor the list of
hashes of ballots it has seen during the submission phase. The Decryption service decrypts the incoming

4

A R B D

((x1, . . . , xk), (dec(x�(1), a1), . . . , dec(x�(k), a1)), pfkD)

(b1, . . . , bn)

(h1, . . . , hn)

(x1, . . . , xk)

Figure 2: Counting phase.

ciphertexts x1, . . . , xk received from the Ballot box and shuffles the decrypted votes before publishing
them. It therefore outputs a message of the form dec(xσ(1), a1), . . . , dec(xσ(k), a1) where σ denotes the
permutation obtained by shuffling the votes. It also provides the Auditor with a proof pfkD showing that
the input ciphertexts and the outcoming decryption indeed match. Using the Ballot box content and the
list of hashes from the Receipt generator, the Auditor verifies that no ballots have been inserted or lost and
it computes its own list of encrypted ballots which should be counted. He compares this list with the one
received from the Decryption service and checks the proof provided by the latter.

1.4 Security Analysis
The rest of the paper is devoted to the modeling and analysis of the protocol. We summarize here informally
our main results and we list our main assumptions and simplifications. We formally prove ballot secrecy
under two threat scenario:

• All but two voters are dishonest and all the authorities (the Ballot box, the Receipt generator, the
Decryption service and the Auditor) are honest.

• All but two voters are dishonest and all the authorities but the Ballot box are honest.

These two results are obtained assuming authenticated but not necessarily secure communication channels
between voters and the Ballot box and Receipt generator, meaning that an attacker may eavesdrop the
communications. For this reason, ballot secrecy does not hold as soon as the Decryption device is corrupted.
Note also that ballot privacy is also broken as soon as the voter’s computer (P) is corrupted since the voter
sends her vote to her computer. We therefore had to assume P to be honest and we chose to model it
together with the voter’s behavior. Authentication between the voter and the Ballot box is ensured through
a login and password mechanism while authentication from the receipt generator to the voter relies on the
out-of-band channel used between them (typically a SMS message).

When modeling the Norwegian protocol in a symbolic model, we had to proceed to some simplifi-
cations. First, and as discussed later in Section 3.1, the cryptographic primitives are abstracted by terms
together with an equational theory, which potentially leaves out some flaws due to some crafty modifica-
tions of some messages. Second, we chose not to model revoting, for simplicity but also since it is explicitly
and strongly discouraged in [23], as it may provide to an attacker that control the Ballot box the opportunity
to swap the initial and the resubmitted votes. Third, for simplicity, we only consider one-option votes (that
voters select one option), rather that a vector of options as in [23]. Finally, we also omit the proof of correct
decryption provided by the decryption device since it should not affect ballot secrecy.

2 Applied Pi-Calculus
We describe here the applied pi-calculus [1], introduced by M. Abadi et C. Fournet. The applied pi-
calculus is a process algebra that is often used to model protocols, and we briefly recall here the notations

5

and definitions, providing some examples.

2.1 Terms
Messages are represented by terms built upon an infinite set of names N (for communication channels
or atomic data), a set of variables X and a signature Σ consisting of a finite set of function symbols (to
represent cryptographic primitives). A function symbol f is assumed to be given with its arity ar(f). Then,
the set of terms T (Σ,X ,N) is formally defined by the following grammar:

t, t1, t2, . . . ::=
x x ∈ X
n n ∈ N
f(t1, . . . , tn) f ∈ Σ, n = ar(f)

We write {M1/x1 , . . . ,
Mn /xn} for the substitution that replaces the variables xi with the terms Mi. Nσ

refers to the result of applying substitution σ to the free variables of the term N . A term is called ground
when it does not contain variables.

In order to represent the properties of the primitives, the signature Σ is equipped with an equational
theory E that is a set of equations which hold on terms built from the signature. We denote by =E the
smallest equivalence relation induced by E, closed under application of function symbols, substitutions of
terms for variables and bijective renaming of names. We write M =E N when the equation M = N holds
in the theory E.

Example 1. A signature for symmetric, asymmetric encryption and signature is

Σ = {checksign, dec, pdec, enc, penc, sign, pk}
where penc and pdec represent resp. asymmetric (randomized) encryption and decryption, enc and dec
stand resp. for symmetric (randomized) encryption and decryption, sign models signature, checksign rep-
resents a function that checks the validity of signature, and pk represents the public key associated to a
secret key. For example, the term penc(m, r, pk(ska)) represents the asymmetric encryption of the mes-
sage m with the public key corresponding to the secret key ska and random factor r. The properties of the
cryptographic functions are represented by the equational theory Eenc:

dec(enc(m, r, k), k) = m

pdec(penc(m, r, pk(sk)), sk) = m

checksign(sign(m, sk), pk(sk),m) = ok.

The first equation models that symmetric decryption is only successful if the key used for decryption is
the same as the one used for encryption. The second equation reflects that asymmetric decryption only
succeeds when the corresponding secret key is used. Finally, the last equation checks that a signature
corresponds to a given message and a given verification key.

For some cryptographic primitives, such as homomorphic encryption, it is necessary to introduce as-
sociative and commutative symbols. Equational theories including such symbols are called AC-theories.
Therefore we define an equality modulo AC, noted =AC , which denotes that two terms are syntactically
equal modulo the associative or commutative properties for each AC symbol +.

x+ (y + z) = (x+ y) + z

x+ y = y + x

Example 2. To represent homomorphic encryption, we may use the signature Σ = {+, ∗, enc} with +
and ∗ two associative and commutative (AC) symbols and the corresponding equational theoryEAC, which
includes the associative and commutative properties of + and ∗ symbols, and the equation:

enc(m, k) ∗ enc(n, k) = enc(m+ n, k).

This equation models that two ciphertexts encrypted with the same key can be combined to create a cipher-
text which corresponding plaintext is the sum of the two previous plaintexts.

6

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if φ then P else Q conditional
u(x).P message input
u〈M〉.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Figure 3: Syntax for processes

2.2 Rewriting System
It might be difficult to work modulo an equational theory. Instead, it is often possible (and more convenient)
to reason with a rewriting system. Formally, a rewriting system R is a set of rewriting rules of the form
l → r with l and r two terms. We say that a term s is rewritten in t for rule l → r, noted s → t, if there
exists a position p in s and a substitution θ such that s|p = lθ and t = s[rθ]p.

Definition 1 (Convergence). A rewriting systemR is said convergent if:

• for every ground term U , there exists no infinite sequence U → U1 → · · · → Uk →
(In this case, we say thatR is terminating.)

• for every ground terms U , U1, and U2 such that U →∗ U1 and U →∗ U2, there exists V such that
U1 →∗ V , and U2 → V . (In this case, we say thatR is confluent.)

ForAC-theories, we consider rewriting systems modulo AC. Formally, a term s is rewritten modulo AC
in t, noted s→AC t, for a rule l→ r if there exist s′ and t′ two terms such that s =AC s′, t =AC t′ and s′

is rewritten in t′ for the rule l→ r. Then, it is possible to define the notion of AC-convergence.

Definition 2 (AC-Convergence). A rewriting systemR is said AC-convergent if:

• for every ground term U , there is no infinite sequence U →AC U1 →AC · · · →AC Uk
(In this case, we say thatR is AC-terminating.)

• for every ground terms U , U1, and U2 such that U →∗AC U1 and U →∗AC U2, there exists V such
that U1 →∗AC V , and U2 →∗AC V . (In this case, we say thatR is AC-confluent.)

2.3 Processes
Processes and extended processes are defined in Figure 3. The process 0 represents the null process that
does nothing. P | Q denotes the parallel composition of P with Q while !P denotes the unbounded
replication of P (i.e. the unbounded parallel composition of P with itself). νn.P creates a fresh name n
and then behaves like P . The process if φ then P else Q behaves like P if φ holds and like Q otherwise.
u(x).P inputs some message in the variable x on channel u and then behaves like P while u〈M〉.P outputs
M on channel u and then behaves like P . We write νũ for the (possibly empty) series of pairwise-distinct
binders νu1.νun. The active substitution {M/x} can replace the variable x for the term M in every
process it comes into contact with and this behaviour can be controlled by restriction, in particular, the
process νx

(
{M/x} | P

)
corresponds exactly to let x = M in P .

7

PAR − 0 A ≡ A | 0
PAR-A A | (B | C) ≡ (A | B) | C
PAR-C A | B ≡ B | A
REPL !P ≡ P | !P
NEW − 0 νn.0 ≡ 0
NEW-C νu.νw.A ≡ νw.νu.A
NEW-PAR A | νu.B ≡ νu.(A | B) if u 6∈ fv(A) ∪ fn(A)
ALIAS νx.{M/x} ≡ 0
SUBST {M/x} | A ≡ {M/x} | A{M/x}
REWRITE {M/x} ≡ {N/x} if M =E N

Figure 4: Structural equivalence.

As in [17], we slightly extend the applied pi-calculus by letting conditional branches now depend on
formulae defined by the following grammar:

φ, ψ ::= M = N |M 6= N | φ ∧ ψ

If M and N are ground, we define JM = NK to be true if M =E N and false otherwise. The semantics of
J K is then extended to formulae as expected.

The scope of names and variables is delimited by binders u(x) and νu. Sets of bound names, bound
variables, free names and free variables are respectively written bn(A), bv(A), fn(A) and fv(A). Occa-
sionally, we write fn(M) (resp. fv(M)) for the set of names (resp. variables) which appear in term M . An
extended process is closed if all its variables are either bound or defined by an active substitution.

An context C[_] is an extended process with a hole instead of an extended process. We obtain C[A]
as the result of filling C[_]’s hole with the extended process A. An evaluation context is a context whose
hole is not in the scope of a replication, a conditional, an input or an output. A context C[_] closes A when
C[A] is closed.

A frame is an extended process built up from the null process 0 and active substitutions composed by
parallel composition and restriction. The domain of a frame ϕ, denoted dom(ϕ) is the set of variables for
which ϕ contains an active substitution {M/x} such that x is not under restriction. Every extended process
A can be mapped to a frame ϕ(A) by replacing every plain process in A with 0.

We refer the reader to Section 2.6 for a full example.

2.4 Operational Semantics
The operational semantics of processes in the applied pi-calculus is defined by three relations: structural
equivalence (≡), internal reduction (→) and labelled reduction (α→).

Structural equivalence is defined in Figure 4. It is closed by α-conversion of both bound names and
bound variables, and closed under application of evaluation contexts. Structural equivalence corresponds
to some structural rewriting that does not change the semantics of a process. The internal reductions and
labelled reductions are defined in Figure 5. They are closed under structural equivalence and application
of evaluation contexts. Internal reductions represent evaluation of condition and internal communication
between processes. Labelled reductions represent communications with the environment.

2.5 Equivalences
Privacy properties are often stated as equivalence relations [21]. Intuitively, if a protocol preserves ballot
secrecy, an attacker should not be able to distinguish between a scenario where a voter votes 0 from a
scenario where the voter votes 1. Static equivalence formally expresses the indistinguishability of two
sequences of terms.

Definition 3 (Static equivalence). Two closed frames ϕ and ψ are statically equivalent, denoted ϕ ≈s ψ,
if dom(ϕ) = dom(ψ) and there exists a set of names ñ and substitutions σ, τ such that ϕ ≡ νñ.σ and

8

(COMM) c〈M〉.P | c(x).Q −→ P | Q{M/x}
(THEN) if φ then P else Q→ P if JφK = true

(ELSE) if φ then P else Q→ Q otherwise

(IN) c(x).P
c(M)−−−→ P{M/x}

(OUT-ATOM) c〈u〉.P c〈u〉−−−→ P

(OPEN-ATOM)
A

c〈u〉−−−→ A′ u 6= c

νu.A
νu.c〈u〉−−−−−→ A′

(SCOPE)
A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

(PAR)
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

(STRUCT)
A ≡ B B

α−→ B′ B′ ≡ A′
A

α−→ A′

where α is a label of the form c(M), c〈u〉, or νu.c〈u〉
such that u is either a channel name or a variable of base type.

Figure 5: Semantics for processes

ψ ≡ νñ.τ and for all terms M,N such that ñ ∩ (fn(M) ∪ fn(N)) = ∅, we have Mσ =E Nσ holds if and
only if Mτ =E Nτ holds.

Two closed extended processes A,B are statically equivalent, written A ≈s B, if their frames are
statically equivalent; that is, ϕ(A) ≈s ϕ(B).

Intuitively, two sequences of messages ϕ and ψ are distinguishable to an attacker (i.e. they are not
statically equivalent) if the attacker can build a public test M = N that holds for ϕ but not for ψ (or the
converse).

Example 3. Consider the signature and equational theory Eenc defined in Example 1. Let ϕ1 = νk.σ1

and ϕ2 = νk.σ2 where σ1 = {penc(s1,r1,pk(k))/x1
, pk(k)/x2

}, σ2 = {penc(s2,r2,pk(k))/x1
, pk(k)/x2

}
and s1, s2, k are names. We have that ϕ1 6≈s ϕ2. Indeed, we have penc(s1, r1, x2)σ1 =E x1σ1 but
penc(s1, r1, x2)σ2 6=E x1σ2.

Intuitively, since the randomness of the encryption is public, an attacker may reconstruct the ciphertexts
and compare. The two messages become indistinguishable as soon as the randomness remain private. That
is, we have that ν(k, r1).σ1 ≈s ν(k, r2).σ2.

Observational equivalence is the active counterpart of static equivalence, where the attacker can actively
interact with the processes. The definition of observational equivalence requires to reason about all contexts
(i.e. all adversaries), which renders the proofs difficult. Since observational equivalence has been shown to
coincide [1, 31] with labelled bisimilarity, we adopt the latter in the remaining of the paper.

Definition 4 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest symmetric relation R on
closed extended processes such that ARB implies:

1. A ≈s B;

2. if A −→ A′, then B −→∗ B′ and A′RB′ for some B′;

3. if A α−→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B −→∗ α−→−→∗ B′ and A′RB′
for some B′.

9

Intuitively, two processes A and B are labelled bisimilar if, anyhow the process A (resp. B) behaves,
the process B (resp. A) may behave with the same visible actions and such that their resulting frames are
statically equivalent, that is, an attacker cannot distinguish between them.

2.6 A Detailed Example
We provide a detailed example to illustrate the syntax and semantics of the applied pi-calculus. Readers
already familiar with this formalism may skip this section. Let us consider a simple protocol proposed (for
illustration purposes) by B. Blanchet [11].

Alice
{sign(k,skA)}pkB−−−−−−−−−−→ Bob{s}k←−−−−−−−−

In this protocol, Alice sends a newly generated and signed key k to Bob, the whole message encrypted
using his public key pkB. Then, the receiver (Bob) checks that the signature belongs to the intended sender
(Alice). He then encrypts a fresh secret s with k using symmetric encryption and sends it to Alice.

To model this protocol in applied-pi calculus, we use the equational theoryEenc described in Example 1
that models the properties of the different primitives used in the protocol. The behavior of the sender and
receiver are modeled in the applied pi-calculus as follows.

A := νk . νra . c〈penc(sign(k, ska), ra, pkB)〉 . c(x1)

B(s) := c(x2) . B′(s)

B′(s) := let y = pdec(x2, skb) in
if checksign(y, pkA) = ok then B′′(s)

B′′(s) := νrb . c〈enc(s, rb, k)〉

In these processes, a and b are secret values that correspond to the private key pairs of Alice and Bob,
respectively. Since Alice should not have a direct access to b, the secret key of Bob, A is given access to
Bob’s public key through a variable pkB and similarly for B. The whole protocol can be easily expressed
using Alice and Bob processes:

P (s) := ν(a, b) . [A | B(s) | Γ]

where Γ =
{
pk(ska)/pkB ,

pk(skb) /pkB
}

. As mentioned above, ska and skb are protected but since pk(ska)
and pk(skb) are public keys, we published them in a frame implying that they are available to anyone
(including the attacker). We first illustrate the semantics of the internal reductions by simulating the normal
execution of the protocol, without any interference.

P (s)
(COMM)−−−−−→ ν(ska, skb, k, ra).

[
c(x1) | B′(s) |

{
penc(sign(k,ska),ra,pkB)/x2

}
| Γ
]

(THEN)−−−−→ ν(ska, skb, k, ra).
[
c(x1) | B′′(s) |

{
penc(sign(k,ska),ra,pkB)/x2

}
| Γ
]

(COMM)−−−−−→ νñ.
[{

enc(s,rb,k)/x1
,penc(sign(k,ska),ra,pkB) /x2

}
| Γ
]
, with ñ = (ska, skb, k, ra, rb).

Alice sends her signed and encrypted message, which is received by Bob.
Actually, this simple protocol is flawed. Indeed, an intruder may impersonate Alice’s identity from

Bob’s point of view. This attack only requires that Alice had, once in the past, spoken to the intruder using
this protocol. This can be showed using our applied-pi calculus model by adding penc(sign(kc, ska), rc, pkC)
to the initial frame, which is a message that Alice would have sent to Charlie according to the protocol. Let
us define this slightly new process:

Pc(s) := ν(ska, skb, skc, rc, kc) . [A | B(s) | Γc] ,

where Γc =
{
penc(sign(kc,ska),rc,pkC)/x,

pk(a) /pkA ,
pk(b) /pkB ,

pk(skc) /pkC
}

. Let us consider now the following
execution: Charlie can send a message M = penc(pdec(x, skC), r′, pkB) to Bob, where x is the message

10

previously received from Alice.

Pc(s)
c(M)−−−−−−→ ν(ska, skb, rc, kc). [A | B′ | Γc]

(THEN)−−−−−→ ν(ska, skb, rc, kc). [A | B′′ | Γc]
νxc.c〈xc〉−−−−−−→ ν(ska, skb, rc, kc, rb).

[
A |
{
enc(s,rb,kc)/xc

}
| Γc

]
.

Let us define the substitution σ =
{
enc(s,rb,kc)/xc ,

M /x2

}
| Γc. In this execution, the test performed by B

succeeds since, according to the equation theory, we have:

Mσ = penc(pdec(x, sk(c)), r′, pkB)σ

= penc(pdec(penc(sign(kc, sk(a)), rc, pk(c)), sk(c)), r′, pk(b))

=Eenc penc(sign(kc, sk(a)), r′, pk(b)),

thus,

checksign(pdec(x2, sk(b)), pkA)σ
=Eenc checksign(pdec(penc(sign(kc, sk(a)), r′, pk(b)), sk(b)), pk(a))
=Eenc checksign(sign(kc, sk(a)), pk(a))
=Eenc ok

which implies that the message is accepted by B, who therefore believes that Alice just sent him the key kc
she had, in fact, sent to Charlie in a former session. At the end of this execution, one can see that s is not
secret anymore since Charlie knows kc from his previous exchange and can perform a decryption of xc to
get s.

We can also illustrate Definition 4 using this example. Indeed, we have that for any s1 and s2, P (s1) 6≈l
P (s2). This is due to the fact that the two processes may evolve in two states that are not statically
equivalent (≈s):

P (s1)
α−→∗ P1 = ν(a, b, rb). [A | σ1] and P (s2)

α−→∗ P2 = ν(a, b, rb). [A | σ2]

where α = c(M).νxc.c〈xc〉. and σi is defined as σ where s is simply replaced by si. We can show that
P1 6≈s P2, due to the fact that the intruder can observe, using N1 = dec(xc, kc) and N2 = s1, that
(N1 =E N2)σ1 but (N1 6=E N2)σ2.

3 Modeling the Norwegian Protocol
We provide a formal specification of the Norwegian protocol, using the framework of the applied pi-
calculus, defined in the previous section. We first model the cryptographic primitives used in the protocol
(Section 3.1) and then the Norwegian protocol itself (Section 3.2).

3.1 Equational Theory
We adopt the following signature to capture the cryptographic primitives used by the protocol.

Σsign = {ok, fst, hash, p, pk, s, snd, vk, blind, d, dec,+, ∗, ◦, �, pair,
renc, sign, unblind, checkpfk1, checkpfk2, checksign, penc, pfk1, pfk2}

The function ok is a constant; fst, hash, p, pk, s, snd, vk are unary functions; blind, d, dec, +, ∗, ◦, �, pair,
renc, sign, unblind are binary functions; checkpfk1, checksign, penc are ternary functions; pfk1, checkpfk2
are quaternary functions and pfk2 is a quinary function.

The term pk(K) denotes the public key corresponding to the secret key K in asymmetric encryption.
Terms s(I), p(I), and vk(I) are respectively the blinding factor, the parameter and the verification key

11

fst(pair(x, y)) = x (E-1)
snd(pair(x, y)) = y (E-2)

dec(penc(x, r, pk(k)), k) = x (E-3)
dec(blind(penc(x, r, pk(k)), b), k) = blind(x, b) (E-4)
penc(x, r1, kp) ◦ penc(y, r2, kp) = penc(x � y, r1 ∗ r2, kp) (E-5)

renc(penc(x, r, pk(k1)), k2) = penc(x, r, pk(k1 + k2)) (E-6)
unblind(blind(x, b), b) = x (E-7)

checksign(x, vk(id), sign(x, id)) = ok (E-8)
checkpfk1(vk(id), ball , pfk1(id, r, x, ball)) = ok (E-9)

where ball = penc(x, r, kp)

checkpfk2(vk(id), x, ball , pfk2(vk(id), k, b, x, ball)) = ok (E-10)
where ball = blind(renc(x, k), b)

Figure 6: Equations for encryption, blinding, signature and proofs of knowledge.

associated to a secret id I . The specific coding function used by the receipt generator for a voter with
secret id I , applied to a message M is represented by d(p(I),M). It corresponds to the function dV (M)
explained in Section 1.2. The term blind(M,N) represents the messageM blinded byN . Unblinding such
a blinded term P , using the same blinding factorN is denoted by unblind(P,N). The term penc(M,N,P)
refers to the encryption of plaintextM using randomnessN and public key P . The termM ◦N denotes the
homomorphic combination of ciphertexts and the corresponding operation is written P � Q on plaintexts
and R∗S on random factors. The decryption of the ciphertext C using secret key K is denoted dec(C,K).
The term renc(M,K) is the re-encryption of the ciphertext M using a secret key K. The addition of
secret keys is denoted by K + L. The term sign(M,N) refers to the signature of the message M using
secret id N . The term pfk1(M,N,P,Q) models a proof of knowledge, linked to the public identity M ,
that proves that Q is a ciphertext of the plaintext P using randomness N . It models what is provided to
convince a prover, and its arguments represents the material needed to construct the proof itself. The term
pfk2(M,N,P,Q,R) represents a proof of knowledge linked to the public identity M , that R is a blinding
of a re-encryption of a term Q using the secret key N and the blinding factor P . pair(M,N) represents the
tuple (M,N). For simplicity, pair(M1, pair(. . . , pair(Mn−1,Mn))) may be abbreviated as 〈M1, . . . ,Mn〉
and fst(snd(M)i−1) as Πi(M) with i ∈ N.

The properties of the primitives are then modeled by equipping the signature with an equational theory
E that asserts that functions +, ∗, ◦ and � are commutative and associative, and includes the equations
defined in Figure 6. The first two equations are quite standard and models left and right projections of
a pair of elements. The third equation simply represents usual decryption of a ciphertext using the cor-
responding secret key, while Equation (E-4) reflects that a blinded ciphertext can be decrypted, yielding
the corresponding blinded plaintext. Equation (E-5) models the homomorphic combination of ciphertexts.
Equation (E-6) represents the re-encryption of a ciphertext. The operation of unblinding is described with
Equation (E-7). Equations (E-8), (E-9), and (E-10) correspond to the verification of respectively signature
and proofs of knowledge pfk1 and pfk2.

The rewriting system corresponding to this equational theory is AC-convergent. This can be proved
showing that the system is both AC-confluent and AC-terminating. The first property is true since there is
no critical pairs. AC-termination can be shown through a special measure for length of terms |.| defined as
follows:

|M | =


1 if M is a name or a variable,
2 + |M1|+ |M2|+ |M3| if M = penc(M1,M2,M3),
2 + |M1|+ |M2| if M = renc(M1,M2),

1 +
k∑
i=1

|Mi| otherwise, i.e. M = f(M1, . . . ,Mk).

12

Using this measure, it is easy to check that the length of terms is strictly decreasing at each step of the
rewriting, which ensures AC-termination of the rewriting system.

3.2 Norwegian Protocol Process Specification
We present here our model of the Norwegian voting protocol. Each player is modeled as an independent
subprocess, and will be instantiated as a part of the whole protocol.

3.2.1 Voting process

The process V (cbal , crec , cpub , kpub , idvot , pidrec , v) represents both the voter and his computer.

V (cbal , crec , cpub , kpub , idvot , pidrec , v) = ν r .
let e = penc(v, r, kpub), p = pfk1(idvot , r, v, e), si = sign(〈e, p〉, idvot) in
cpub〈〈vk(idvot), e, p, si〉〉 . % Public information.
cbal〈〈vk(idvot), e, p, si〉〉 . % Encrypted ballot sent to B.
crec〈ok〉 . % Synchronization for R.
crec(xr) . cbal(xb) . % Wait for inputs from R and B.
if φV(idvot , pidrec , v, e, p, si, xb, xr) then cpub〈ok〉 . crec〈ok〉

with
φV(idvot , pidrec , v, e, p, si, xb, xr) = (d(p(idvot), blind(v, s(idvot))) = xr)

∧ (checksign(hash(〈vk(idvot), e, p, si〉), pidrec , xb) = ok).

Parameter v represents voter’s vote and cbal , crec denote the authenticated channels shared with, re-
spectively, the ballot box and the receipt generator. kpub represents the public key of the election used to
encrypt votes; idvot is the secret id of the voter and pidrec is the verification key of the receipt generator.
Note that messages sent over cbal and crec are also sent on the public channel cpub . This simulates the fact
that cbal and crec are authenticated but not confidential channels. The synchronization step is only here to
simplify the study in the case where B is corrupted. The formula φV(idvot , pidrec , v, e, p, si, xb, xr) mod-
els all the checks performed by the voters: the message received from the ballot box should be properly
signed and the message from the out-of-band channel should correspond to the right receipt code.

3.2.2 Ballot box

We represent the Ballot box, ready to listen to n voters, by the process Bn defined as follows.

Bn(crec , cdec , caud , cpub , ksec , pidrec , c
1
vot , pid

1
vot , s

1
vot , . . . , c

n
vot , pid

n
vot , s

n
vot) =

c1vot(x1) . BB1 c
n
vot(xn) . BBn . % Processes incoming votes.

cbd〈Π2(x1)〉 cbd〈Π2(xn)〉 . % Outputs encrypted votes to D.
cba〈x1〉 cba〈xn〉 % Outputs content to A.

with:

BBi =
if φB(pid ivot , xi) then % Checks ballot’s validity.
let bi = blind(renc(Π2(xi), ksec), sivot) in % Computes re-encrypted blinded
let pok i = pfk2(pid ivot , ksec , s

i
vot ,Π2(xi), bi) in ballot and corresponding proof.

crec〈〈xi, bi, pok i〉〉 . crec(yi) . % Message sent to R. Wait for R.
if φS(pidrec , xi, yi) then cpub〈yi〉 . civot〈yi〉 % Checks confirmation’s validity and

sends confirmation to the Voter.

and
φS(M,N,U) = (checksign(hash(N),M,U) = ok) ,

φB(V,W) = (W = 〈W1,W2,W3,W4〉) ∧ (checkpfk1(W1,W2,W3) = ok)

∧ (W1 = V) ∧ (checksign(〈W2,W3〉,W1,W4) = ok)

13

where (X = 〈X1, . . . , Xn〉) denotes the formula that holds only when X is a n-tuple. For example,
(X = 〈X1, X2〉) denotes the formula X = pair(fst(X), snd(X)).

Intuitively, we assume the ballots to be received from the authenticated channels c1vot , . . . , c
n
vot . The

Ballot box processes each ballot one after another, exchanging with the Receipt generator through the
secure channel crec , before sending back a confirmation to the Voter. Once all votes have been casted,
the Ballot box outputs the encrypted votes to the Decryption device using the secure channel cdec , and
its content to the Auditor through the secure channel caud . ksec is the secret key known by B, while
pid1

vot , . . . , pid
n
vot are the public identities of the voters (i.e. their verification keys) and s1

vot , . . . , s
n
vot the

corresponding blinding factors.

3.2.3 Receipt generator

Rn(cbal , caud , cdec , cpub , ksec , idrec , c
1
vot , pid

1
vot , p

1
vot , . . . , c

n
vot , pid

n
vot , p

n
vot) is the Receipt generator’s pro-

cess. It exchanges messages with the Ballot box, the Decryption service (only for an ad-hoc synchroniza-
tion, used to simplify the proof) and the Auditor through secure channels cbal , cdec , and caud respectively.
It also talks directly to voters through out-of-band channels c1vot , . . . , c

n
vot , which are modeled as authenti-

cated channels here. ksec is the secret key received by R during the setup phase, pid1
vot ,. . . ,pidnvot are the

public identities of the voters and the corresponding receipt coding functions are p1
vot , . . . , p

n
vot .

Rn(cbal , caud , cdec , cpub , ksec , idrec , c
1
vot , pid

1
vot , p

1
vot , . . . , c

n
vot , pid

n
vot , p

n
vot) =

c1vot(sync
1
r) . RG1 . c

1
vot(sync

1
v) . % Processes re-encrypted votes into receipts.

. . .
cnvot(sync

n
r) . RGn . c

n
vot(sync

n
v) .

caud〈〈pid1
vot , hbr1〉〉 caud〈〈pidnvot , hbrn〉〉 . % Outputs content to A.

cdec〈ok〉 % Ad-hoc synchronization for D.

with:

RGi =
cbal(xi) . % Waiting input from the Ballot box.
if φR(ipid ivot , xi) then % Checks Ballot box’s computations.
let ri = d(pivot , dec(Π2(xi), ksec)) in % Computes receipt for the i-th Voter.
let hbr i = hash(Π1(xi)) in
let si i = sign(hbr i, idrec) in % Computes i-th confirmation for the Ballot box.
cbal〈si i〉 . cpub〈ri〉 . civot〈ri〉 % Outputs to intended recipients.

and φR(X,Y) = (Y = 〈Y1, Y2, Y3〉) ∧ (Y1 = 〈W1,W2,W3,W4〉) ∧ (W1 = X)

∧ (checksign(〈W2,W3〉,W1,W4) = ok) ∧ (checkpfk1(W1,W2,W3) = ok)

∧ (checkpfk2(W1,W2, Y2, Y3) = ok) .

Note that instructions civot(sync
i
r) and civot(sync

i
v) are used to force the Receipt Generator to fully

process each receipt before accepting a new entry from the Ballot box, which eases the security analysis.
Note also that we slightly simplify the behavior of the Receipt Generator. [23] indicates that the Receipt
Generator not only computes hbr i as defined above but also the hash of the voter’s ballot (obtained when
computing Π1(xi)) from which the signature is dropped. We ignore the second hash as it contains less
information.

3.2.4 Decryption service

The Decryption service is represented by the process Dn(cbal , crec , caud , cpub , ksec). It communicates
securely with the Ballot box, the Receipt generator (waiting for synchronization), and the Auditor through
respectively channels cbal , crec , and caud . The result is published on the public channel cpub . In order to
decrypt ballots, it needs to know the secret key ksec . The parallelism at the end of the process models that
the votes are shuffled. For simplicity, we omit the proof of correct decryption provided by the Decryption
device as it should not affect privacy.

14

Dn(cbal , crec , caud , cpub , ksec) =
crec(sync1

d) . % Waits for R’s signal to begin the tallying phase.
cbal(d1) cbal(dn) . % Inputs encrypted votes from B.
caud〈hash(〈d1, . . . , dn〉)〉 . % Outputs hashed tally for A.
caud(sync2

d) . % Waits A approval before processing the outcome.
(cpub〈dec(d1, ksec)〉 | · · · | cpub〈dec(dn, ksec)〉)% Publishes the results in a non-deterministic order.

3.2.5 Auditor

Finally, the Auditor is modeled by the process An(cbal , crec , cdec) which communicates with the other
infrastructure players (Ballot box, Receipt generator, and Decryption device) using secure channels cbal ,
crec , and cdec .

An(cbal , crec , cdec) =
crec(h1) crec(hn) . % Inputs from R, D and B.
cdec(hd) . cbal(x1) cbal(xn) .
if φA(hd, h1, . . . , hn, x1, . . . , xn) then cdec〈ok〉 else 0 % Checks and sends approval.

with:

φA(H,X1, . . . , Xn, Y1, . . . , Yn) = (hash(〈Π2(Y1), . . . ,Π2(Yn)〉) = H)
n∧
i=1

[
(Yi = 〈W1,W2,W3,W4〉) ∧ (Xi = 〈Z1, Z2〉) ∧ (W1 = Z1)

∧ (hash(Yi) = Z2) ∧ (checksign(〈W2,W3〉,W1,W4) = ok)
]
.

3.2.6 Norwegian protocol and corruption scenarios

The interaction of all the players is simply modeled by considering all the processes in parallel, with the
correct instantiation and restriction of the parameters. In what follows, the restricted names a1, a2, a3
model the private keys used in the protocol and the corresponding public keys pk(a1), pk(a2) and pk(a3)
are added in the process frame. The restricted names c1, c2 (resp. cRV1 and cRV2) model authentic channels
between the two honest voters and the Ballot box (resp. the Receipt generator). The restricted names id1,
id2, idR represent the secret ids of honest voters and of the Receipt generator. The corresponding public
id’s are added to the process frame.

The process corresponding to the situation where all the authorities are honest is Pn [_] where n is the
number of voters and the hole is the voter’s place and is defined as follows:

Pn [_] = νñ.(let a3 = a1 + a2 in).
[

_

| Bn(cBR, cBD, cBA, cout, a2, idpR, c1, idp1, s(id1), . . . , cn, idpn, s(idn))

| Rn(cBR, cRA, cRD, cout, a3, idR, cRV1 , idp1, p(id1), . . . , cRVn , idpn, p(idn))

| Dn(cBD, cRD, cDA, cout, a1) | An(cBA, cRA, cDA) | Γ
]

with ñ = a1, a2, a3, id1, id2, r1, r2, idR, c1, c2, cRV1 , cRV2 , cBA, cRA, cDA, cBR, cBD, cRD the set of restricted
names and the frame Γ = {pk(ai)/gi | i = 1..3} | {vk(idi)/idpi | i = 1, 2} | {vk(idR)/idpR}. This frame
represents the initial knowledge of the attacker: it has access to the public keys of the authorities and the
verification keys of the voters. Moreover, since only the two first voters are assumed to be honest, only
their two secret ids are restricted (in ñ). The attacker has therefore access to the secret ids of all the other
voters.

The process Pn corresponds therefore to a scenario where all the election authorities are honest. To
model the case where the Ballot box is corrupted, we simply provide the attacker with the Ballot box’s

15

secrets. Formally, we define the process P bn defined as follows.

P bn [_] = νñb.(let a3 = a1 + a2 in).
[

_

| Rn(cBR, cRA, cRD, cout, a3, idR, cRV1 , idp1, p(id1), . . . , cRVn , idpn, p(idn))

| Dn(cBD, cRD, cDA, cout, a1) | An(cBA, cRA, cDA) | Γb
]

with ñb = a1, a3, id1, id2, r1, r2, idR, cRV1 , cRV2 , cRA, cDA, cRD the set of restricted names and Γb = {pk(ai)/gi |
i = 1..3} | {vk(idi)/idpi ,s(idi) /si | i = 1, 2} | {vk(idR)/idpR}. Compared to Pn, we have simply removed Bn
from the process (since the Ballot box is now under the control of the attacker) and the secret key a2 and
the authenticated channels c1, c2, cBA, cBR, cBD are now public (they are not part of the set of restricted
names anymore). Finally, we have added s(id1), s(id2) to the frame representing the initial knowledge.
This models the fact that now, all the secrets of Bn are known to the attacker.

4 Formal Analysis of Ballot Secrecy
Our analysis shows that the Norwegian e-voting protocol preserves ballot secrecy, even when the Ballot
box and all but two voters are corrupted, provided that the other components are honest. This of course
implies ballot secrecy if all the authorities are honest and some voters are corrupted. Conversely, we
identified several cases of corruption that are subject to attacks. Though not surprising, these cases were
not explicitly mentioned in the literature.

In this section, we state our main security results, studying the privacy of the Norwegian protocol under
two main corruptions scenarios. Moreover, we summarize existing attack scenarios. The formal proof of
privacy is then detailed in the next three sections.

Ballot secrecy has been formally defined in terms of equivalence by Delaune, Kremer, and Ryan in [21].
A protocol with process V (v, id) and authority process A preserves ballot secrecy if an attacker cannot
distinguish when votes are swapped, i.e. it cannot distinguish when a voter a1 votes v1 and a2 votes v2

from the case where a1 votes v2 and a2 votes v1. This is formally specified by:

νñ.
(
A | V (v1, a1) | V (v2, a2)

)
≈l νñ.

(
A | V (v2, a1) | V (v1, a2)

)
Proving ballot secrecy of the Norwegian protocol therefore amounts in proving equivalence of the corre-
sponding processes we detailed in Section 3.

4.1 Corrupted Ballot Box and Corrupted Voters
Our main result states that the Norwegian protocol specification satisfies ballot secrecy even if the Ballot
box and n− 2 voters are corrupted, provided that the other components are honest.

Theorem 1. Let n be an integer representing the number of voters. Let P bn be the process defined in
Section 3.2.6, that corresponds to the voting process where all the authorities but the Ballot box are honest.
Then,

P bn [V1(a) | V2(b)] ≈l P bn [V1(b) | V2(a)]

with Vi(vj) = V (ci, cRVi , cout, g1, idi, idpR, vj) which corresponds to the i-th voter voting vj.

In order to prove Theorem 1, we need to “guess” a symmetric relation R on closed processes satis-
fying the properties of a labelled bisimilarity. This amounts into describing symbolically all the possible
(co-)evolutions of the two processes, depending on the actions of the adversary. The description of this
relation is given in Section F. The first step of the proof consists in showing R satisfies property (1) of a
bisimilarity relation, that is, we need to show that all pairs of frames obtained in the relationR are in static
equivalence. In fact, all these frames are included in the final frames (modulo a “cleaning” step performed
using Lemma 12 presented in appendix) corresponding to the complete execution of the two processes. It
is therefore sufficient to prove static equivalence of the two final frames.

16

We consider the following frames:

θinit ={vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,rk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
θδ = θn | {dec(Uδ(k),a1)/resk | k = 1..n}.

where Mi and Uk are free terms such that fv(Mi+1) ⊆ dom(θi) and fv(Uk+1) ⊆ dom(θn). Intuitively, the
Mi and Uk are the recipes sent by the adversary. The restriction on the variables makes sure the adversary
only use terms he has access to, at this step. δ is a substitution of J1, nK intuitively corresponding to the
shuffling of the votes at the end of the election. Then each frame can be interpreted as follows:

• θinit corresponds to the initial knowledge of the attacker. It contains the public data of the honest
voters and the public keys of the election.

• θ0 corresponds to the submission of ballots from the two honest voters. Note that our synchronization
phase ensures that honest voters vote first. And we can show that the adversary cannot interfere with
these two ballots.

• θk corresponds to the knowledge of the adversary once the k-th voter has voted. Intuitively, the adver-
sary will submit any ballot he wishes (Mk) based on his prior knowledge and in return, he receives the
receipt and the signature from the Receipt generator, that is, he receives d(p(idk), dec(Π2(Mk), a3))
and sign(hash(Π1(Mk)), idR).

• Then θδ corresponds to the frame with the final decryption of the votes, after shuffling, that is, the
adversary can see the votes in clear after some permutation δ.

Proposition 1. Let δ is a substitution of J1, nK and tδ = δ ◦ [1 7→ 2, 2 7→ 1]. Let θδ be the frame as defined
above. Then we have:

νω̃.θδσL ≈s νω̃.θtδσR, with σL = {a/v1 ,b /v2} and σR = {b/v1 ,a /v2}.
This proposition is the main core result to establish Theorem 1.

Proof sketch. The proof is done step by step. First, we show that νω̃.θ0σL ≈s νω̃.θ0σR, that is, the frames
are in static equivalence once the two honest voters have voted (Lemma 13 detailed in appendix). We then
show that the receipt sent by the receipt generator does not break static equivalence. This requires to prove
in particular that adding the signature of a known term does preserve static equivalence (Lemma 8, one of
our core lemma). Finally, we conclude by showing that the decryption of the (shuffled) vote only yields
already known terms, built using the same recipes, in both frames.

The full proof of Proposition 1 can be found in Section 6.

It then remains to show that we did not miss any possible execution, that is, show thatR is a bisimilarity
relation, which is ensured by the following proposition.

Proposition 2. Let R be the relation defined in Definition 15 (Section F). Then, R is verifying properties
(2) and (3) of Definition 4.

Proof sketch. Given (P,Q) ∈ R, we consider all possible evolutions of P in P ′ and show that there exists
Q′ such that (P ′, Q′) remains inR. In other words, we check that we did not forget any case when defining
R. The detailed proof is not really technical but is rather tedious and is therefore deferred to Section F.

Theorem 1 then easily follows from Proposition 1 and Proposition 2.

17

4.2 Honest Authorities and Corrupted Voters
The Norwegian E-Voting Protocol specification a fortiori satisfies ballot secrecy even if n − 2 voters are
corrupted, provided that the other components are honest.

Theorem 2. Let n be an integer, that corresponds to the number of voters. Let Pn be the process defined
in Section 3.2.6, that corresponds to the voting process when all authorities are honest. Then,

Pn [V1(a) | V2(b)] ≈l Pn [V1(b) | V2(a)]

with Vi(vj) = V (ci, cRVi , cout, g1, idi, idpR, vj) which corresponds to the i-th voter voting vj.

Theorem 2 is a corollary of Theorem 1. While this is intuitively obvious, the use of equivalence adds
some technicalities to the proof. The key proposition is that extending the initial knowledge of the attacker
can only help finding attacks.

Lemma 1. Let ñ be a set of names, P , Q, two processes. Then, we have:

νñ.
(
P | {M/x}

)
≈l νñ.

(
Q | {M/x}

)
=⇒ νñ.P ≈l νñ.Q.

Proof. We define a symmetric relationR on closed extended processes as follows:

νñ.AR νñ.B
def⇐⇒ νñ.

(
A | {M/x}

)
≈l νñ.

(
B | {M/x}

)
.

Let us show thatR verifies the three properties of a bisimilarity relation (cf Definition 4).

1. This is straightforward since φ(νñ.A) ⊆ φ
(
νñ.

(
A | {M/x}

))
.

2. Let A → A′. Then νñ.
(
A | {M/x}

)
→ νñ.

(
A′ | {M/x}

)
. Now, since A R B, we have that

νñ.
(
A | {M/x}

)
≈l νñ.

(
B | {M/x}

)
thus there exists B such that νñ.

(
B | {M/x}

)
→∗ B and

B ≈l νñ.
(
A′ | {M/x}

)
. Since B is a closed process, it can not make use of x thus it must be

the case that there exists B′ such that B →∗ B′ and B ≡ νñ.
(
B′ | {M/x}

)
. Moreover since

νñ.
(
A′ | {M/x}

)
≈l B ≡ νñ.

(
B′ | {M/x}

)
, we conclude that A′ R B′.

3. Let A α−→ A′. Then νñ.
(
A | {M/x}

) α−→ νñ.
(
A′ | {M/x}

)
. Now, since A R B, we have

that νñ.
(
A | {M/x}

)
≈l νñ.

(
B | {M/x}

)
thus there exists B such that νñ.

(
B | {M/x}

)
→∗

α−→→∗ B and B ≈l νñ.
(
A′ | {M/x}

)
. Since A is a closed process, it does not contain x, thus we

must have that the label α does not contain x either. Thus, if νñ.
(
B | {M/x}

)
→∗ α−→→∗ B, we

must have that there exists B′ such that B →∗ α−→→∗ B′ and B ≡ νñ.
(
B′ | {M/x}

)
. Moreover

since νñ.
(
A′ | {M/x}

)
≈l B ≡ νñ.

(
B′ | {M/x}

)
, we conclude that A′ R B′.

Now, since ≈l is the largest relation satisfying these three properties, we conclude.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let us define A = P bn [V1(a) | V2(b)] and B = P bn [V1(b) | V2(a)]. According to
Theorem 1, we have that: A ≈l B. Thus, for all closing evaluation context C[_], we also have: C[A] ≈l
C[B]. Let us consider the following closing evaluation context:

C[_] = νm̃. [_ | Bn(cBR, cBD, cBA, cout, a2, idpR, c1, idp1, s1, . . . , cn, idpn, sn)] ,

with m̃ = a2, c1, c2, cBR, cBD and Bn is defined as the honest one except that we replace arguments s(id1)
and s(id2) by variables s1 and s2. Then:

C[A] = νm̃. [νñb.(let a3 = a1 + a2 in). (V1(a) | V2(b) | Rn | Dn | Γb)σL | Bn]

18

where Bn, Rn and Dn are just short notations of the different processes with their attributes. Since Bn is
such that (fv(Bn) ∪ fn(Bn)) ∩ ñb = ∅, we have that:

C[A] = νm̃. [νñb.(let a3 = a1 + a2 in). (V1(a) | V2(b) | Bn | Rn | Dn | Γb)]
= ν(m̃, ñb).(let a3 = a1 + a2 in). [V1(a) | V2(b) | Bn | Rn | Dn | Γb] .

But (m̃, ñb) = ñ and:

Bn(cBR, cBD, cBA, cout, a2, idpR, c1, idp1, s1, . . . , cn, idpn, sn)Γb

= Bn(cBR, cBD, cBA, cout, a2, idpR, c1, idp1, s(id1), . . . , cn, idpn, s(idn))Γb.

So, we get that C[A] = Pn[V1(a) | V2(b)], where P
a

n is exactly the same as Pn except that Γ is replaced by
Γb. Doing the same for C[B], we deduce that C[B] = Pn[V1(b) | V2(a)] and thus Pn[V1(a) | V2(b)] ≈l
Pn[V1(b) | V2(a)]. According to Lemma 1, this equivalence implies that:

Pn[V1(a) | V2(b)] ≈l Pn[V1(b) | V2(a)].

4.3 Attacks
We have shown that the Norwegian protocol guarantees ballot privacy provided that the Receipt generator,
the Decryption service, and the Auditor are honest. We review further cases of corruption where ballot
secrecy is no longer guaranteed.

Dishonest Decryption service. The Decryption service is a very sensitive component since it has access
to the decryption key a1 of the public key used for the election. Therefore, a corrupted Decryption service
can very easily decrypt all encrypted ballots and thus learns the votes as soon as he has access to the
communication between the voters and the Ballot box. Such an attack is not possible in [23, 24] since
communications are assumed to be secure (e.g. using TLS channels). It is interesting to note that the
combination of both studies indicates that in case the Decryption service is corrupted then ballot secrecy
solely relies on the security of the communication channels between the voters and the Ballot box.

Dishonest Ballot box and Receipt generator. Clearly, if the Ballot box and the Receipt generator col-
lude, they can compute a1 = a3 − a2 and they can then decrypt all incoming encrypted ballots. More
interestingly, a corrupted Receipt generator does not need the full cooperation of the ballot box for break-
ing ballot secrecy. Indeed, assume that the Receipt generator has access, for some voter V , to the blinding
factor sV used by the Ballot box to blind the ballot. Recall that the Receipt generator retrieves f(o)sV when
generating the receipt codes (by computing w̌x̌−a3). Therefore, the Receipt generator can compute f(o′)sV

for any possible voting option o′. Comparing with the obtained values with f(o)sV it would easily deduce
the chosen option o. Of course, the more blinding factors the Receipt generator can get, the more voters
it can attack. Therefore, the security of the protocol strongly relies on the security of the blinding factors
which generation and distribution are left unspecified in the documentation (who has access to the data
during the generation? How the data are distributed and how secure the distribution is?). The Ballot box
can also perform a similar attack provided that it has access to the SMS sent by the Receipt generator and
provided it can learn the coding function dV for some voters V (which probably requires partial corruption
of the Receipt generator as well). Note that if the Ballot box and the Receipt generator collude, verifiability
is broken as well, as pointed in [23, 24], since votes can be changed without voters noticing.

Dishonest Ballot box and Auditor. Even if the Auditor does not hold any secret (besides the access to
the output of both the Ballot box and the Receipt generator), it is still a key component in the voting process.
Indeed, it ensures that the ballots sent to the Decryption service indeed correspond to the ballots sent by the
voters (unless both the Ballot box and the Receipt generator are corrupted). Assume now that the Ballot
box and the Auditor corrupted. Then the Ballot box can send any ballots it wants to the Decryption service

19

(the - corrupted - Auditor would not complain). This is a clear breach of security in terms of the correctness
of the result: indeed, the results would not correspond to the votes as casted by the voters (as also pointed
in [23, 24]). As a consequence, this is also a breach of ballot privacy. Indeed, the Ballot box may send the
same ballot several times (possibly re-randomized) therefore obtaining a bias of information about the vote
casted by the voter under attack.

5 Lemmas for Static Equivalence
The proof of our main result requires several intermediate lemmas. We believe that some of them are of
independent of interest. We first state lemmas that are independent of the equational theory (Section 5.1)
and then one of them that relies on it but is still quite general and could be reused for other formal studies
of protocols (Section 5.2).

5.1 Generic Lemmas
We use some arguments repetitively on our proofs and we found useful to state them separately. First, we
notice that splitting pairs preserves static equivalence.

Lemma 2. Let ñ, m̃ be names, θ1, θ2 substitutions and let us define φ = νñ.
(
θ1 | {〈U1,U2〉/x}

)
and

ψ = νm̃.
(
θ2 | {〈V1,V2〉/x}

)
two frames with U1, U2, V1, V2 some terms. We have:

φ ≈s ψ ⇐⇒ νñ.
(
θ1 | {U1/x1

,U2 /x2
}
)
≈s νm̃.

(
θ2 ∪ {V1/x1

,V2 /x2
}
)
.

Proof. Let φ′ = νñ.
(
θ1 | {U1/x1

,U2 /x2
}
)

and ψ′ = νm̃.
(
θ2 ∪ {V1/x1

,V2 /x2
}
)
.

Let M , N be terms s.t. (M =E N)φ′. We consider δ = [x1 7→ Π1(x), x2 7→ Π2(x)] and we have, for
all term P : (Pδ)φ =E Pφ′ and (Pδ)ψ =E Pψ′. Thus Mφ′ =E Nφ′ implies (Mδ)φ =E (Nδ)φ. Since
φ ≈s ψ we deduce (Mδ)ψ =E (Nδ)ψ, that is Mψ′ =E Nψ′. Since φ and ψ play a symmetric role, we
deduce that Mψ′ =E Nψ′ implies Mφ′ =E Nφ′ as well.

Adding a deducible term to the frames preserves static equivalence, provided the condition that the
same recipe is used in the two frames.

Lemma 3. Let ñ, m̃ be names, θ1, θ2 substitutions, and φ = νñ.θ1 and ψ = νm̃.θ2 frames. Let U be a
free term, we have:

φ ≈s ψ ⇐⇒ νñ.
(
θ1 | {Uθ1/x}

)
≈s νm̃.

(
θ2 ∪ {Uθ2/x}

)
.

Proof. Let φ′ = νñ.
(
θ1 | {Uθ1/x}

)
and ψ′ = νm̃.

(
θ2 ∪ {Uθ2/x}

)
.

⇐=| Straightforward.

=⇒| Let M , N be terms such that (M =E N)ψ′. We consider δ : x 7→ U and we have, for all term
P : (Pδ)φ =E Pφ′ and (Pδ)ψ =E Pψ′. Thus Mφ′ =E Nφ′ implies (Mδ)φ =E (Nδ)φ. Since φ ≈s ψ,
we deduce (Mδ)ψ =E (Nδ)ψ, that is Mψ′ =E Nψ′.

The next lemmas hold for equational theories for which destructors can be identified.

Definition 5. Let E be an equational theory induced by an AC convergent rewriting system R and Σ a
signature. We say that f ∈ Σ is a destructor in E if for any rewrite rule l→ r ofR

f /∈ r and (f /∈ l or l = f(l1, . . . , ln) and ∀ i ∈ J1, nK, f /∈ li),

i.e. f can only appear in head in l and does not appear in r. Terms of the form f(t1, . . . , tn) with f
destructor in E are called destructor terms.

The next lemma states that destructor terms cannot be introduced by rewriting rules.

20

Lemma 4. Let E be an equational theory induced by an AC-convergent rewriting systemR, Σ a signature
and f ∈ Σ a destructor in E. Let C[_] be a context such that f /∈ C and let T1,. . . , Tn be terms in normal
form. Then there exists a context C ′[_] such that f /∈ C ′ and C[T1, . . . , Tn] → C ′[M1, . . . ,Mp] where
M1, . . . ,Mp are subterms of T1, . . . , Tn.

Proof. Let us consider such context C[_] and such terms T1, . . . , Tn. For this proof, we also consider that
we flatten AC symbols, i.e. a term ⊕(x,⊕(y, z)) will be considered as ⊕(x, y, z) for any AC symbol ⊕.
Moreover, we can consider w.l.o.g. that each Ti does not start with an AC-symbol. If Ti = ⊕(N1, . . . , Nq)
for one i ∈ J1, nK, then we can consider C[_] a new context deduced from C[_] by adding a ⊕ symbol at
each position Ti should be inserted in C[_]. Then, we have:

C[T1, . . . , Tn] =AC C[T1, . . . , Ti−1, N1, . . . , Nq, Ti+1, . . . , Tn].

Now, if C[T1, . . . , Tn] is in normal form, the result is straightforward. If it is not, then we know that there
exists a position s, a rule l → r from R and a substitution θ such that C[T1, . . . , Tn]|s =AC lθ. Let x
be a variable of l and px be a position such that l|px = x. We know that px can’t be the root, otherwise
l = x and R would contain a rule x → r. Such a rule would allow infinite chains of reduction which is
in contradiction with hypothesis on R. Thus, we can move one step up and call ps the position such that
px = ps ∗ j with j ∈ N∗ and l|ps = g ∈ Σ. We consider two cases:

• g is not an AC-symbol. We consider two subcases:

– px is a position of C[_]. Then xθ =AC Cx[T1, . . . , Tn] with Cx[_] a sub context of C[_] and
we can replace the substitution of x in θ by {Cx[T1,...,Tn]/x}.

– px is not a position of C[_], i.e. there exists pi and p2 two positions such that px = pi ∗ p2 with
C[T1, . . . , Tn]|pi =AC Ti and Ti|p2 =AC xθ =AC W with W ∈ St(Ti). In that case, we can
just replace the substitution of x in θ by {W /x}.

• g = ⊕, an AC-symbol. Then, we have l|ps =AC x⊕ l′. We consider again two subcases:

– Either ps is a position of C[_]. Then, l|psθ =AC (x ⊕ l′)θ =AC Cx[T1, . . . , Tn]. Thus,
head(Cx[T1, . . . , Tn)) = ⊕ and we can expand it as follows:

Cx[T1, . . . , Tn] =AC

m1⊕
i=1

Cix[T1, . . . , Tn]
m2⊕
j=1

Wj

with Cix[_] subcontexts of Cx[_] and Wj being one of T1, . . . , Tn. Then, each xθ is linked to a

subset of this sum and we can replace the substitution of x in θ by {
w1⊕
i=1

Cix[T1,...,Tn]
w2⊕
j=1

Wj

/x}
with w1 ≤ m1 and w2 ≤ m2.

– Or l|psθ =AC W with W ∈ St(Ti) for one i ∈ J1, nK. Then, xθ is subterm of W and we
conclude.

Finally, for each case, we have that lθ =AC lθ′ where θ′ contain only substitutions of variables of l by sub
contexts of C[_] and subterms of T1, . . . , Tn. Thus, we have:

C[T1, . . . , Tn]|s =AC lθ → rθ′ =AC Cr[R1, . . . , Rqr]

where Cr[_] contains r and all subcontexts Cx[_], Ckx [_]. Since f /∈ C and Cx[_], Ckx [_] are subcontexts
of C[_], we know that f /∈ Cx and f /∈ Ckx . Moreover, since f is a destructor in E, f /∈ r. Thus, f /∈ Cr.
Finally, R1, . . . , Rqr are subterms of T1, . . . , Tn, then:

C[T1, . . . , Tn]→ C[T1, . . . , Tn]
[
Cr[R1, . . . , Rqr]

]
p

= C ′[M1, . . . ,Mq].

If a destructor term t is non deducible and does not appear as subterm of a frame then t cannot appear
as subterm of any deducible term.

21

Lemma 5. Let E be an equational theory induced by an AC convergent rewriting systemR, Σ a signature
and f ∈ Σ is a destructor in E. Let ϕ be a frame and U = f(U1, . . . , Un) a term in normal form such that
U /∈ St(ϕ) and ϕ 6` U . Then:

for all term T in normal form such that ϕ ` T, U /∈ St(T).

Proof. Let us prove this by induction on the number of steps used to deduce T .
Base case: T ∈ ϕ. Then, since U /∈ St(ϕ), we have that U /∈ St(T).
Induction case: Now suppose that for any T in normal form such that ϕ ` T in n steps, then U /∈

St(T). Let T in normal form such that ϕ ` T in n+ 1 steps. We have ϕ ` T =AC g(T1, . . . , Tn)↓ where
g ∈ Σ and ϕ ` Ti in n steps with Ti in normal form for i ∈ J1, nK.

• If g(T1, . . . , Tn) is already in normal form, then we have two subcases:

– If g 6= f , then according to the induction hypothesis and sinceU /∈ St(Ti), we haveU /∈ St(T).

– If g = f , then, if U ∈ St(T) and since U /∈ St(Ti) according to the induction hypothesis, we
must have T = U , which yields to a contradiction since ϕ ` T and ϕ 6` U .

• If g(T1, . . . , Tn) is not in normal form. If g = f then, we have that f(T1, . . . , Tn)→ r[T̃i] for some
rule l→ r. Since f is a destructor in E, we know that f /∈ r. Thus, according to Lemma 4, we know
that r[T̃i]→∗ C[T̃i] such that f /∈ C. In that case, if U ∈ St(C[T̃i]), then, we must have U ∈ St(T̃i)
which is a contradiction. If g 6= f , then, using Lemma 4 withC[T1, . . . , Tn] =AC g(T1, . . . , Tn), we
have that ∃ C ′ such that f /∈ C ′ and g(T1, . . . , Tn)→∗ C ′[T̃i] with T̃i subterms of T1, . . . , Tn. Then
T =AC C ′[T̃i] but we know that U /∈ St(T̃i) according to induction hypothesis, thus U /∈ St(T).

This concludes the induction.

A context in normal form applied to a destructor term remains in normal form.

Lemma 6. Let E be an equational theory induced by an AC convergent rewriting systemR, Σ a signature
and f ∈ Σ is a destructor in E. Let U = f(U1, . . . , Un) a term in normal form and P [X]p another term
in normal form. Then P [U]p is also in normal form.

Proof. Assume that P [U] is not in normal form. Since P [X] and U are in normal form, it implies that ∃
p a position of P [_] such that P [U]|p =AC lθ with some rule l → r and some substitution θ. But f is a
destructor in E, thus, f must appear at the head of l, which is a contradiction with the position p.

As a consequence of the previous lemmas, we can state that adding non deducible destructor terms to
the frames preserve static equivalence.

Lemma 7. Let E be an equational theory, Σ a signature and f, g ∈ Σ destructors in E. Let ϕ1 = νω̃1.θ1

and ϕ2 = νω̃2.θ2 be frames. Let U1 = f(U1
1 , . . . , U

1
p) and U2 = g(U2

1 , . . . , U
2
q) be terms in normal form

such that, ∀ i ∈ {1, 2}, ϕi 6` Ui and Ui /∈ St(ϕi). Then:

ϕ1 ≈s ϕ2 ⇐⇒ νω̃1.
(
θ1 | {U1/x}

)
≈s νω̃2.

(
θ2 | {U2/x}

)
.

Proof. Let ϕ′i = νω̃i.
(
θi | {Ui/x}

)
= νω̃i.θ

′
i for i ∈ {1, 2}.

⇐=| Straightforward.

=⇒| Let M and N be terms s.t. fv(M,N) ⊆ dom(ϕ′1) and bn(M,N) ∩ bn(ϕ′1) = ∅ with (M =E

N)ϕ′1. Then:

Mϕ′1 =E Nϕ′1
(Mϕ′1)↓ =AC (Nϕ′1)↓

(Mϕ1δ1)↓ =AC (Nϕ1δ)↓
with δ1 : x 7→ U1, according to ϕ′1 definition. Since U1 is in normal form, we apply Lemma 6:

22

(Mϕ1)↓ δ1 =AC (Nϕ1)↓ δ1
((Mϕ1)↓ δ1)δ−1

1 =AC ((Nϕ1)↓ δ1)δ−1
1

with δ−1
1 : U1 7→ x. We know that U1 = f(U1

1 , . . . , U
1
p) with f destructor in E and U1 in normal form and

not subterm of ϕ1. Thus, using Lemma 5, for any T in normal form s.t. ϕ1 ` T , then U1 /∈ St(T). And,
since ϕ1 ` (Mϕ1)↓ (resp. (Nϕ1)↓) we have that (Mϕ1)↓ δ−1

1 = (Mϕ1)↓ (resp. (Nϕ1)↓ δ−1
1 = (Nϕ1)↓).

Thus:

(Mϕ1)↓ δ1δ−1
1 =AC (Nϕ1)↓ δ1δ−1

1

(Mϕ1)↓ =AC (Nϕ1)↓
Since ϕ1 ≈s ϕ2, we have (with δ2 : x 7→ U2):

(Mϕ2)↓ =AC (Nϕ2)↓
(Mϕ2)↓ δ2 =AC (Nϕ2)↓ δ2

Using Lemma 6, we deduce (Mϕ2) ↓ δ2 =AC (Nϕ2) ↓, implying that (M =E N)ϕ′1 → (M =E

N)ϕ′2. Repeating the same reasoning, we can also prove that (M =E N)ϕ′2 → (M =E N)ϕ′1, and we
conclude.

5.2 A More Specific Lemma
We show that adding the signature of a deducible term preserves static equivalence, when the same recipe
is used in both frames. We believe that this lemma holds for other primitives provided the equations are
similar to those for the “sign” symbol like the case of zero-knowledge proofs.

Lemma 8. Let ϕ1 = νω1.θ1 and ϕ2 = νω2.θ2 be two frames, x a fresh variable and a, a name such that
a ∈ ω1 ∩ ω2, {vk(a)/idpa} ∈ θ1 ∩ θ2 and ϕ1, ϕ2 6` a. Let U = sign(U ′, a) in normal form with U ′ a free
term and such that (Uϕi)↓/∈ St(ϕi). Then:

ϕ1 ≈s ϕ2 ⇐⇒ νω1.
(
θ1 | {(Uϕ1)↓/x}

)
≈s νω2.

(
θ2 | {(Uϕ2)↓/x}

)
.

Before proving this lemma, we introduce the notion of down-to-top strategy, where a rewrite rule is
applied first as deep as possible. Note that since we consider convergent rewrite systems, we may chose
any rewrite strategy.

Definition 6. Let us considerM0
l1→r1−−−−→M1 −→ . . .

li→ri−−−−→Mi . . . −→Mn = M0↓ a reduction strategy.
This strategy is called down-to-top, noted −→dt, if, for all i ∈ J1, nK, Mi−1|pi =AC liθi → riθi and for
all position q < pi, Mi−1|q is in normal form.

Proof. Let ϕi = νω1.θi with θi = θi | {(Uϕi)↓/x} for i ∈ {1, 2}.
⇐=| Straightforward.

=⇒|We first assume the two following claims that we prove next.

Claim 1. Let M be a term s.t. fn(M) ∩ ωi = ∅. Then, for any term T s.t. Mϕi −→∗dt T , we have
(Uϕi)↓/∈ St(T).

Claim 2. Let M be a term s.t. (Uϕi)↓/∈ St(M) and for all term T s.t. M −→∗dt T , then (Uϕi)↓/∈ St(T).
Let σ = {(Uϕi)↓/x} a substitution. If Mσ −→∗dt T with no rule (8) involved in the reduction path, then
there exists some term T ′ such that M −→∗dt T ′ and T ′σ =AC T .

We now suppose that ϕ1 ≈s ϕ2 and we consider M and N two terms s.t. fv(M,N) ⊆ dom(ϕ1) and
fn(M,N) ∩ ω1 = ∅. (Since ϕ1 ≈s ϕ2, we have ω1 = ω2 and dom(ϕ1) = dom(ϕ2).) We are going to
prove that (M =E N)ϕ1 iff (M =E N)ϕ2 by induction on the number of positions p in M and N s.t.
M |p = checksign(M1,M2,M3) and (M |pϕi)↓=E ok for i = 1 or i = 2. We also assume down-to-top
reduction strategies only (noted −→dt).

23

Base case: There is no such position in M and N . Then, we can apply Claim 2 on Mϕi and Nϕi.
Indeed, let σi = {(Uϕi)↓/x}. For P ∈ {M,N}, then Pϕi = (Pϕi)σi −→∗dt (Pϕi)↓. If there exists a
position p such that (Pϕi)|p =AC (Uϕi)↓ then, according to the hypothesis on ϕi, p must be a position of
P (and not at a leaf). This implies that P |p∗2 = a which would be a contradiction with the fact that a is
restricted. Thus, we have (Uϕi)↓/∈ St(Pϕi). We also have Pϕi −→∗dt (Pϕi)↓ and s.t. fn(P) ∩ ωi = ∅.
Using Claim 1, we deduce that (Uϕi)↓ does not occur in any of the terms in the reduction Pϕi −→∗dt
(Pϕi)↓. Applying Claim 2 leads to (Pϕi)↓=AC (Pϕi)↓ σi. Then:

(Mϕi)↓ =AC (Nϕi)↓
(Mϕ1)↓ σ1 =AC (Nϕ1)↓ σ1 (Claim 2)

(Mϕ1)↓ =AC (Nϕ1)↓ (Claim 1)

(Mϕ2)↓ =AC (Nϕ2)↓ (ϕ1 ≈s ϕ2)
(Mϕ2)↓ σ2 =AC (Nϕ2)↓ σ2

(Mϕ2)↓ =AC (Nϕ2)↓ . (Claim 2)

Induction step: We suppose that there exists at least one position p inM orN s.t. M |p = checksign(M1,M2,M3)
(or N |p) and (M |pϕi)↓=E ok (resp. N |p) for i = 1 or i = 2. Let us consider w.l.o.g. that this position
is in M and that it reduces when ϕ1 is applied. (We note that if (M |pϕ2)↓=E ok too then we have
(M [ok]p =E M)ϕi for i ∈ {1, 2} and we can conclude using the induction hypothesis on M [ok]p and N .)
We consider the deepest position satisfying this in M . Thus, we know that M1, M2 and M3 do not contain
such a position.

Since (M |pϕ1)↓=E ok, then, according to E, we have that (M3ϕ1)↓=AC sign((M1ϕ1)↓, Q) and
(M2ϕ1)↓=AC vk(Q) for some term Q. According to the hypothesis on position p, we can apply the same
reasoning as used in the base case on M1, M2 and M3 separately and therefore we can apply Claim 2 on
them, which leads to (Miϕ1)↓=AC (Miϕ1)↓ σ1 for i ∈ {1, 2, 3}. We have then the following equalities:

• (M1ϕ1)↓=AC T1 and T1σ1 =AC (M1ϕ1)↓.

• (M2ϕ1)↓=AC T2 and T2σ1 =AC vk(Q). According to definition of σ1, which does not contain a
term of this form, we must have T2 =AC vk(T ′2) and T ′2σ2 =AC Q.

• (M3ϕ1)↓=AC T3 and T3σ1 =AC sign((M1ϕ1)↓, Q). Using the two previous equalities, we have
T3σ1 =AC sign(T1σ1, T

′
2σ1). Then, according to the definition of σ1, we consider two subcases:

– T3 =AC sign(T1, T
′
2,) and then, we have:

(M |pϕ1)↓ =E checksign((M1ϕ1)↓, (M2ϕ1)↓, (M3ϕ1)↓)↓
=E checksign(T1, vk(T ′2), sign(T1, T

′
2))↓

=E ok.

Thus, (M |p =E ok)ϕ1 and using ϕ1 ≈s ϕ2, we have (M |p =E ok)ϕ2 which also implies by
extension (M |p =E ok)ϕ2 and we conclude.

– T3 = x. Then, we have T2σ1 =AC vk(a), i.e. T2 =AC vk(a), which is (M2ϕ1)↓=AC

vk(a). Thus, we have (M2 =E idpa)ϕ1 and, using ϕ1 ≈s ϕ2 that leads us to (M2 =E

idpa)ϕ2. Moreover, (M1ϕ1)↓=AC T1σ1 =AC (U ′ϕ1)↓, i.e. T1 =AC (U ′ϕ1)↓ according to
the definition of σ1, which implies (M1ϕ1)↓=AC (U ′ϕ1)↓. Using ϕ1 ≈s ϕ2 again, we have
(M1 =E U ′)ϕ2. Then:

(M |pϕ2)↓ =E checksign((M1ϕ2)↓, (M2ϕ2)↓, (xϕ2)↓)↓
=E checksign((U ′ϕ2)↓, (idpaϕ2)↓, (Uϕ2)↓)↓
=E ok.

And we conclude.

24

We now prove that the two claims hold.

Proof of Claim 1. We prove this Claim by induction on the size of M . We suppose w.l.o.g. that M is
in normal form.

Base case: M = y is a variable (or a name). Since ϕi is in normal form, we have that for all T s.t.
Mϕi −→∗dt T then Mϕi =AC T . If M is a name, result is straightforward. If M is a variable, then
(Uϕi)↓ ∈ St(T) implies that (Uϕi)↓ ∈ St(ϕi) which is a contradiction.

Induction Step: We assume that for any term M of size m s.t. fn(M)∩ωi = ∅ we have, for all term T
s.t. Mϕi −→∗dt T , (Uϕi)↓/∈ St(T). We now consider a term M of size (m+ 1), i.e. M = f(M1, . . . ,Mn)
with Mi of size at most equal to m. Moreover, following a down-to-top reduction strategy, we have
Mϕi = f(M1ϕi, . . . ,Mnϕi) −→∗dt f(T1, . . . , Tn) with Tj = (Mjϕi)↓. According to the induction
hypothesis, we now that for all term T s.t. Mjϕi −→∗dt T , then (Uϕi)↓ /∈ St(T). Let us consider now the
down-to-top reduction strategy Mϕi −→∗dt T = f(T ′1, . . . , T

′
n) −→∗dt f(T1, . . . , Tn). If (Uϕi)↓∈ St(T),

then we have two possibilities. Either (Uϕi)↓∈ St(T ′k) for some k ∈ J1, nK and we have a contradiction
with the induction hypothesis; or f(T ′1, . . . , T

′
n) =AC (Uϕi)↓ and f = sign, n = 2 and T ′2 = a which

implies that a is deducible by ϕi, contradiction. Thus, (Uϕi)↓ does not occur in any of the terms in the
reduction (Mϕi)↓−→∗dt f(T1, . . . , Tn). We now consider the reduction of f(T1, . . . , Tn):

• It is in normal form, then, we have two subcases:

– f 6= sign. Then, since (Uϕi)↓/∈ St(Tj) for j ∈ J1, nK by the induction hypothesis, we conclude.

– f = sign. Using the induction hypothesis, if (Uϕi)↓∈ St(sign(T1, T2)), we must have sign(T1, T2) =AC

(Uϕi)↓ and a would be deducible by ϕi which is a contradiction.

• f(T1, . . . , Tn) is not in normal form. Then, we have f 6= sign since there are no rule in E s.t. sign is
in head. We have f(T1, . . . , Tn) −→dt T and we consider two subcases:

– T ∈ St(T1, . . . , Tn), then T is in normal form and, using the induction hypothesis, we know
that (Uϕi)↓/∈ St(T) and we conclude.

– T /∈ St(T1, . . . , Tn), then, according to E, we have used rule (4), (5), (6) or (8), (9), (10). The
three last rules lead to T = ok which concludes straightforwardly and the three first rules lead
to T in normal form with the property that if (Uϕi)↓∈ St(T), then (Uϕi)↓∈

⋃
St(Tk), which

would be a contradiction.

Proof of Claim 2. Let us prove this by induction on the number of reduction steps in Mσ −→∗dt T .
Base case: If Mσ =AC T , the result is straightforward. If Mσ −→dt T in one step, then, there is a

position p, a substitution θ and a rule l −→ r (different from (8)) s.t. (Mσ)|p =AC lθ −→dt rθ. Since σ
is in normal form, p must be a position of M . In particular, if we consider M ′ = M [z]p, we have:

Mσ =AC (M [z]pσ)[lθ]p =AC (M ′σ)[lθ]p and Mσ −→dt (M ′σ)[rθ]p.

We note δ : (Uϕi)↓7→ x. Then, we have (Mσ)δ =AC ((M ′σ)[lθ]p)δ. Hypothesis on M states that there
is no position q such that M |q =AC (Uϕi)↓. Therefore, there is no position q such that M ′|q =AC (Uϕi)↓
and the following equalities hold: (Mσ)δ =AC M(σδ) =AC M and (M ′σ)δ =AC M ′(σδ) =AC M ′.
Moreover, we know that (lθ) /∈ St((Uϕi)↓) otherwise (Uϕi)↓ would not be in normal form. Thus,
M =AC M ′[(lθ)δ]p. Since l −→ r is different from rule (8), we have (lθ)δ = l(θδ) = lθ′ −→ rθ′, for
θ′ = θδ, and this implies M −→dt M

′[rθ′]p following a down-to-top reduction strategy since if there was
a lower reduction in M it would also exists in Mσ. Now, we can conclude since:

(M ′[rθ′]p)σ =AC (M ′σ)[(rθ′)σ]p

=AC (M ′σ)[r(θ′σ)]p

=AC (M ′σ)[rθ]p.

Induction Step: We suppose that, for any term M s.t. for all term T s.t. M −→∗dt T , then (Uϕi)↓/∈
St(T), we have: if Mσ −→m

dt T in m steps involving no (8) rule, then M −→m
dt T

′ with T ′σ =AC T .

25

We consider now M s.t. Mσ −→m+1
dt T in (m + 1) steps with no rules (8) in the reduction path. Then

Mσ −→m
dt M1 −→dt T . Using the induction hypothesis, we have that M −→m

dt M
′
1 with M ′1σ =AC M1,

thus M ′1σ −→dt T . But M ′ is verifying hypothesis of Claim 2, otherwise we would have a contradiction
with the fact that M is satisfying them. Then, using Base Case, we have M ′1 −→dt T

′ with T ′σ =AC T .
Thus, M −→m

dt M
′
1 −→dt T

′ and T ′σ =AC T , which allows us to conclude.

6 Static Equivalence of the Final Frame
This section is devoted to the proof of Proposition 1, that states static equivalence of the final frame obtained
in the relation R. This proof relies on several lemmas. Some of them have been presented in the previous
section, other are stated here and proved in appendix.

6.1 Definitions and Useful Lemmas
We first start by introducing some notations that will be useful for the following lemmas. Some of these
definitions may seem artificial but mainly come from the establishment of the relationR, which is described
in the Appendix Section F.

Definition 7. We introduce (or remind) the following definitions:

ω̃ = a1, a3, id1, id2, t1, t2, idR,

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,rk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
θδ = θn | {dec(Uδ(k),a1)/resk | k = 1..n},
σL = {a/v1 ,b /v2}, σR = {b/v1 ,a /v2},
σ̂ = {Mkα/xk ,

Ukα /dk ,
Wkα /hbk | k = 1..n} | {Nkα/xkb | k = 1..2},

σ̂ji = {Mkα/xk | k = 1..i} | {Nkα/xkb | k = 1..min(i, 2)} | {Ukα/dk ,
Wkα /hbk | k = 1..j}.

where α is a substitution representing the intermediate outputs visible by an adversary controlling the
corrupted Ballot Box (full definition given in Section A), and Mk, Nk, Uk, Wk are free terms satisfying
some conditions defined in Section F. They represent the inputs submitted by the adversary during the
different steps of the protocol.

The first lemma ensures that several secret datas (like encryption/decryption keys, voters’ secret IDs,
etc.) remain secret during the execution of the protocol.

Lemma 9. For i ∈ {1, 2}, j ∈ {1, 2, 3} and any free term U , if M is of one of the following forms: aj +U ,
ti ∗ U , idi or p(idi), then νω̃.θδ 0M , ie. M is not deducible from the frame νω̃.θδ .

We then prove that the different outputs of the (honest) Receipt Generator, that is, a signature and a
receipt for each submitted ballot, do not bring any relevant information to the adversary that could help
him to make a difference between two different executions of the protocol. This property is expressed by
the fact that we can add these terms to the frame without breaking the static equivalence.

Lemma 10. For i ∈ J0, nK, we have: νω̃.θiσ̂0
i σL ≈s νω̃.θiσ̂0

i σR.

Finally, we show that we can control the form of what is sent to the Decryption Device, assuming it is
approved by the Auditor.

Lemma 11. Let us consider M1,. . . ,Mn free terms s.t. ∀ i ∈ J1, nK, φR(idpi+1,Mi+1)θiσ̂
0
i σL = ok with

fv(Mi+1) ⊆ dom(θi) ∪ dom(σ̂0
i) \ {x ib}. We suppose that ∀ i ∈ J1, nK, νω̃.θiσ̂0

i σL ≈s νω̃.θiσ̂0
i σR. We

also consider U1, . . . , Un and W1, . . . ,Wn be free terms such that:

26

• fv(Uk+1) ⊆ dom(θn) ∪ {dom(σ̂0
n)} ∪ {d1, . . . , dk} and fv(Wk+1) ⊆ dom(θn) ∪ {dom(σ̂kn)},

• φA(hash(〈U1, . . . , Un〉), hb1
r, . . . , hb

n
r ,W1, . . . ,Wn)θnσ̂σL = ok, with the corresponding notation

hbir = 〈idpi, hash(Π1(Mi))〉.
Then, we have, for σ ∈ {σL, σR}, ∀ 1 ≤ i ≤ n:

Uiθnσ̂σ =E eiθnσ̂σ, for i = 1, 2.

Moreover, there exist free terms U ′1, U ′2 and free term U ′3 or U ′3 = pk(ak + U) with free term U :

Uiθnσ̂σ =E penc(U ′1, U
′
2, U

′
3)θnσ̂σ, for i ∈ J3, nK.

6.2 Proving Proposition 1
With all these lemmas, we can now prove the final static equivalence, which is stated in Proposition 1.

Proposition 1. Let δ is a substitution of J1, nK and tδ = δ ◦ [1 7→ 2, 2 7→ 1]. Let θδ be the frame as defined
above. Then we have:

νω̃.θδσL ≈s νω̃.θtδσR, with σL = {a/v1 ,b /v2} and σR = {b/v1 ,a /v2}.
Proof. We introduce the notation θ̂δi = θn | {decδ(k)/resk | k ∈ J1, iK} with decδ(i+1) = dec(dδ(i+1), a1).
We show by induction that:

νω̃.θ̂δi σ̂σL ≈s νω̃.θ̂
tδ
i σ̂σR.

Base case. The base case is ensured by Lemma 10 which guarantees that νω̃.θnσ̂0
nσL ≈s νω̃.θnσ̂0

nσR
thus, by rewriting, we have νω̃.θ̂δ0σ̂σL ≈s νω̃.θ̂

tδ
0 σ̂σR.

Induction step. Suppose that νω̃.θ̂δi σ̂σL ≈s νω̃.θ̂
tδ
i σ̂σR for some i ≥ 0. Let us show that:

νω̃.θ̂δi+1σ̂σL ≈s νω̃.θ̂
tδ
i+1σ̂σR.

We have that decδ(i+1) = dec(Uδ(i+1), a1) in the frame θ̂δi+1σ̂. We distinguish cases according to the value
of δ(i+ 1):

• If δ(i+ 1) = 1, then, using Lemma 11 (since we are considering the decryption step of the protocol,
φA must have been successful), we know that Ukθnσ̂σ = ekθnσ̂σ for k ∈ {1, 2} and any σ ∈
{σL, σR}. Thus, we have that resi+1θ̂

δ
i+1σ̂σL =E dec(U1, a1)θ̂

δ
i+1σ̂σL =E v1σL. But, we also

have the following equalities resi+1θ̂
tδ
i+1σ̂σR =E dec(U2, a1)θ̂

tδ
i+1σ̂σR =E v2σR. According to the

definition of σL and σR, we have v1σL =E v2σR =E a. Then, using the induction hypothesis and
Lemma 3 with the free term U = a and we conclude.

• If δ(i+ 1) = 2, we adopt the same argument used in the previous case (replacing 1 by 2 and 2 by 1)
and conclude using the induction hypothesis and Lemma 3 with the free term U = b.

• If δ(i + 1) = j ∈ J3, nK, then tδ(i + 1) = δ(i + 1) and we have resi+1 = dec(Uj , a1). According
to Lemma 11, we have that Ujθnσ̂σ = penc(N,P,Q) θnσ̂σ for free terms N , P , Q and any σ ∈
{σL, σR}. Thus, resi+1θ̂

δ
i+1σ̂σL =E dec(penc(N,P,Q), a1)θnσ̂σL. We consider two subcases:

– Qθnσ̂σL =E pk(a1). Then, resi+1θ̂
δ
i+1σ̂σL =E Nθ̂δi+1σ̂σL with free N . And, in that case, we

also have Qθnσ̂σR =E pk(a1) (using the induction hypothesis and the fact that g1 = pk(a1))
and resi+1θ̂

tδ
i+1σ̂σR =E Nθ̂

tδ
i+1σ̂σR too. Thus, we conclude using Lemma 3.

– Qθnσ̂σL 6=E pk(a1). Then, there is no reduction of resi+1 (in both frames) and we have two
possibilities. If there exists j ∈ J1, iK such that resj θ̂δj σ̂σL = resi+1θ̂

δ
i+1σ̂σL, then we conclude

using Lemma 3. If there is not, then since a1 is restricted and not deducible (Lemma 9), we
have that resi+1 is neither deducible itself, nor a subterm of θ̂δi σ̂σL and θ̂

tδ
i σ̂σR. Now since dec

is a destructor in E, we use Lemma 7 to conclude.

Finally, we have that νω̃.θ̂δnσ̂σL ≈s νω̃.θ̂
tδ
n σ̂σR, that is, changing the notations:

νω̃.θδσ̂σL ≈s νω̃.θtδσ̂σR.

27

fst(pair(x, y)) = x (E’-1)
snd(pair(x, y)) = y (E’-2)

dec(penc(x, r, pk(k)), k) = x (E’-3)
dec(blind(penc(x, r, pk(k)), b), k) = blind(x, b) (E’-4)

renc(penc(x, r, pk(a1)), a2) = penc(x, r, pk(a3)) (E’-5)
unblind(blind(x, b), b) = x (E’-6)

checksign(x, vk(id), sign(x, id)) = ok (E’-7)
checkpfk1(vk(id), ball , pfk1(id, r, x, ball)) = ok (E’-8)

where ball = penc(x, r, a1)

checkpfk2(vk(id), ball , bball , pfk2(vk(id), a2, b, ball , bball)) = ok (E’-9)
where ball = penc(x, r, a1) and bball = blind(penc(x, r, a3), b)

Figure 7: Equational theory E′ used in ProVerif

7 Further Corruption Cases Using ProVerif
In order to study further corruption cases, we have used ProVerif, one of the only tools that can analyse
equivalence properties in the context of security protocols. Since ProVerif does not handle associative
and commutative (AC) symbols, we had to simplify the equational theory, yielding theory E′ defined by
the equations of Figure 7. The main idea behind E′ is to remove associative and commutative symbols
from E. All equations besides the AC equations are left unchanged except Equations (E-5) and (E-6).
Equation (E-5) states that two encryptions can be combined, This can no longer be reflected in our ProVerif
model. Equation (E-6) models re-encryption. To get rid of AC symbols, we instantiate it with the keys of
the protocol (a1, a2 and a3), preserving the behavior of the protocol, yielding Equation (E’-5). The fact
that we can consider a simplified equational theory weakens the attacker model: some attacks relying on
crafty combinations of the messages may be missed. But as shown by our study, this allows to analyse
(automatically) more corruption scenario.

Since ProVerif is designed to prove equivalences between processes that differ only by terms, we also
needed to use another tool, ProSwapper [28], to cope with the (non deterministic) shuffle done by the De-
cryption service. More precisely, we actually used their algorithm to compute directly a slightly modified
process in our ProVerif specification.

Table 1: Results and Performances for Proving Ballot Secrecy using ProVerif

Corrupted Voters 0 1 2 3 4 5
Honest Players ~1s (X) ~6s (X) ~40s (X) ~16m (X) ~32h (X) >48h (?)

Corrupted B ~3s (X) ~28s (X) ~2m (X) ~14m (X) ~2h (X) >48h (?)
Corrupted R ~2s (X) ~17s (X) ~2m (X) ~12m (X) ~95m (X) ~19h (X)
Corrupted A <1s (X) ~4s (X) ~16s (X) ~1m (X) ~5m (X) ~37m (X)

Corr. R & Corr. A <1s (X) ~4s (X) ~17s (X) ~1m (X) ~6m (X) ~36m (X)

The results1 are displayed in Table 1 and the ProVerif files corresponding to our experimentation can
be found at [35]. Our case study with ProVerif indicates that ballot secrecy is still preserved even when the
Receipt generator is corrupted (as well as several voters), at least in the simplified theory E′.

1Tests made on a MacBook Pro (OSX El Capitan 10.11.6) i5 2,3 GHz with 4Go RAM, using the ProVerif 1.94p11 version.

28

8 Conclusion
We have proposed the first formal proof in a symbolic model that the e-voting protocol used in Norway
indeed satisfies ballot secrecy, even when all but two voters are corrupted and even when the voters com-
munications channels can be eavesdropped and when the Auditor and either the Ballot box or the Receipt
generator are corrupted. As expected, ballot secrecy is no longer guaranteed if both the Ballot box and the
Receipt generator are corrupted. Slightly more surprisingly, the protocol is not secure either if the Decryp-
tion service is corrupted or if the Ballot box and the Auditor are corrupted, as discussed in Section 4.3.
Our results in Table 2. In this table, X indicates that ballot secrecy is satisfied and × shows that there is an
attack. In particular, all the attacks described in Section 4.3 are displayed in the table.

Table 2: Results for Ballot Secrecy

Corrupted Voters 0 5 n

Honest Players X (Theorem 2)

Corrupted B X (Theorem 1)

Corrupted R X (ProVerif) ?

Corrupted A X (ProVerif) ?

Corr. D + ? × (Section 4.3)

Corr. B & Corr. R × (Section 4.3)

Corr. B & Corr. A × (Section 4.3)

Corr. R & Corr. A X (ProVerif) ?

Note: ? stands for any other corrupted players (B, R, A) or none.

Instead of doing additional (long and technical) proofs, a further step consists in developing a proce-
dure for automatically checking for equivalences. Of course, this is a difficult problem. A first decision
procedure has been proposed in [16] but is limited to subterm convergent theories. An implementation has
recently been proposed [15] but it does not support such a complex equational theory. An alternative step
would be to develop a sound procedure that over-approximate the relation, losing completeness in the spirit
of ProVerif [10] but tailored to privacy properties.

It is also important to note that the security of the protocol strongly relies on the way initial secrets
are pre-distributed. For example, three private decryption keys a1, a2, a3 (such that a1 + a2 = a3) need
to be securely distributed among (respectively) the Ballot box, the Receipt generator and the Decryption
service. Also, a table (V, sV) containing the blinding factor for each voter needs to be securely distributed
to Ballot box and a table (V, dV) containing a permutation for each voter needs to be securely distributed
to the Receipt generator. Moreover, anyone with access with both the codes mailed to the voters and to
the SMS emitted by the Receipt generator would immediately learn the values of all the votes. We did not
find in the documentation how and by who all these secret values were distributed. It should certainly be
clarified as it could be a weak point of the system.

It also remains to study other security properties such as receipt-freeness, coercion-resistance, and
verifiability. Receipt-freeness seems to strongly rely on whether the voter may forge a fake table of receipts
or fake the message received from the receipt generator. One important feature of the Norwegian protocol
is to ensure verifiability even when the voter’s computer is not trusted. Our formal model could serve as a
basis, splitting further the voter’s behavior from its computer.

29

References
[1] Martin Abadi and Cédric Fournet. Mobile Values, New names, and Secure Communication. In 28th

ACM Symposium on Principles of Programming Languages (POPL), 2001.

[2] Myrto Arapinis, Sergiu Bursuc, and Mark Ryan. Reduction of equational theories for verification of
trace equivalence: re-encryption and AC. In First International Conference on Principles of Security
and Trust (POST’12). Springer, 2012.

[3] Myrto Arapinis, Véronique Cortier, and Steve Kremer. When are three voters enough for privacy
properties? In Proceedings of the 21st European Symposium on Research in Computer Security
(ESORICS’16), 2016.

[4] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna, Jorge Cuel-
lar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Mantovani, Sebastian
Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson Santiago, Mathieu Turuani, Luca Vi-
ganò, and Laurent Vigneron. The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In 17th International Conference on Computer Aided Verification (CAV),
2005.

[5] David Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of observational equivalence.
In ACM Conference on Computer and Communications Security (CCS’15), 2015.

[6] Josh Benaloh, Michael D. Byrne, Bryce Eakin, Philip T. Kortum, Neal McBurnett, Olivier Pereira,
Philip B. Stark, Dan S. Wallach, Gail Fisher, Julian Montoya, Michelle Parker, and Michael Winn.
Star-vote: A secure, transparent, auditable, and reliable voting system. In 2013 Electronic Voting
Technology Workshop / Workshop on Trustworthy Elections, (EVT/WOTE’13), 2013.

[7] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan Warinschi. Adapting
Helios for Provable Ballot Secrecy. In 16th European Symposium on Research in Computer Security
(ESORICS), 2011.

[8] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How Not to Prove Yourself: Pitfalls of the
Fiat-Shamir Heuristic and Applications to Helios. In International Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT), 2012.

[9] Karthikeyan Bhargavan, Ricardo Corin, Cédric Fournet, and Eugen Zalinescu. Cryptographically
Verified Implementations for TLS. In 15th ACM Conference on Computer and Communications
Security (CCS), 2008.

[10] Bruno Blanchet. An Automatic Security Protocol Verifier based on Resolution Theorem Proving
(invited tutorial). In 20th International Conference on Automated Deduction (CADE), 2005.

[11] Bruno Blanchet. Vérification Automatique de Protocoles Cryptographiques: Modèle Formel et Mod-
èle Calculatoire. Mémoire d’habilitation à diriger des recherches, Université Paris-Dauphine, 2008.

[12] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated Verification of Selected Equivalences
for Security Protocols. Journal of Logical and Algebraic Methods in Programming, 2008.

[13] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equivalence properties
of cryptographic protocols. In 21th European Symposium on Programming (ESOP), 2012.

[14] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L.
Rivest, Peter Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L. Vora. Corrections to scantegrity
II: end-to-end verifiability by voters of optical scan elections through confirmation codes. IEEE Trans.
Information Forensics and Security, 5(1):194, 2010.

[15] Vincent Cheval, Hubert Comon-Lundh, and Stéphanie Delaune. Trace Equivalence Decision: Nega-
tive Tests and Non-determinism. In 18th ACM Conference on Computer and Communications Secu-
rity (CCS), 2011.

30

[16] Véronique Cortier and Stéphanie Delaune. A Method for Proving Observational Equivalence. In
22nd Computer Security Foundations Symposium (CSF), 2009.

[17] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis of ballot secrecy. Journal
of Computer Security, 2013.

[18] Véronique Cortier and Cyrille Wiedling. A formal analysis of the Norwegian E-voting protocol. In
First International Conference on Principles of Security and Trust (POST), 2012.

[19] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and Optimally Efficient Multi-
Authority Election Scheme. In International Conference on the Theory and Application of Crypto-
graphic Techniques (EuroCrypt), 1997.

[20] Cas Cremers. The Scyther Tool: Verification, falsification, and analysis of security protocols. In 20th
International Conference of Computer Aided Verification (CAV), 2008.

[21] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Verifying Privacy-type Properties of Electronic
Voting Protocols. Journal of Computer Security, 2009.

[22] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret Voting Scheme for Large
Scale Elections. In Workshop on the Theory and Application of Cryptographic Techniques: Advances
in Cryptology, 1992.

[23] Kristian Gjøsteen. Analysis of an Internet Voting Protocol. Cryptology ePrint Archive, Report
2010/380, 2010.

[24] Kristian Gjøsteen. The norwegian internet voting protocol. Cryptology ePrint Archive, Report
2013/473, 2013.

[25] Norwegian Government. Article of the Norwegian Government on the Deployment
of E-voting (last seen: 08-26-16). https://www.regjeringen.no/en/aktuelt/
Internet-voting-pilot-to-be-discontinued/id764300/.

[26] Alex Halderman and Vanessa Teague. The New South Wales iVote System: Security Failures and
Verification Flaws in a Live Online Election. In 5th International Conference on E-voting and Identity
(VoteID’15), 2015.

[27] Dalia Khader and Peter Y. A. Ryan. Receipt freeness of prêt à voter provably secure. IACR Cryptology
ePrint Archive, 2011:594, 2011.

[28] Petr Klus, Ben Smyth, and Mark D. Ryan. ProSwapper: Improved equivalence verifier for ProVerif
(last seen: 08-26-16). http://www.bensmyth.com/proswapper.php, 2010.

[29] Ralf Küsters and Tomasz Truderung. An Epistemic Approach to Coercion-Resistance for Electronic
Voting Protocols. In IEEE Symposium on Security and Privacy (S&P)), 2009.

[30] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and Seungjae Yoo. Pro-
viding Receipt-Freeness in Mixnet-Based Voting Protocols. In 6th International Conference on In-
formation Security and Cryptology (ICISC), 2004.

[31] Jia Liu. A Proof of Coincidence of Labeled Bisimilarity and Observational Equivalence in Applied
Pi Calculus. http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf, 2011.

[32] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and Tatsuaki Okamoto. An Im-
provement on a Practical Secret Voting Scheme. In 2nd International Information Security Workshop
(ISW), 1999.

[33] Alan T. Sherman, Richard Carback, David Chaum, Jeremy Clark, Aleksander Essex, Paul S. Herrn-
son, Travis Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily Shen, Bimal Sinha, and Poorvi L.
Vora. Scantegrity mock election at takoma park. In 4th International Conference on Electronic Voting
2010, (EVOTE’10), pages 45–61, 2010.

31

[34] Alwen Tiu and Jeremy E. Dawson. Automating Open Bisimulation Checking for the Spi Calculus.
In 3rd IEEE Computer Security Foundations Symposium (CSF), 2010.

[35] Cyrille Wiedling. Source files for proverif code. http://people.rennes.inria.fr/Cyrille.Wiedling/Resources/resources.html.
In the following appendix sections, we show the full demonstration of lemmas that are presented,

without their proofs, in the core of the paper. We also present numerous lemmas that are useful to reach
the final results, but are too specific to present a real interest for future uses. Finally, we define the relation
R and give the proof of Proposition 2.

A Starting Lemmas
Let us first recall some definitions:

ω̃ = a1, a3, id1, id2, t1, t2, idR,

θδ = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3} |
{penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2} |
{sign(hash(Π1(xk)),idR)/srk ,

d(p(idk),dec(Π2(xk),a3)) /reck | k = 1..n} |
{dec(dδ(k),a1)/resk | k = 1..n}.

We now show the proof of Lemma 9, which shows that several secret informations remains secret even
after the execution of the protocol.

Lemma 9. For i ∈ {1, 2}, j ∈ {1, 2, 3} and any free term U , if M is of one of the following forms: aj +U ,
ti ∗ U , idi or p(idi), then νω̃.θδ 0M , ie. M is not deducible from the frame νω̃.θδ .

Proof. We define four properties:

1. Let N be a deducible term such that ∃ p such that N |p = ai + U for i ∈ {1, 3} and any term U .
There are two cases:

• U = ε (with ai + ε = ai) and p = p′.2 such that N |p′ = f(N ′, ai) with f ∈ {dec, renc}.
• p = p′.1.q such that N |p′ =AC pk(ai + U ′) for some U ′ and ∀q′ < q, head(N |p′.1.q′) = +.

2. Let N be a deducible term such that ∃ p such that N |p = ti ∗U for i ∈ {1, 2} and any term U . There
are two cases :

• p = p′.2.q such that N |p′ =AC penc(P1, ti ∗ U,K1) and ∀q′ < q, head(N |p′.2.q′) = ∗.
• p = p′.2.q such that N |p′ =AC pfk1(P1, ti ∗ U,P2, P3) and ∀q′ < q, head(N |p′.2.q′) = ∗.

3. Let N be a deducible term such that ∃ p such that N |p = idi for i ∈ {1, 2}. There are five cases:

• p = p′.1 and N |p′ = vk(idi).
• p = p′.1 and N |p′ = p(idi).
• p = p′.1 and N |p′ = s(idii).
• p = p′.1 and N |p′ = pfk1(idi, P1, P2, P3).
• p = p′.2 and N |p′ = sign(N ′, idi).

4. Let N be a deducible term such that ∃ p such that N |p = p(idi) for i ∈ {1, 2}. Then, p = p′.1 and
N |p′ = d(p(idi),M).

We can see that these properties imply the undeducability of ai +U , ti ∗U , idi and p(idi). Let us prove
these properties by induction on the number of steps needed to deduce N .

Base Case: All terms in the frame θδ verify these properties.

Induction Hypothesis: Let M1, . . . ,Mk be terms in normal form, deducible in i − 1 steps verifying
the properties. We prove that f(M1, . . . ,Mk)↓ also verifies them. There are two main cases:

32

• If f(M1, . . . ,Mk) is in normal form, then it is obvious that the result is true.

• If it is not in normal form, then, since M1, . . . ,Mk are in normal form, the reduction occurs in head.

– If the applied rule is different from (E-4), (E-5) and (E-6), then the result is a subterm of
M1, . . . ,Mk (or ok) and it is verifying the properties, using the induction hypothesis.

– If the rule (E-4) is applied, then dec(M1,M2) −→ blind(T1, T2) with T1 and T2 subterms of
M1, M2 and are verifying the properties by induction hypothesis. Then, blind(T1, T2) verify
the properties.

– If the rule (E-5) is applied, then ◦(M1,M2) −→ penc(T1 � T2, R1 ∗ R2, P) with T1, T2, R1,
R2, P subterms of M1, M2, all verifying the properties by induction hypothesis. Thus, the
result, in normal form, is verifying the properties too.

– Finally, if the rule (E-6) is applied, then renc(M1,M2) −→
penc(T,R, pk(P1 + P2)) with T , R, P1 and P2 subterms of M1 and M2. Thanks to the
induction hypothesis, we can see that the the result is satisfying the property. Indeed, whatever
the case where ai is a subterm of P1 or P2, ∃ P ′ such that P1 + P2 =AC ai + P ′.

The next lemma is used to simplify the final frame obtained directly in the final step of the relation R.
We narrow it down, keeping an iff relation, to a smaller equivalence. We need the following notations:

θbδ ={vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3} |
{ballk/bak ,ballk /ba′

k
,ok /conf k | k = 1..2} |

{ok/gokr ,
ok /syk ,

d(p(idk),dec(Π2(xk),a3)) /xkr | k = 3..n} |
{sign(hash(Π1(xk)),idR)/srk ,

d(p(idk),dec(Π2(xk),a3)) /reck | k = 1..n} |
{〈idpk,hash(Π1(xk))〉/hrk ,

dec(dδ(k),a1) /resk | k = 1..n},
σL ={a/v1 ,b /v2}, σR = {b/v1 ,a /v2},

σ̃ ={Mk/xk ,
Uk /dk ,

Wk /hbk | k = 1..n} | {Nk/xkb | k = 1..2},
σ̂ ={Mkα/xk ,

Ukα /dk ,
Wkα /hbk | k = 1..n} | {Nkα/xkb | k = 1..2} with

α ={〈idpk,ek,pk,sik〉/bak ,bak /ba′
k
,ok /conf k | k = 1..2} |

{〈idpk,hash(Π1(xk))〉/hrk | k = 1..n} | {ok/gokr ,
ok /syk ,

reck /xkr | k = 3..n}.

Lemma 12. νω̃.θbδσ̃σL ≈s νω̃.θbtδσ̃σR ⇐⇒ νω̃.θδσ̂σL ≈s νω̃.θtδσ̂σR.

Proof. The proof relies on two lemmas presented in the core of the article.

Lemma 2. Let ñ, m̃ be names, θ1, θ2 substitutions and let us define φ = νñ.
(
θ1 | {〈U1,U2〉/x}

)
and

ψ = νm̃.
(
θ2 | {〈V1,V2〉/x}

)
two frames with U1, U2, V1, V2 some terms. We have:

φ ≈s ψ ⇐⇒ νñ.
(
θ1 | {U1/x1

,U2 /x2
}
)
≈s νm̃.

(
θ2 ∪ {V1/x1

,V2 /x2
}
)
.

Lemma 3. Let ñ, m̃ be names, θ1, θ2 substitutions, and φ = νñ.θ1 and ψ = νm̃.θ2 frames. Let U be a
free term, we have:

φ ≈s ψ ⇐⇒ νñ.
(
θ1 | {Uθ1/x}

)
≈s νm̃.

(
θ2 ∪ {Uθ2/x}

)
.

We use Lemma 3 to remove the redundant information contained in xpr and ba ′p, Lemma 2 to expand
ba1 and ba2, and, finally, Lemma 3 to remove the different ok stored in the frame (gokr , syk and conf k)
that does not influence static equivalence. Using Lemma 3, we also can remove hrk since they are free
terms.

33

B Base Case for Static Equivalence
We consider the following frame:

θ0 = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3} |
{penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2}.

Lemma 13. νω̃.θ0σL ≈s νω̃.θ0σR.

Proof. Note that the adversary can arbitrarily combine ciphertexts from the frame with ciphertexts in the
frame or freshly constructed ciphertexts, thus we enrich the frame θ0 with any such combination of cipher-
texts. Formally, for any α1, α2 ∈ N and free terms K,P,R, we define Cα1,α2,K,P,R as follows :

penc(P
2�
i=1

vαii , R
2∗
i=1

rαii , pk(a1 +K)).

We define the extended frame ϕ̂ as follows:

ϕ̂ = νω̃.(θ0|{Cα1,α2,K,P,R/xα1,α2,K,P,R
| α1, α2 ∈ N, α1 + α2 6= 1

and terms K,P,R such that (fn(K) ∪ fn(P) ∪ fn(R)) ∩ ω̃ = ∅
and fv(K,P,R) ⊆ dom(ϕ0).})

= νω̃.θ̂.

Note that C1,0,ε,ε,ε is equal to e1 and C0,1,ε,ε,ε is equal to e2 that is why they are not added to the frame, we
also have that ϕ̂ is infinite. Using Lemma 3, we know that, in order to prove Lemma 13, it is sufficient to
show that: ϕ̂σL ≈s ϕ̂σR. We introduce the following two claims.

Claim 1. Let M , N be two terms such that (fv(M) ∪ fv(N)) ⊆ dom(ϕ̂) and fn(M,N) ∩ ω̃ = ∅. If
Mϕ̂σ =AC Nϕ̂σ, for some σ ∈ {σL, σR}, then Mϕ̂ =AC Nϕ̂.

Claim 2. Let M be a term such that fv(M) ⊆ dom(ϕ̂) and fn(M) ∩ ω̃ = ∅. If Mϕ̂σ −→ U for some
σ ∈ {σL, σR}, then there exists N such that fn(N) ∩ ω̃ = ∅, U =AC Nϕ̂σ and Mϕ̂σ′ −→ Nϕ̂σ′ for any
σ′ ∈ {σL, σR}.

The above claims allow us to conclude our proof. Let M , N be two terms such that fn(M,N)∩ ω̃ = ∅,
fv(M,N) ⊆ dom(ϕ̂) and Mϕ̂σL =E Nϕ̂σL. Thus (Mϕ̂σL) ↓=AC (Nϕ̂σL) ↓. Applying repeat-
edly Claim 2, we deduce that there exists M ′ such that (Mϕ̂σL) ↓=AC M ′ϕ̂σL and Mϕ̂σR −→∗
M ′ϕ̂σR. Similarly, there exists N ′ such that (Nϕ̂σL)↓=AC N ′ϕ̂σL and Nϕ̂σR −→∗ N ′ϕ̂σR. From
M ′ϕ̂σL =AC N ′ϕ̂σL and Claim 1, we deduce M ′ϕ̂ =AC N ′ϕ̂. Therefore, M ′ϕ̂σR =AC N ′ϕ̂σR and
thus Mϕ̂σR =E Nϕ̂σR.

Proof of Claim 1: Assume by contradiction that there exist M , N two terms such that Mϕ̂σ =AC

Nϕ̂σ, for some σ ∈ {σL, σR} and Mϕ̂ 6=AC Nϕ̂. Consider M , N two minimal terms that satisfy this
property.

• M and N are both variables or ok. If M = ok, then N = ok since we can not have Mϕ̂σ =AC

Nϕ̂σ with N variable and this case leads to a contradiction. Thus, we have xϕ̂σ =AC yϕ̂σ and
xϕ̂ 6=AC yϕ̂ with x, y ∈ dom(ϕ̂) and x 6= y. We have head(xϕ̂σ) ∈ {penc, pfk1, pk, s, sign, vk}.
But, by construction of ϕ̂, σ does not change randomnesses used in penc or in pfk1 nor the secret ids
in pk, s, sign or vk, thus, randomnesses or ids uniquely determine the variable, which implies x = y
and a contradiction.

• M is a variable or ok and N = f(N1, . . . , Np). If M = ok, since Nϕ̂σ = f(N1ϕ̂σ, . . . , Npϕ̂σ), we
have a contradiction since Mϕ̂σ 6=AC Nϕ̂σ in any case. If M is a variable, we have head(Mϕ̂σ) ∈
{penc, pfk1, pk, s, sign, vk}. If head(Mϕ̂σ) ∈ {penc, pfk1, sign}, then, according to Lemma 9, we
have a contradiction upon deducibility of randomnesses t1, t2 and secret ids id1, id2. If head(Mϕ̂σ) ∈

34

{pk, s, vk}we can also exclude cases whereM ∈ {idp1, idp2, s1, s2, idpR, g1, g3} using again Lemma 9.
Nevertheless, in all other cases, we have N = f(N1) with f ∈ {pk, s, vk} and since σ does not affect
secret ids and secret key, we must have Mϕ̂ = Nϕ̂. Contradiction.

• M = f(M1, . . . ,Mp) and N = g(N1, . . . , Nq). We have that Mϕ̂σ = f(M1ϕ̂σ, . . . ,Mpϕ̂σ)
=AC Nϕ̂σ = g(N1ϕ̂σ, . . . , Nqϕ̂σ). We must have f = g. If f is not an AC-symbol, i.e. in
{◦,+, �, ∗}, we have immediately p = q and there must be i ∈ J1, pK such that Miϕ̂ 6=AC Niϕ̂ but
Miϕ̂σ =AC Niϕ̂σ. In that case we will have a contradiction since Mi and Ni will be smaller than
M and N . If f is an AC-symbol, e.g. ◦, assume we have M =

p◦
i=1
Mi, where head(Mi) 6= ◦, and

N =
q◦
i=1
Ni, where head(Ni) 6= ◦. Then, we must have p = q again and i, j ∈ J1, pK such that

Miϕ̂ 6=AC Njϕ̂ but Miϕ̂σ =AC Njϕ̂σ, which leads, again, to a contradiction.

Proof of Claim 2: This result is proved by inspection of the rewriting rules. More precisely, assume
that Mϕ̂σ → U for some σ ∈ {σL, σR}. It means that there exists a rewriting rule l → r, a substitution
θ and a position p such that Mϕ̂σ|p =AC lθ. p cannot occur below M since ϕ̂σ is in normal form. If
M |p = lθ′ for some θ′ then we conclude that we can rewrite M as expected. The only interesting case is
thus when M |p is not an instance of l but Mϕ̂σ|p is. By inspection of the rules, l→ r can only correspond
to one of the equations (E-3) to (E-10).

• The case of equations (E-3) or (E-4) is ruled out by the fact that a1 +K with free K is not deducible
from νω̃.θδ (and thus from νω̃.θ0) according to Lemma 9 and that ϕ̂ is just an extension of θ0

including only deducible terms from that one.

• For the case of Equation (E-5), we have several possibilities.

– If M |p = penc(M1,M2,M3) ◦ penc(M4,M5,M6), then since we must have M3ϕ̂σ =AC

M6ϕ̂σ in order to have a reduction, we have, using Claim 1 that M3ϕ̂ =AC M6ϕ̂ then
M |pϕ̂ =E penc(M1 �M3,M2 ∗M4,M3)ϕ̂ and we conclude.

– If M |p = x ◦ penc(M1,M2,M3) with x ∈ dom(ϕ̂), then we have that x = yα1,α2,K,P,R with
some α1, α2 ∈ N and free terms K, P and R and we must have pk(a1 + K)ϕ̂σ =AC M3ϕ̂σ.
In that case, we have two cases: M3 = g1 and Kϕ̂σ =AC ε the null term or M3 = g3
and Kϕ̂σ =AC a2, otherwise we have a contradiction with the fact that a1 is not deducible
(Lemma 9). In both cases, we have M |pϕ̂ =E yα1,α2,K,P�M1,R∗M2 ϕ̂ and we conclude.

– If M |p = x1 ◦ x2 with x1, x2 ∈ dom(ϕ̂), then we have that x1 = yα1,α2,K,P,R and x2 =
yα′

1,α
′
2,K

′,P ′,R′ with α1, α2, α
′
1, α
′
2 ∈ N and free terms K, P , R, K ′, P ′ and R′. (Note that

we can note ei = yδ1i,δ2i,ε,ε,ε with δij the Kronecker symbol.) Since M |pϕ̂σ is reducing, we
must have (a1 + K)ϕ̂σ =AC (a1 + K ′)ϕ̂σ which implies Kϕ̂σ =AC K ′ϕ̂σ. Thus, using
Claim 1, we have Kϕ̂ =AC K ′ϕ̂. Then, we use that M |pϕ̂ =E yα1+α′

1,α2+α′
2,K,P�P ′,R∗R′ ϕ̂

to conclude.

• In the case of Equation (E-6), the two non-obvious cases are either the case when M |p = renc(x, U)
or M |p = renc(penc(M1,M2, x), U) with x ∈ dom(ϕ̂) and U a free term such that fn(U) ∩ ω̃ = ∅.

– In the first case, we must have that x = yα1,α2,K,P,R for some α1, α2 ∈ N and free terms K, P
and R (otherwise there will be no reduction). Then, we have that M |pϕ̂ =E yα1,α2,K+U,P,Rϕ̂
which allows us to conclude.

– In the second case, we have that x ∈ {g1, g2, g3}. If x = g1, we haveM |pϕ̂ =E y0,0,U,M1,M2
ϕ̂

and we conclude. If x = g2, we have M |pϕ̂ =E Nϕ̂ with N = penc(M1,M2, pk(a2 + U))
and we conclude. Finally, if x = g3, we have M |pϕ̂ =E y0,0,a2+U,M1,M2

ϕ̂ and we conclude.

• For the case of Equation (E-7), the result is straightforward since there is nothing in ϕ̂ starting with
the function symbol blind.

• In the case of Equation (E-8), we have M = checksign(M1,M2,M3).

35

– If M3 is a variable, then we must have M3 = si1 (or si2). In that case, M1 = 〈e1, p1〉 (or
〈e2, p2〉) and M2 = idp1 (or idp2) otherwise there is no reduction since t1, t2, id1 and id2 are
not deducible according to Lemma 9. But then we have Mϕ̂→ ok and we conclude.

– If M3 is not a variable, M = checksign(M1,M2, sign(M3,M4)). If M2 is not a variable, then
M2 = vk(M ′2) and since Mϕ̂σ is reducing, we have M1ϕ̂σ =AC M3ϕ̂σ and M ′2ϕ̂σ =AC

M4ϕ̂σ. Then, using Claim 1, we have M1ϕ̂ =AC M3ϕ̂ and M ′2ϕ̂ =AC M4ϕ̂. But, then we
have Mϕ̂ → ok and we can conclude. If M2 is variable, then M2 = idpi with i ∈ J3, nK
otherwise we have a contradiction with Lemma 9. Thus, we have M4ϕ̂σ =AC idi and we
conclude using the same argument as in the case where M2 is not a variable.

• In the case of Equation (E-9), we have M = checkpfk1(M1,M2,M3).

– If M3 is a variable, then M3 = p1 (or p2) then, using Lemma 9, we must have that M1 = idp1
(or idp2) and M2 = e1 (or e2) but then, we have that Mϕ̂→ ok and we conclude.

– If M3 is not a variable, then M3 = pfk1(M ′1,M
′
2,M

′
3,M

′
4). Since Mϕ̂σ is reducing, we

have M2ϕ̂σ =AC M ′4ϕ̂σ and M1ϕ̂σ =AC vk(M ′1)ϕ̂σ. Using Claim 1, M2ϕ̂ =AC M ′4ϕ̂ and
M1ϕ̂ =AC vk(M ′1)ϕ̂ which implies that Mϕ̂→ ok and, again, we conclude.

• Finally, case of Equation (E-10) with M = checkpfk2(M1,M2,M3,M4). According to the defi-
nition of ϕ̂, M4 can not be a variable. Then M4 = pfk2(M ′1,M

′
2,M

′
3,M

′
4,M

′
5). Since Mϕ̂σ is

reducing, we must have that M1ϕ̂σ =AC M ′1ϕ̂σ, M2ϕ̂σ =AC M ′4ϕ̂σ and M3ϕ̂σ =AC M ′5ϕ̂σ.
Using Claim 1, these equalities holds for ϕ̂, but then, we conclude that Mϕ̂→ ok and we conclude.

C Additional Lemmas
We remind the following notations:

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck}.

Lemma 14. Let φ = νω̃.θn and M = f(M1, . . . ,Mk) with f ∈ {vk, penc, pfk1, sign}. Then, (Mφ)↓=
f((M1φ)↓, . . . , (Mkφ)↓).

Proof. Let M = f(M1, . . . ,Mk) for (Mφ)↓. Since vk, penc, pfk1 and sign do not appear in head in any
rule of E, we must have (Mφ)↓= f((M1φ)↓, . . . , (Mkφ)↓) and we conclude.

Lemma 15. Let φ = νω̃.θn andM = f(M1, . . . ,Mk) a minimal recipe of (Mφ)↓with f ∈ {dec, fst, snd, unblind}.
Then, (Mφ)↓= f((M1φ)↓, . . . , (Mkφ)↓).
Proof. Let us prove this by induction on the depth of M .

Base Case: M = f(M1, . . . ,Mk) with M1,. . . ,Mk variables or names.

• If f ∈ {fst, snd}, since @ x ∈ dom(φ) such that head(xφ) = pair, we conclude immediately.

• If f = dec and M = dec(M1,M2), then M1 ∈ {e1, e2} but if there is a reduction, it means that we
have M2φ = a1 which is impossible as a1 is not deducible by Lemma 9.

• If f = unblind, since @ x ∈ dom(φ) such that head(xφ) = blind, we conclude immediately.

Induction Hypothesis: We suppose that ∀ term M with a depth ≥ 1 satisfies the property. Let M =
f(M1, . . . ,Mk) of depth equal to n + 1 with Mi of depths ≤ n. If f((M1φ)↓, . . . , (Mkφ)↓) is in normal
form, we conclude easily. Suppose that f((M1φ)↓, . . . , (Mkφ)↓) is not in normal form.

36

• If f ∈ {fst, snd} and M = f(M1). The case where M1 is a variable is excluded. Then M1 =
g(M ′1, . . . ,M

′
k) with g ∈ {dec, fst, pair, snd, unblind}.

– If g ∈ {dec, fst, snd, unblind}, using the induction hypothesis, we have (M1φ)↓= g((M ′1φ)↓
, . . . , (M ′kφ)↓) and, thus, (Mφ)↓= f((M1φ)↓).

– If g = pair we have a contradiction with the minimality of M .

• If f = dec and M = dec(M1,M2). The case where M1 is a variable is excluded (see Base case).
Then M1 = g(M ′1, . . . ,M

′
k) with g ∈ {dec, fst, penc, renc, snd, unblind, ◦}.

– If g ∈ {dec, fst, snd, unblind}, we conclude thanks to the induction hypothesis.

– If g = penc, there is a contradiction with the minimality of M .

– If g = renc and M1 = renc(M ′1,M
′
2). The case where M ′1 is a variable is still excluded (see

Base case). Then M ′1 = g1(M ′′1 , . . . ,M
′′
k) with g1 ∈ {dec, fst, penc, snd, unblind, ◦} where

all cases, except g1 = ◦ lead to a contradiction using the induction hypothesis or minimality of
M . If g1 = ◦ and M ′1 = ◦(M ′′1 ,M ′′2), we can still exclude the case where M ′′1 is a variable and
then M ′′1 = g2(M ′′′1 , . . . ,M

′′′
k) with g2 ∈ {dec, fst, penc, renc,

snd, unblind}. Again, the only viable case is g2 = renc. Then, repeating this argument (a
finite number of time since depths are finite) we have that M1 = renc(◦(renc(· · · ◦ (n1, n2))))
or M1 = renc(◦(renc(. . . renc(n1, n2)))) with n1 and n2 of length 1. But then we have a
contradiction since n1 and n2 can not be names (then there are no reduction) or variables (see
Base case).

– Finally, the case when g = ◦. Using a similar argument close to the one for the previous case,
we have that M1 = ◦(renc(· · · ◦ (m1,m2))) or M1 = ◦(renc(. . . renc(m1,m2))) with m1 and
m2 of length 1 and we conclude in the same way.

• If f = unblind and M = unblind(M1,M2). The case where M1 is a variable is excluded (see Base
case). Then M1 = g(M ′1, . . . ,M

′
k) with g ∈ {blind, dec, fst, snd, unblind}.

– If g ∈ {dec, fst, snd, unblind}, we conclude thanks to the induction hypothesis.

– If g = blind, there is a contradiction with the minimality of M .

Lemma 16. Let φ = νω̃.θn andM a minimal recipe of (Mφ)↓= f(M1, . . . ,Mk) with f ∈ {vk, pfk1, sign}.
Then M is a variable or M = f(M ′1, . . . ,M

′
k).

Proof. Suppose, by contradiction, that M is not a variable and M = f(M1, . . . ,Mp) and s.t. (Mφ)↓=
g(N1, . . . , Nq) with g ∈ {pfk1, sign, vk} and f 6= g. This would implies that ∃ l → r a reduction
rule and θ a substitution such that head(lθ) = f and head(rθ) = g. Then, it must be the case that
f ∈ {dec, fst, snd, unblind}. But then, we have a contradiction, according to Lemma 15.

D Shape of Valid Ballots
In this section, we show that we can derive a specific shape for ballots that pass the different tests during
the protocol execution. We first define a measure for the length of terms and provide a definition for what
we call valid ballots.

Definition 8. We define |.| : T (Σ,X ,N)→ N recursively as follows:

• |u| = 1 for u a constant or a variable,

• |f(u1, . . . , un)| = ∑ |ui| if f ∈ {+, ∗, ◦, �}.
• |f(u1, . . . , un)| = 1 +

∑ |ui| otherwise.

37

We also defineL : T (Σ,X ,N)→ N×N which is defined asL(M) = (||M ||, |M |) where ||.|| : T (Σ,X ,N)→
N is defined as follows with #◦(M) the number of ◦ symbols in M :

• ||u|| = 0 for u a constant or a variable,

• ||f(u1, . . . , un)|| =

 #◦(f(u1, . . . , un)) +
∑ ||ui||, f ∈ {penc, renc}∑ ||ui||, otherwise.

Definition 9. Let id ∈ {id1, . . . , idn}. A term M is said to be a id -valid ballot if φB(id,M) is verified,
equivalently: 

M = 〈M1,M2,M3,M4〉
M1 =E vk(id)

checksign(〈M2,M3〉,M1,M4) =E ok
checkpfk1(M1,M2,M3) =E ok

.

Then, we can give the general shape of the two first ballots submitted by honest voters on which we
have some extra information. But we first recall some definitions:

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
σ̂ji = {Mkα/xk | k = 1..i} | {Nkα/xkb | k = 1..min(i, 2)} | {Ukα/dk ,

Wkα /hbk | k = 1..j}.

Lemma 17. We consider i ∈ {1, 2} and M a free term such that fv(M) ⊆ dom(θi−1σ̂
0
i−1σL) and

Mθi−1σ̂
0
i−1σL be an idi-valid ballot. We suppose that νω̃.θi−1σ̂

0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR. Then, we

have, for σ ∈ {σL, σR} :
Mθi−1σ̂

0
i−1σ =E 〈idpi, ei, pi, sii〉θi−1σ̂

0
i−1σ.

Proof. Let i ∈ {1, 2} and M a free term s.t. fv(M) ⊆ dom(θi−1σ̂
0
i−1σL) and Mθi−1σ̂

0
i−1σL is a idi-valid

ballot. Let M ′ minimal in size - according to the measure of length L defined in Definition 8 - such that:
M ′θi−1σ̂

0
i−1σL =E Mθi−1σ̂

0
i−1σL.

According to Definition 9, we have M ′θi−1σ̂
0
i−1σL =E 〈P1, P2, P3, P4〉.

• Let suppose that M ′ is a variable. Since @ x ∈ dom(θi−1) such that xθi−1σ̂
0
i−1σL is a idi-valid

ballot, there is a contradiction.

• Thus, M ′ = f(M1, . . . ,Mn) with f ∈ {dec, fst, pair, snd, unblind} since only equations (E-1),
(E-2), (E-3) and (E-7) can lead to 〈P1, P2, P3, P4〉.

– If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact that
head(M ′θi−1σ̂

0
i−1σL) = pair.

– If f = pair, then M ′ = 〈M1,M
′′〉, with some free M1. By repeating this reasoning, we get

that M ′ = 〈M1,M2,M3,M4〉, with some free Mi for i ∈ J1, 4K. Thus we have :

M ′θi−1σ̂
0
i−1σL =E 〈M1,M2,M3,M4〉θi−1σ̂

0
i−1σL

=E Mθi−1σ̂
0
i−1σL.

Since νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR, then, for σ ∈ {σL, σR}:

Mθi−1σ̂
0
i−1σ =E 〈M1,M2,M3,M4〉θi−1σ̂

0
i−1σ.

38

Moreover, using again Definition 9, we have that:

M1θi−1σ̂
0
i−1σL =E vk(idi),

M3θi−1σ̂
0
i−1σL =E pfk1(idi, N1, N2,M2θi−1σ̂

0
i−1σL),

M4σ̂i−1σ
0
i−1σL =E sign(〈M2,M3〉θi−1σ̂

0
i−1σL, idi).

According to Lemma 16, we know that M1, M3 and M4 must be variables or constructed terms. But since,
according Lemma 9, idi is not deducible, M1, M3 and M4 must be variables. In that case, we must have
M1 = idpi, M3 = pi and M4 = sii. And, according to the fact that νω̃.θi−1σ̂

0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR,

we have, for σ ∈ {σL, σR} and for some free M2:

Mθi−1σ̂
0
i−1σ =E 〈idpi,M2, pi, sii〉θi−1σ̂

0
i−1σ.

Now, since M3 = pi and according to Definition 9, we must have that M2θi−1σ̂
0
i−1σL =E penc(vi, ti, g1)

withM2 free. Thus,M2 is a variable orM2 = f(M ′1, . . . ,M
′
k) with f ∈ {◦, dec, fst, penc, renc, snd, unblind}:

• If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we get a contradiction on the fact that head(M2θi−1σ̂
0
i−1σL) =

penc.

• If M2 = penc(M ′1,M
′
2,M

′
3) with free terms M ′1, M ′2 and M ′3, then using Lemma 14 we must have

M ′2 = ti which is in contradiction with Lemma 9 and the fact that ti is not deducible.

• IfM2 = renc(M ′1,M
′
2) withM ′1 andM ′2 free terms. We must haveM ′1θi−1σ̂

0
i−1σL =E penc(M ′′1 ,M

′′
2 , pk(M ′′3))

leading to the fact that a1 =AC M ′′3 + M ′2θi−1σ̂
0
i−1σL where M ′2 is free which is a contradiction

with Lemma 9.

• If M2 =
p◦
k=1

M ′k with M ′k free and head(M ′k) 6= ◦ for k ∈ J1, pK. To have a reduction, we must

have, for k ∈ J1, pK, that M ′kθi−1σ̂
0
i−1σL =E penc(M1

k ,M
2
k , pk(M3

k)), and since e1 and e2 are
the only variables leading to a penc-headed term, we must have one M ′k which is not a variable,
otherwise we would have t1

q ∗ t2s = t1 with q + s = p ≥ 2. Due to the study of previous cases,
we must have that M ′k = penc(M ′′1 ,M

′′
2 ,M

′′
3) or renc(penc(M ′′1 ,M

′′
2 ,M

′′
3),M ′′4), but this leads to

M ′′2 θi−1σ̂
0
i−1σL ∗ U = t1 with free M ′′2 which leads to a contradiction due to Lemma 9.

Thus, we have M2 variable and M2 = e1, which allows us to conclude the proof, using equivalence
between the two frames.

We know can give the general shape of the ballots submitted by the intruder, under the condition they
are accepted by the Ballot Box. Once again, let us remind the usual notations:

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
σ̂ji = {Mkα/xk | k = 1..i} | {Nkα/xkb | k = 1..min(i, 2)} | {Ukα/dk ,

Wkα /hbk | k = 1..j}.

Lemma 18. Using previous notations, let i ∈ J3, nK and M a free term s.t. fv(M) ⊆ dom(θi−1σ̂
0
i−1)

and Mθi−1σ̂
0
i−1σL is an idi-valid ballot. We suppose that νω̃.θi−1σ̂

0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR. Then, for

σ ∈ {σL, σR} :

• Mθi−1σ̂
0
i−1σ =E 〈M1,M2,M3,M4〉θi−1σ̂

0
i−1σ with free M1,. . . ,M4,

• M1θi−1σ̂
0
i−1σ =E vk(idi)θi−1σ̂

0
i−1σ,

• M3θi−1σ̂
0
i−1σ =E pfk1(idi, N1, N2, N3)θi−1σ̂

0
i−1σ with free N1, . . . , N3,

• M2θi−1σ̂
0
i−1σ =E penc(N2, N1, U)θi−1σ̂

0
i−1σ with free U or U =AC pk(ap +U ′) with free U ′ and

ap ∈ {a1, a3}.

39

Proof. Let i ∈ {3, . . . , n}. Let M such that Mθi−1σ̂
0
i−1σL is a idi-valid ballot. Let M ′ minimal in size -

according to the measure of length L defined in Definition 8 - such that :

M ′θi−1σ̂
0
i−1σL =E Mθi−1σ̂

0
i−1σL (†)

Using Definition 9, we have M ′θi−1σ̂
0
i−1σL = 〈P1, P2, P3, P4〉.

• Let suppose that M ′i is a variable. Since @ x ∈ dom(θi−1) such that xθi−1σ̂
0
i−1σL is a idi-valid

ballot, there is a contradiction.

• Thus, M ′ = f(M1, . . . ,Mp) with f ∈ {dec, fst, pair, snd, unblind} since only equations (E-1),
(E-2), (E-3) and (E-7) can lead to 〈P1, P2, P3, P4〉.

– If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact that
head(M ′iθi−1σ̂

0
i−1σL) = pair.

– If f = pair, then M ′ = 〈M1,M
′′〉, with some free M1. By repeating this reasoning, we get

that M ′ = 〈M1,M2,M3,M4〉, with some free terms M1, M2, M3 and M4. Thus we have :

M ′θi−1σ̂
0
i−1σL =E 〈M1,M2,M3,M4〉θi−1σ̂

0
i−1σL

=E Mθi−1σ
0
i−1σL.

Since νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR, then, for σ ∈ {σL, σR}:

Mθi−1σ
0
i−1σ =E 〈M1,M2,M3,M4〉θi−1σ

0
i−1σ.

Definition 9 implies that M1θi−1σ̂
0
i−1σL =E vk(idi). Since idi is deducible (it is not restricted), we

have here a public test and the equivalence is sufficient to show that M1θi−1σ̂
0
i−1σ =E vk(idi)θi−1σ̂

0
i−1σ

for σ ∈ {σL, σR}.
Moreover, using Definition 9, we also have that M3θi−1σ̂

0
i−1σL =E pfk1(idi, P1, P2, P3).

• M3 cannot be a variable since there is no x ∈ dom(θi−1) s.t. xθi−1σ̂
0
i−1σL = pfk1(idi, P1, P2, P3)

with i ≥ 3.

• Thus, M3 = f(N1, . . . , Np) with f ∈ {dec, fst, pfk1, snd, unblind} since only equations (E-1),
(E-2), (E-3) and (E-7) lead to pfk1(idi, P1, P2, P3).

– If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact that
head(M3θi−1σ̂

0
i−1σL) = pfk1.

– If f = pfk1, thenM3 = pfk1(idi, N1, N2, N3), with some freeN1,N2,N3. Since νω̃.θi−1σ̂
0
i−1σL

≈s νω̃.θi−1σ̂
0
i−1σR, we have, for σ ∈ {σL, σR}:

M3θi−1σ̂
0
i−1σ =E pfk1(idi, N1, N2, N3)θi−1σ̂

0
i−1σ.

Finally, Definition 9 gives us that, for some term U , we have:

M2θi−1σ̂
0
i−1σL =E penc(N2θi−1σi−1σL, N1θi−1σ̂

0
i−1σL, U).

• If M2 is a variable, then M2 ∈ {e1, e2}. In that case, we would have N1θi−1σ̂
0
i−1σL =E t1 (or t2)

with free N1 which would mean that t1 (or t2) is deducible which is in contradiction with Lemma 9.

• Thus, M2 = f(V1, . . . , Vp) with f ∈ {dec, fst, penc, renc, snd, unblind, ◦} since only equations
(E-1) to (E-3) and (E-5) to (E-7) lead to penc(P1, P2, P3).

– If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact that
head(M2θi−1σ̂

0
i−1σL) = penc.

40

– If f = renc i.e. M2 = renc(V1, V2). If V1 is variable, then V1 ∈ {e1, e2} and we would
have a contradiction with Lemma 9 since we would have N1θi−1σ̂

0
i−1σL =E ti and ti would

be deducible. Then V1 = g(V ′1 , . . . , V
′
p) with g ∈ {dec, fst, penc, renc, unblind, ◦} since

head(V1θi−1σ
0
i−1σL) = penc.

* If g ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact that
head(V1θi−1σ̂

0
i−1σL) = penc.

* If g = renc and V1 = renc(V ′1 , V
′
2), we have a contradiction with the minimality of M2

since renc(V ′1 , V
′
2 + V2) is a smaller recipe than renc(renc(V ′1 , V

′
2), V2) for L.

* If g = ◦ and V1 = V ′1 ◦ V ′2 , we also have a contradiction with the minimality of M2

since renc(V ′1 , V2) ◦ renc(V ′2 , V2) is a smaller recipe than renc(V ′1 ◦ V ′2 , V2) according to
the Definition 8 of the measure L. Indeed, since M2θi−1σ̂

0
i−1σL is reducing, we have

(V ′1θi−1σ̂
0
i−1σL)↓= penc(U1, U

′
1, U

′′
1) and (V ′2θi−1σ

0
i−1σL)↓= penc(U2, U

′
2, U

′′
2) with

U ′′1 = U ′′2 implying that the two recipes lead to the same term.

* If g = penc and V1 = penc(V ′1 , V
′
2 , V

′
3). We have two cases :

· If V ′3 is a variable, then V ′3 ∈ {g1, g2, g3} and M2 = renc(penc(V ′1 , V
′
2 , gp), V2) with

free terms V ′1 , V ′2 and V2. In that case, we have :

M2θi−1σ̂
0
i−1σL =E renc(penc(V ′1 , V

′
2 , gp), V2)θi−1σ̂

0
i−1σL(‡)

=E penc(V ′1 , V
′
2 , pk(ap + V2))θi−1σ̂

0
i−1σL

Thanks to the fact that νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR and (‡), we also have that:

M2θi−1σ̂i−1σR =E renc(penc(V ′1 , V
′
2 , gp), V2)θi−1σ̂

0
i−1σR

=E penc(V ′1 , V
′
2 , pk(ap + V2))θi−1σ̂

0
i−1σR

Then, we have, for σ ∈ {σL, σR} :

M2θi−1σ̂
0
i−1σ =E penc(V ′1 , V

′
2 , pk(ap + V2)))θi−1σ̂

0
i−1σ.

Since
M2θi−1σ̂

0
i−1σL =E penc(N2θi−1σ̂

0
i−1σL, N1θi−1σ̂

0
i−1σL, U)

we have that V ′1θi−1σ̂
0
i−1σL =E N2θi−1σ̂

0
i−1σL and

V ′2θi−1σ̂
0
i−1σL =E N1θi−1σ̂

0
i−1σL. Using the fact that νω̃.θi−1σ̂

0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR,

these equalities hold with σR. Finally, for σ ∈ {σL, σR} and free V2:

M2θi−1σ̂
0
i−1σ =E penc(N2, N1, pk(ap + V2))θi−1σ̂

0
i−1σ.

(With a2 deducible, pk(a2 + V2) can be seen as a free U .)

· If V ′3 = h(V ′′1 , . . . , V
′′
q) with h ∈ {dec, fst, pk, snd, unblind}, we conclude easily

with a contradiction when h 6= pk using Lemma 15. If h = pk then there is con-
tradiction with minimality of M2 since penc(V ′1 , V

′
2 , pk(V ′′1 + V2)) is smaller than

renc(penc(V ′1 , V
′
2 , pk(V ′′3)), V2).

– If f = penc i.e. M2 = penc(V1, V2, V3) with free terms V1, V2, V3, we immediately conclude
that, for σ ∈ {σL, σR} :

M2θi−1σ̂
0
i−1σ =E penc(V1, V2, V3)θi−1σ̂

0
i−1σ.

Using that V1θi−1σ̂
0
i−1Σ =E N2θi−1σ̂

0
i−1σ and V2θi−1σ̂

0
i−1σ =E N1θi−1σ̂

0
i−1σ, we have,

with free V3 and σ ∈ {σL, σR} :

M2θi−1σ̂
0
i−1σ =E penc(N2, N1, V3)θi−1σ̂

0
i−1σ.

41

– If f = ◦ i.e. M2 = V1◦V2. Then, we can assume, without loss of generality, that head(V1) 6= ◦.
Indeed, if V1 = V ′1 ◦ V ′′1 , then we write M2 = V ′1 ◦ (V ′′1 ◦ V2). Then, we have M2 =
V1 ◦

(
◦pj=2Vj

)
s.t. ∀ j, head(Vj) 6= ◦. If ∃ j such that Vj is a variable, then Vj ∈ {e1, e2}

and N1θi−1σ̂
0
i−1σL = rk + U (where k ∈ {1, 2}) with free N1 which is a contradiction with

Lemma 9 since rk + U is not deducible. Then, ∀ j ∈ J1, nK, Vj = hj(V
j
1 , . . . , V

j
q) with hj ∈

{dec, fst, penc, renc, unblind} since head(Vjθi−1σ̂
0
i−1σL) = penc otherwise head(V θi−1σ̂

0
i−1σL) 6=

penc. Now, according to Lemma 15, we have that hj ∈ {penc, renc} for j ∈ J1, nK. Then:

M2 =

(
p1◦
j=1

penc(V j1 , V
j
2 , V

j
3)

)
◦
(
p2◦
j=1

renc(V j4 , V
j
5)

)
.

If p1 ≥ 2, then we have a contradiction with the minimality of M2 since penc(V 1
1 � V 2

1 , V
1
2 ∗

V 2
2 , V

1
3) is a smaller recipe than penc(V 1

1 , V
1
2 , V

1
3) ◦ penc(V 2

1 , V
2
2 , V

2
3) according to Defi-

nition 8. Thus p1 ∈ {0, 1}. Moreover, using the case f = renc we also must have that
V j4 = penc(W j

1 ,W
j
2 ,W

j
3) with W j

3 a variable.

* Suppose that p1 = 1, then W 1
3 θi−1σ̂i−1σL is deducible. In order for M2 to be re-

duced, we must have the same keys in both W 1
3 and ◦p2j=1renc(V

j
4 , V

j
5). But since V j4 =

penc(W j
1 ,W

j
2 ,W

j
3) with W j

3 a variable, then W j
3 ∈ {g1, g2, g3}, and we must have

W j
3 = g2 otherwise this would imply that a1 or a3 is deducible which is contradic-

tion with Lemma 9. Since ∀j ∈ J1, nK we have W j
3 = a2, we also have that ∀j ∈

J1, nK, V j5 = V 1
5 (with V 1

5 the minimal recipe in all the V j5) otherwise we will not have
pk(a2 + V j5)θi−1σ̂

0
i−1σL =E pk(a2 + V 1

5)θi−1σ̂
0
i−1σL and there will be no reduction.

Then, finally, we have:

M2 =

(
p2◦
j=1

renc(penc(W j
1 ,W

j
2 , g2), V

1
5)

)
◦ penc(V 1

1 , V
1
2 , pk(a2 + V 1

5)).

Then, we have :
M2θi−1σ̂

0
i−1σL=

[
◦p2j=1renc(penc(W

j
1 ,W

j
2 , g2), V

1
5)

◦ penc(V 1
1 , V

1
2 , pk(a2 + V 1

5))
]
θi−1σ̂

0
i−1σL (?)

=E penc(�p2j=1W
j
1 � V 1

1 , ∗p2j=1W
j
2 ∗ V 1

2 , pk(a2 + V 1
5))θi−1σ̂

0
i−1σL.

Thanks to the fact that νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR and (?), we also have that:

M2θi−1σ̂
0
i−1σR=

[
◦p2j=1renc(penc(W

j
1 ,W

j
2 , g2), V

1
5)

◦ penc(V 1
1 , V

1
2 , pk(a2 + V 1

5))
]
θi−1σ̂

0
i−1σR (?)

=E penc(�p2j=1W
j
1 � V 1

1 , ∗p2j=1W
j
2 ∗ V 1

2 , pk(a2 + V 1
5))θi−1σ̂

0
i−1σR.

Then, we have, for σ ∈ {σL, σR} :

M2θi−1σ̂
0
i−1σ =E penc(V ′1 , V

′
2 , pk(a2 + V ′3))θi−1σ̂

0
i−1σ.

* If p1 = 0, we have M = ◦p2j=1renc(penc(W
j
1 ,W

j
2 ,W

j
3), V j5) with W j

3 variables. To
have a reduction, we still need to have that ∀p, q ∈ J1, nK pk(ap + V p5) = pk(aq + V q5)

where ap, aq ∈ {a1, a2, a3}. That leads us to M2 = ◦p2j=1renc(penc(W
j
1 ,W

j
2 , gk), V

1
5)

with k ∈ {1, 2, 3} and free W j
1 , W j

2 , V 1
5 (V 1

5 is the minimal recipe among all V j5).

Then, we have :

M2θi−1σ̂
0
i−1σL

= ◦p2j=1renc(penc(W
j
1 ,W

j
2 , gk), V

k
5)θi−1σ

0
i−1σL (††)

=E penc(�p2j=1W
j
1 , ∗p2j=1W

j
2 , pk(ak + V 1

5))θi−1σ̂
0
i−1σL.

42

Thanks to the fact that νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR and (††), we also have that:

M2θi−1σ̂
0
i−1σR

= ◦p2j=1renc(penc(W
j
1 ,W

j
2 , gk), V

1
5)θi−1σ̂

0
i−1σR

=E penc(�p2j=1W
j
1 , ∗p2j=1W

j
2 , pk(ak + V 1

5))θi−1σ̂
0
i−1σR.

Then, we have, for σ ∈ {σL, σR} :

M2θi−1σ̂
0
i−1σ =E penc(V ′1 , V

′
2 , pk(ak + V ′3))θi−1σ̂

0
i−1σ.

Then, in both cases (p1 = 1 or p1 = 0), we have, for σ ∈ {σL, σR}, there is i ∈ J1, 3K such
that:

M2θi−1σ̂
0
i−1σ =E penc(V ′1 , V

′
2 , pk(ak + V ′3))θi−1σ̂

0
i−1σ.

Since M2θi−1σ̂
0
i−1σL =E penc(N2θi−1σ̂

0
i−1σL, N1θi−1σ̂

0
i−1σL, U) then V ′1θi−1σ̂

0
i−1σL =E

N2θi−1σ̂
0
i−1σL and V ′2θi−1σ̂

0
i−1σL =E N1θi−1σ̂

0
i−1σL. Using the fact that νω̃.θi−1σ̂

0
i−1σL ≈s

νω̃.θi−1σ̂
0
i−1σR, these equalities hold with σR. Finally, we have, for σ ∈ {σL, σR}:

M2θi−1σ̂
0
i−1σ =E penc(N2, N1, pk(ak + V ′3))θi−1σ

0
i−1σ.

Again, pk(a2 + V ′3) can be seen as a free term U since a2 is deducible.

The next lemma gives the general shape of a ballot submitted by the intruder provided the fact that it
is accepted by the Receipt generator in the first execution and shows that it is also accepted in the second
execution. As usual, let us remind the usual notations:

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
σ̂ji = {Mkα/xk | k = 1..i} | {Nkα/xkb | k = 1..min(i, 2)} | {Ukα/dk ,

Wkα /hbk | k = 1..j}.

Lemma 19. We consider i ∈ J1, nK and M a free term such that fv(M) ⊆ dom(θi−1σ̂
0
i−1) and such that

φR(idpi,M)θi−1σ̂
0
i−1σL =E ok with:

φR(id, x) = (x = 〈x1, x2, x3〉) ∧ (x1 = 〈y1, y2, y3, y4〉) ∧ (y1 = id)

∧ (checksign(〈y2, y3〉, y1, y4)) ∧ (checkpfk1(y1, y2, y3))

∧ (checkpfk2(y1, y2, x2, x3)) .

Assuming that νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR, then, for σ ∈ {σL, σR}:

• φR(idpi,M)θi−1σ̂
0
i−1σ =E ok,

• Mθi−1σ̂
0
i−1σ =E 〈P,Q,R〉θi−1σ̂

0
i−1σ for free terms P , Q and R.

• For i ∈ {1, 2}, we have:

– Pθi−1σ̂a
0
i−1σ =E 〈idpi, ei, pi, sii〉θi−1σ̂

0
i−1σ

– Qθi−1σ̂
0
i−1σ =E blind(renc(ei, Q1), Q2)θi−1σ̂

0
i−1σ with Q1 and Q2 free terms.

• For i ∈ J3, nK, we have:

– Pθi−1σ̂
0
i−1σ =E 〈P1, P2, P3, P4〉θi−1σ̂

0
i−1σ with P1,. . . ,P4 free terms,

– Qθi−1σ̂
0
i−1σ =E blind(penc(Q1, Q2, U), Q3)θi−1σ̂

0
i−1σ with free Q1, Q2, Q3, U or U =AC

pk(ap + U ′) with free U ′ and ap ∈ {a1, a3}.

43

Proof.

• Using the fact that νω̃.θi−1σ̂
0
i−1σL ≈s νω̃.θi−1σ̂

0
i−1σR and since φR(idpi,M) is a public test, we

have that the first property holds obviously.

• Now, using that φR(idpi,M)θi−1σ̂
0
i−1σ =E ok, we have that, Mθi−1σ̂

0
i−1σL =E 〈M1,M2,M3〉.

By repeating the same reasoning as we did in the proof of Lemma 18, we have thatMθi−1σ̂
0
i−1σ =E

〈P,Q,R〉θi−1σ̂
0
i−1σ with free term P , Q and R for σ ∈ {σL, σR}.

• Let i ∈ {1, 2}.

– Since φR(idpi,M)θi−1σ̂
0
i−1σ =E ok, we have that Pθi−1σ̂

0
i−1σL must be an idi-valid ballot.

Then, we use Lemma 17 to conclude on the form of Pθi−1σ̂
0
i−1σ.

– We also have that checkpfk2(idpi, ei, Q,R)θi−1σ̂
0
i−1σL =E ok, thusRθi−1σ̂

0
i−1σL =E pfk2(R1, R2, R3, R4, R5)

with R1 = vk(idi) and R4 = eiθi−1σ̂
0
i−1σL. We consider R′ minimal in size (for the measure

L) such that Rθi−1σ̂
0
i−1σL =E R′θi−1σ̂

0
i−1σL.

* R′ cannot be a variable since there is no variable x ∈ dom(θi−1) such that head(xθi−1σ̂
0
i−1σL) =

pfk2.

* R′ = f(R1, . . . , Rp) with f ∈ {dec, fst, pfk2, snd, unblind} since only equations (E-1),
(E-2), (E-3) and (E-7) can lead to a term of the form pfk2(R1, R2, R3, R4, R5).

· If f ∈ {dec, fst, snd, unblind}, using Lemma 15, we have a contradiction with the fact
that head(R′θi−1σ̂a

0
i−1σL) = pfk2.

· If f = pfk2, then R′ = pfk2(R1, R2, R3, R4, R5), with some free Rj for j ∈ J1, 5K.
Since we have that (R =E pfk2(idpi, R1, R2, ei, R3))θi−1σ̂

0
i−1σL and νω̃.θi−1σ̂

0
i−1σL ≈s

νω̃.θi−1σ̂
0
i−1σR, we conclude that:

(R =E pfk2(idpi, R1, R2, ei, R3))θi−1σ̂
0
i−1σR.

Thus, for σ ∈ {σL, σR}, we have:

Rθi−1σ̂
0
i−1σ =E pfk2(idpi, R1, R2, ei, R3)θi−1σ̂a

0
i−1σ.

Moreover, we also have, according to Equation E-10, and repeating the same development as
we just did, that:

Qθi−1σ̂
0
i−1σ =E blind(renc(ei, R1), R2)θi−1σ̂

0
i−1σ.

• Let i ∈ J3, nK.

– Since φR(idpi,M)θi−1σ̂
0
i−1σ =E ok, we have that Pθi−1σ̂

0
i−1σL is an idi-valid ballot. Using

Lemma 18, we have Pθi−1σ̂
0
i−1σ =E 〈P1, P2, P3, P4〉θi−1σ̂

0
i−1σ with free terms Pj for j ∈

J1, 4K and σ ∈ {σL, σR}.
– According to Lemma 18, we also get that P2θi−1σ̂

0
i−1σ =E penc(P ′1, P

′
2, U)θi−1σ̂

0
i−1σ for

free terms P ′1, P ′2 and free term U or U =AC pk(ap+U ′) with free U ′ and ap ∈ {a1, a3}. Now,
according to Equation E-10 and by repeating the same reasoning as in the previous case in this
situation, we can deduce that Rθi−1σ̂

0
i−1σ =E pfk2(vk(idi), R1, R2, R3, R4)θi−1σ̂

0
i−1σ with

free Ri for i ∈ J1, 4K and σ ∈ {σL, σR}. This equation also provides that Qθi−1σ̂
0
i−1σ =E

blind(renc(P2, R1), R2)θi−1σ̂
0
i−1σ. Now, sinceP2θi−1σ̂

0
i−1σ =E penc(P ′1, P

′
2, U)θi−1σ̂

0
i−1σ,

we can conclude that:

Qθi−1σ̂
0
i−1σ =E blind(penc(Q1, Q2, U), Q3)θi−1σ̂

0
i−1σ

with free Q1, Q2, Q3 and free U or U =AC pk(ap + U ′) with free U ′ and ap ∈ {a1, a3}.

44

E Moving to Final Static Equivalence
In this section, we present the proofs of the two last lemmas used for proving Proposition 1. We recall the
different notations one last time:

θinit = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3},
θ0 = θinit | {penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(Mk)),idR)/srk ,

d(p(idk),dec(Π2(Mk),a3)) /reck},
σ̂ji = {Mkα/xk | k = 1..i} | {Nkα/xkb | k = 1..min(i, 2)} | {Ukα/dk ,

Wkα /hbk | k = 1..j},
σL ={a/v1 ,b /v2}, σR = {b/v1 ,a /v2},
σ̂ ={Mkα/xk ,

Ukα /dk ,
Wkα /hbk | k = 1..n} | {Nkα/xkb | k = 1..2} with

α ={〈idpk,ek,pk,sik〉/bak ,bak /ba′
k
,ok /conf k | k = 1..2} |

{〈idpk,hash(Π1(xk))〉/hrk | k = 1..n} | {ok/gokr ,
ok /syk ,

reck /xkr | k = 3..n}.

We first show that we can add the signature coming from the Receipt generator in the frame.

Lemma 10. For i ∈ J0, nK, we have: νω̃.θiσ̂0
i σL ≈s νω̃.θiσ̂0

i σR.

Proof. The case i = 0 is proved by Lemma 13.
Induction Step: Assume now that, for any i ≥ 0, we have that νω̃.θiσ̂0

i σL ≈s νω̃.θiσ̂0
i σR holds. We

will show that it also hold for i+ 1.
We consider the term Si+1 = sign(Ui+1, idR) with Ui+1 = hash(Π1(Mi+1)) and free Mi+1. Since

idR is restricted and not deducible according to Lemma 9, we must have that Si+1θiσ̂
0
i σ does not appear

in θiσ̂0
i σ for σ ∈ {σL, σR}. We also have that {vk(idR)/idpR} ∈ θi, thus, using Lemma 8, we have, with

θsi = θi | {Si+1/sri+1}:
νω̃.θsi σ̂

0
i+1σL ≈s νω̃.θsi σ̂0

i+1σR.

Now we consider Ri+1 = d(p(idi+1), dec(Π2(Mi+1), a3)) and, according to this definition, we consider
several cases:

• Either i + 1 ∈ {1, 2}, then, according to Lemma 9, p(idi+1) is not deducible for θsi σ̂
0
i σ and so is

Ri+1 for σ ∈ {σL, σR}. Moreover, Ri+1θ
s
i σ̂

0
i σ is neither a subterm of θsi σ̂

0
i σ for σ ∈ {σL, σR},

nor deducible from it, then, since d is a destructor in E, we can use Lemma 7 to conclude.

• Or i + 1 ≥ 3. Using Lemma 19, we have Π2(M2)θsi σ̂
0
i σ =E blind(penc(P1, P2, U), P3)θsi σ̂

0
i σ

with free terms P1, P2, P3 and free U or U =AC pk(ap + U ′) with free U ′ and ap ∈ {a1, a3} for
σ ∈ {σL, σR}. We will consider two different subcases:

– Uθsi σ̂
0
i σ 6=E pk(a3) for σ ∈ {σL, σR}. we introduce the following claims:

Claim 1. ∀ x ∈ dom(θsi σ̂
0
i σ), xθsi σ̂

0
i σ 6=E dec(M, a3).

Claim 2. If θsi σ̂
0
i σ ` Ri+1θ

s
i σ̂

0
i σ then Ri+1θ

s
i σ̂

0
i σ ∈ St(θsi σ̂

0
i σ).

Claim 3. Ri+1θ
s
i σ̂

0
i σ /∈ St(θsi σ̂

0
i σ).

According to Claim 2 and 3, we have that Ri+1θ
s
i σ̂

0
i σ is neither a subterm of θsi σ̂

0
i σ nor ap-

pearing in it nor deducible from it, for σ ∈ {σL, σR}. We also have that, in normal form,
Ri+1θ

s
i σ̂

0
i σ =E d(p(idi+1), dec(blind(penc(P1, P2, U), P3)θsi σ̂

0
i σ, a3)). Then, since d is a de-

structor in E, we can use Lemma 7 with previous equivalence to conclude.

– Uθsi σ̂
0
i σ =E pk(a3) for one σ ∈ {σL, σR} then, using that θsi σ̂

0
i σL ≈s θsi σ̂0

i σR, we have
Uθsi σ̂

0
i σ =E g3θ

s
i σ̂

0
i σ for σ ∈ {σL, σR}. In that case, we haveRi+1θ

s
i σ̂

0
i σ =E d(p(idi+1), blind(P1, P3))θsi σ̂

0
i σ

with free P1 and P3. Thus, we can use Lemma 3 with previous equivalence to conclude.

45

Finally, we show that we can add the final results outputted by the Decryption device to the frame
providing that the Auditor has endorsed it.

Lemma 11. Let us consider M1,. . . ,Mn free terms s.t. ∀ i ∈ J1, nK, φR(idpi+1,Mi+1)θiσ̂
0
i σL = ok with

fv(Mi+1) ⊆ dom(θi) ∪ dom(σ̂0
i) \ {x ib}. We suppose that ∀ i ∈ J1, nK, νω̃.θiσ̂0

i σL ≈s νω̃.θiσ̂0
i σR. We

also consider U1, . . . , Un and W1, . . . ,Wn be free terms such that:

• fv(Uk+1) ⊆ dom(θn) ∪ {dom(σ̂0
n)} ∪ {d1, . . . , dk} and fv(Wk+1) ⊆ dom(θn) ∪ {dom(σ̂kn)},

• φA(hash(〈U1, . . . , Un〉), hb1
r, . . . , hb

n
r ,W1, . . . ,Wn)θnσ̂σL = ok, with the corresponding notation

hbir = 〈idpi, hash(Π1(Mi))〉.
Then, we have, for σ ∈ {σL, σR}, ∀ 1 ≤ i ≤ n:

Uiθnσ̂σ =E eiθnσ̂σ, for i = 1, 2.

Moreover, there exist free terms U ′1, U ′2 and free term U ′3 or U ′3 = pk(ak + U) with free term U :

Uiθnσ̂σ =E penc(U ′1, U
′
2, U

′
3)θnσ̂σ, for i ∈ J3, nK.

Proof. Since νω̃.θnσ̂0
nσL ≈s νω̃.θnσ̂0

nσR, then νω̃.θnσ̂nnσL ≈s νω̃.θnσ̂nnσR and according to the fact that
φA is a public test, we also know that, for σ ∈ {σL, σR}:

φA(hash(〈U1, . . . , Un〉), hb1
r, . . . , hb

n
r ,W1, . . . ,Wn)θnσ̂

n
nσ = ok.

This implies that, according to the definition of φA, that:

hash(〈U1, . . . , Un〉)θnσ̂nnσ =E hash(〈Π2(W1), . . . ,Π2(Wn)〉)θnσ̂nnσ
hash(Π1(Mi))θnσ̂

n
nσ =E hash(Wi)θnσ̂

n
nσ, for i ∈ J1, nK

From these two equations, we can deduce that ∀i ∈ J1, nK, we have:

Uiθnσ̂
n
nσ =E Π2(Π1(Mi))θnσ̂

n
nσ.

According to the construction of θi and σ̂ji , we have that, ∀i ∈ J0, nK, θi = θn |dom(θi) and σ̂0
i =

σ̂0
n |dom(σ̂0

i). In particular, we also have that, ∀i ∈ J1, nK, fv(Mi) ⊆ dom(θi−1) and fv(Miθi−1) ⊆
dom(σ̂0

i−1). Thus, we have:

∀i ∈ J1, nK, Miθnσ̂
0
nσ =E Miθi−1σ̂

0
i−1σ.

But, according to Lemma 19, we know that Π1(Mi)θi−1σ̂
0
i−1σ is an idi-valid ballot. Thus, using Lemma 18

for i ∈ J3, nK we have that:

Π2(Π1(Mi))θi−1σ̂
0
i−1σ =E

{
eiθi−1σ̂

0
i−1σ for i ∈ {1, 2}

penc(N,P,Q)θi−1σ̂
0
i−1σ, for i ∈ J3, nK,

with N and P free terms and Q a free term or Q = pk(ak + Q′) with Q′ a free term and such that
fv(N) ∪ fv(P) ∪ fv(Q) ⊆ fv(Mi). According to this and the fact that fv(Miθn) ⊆ dom(σ̂0

n) and that, for
i ∈ J0, nK, σ̂in = σ̂nn |dom(σ̂in), we have that the previous result holds for σ̂nn instead of σ̂0

n and we conclude:

Uiθnσ̂
n
nσ =E

{
eiθnσ̂

n
nσ for i ∈ {1, 2}

penc(N,P,Q)θnσ̂
n
nσ, for i ∈ J3, nK.

F Defining the RelationR
In this section, we first define the different partial evolutions of processes that are needed to present the
relation itself. Then, we describe the relation R and provide a proof for Proposition 2. From now and for
the rest of the proofs, the randomnesses r1 and r2 (which are the honest voters randomnesses) have been
replaced by t1 and t2 for notations issues.

46

F.1 Partial Evolutions
Let us recall some notations introduced in Section 3: σL = {a/v1 ,b /v2} and σR = {b/v1 ,a /v2}, two substitu-
tions that summarize voting choices made by honest voters during processes, and ñb = a1, a3, id1, id2, t1, t2,
idR, cRV1 , cRV2 , cRA, cDA, cRD, a set of names representing restricted names in the process. These names are
corresponding to secret keys, ids and channels.

Now, we can define the different partial evolutions of the multiple processes involved in the overall
process P bn of the Norwegian protocol, as described in Section 3.2.6.

Definition 10. We decompose the process of the (honest) voter using the following notations (we remind
that Vi(vi) = V (ci, cRVi , cout, g1, idi, idpR, vi)):

V i1 = cout〈balli〉 . V i2
V i2 = ci〈balli〉 . V i3
V i3 = cRVi〈ok〉 . V i4
V i4 = cRVi(x

i
r) . V

i
5

V i5 = ci(x
i
b) . V

i
6

V i6 = if φV(idi, idpR, vi, ei, pi, sii, x
i
b , x

i
r) then V i7

V i7 = cout〈ok〉 . V i8
V i8 = cRVi〈ok〉

with balli = 〈ei, pi, sii〉, ei = penc(vi, ti, g1), pi = pfk1(idi, ti, vi, ei), and sii = sign(〈ei, pi〉, idi).

Definition 11. Rn(cBR, cRA, cRD, cout, a3, idR, cRV1 , idp1, p(id1), . . . , cRVn , idpn, p(idn)), the process of the
Receipt generator, is decomposed using the following notations:

Ri,n1 = cRVi(go
i
r) . R

i,n
2

Ri,n2 = cBR(xi) . R
i,n
3

Ri,n3 = if φR(idpi, xi) then Ri,n4

Ri,n4 = cBR〈si ir〉 . Ri,n5

Ri,n5 = cout〈ri〉 . Ri,n6

Ri,n6 = cRVi〈ri〉 . Ri,n7

Ri,n7 = cRVi(sy i) . R
i+1,n
1

Rn,n7 = cRVn(syn) . R1,n
8

Ri,n8 = cRA〈hbr i〉 . Ri+1,n
8

Rn,n8 = cRA〈hbrn〉 . R9

R9 = cRD〈ok〉

with ri = d(p(idi), dec(Π2(xi), a3)), si ir = sign(hash(Π1(xi)), idR) and hbr i = 〈idpi, hash(Π1(xi))〉.

Definition 12. We decompose Dn(cBD, cRD, cDA, cout, a1), the process of the decryption, device using the
following notations:

D1 = cRD(go1
d) . D

1,n
2

Di,n
2 = cBD(di) . D

i+1,n
2

Dn,n
2 = cBD(dn) . D3

D3 = cDA〈had〉 . D4

D4 = cDA(go2
d) . D

J1,nK
5

DS
5 = |

j∈S
cout〈decj〉 for S ∈ 2J1,nK

D∅5 = 0

with deci = dec(di, a1) and had = hash(〈d1, . . . , dn〉).

Definition 13. We decompose An(cBA, cRA, cDA), the process of the auditor, using the notations below:

Ai,n1 = cRA(hr i) . A
i+1,n
1

An,n1 = cRA(hrn) . A1,n
2

A2 = cDA(hd) . A
1,n
3

Ai,n3 = cBA(hbi) . A
i+1,n
3

An,n3 = cBA(hbn) . A4

A4 = if φA(hd, hr1, . . . , hrn, hb1, . . . , hbn) then A5

A5 = cDA〈ok〉

We introduce some more notations used as shorthands in the relationR.

Definition 14. We define two sets of names m̃ = ñb, go
1
r, go

2
r, x

1
r , x

2
r , sy1, sy2 and h̃ = m̃, hr1, . . . , hrn.

We remind that Γb = {pk(ak)/gk | k = 1..3} | {vk(idk)/idpk , s(idk)/sk | k = 1, 2} | {vk(idR)/idpR} and we

47

consider the following frames:

Γi,j,k = Γb | {ok/gopr | p = 1..i} | {ballp/bap ,ballp /ba′
p
| p = 1..min(i, 2)} |

{rp/xpr | p = 1..j} | {ok/conf p | p = 1..min(k, 2)} | {ok/syp | p = 1..k}
Λi = Γn,n,n | {hbrp/hrp | p = 1..i}
Λ = Λn | {ok/go1

d
,ok /go2

d
,had /hd}

∆S = Λ | {decδS(i)/resi | i = 1..#S}
with δS : S 7→ J1,#SK a permutation and S = J1, nK \ S where S ∈ 2J1,nK.

∆δ = Λ | {decδ(1)/res1 , . . . ,decδ(n) /resn} with δ a permutation of J1, nK.

We also define the following contexts:

C0 [_] = νñb.(let a3 = a1 + a2 in). [_ | Γc]
Ci,j,k1 [_] = νm̃i,j,k.(let a3 = a1 + a2 in). [_ | Γi,j,k]

with m̃i,j,k = ñc, go
1
r, . . . , go

i
r, x

1
r , . . . , x

j
r , sy1, . . . , syk

Ci,j,k2 [_] = νm̃.(let a3 = a1 + a2 in). [_ | Γi,j,k]

Ci3 [_] = νm̃, hr1, . . . , hr i.(let a3 = a1 + a2 in). [_ | Λi]
C4 [_] = νh̃, go1

d.(let a3 = a1 + a2 in).
[
_ | Λn | {ok/go1

d
}
]

C5 [_] = νh̃, go1
d, hd.(let a3 = a1 + a2 in).

[
_ | Λn | {ok/go1

d
} | {had/hd}

]
CS6 [_] = νh̃, go1

d, go
2
d, hd.(let a3 = a1 + a2 in). [_ | ∆S]

Cδ7 [_] = νh̃, go1
d, go

2
d, hd.(let a3 = a1 + a2 in). [_ | ∆δ] .

Using these notation, we can notice that we have:

P bn [V (c1, cRV1 , cout, g1, id1, idpR, v1) | V (c2, cRV2 , cout, g1, id2, idpR, v2)]

= C0

[
V 1

1 | V 2
1 | R1,n

1 | D1 | A1,n
1

]
.

F.1.1 Description of the Relation

We can now define the relationR, based on all the previous definitions.

Definition 15. For i ∈ J1, nK, j ∈ J1, 2K, we define Mi, Nj , Ui and Wi free terms such that:

• fv(Mi) ⊆ dom(Ci,i−1,i−1
1), fn(Mi) ∩ bn(Ci,i−1,i−1

1) = ∅,

• fv(Nj) ⊆ dom(Cj,j,j−1
1), fn(Nj) ∩ bn(Cj,j,i−1

1) = ∅,

• fv(Ui) ⊆ dom(C4), fn(Ui) ∩ bn(C4) = ∅,

• fv(Wi) ⊆ dom(C5), fn(Wi) ∩ bn(C5) = ∅.
We define the following abbreviations:

M̃ i,j
k = {Mp/xp | p = 1..k} | {sipr/srp | p = 1..i} | {rp/recp | p = 1..j},
Ñk = {Ni/x ib | i = 1..k},
M̃ = M̃n,n

n | Ñ2,

Ũi = M̃ | {Up/dp | p = 1..i},
W̃i = Ũn | {Wp/hbp | p = 1..i}.

48

We consider the smallest relationRwhich is closed under structural equivalence and includes the following
pairs of extended processes.

%Initialization

C0

[
V 1

1 | V 2
1 | R1,n

1 | D1 | A1,n
1

]
σL R C0

[
V 1

1 | V 2
1 | R1,n

1 | D1 | A1,n
1

]
σR (1)

%Output of encrypted ballot to a public channel (Voter 1)

C0,0,0
1

[
V 1

2 | V 2
1 | R1,n

1 | D1 | A1,n
1 | {ball1/ba1

}
]
σL

R C0,0,0
1

[
V 1

2 | V 2
1 | R1,n

1 | D1 | A1,n
1 | {ball1/ba1

}
]
σR (2)

%Output of encrypted ballot to B (Voter 1)

C0,0,0
1

[
V 1

3 | V 2
1 | R1,n

1 | D1 | A1,n
1 | {ball1/ba1 ,

ball1 /ba′
1
}
]
σL

R C0,0,0
1

[
V 1

3 | V 2
1 | R1,n

1 | D1 | A1,n
1 | {ball1/ba1 ,

ball1 /ba′
1
}
]
σR (3)

%Synchronisation with the R (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

2 | D1 | A1,n
1

]
σL R C1,0,0

1

[
V 1

4 | V 2
1 | R1,n

2 | D1 | A1,n
1

]
σR (4)

%R receives ballot coming from B (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

3 | D1 | A1,n
1 | M̃0,0

1

]
σL

R C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

3 | D1 | A1,n
1 | M̃0,0

1

]
σR (5)

%R’s check failed (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | D1 | A1,n

1 | M̃0,0
1

]
σL R C1,0,0

1

[
V 1

4 | V 2
1 | D1 | A1,n

1 | M̃0,0
1

]
σR (6)

%R’s check succeed (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

4 | D1 | A1,n
1 | M̃0,0

1

]
σL

R C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

4 | D1 | A1,n
1 | M̃0,0

1

]
σR (7)

%R outputs a signature for B (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

5 | D1 | A1,n
1 | M̃1,0

1

]
σL

R C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

5 | D1 | A1,n
1 | M̃1,0

1

]
σR (8)

%R outputs a signature to a public channel (Voter 1)

C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

6 | D1 | A1,n
1 | M̃1,1

1

]
σL

R C1,0,0
1

[
V 1

4 | V 2
1 | R1,n

6 | D1 | A1,n
1 | M̃1,1

1

]
σR (9)

49

%Reception of R’s receipt (Voter 1)

C1,1,0
1

[
V 1

5 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1

]
σL

R C1,1,0
1

[
V 1

5 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1

]
σR (10)

%Reception of B’s confirmation (Voter 1)

C1,1,0
1

[
V 1

6 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1

]
σL

R C1,1,0
1

[
V 1

6 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1

]
σR (11)

%Voter’s check failed (Voter 1)

C1,1,0
1

[
V 2

1 | R1,n
7 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σL

R C1,1,0
1

[
V 2

1 | R1,n
7 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σR (12)

%Voter’s check succeed (Voter 1)

C1,1,0
1

[
V 1

7 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1

]
σL

R C1,1,0
1

[
V 1

7 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1

]
σR (13)

%Voter outputs public confirmation (Voter 1)

C1,1,0
1

[
V 1

8 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1 | {ok/conf 1
}
]
σL

R C1,1,0
1

[
V 1

8 | V 2
1 | R1,n

7 | D1 | A1,n
1 | M̃1,1

1 | Ñ1 | {ok/conf 1
}
]
σR (14)

%Synchronisation with R and End Voter (Voter 1)

C1,1,1
1

[
V 2

1 | R2,n
1 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σL

R C1,1,1
1

[
V 2

1 | R2,n
1 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σR (15)

%Output of the encrypted ballot to a public channel (Voter 2)

C1,1,1
1

[
V 2

2 | R2,n
1 | D1 | A1,n

1 | M̃1,1
1 | Ñ1 | {ball2/ba2}

]
σL

R C1,1,1
1

[
V 2

2 | R2,n
1 | D1 | A1,n

1 | M̃1,1
1 | Ñ1 | {ball2/ba2}

]
σR (16)

%Output of the encrypted ballot to B (Voter 2)

C1,1,1
1

[
V 2

3 | R1,n
1 | D1 | A1,n

1 | {ball2/ba2
,ball2 /ba′

2
}
]
σL

R C1,1,1
1

[
V 2

3 | R1,n
1 | D1 | A1,n

1 | {ball2/ba2
,ball2 /ba′

2
}
]
σR (17)

50

%Synchronisation with the R (Voter 2)

C2,1,1
1

[
V 2

4 | R2,n
2 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σL

R C2,1,1
1

[
V 2

4 | R2,n
2 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
σR (18)

%R receives ballot coming from B (Voter 2)

C2,1,1
1

[
V 2

4 | R2,n
3 | D1 | A1,n

1 | M̃1,1
2 | Ñ1

]
σL

R C2,1,1
1

[
V 2

4 | R2,n
3 | D1 | A1,n

1 | M̃1,1
2 | Ñ1

]
σR (19)

%R’s check failed (Voter 2)

C2,1,1
1

[
V 2

4 | D1 | A1,n
1 | M̃1,1

2 | Ñ1

]
σL R C2,1,1

1

[
V 2

4 | D1 | A1,n
1 | M̃1,1

2 | Ñ1

]
σR (20)

%R’s check succeed (Voter 2)

C2,1,1
1

[
V 2

4 | R2,n
4 | D1 | A1,n

1 | M̃1,1
2 | Ñ1

]
σL

R C2,1,1
1

[
V 2

4 | R2,n
4 | D1 | A1,n

1 | M̃1,1
2 | Ñ1

]
σR (21)

%R outputs a signature to B (Voter 2)

C2,1,1
1

[
V 2

4 | R2,n
5 | D1 | A1,n

1 | M̃2,1
2 | Ñ1

]
σL

R C2,1,1
1

[
V 2

4 | R2,n
5 | D1 | A1,n

1 | M̃2,1
2 | Ñ1

]
σR (22)

%R outputs a signature to a public channel (Voter 2)

C2,1,1
1

[
V 2

4 | R2,n
6 | D1 | A1,n

1 | M̃2,2
2 | Ñ1

]
σL

R C2,1,1
1

[
V 2

4 | R2,n
6 | D1 | A1,n

1 | M̃2,2
2 | Ñ1

]
σR (23)

%Reception of R’s receipt (Voter 2)

C2,2,1
1

[
V 2

5 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ1

]
σL

R C2,2,1
1

[
V 2

5 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ1

]
σR (24)

%Reception of B’s confirmation (Voter 2)

C2,2,1
1

[
V 2

6 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2

]
σL

R C2,2,1
1

[
V 2

6 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2

]
σR (25)

%Voter’s check failed (Voter 2)

C2,2,1
1

[
R2,n

7 | D1 | A1,n
1 | M̃2,2

2 | Ñ2

]
σL R C2,2,1

1

[
R2,n

7 | D1 | A1,n
1 | M̃2,2

2 | Ñ2

]
σR (26)

%Voter’s check succeed (Voter 2)

C2,2,1
1

[
V 2

7 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2

]
σL

R C2,2,1
1

[
V 2

7 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2

]
σR (27)

%Voter outputs public confirmation (Voter 2)

C2,2,1
1

[
V 2

8 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2 | {ok/conf 2

}
]
σL

R C2,2,1
1

[
V 2

8 | R2,n
7 | D1 | A1,n

1 | M̃2,2
2 | Ñ2 | {ok/conf 2

}
]
σR (28)

51

The next relations describe the evolution of the protocol during the submissions of the intruder’s ballots
(corrupted voters). For i ∈ J2, n− 1K:

%Synchronisation with R (Voter i− 1)

Ci,i,i2

[
Ri+1,n

1 | D1 | A1,n
1 | M̃ i,i

i | Ñ2

]
σL

R Ci,i,i2

[
Ri+1,n

1 | D1 | A1,n
1 | M̃ i,i

i | Ñ2

]
σR (29)

%Synchronisation with R (Voter i)

Ci+1,i,i
2

[
Ri+1,n

2 | D1 | A1,n
1 | M̃ i,i

i | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

2 | D1 | A1,n
1 | M̃ i,i

i | Ñ2

]
σR (30)

%R receives the ballot coming from the intruder (Voter i)

Ci+1,i,i
2

[
Ri+1,n

3 | D1 | A1,n
1 | M̃ i,i

i+1 | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

3 | D1 | A1,n
1 | M̃ i,i

i+1 | Ñ2

]
σR (31)

%R’s check failed (Voter i)

Ci+1,i,i
2

[
D1 | A1,n

1 | M̃ i,i
i+1 | Ñ2

]
σL R Ci+1,i,i

2

[
D1 | A1,n

1 | M̃ i,i
i+1 | Ñ2

]
σR (32)

%R’s check succed (Voter i)

Ci+1,i,i
2

[
Ri+1,n

4 | D1 | A1,n
1 | M̃ i,i

i+1 | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

4 | D1 | A1,n
1 | M̃ i,i

i+1 | Ñ2

]
σR (33)

%R outputs signature to B (Voter i)

Ci+1,i,i
2

[
Ri+1,n

5 | D1 | A1,n
1 | M̃ i+1,i

i+1 | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

5 | D1 | A1,n
1 | M̃ i+1,i

i+1 | Ñ2

]
σR (34)

%R outputs receipt publicly (Voter i)

Ci+1,i,i
2

[
Ri+1,n

6 | D1 | A1,n
1 | M̃ i+1,i+1

i+1 | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

6 | D1 | A1,n
1 | M̃ i+1,i+1

i+1 | Ñ2

]
σR (35)

%R outputs receipt to Voter i

Ci+1,i+1,i
2

[
Ri+1,n

7 | D1 | A1,n
1 | M̃ i+1,i+1

i+1 | Ñ2

]
σL

R Ci+1,i,i
2

[
Ri+1,n

7 | D1 | A1,n
1 | M̃ i+1,i+1

i+1 | Ñ2

]
σR (36)

The next two relations reflect the end of the voting phase and the beginning of the counting phase where
R sends its content (hashed) to the Auditor. For i ∈ J0, n− 1K:

Ci3

[
Ri+1,n

8 | D1 | Ai+1,n
1 | M̃

]
σL R Ci3

[
Ri+1,n

8 | D1 | Ai+1,n
1 | M̃

]
σR (37)

Cn3

[
R9 | D1 | A2 | M̃

]
σL R Cn3

[
R9 | D1 | A2 | M̃

]
σR (38)

The final relations show the counting phase with the different steps of the Decryption device which
receives encrypted votes from (corrupted) B and waits for Auditor’s approval before it outputs the shuffled

52

result. For i ∈ J1, nK:

C4

[
Di,n

2 | A2 | Ũi−1

]
σL R C4

[
D1,n

2 | A2 | Ũi−1

]
σR (39)

C4

[
D3 | A2 | Ũn

]
σL R C4

[
D3 | A2 | Ũn

]
σR (40)

C5

[
D4 | Ai,n3 | W̃i−1

]
σL R C5

[
D4 | Ai,n3 | W̃i−1

]
σR (41)

C5

[
D4 | A4 | W̃n

]
σL R C5

[
D4 | A4 | W̃n

]
σR (42)

C5

[
D4 | W̃n

]
σL R C5

[
D4 | W̃n

]
σR (43)

C5

[
D4 | A5 | W̃n

]
σL R C5

[
D4 | A5 | W̃n

]
σR (44)

For S ∈ 2J1,nK \ {∅}, tS = S[1 7→ 2, 2 7→ 1] and δtS = [1 7→ 2, 2 7→ 1] ◦ δS (with ◦ the classic
composition of functions):

CS6

[
DS

5 | W̃n

]
σL R C

tS
6

[
D
tS
5 | W̃n

]
σR (45)

For δ a permutation of J1, nK and tδ s.t. tδ = [1 7→ 2, 2 7→ 1] ◦ δ:

Cδ7

[
W̃n

]
σL R C

tδ
7

[
W̃n

]
σR (46)

F.2 Proof of Observational Equivalence, Assuming Static Equivalence
In this section, we show that the relation R described before captures all the possible evolutions of the
initial processes (Proposition 2). We first need to guarantee that the tests done by the voters and the Receipt
generator pass (or fail) on both processes. This does not follow immediately from static equivalence of the
frames since the tests done by the voters and teh Receipt generator are not public tests.

First, let us recall some notations:

θ0 = {vk(idk)/idpk ,s(idk) /sk | k = 1..n} | {vk(idR)/idpR} | {pk(ak)/gk | k = 1..3} |
{penc(vk,tk,g1)/ek ,pfk1(idk,tk,vk,ek) /pk ,

sign(〈ek,pk〉,idk) /sik | k = 1..2},
θk = θk−1 | {sign(hash(Π1(xk)),idR)/srk ,

d(p(idk),dec(Π2(xk),a3)) /reck},
σji = {Mk/xk | k = 1..i} | {Nk/xkb | k = 1..min(i, 2)} | {Uk/dk ,

Wk /hbk | k = 1..j}.

Lemma 20. Let i ∈ {1, 2} and let M and N be two free terms and let be P = d(p(idi), dec(Π2(N), a3)).
We suppose that φR(idpi, N)θi−1σ

0
i−1σL = ok and φV(idi, idpR, vi, ei, pi, sii,M, P)θiσ

0
i σL = ok.

Then, we have φV(idi, idpR, vi, ei, pi, sii,M, P)θiσ
0
i σR = ok.

Proof. Let i ∈ {1, 2}. Since φV(idi, idpR, vi, ei, pi, sii,M, P)θiσ
0
i σL = ok, we have, in particular, that:

(checksign(hash(〈idpi, ei, pi, sii〉), idpR,M) =E ok)θiσ
0
i σL.

Since this test is public (is uses no restricted names), and since θiσ0
i σL ≈s θiσ0

i σR (Proposition 1):

(checksign(hash(〈idpi, ei, pi, sii〉), idpR,M) =E ok)θiσ
0
i σR.

We know that (φR(idpi, N) =E ok)θi−1σ
0
i−1σL. Thus, according to Lemma 19, for σ ∈ {σL, σR}:

• (φR(idpi, N) =E ok)θi−1σ
0
i−1σ,

• (Π2(N) =E blind(renc(ei, Q1), Q2))θi−1σ
0
i−1σ for free terms Q1, Q2.

53

Thus, we have, for σ ∈ {σL, σR}:

Pθiσ
0
i σ =E d(p(idi), dec(blind(renc(ei, Q1), Q2), a3))θiσ

0
i σ.

Using the fact that d(p(idi), blind(vi, s(idi)))θiσ
0
i σL = Pθiσ

0
i σL, we must have:

blind(vi, s(idi))θiσ
0
i σL = dec(blind(renc(ei, Q1), Q2), a3)θiσ

0
i σL,

which leads us to the fact that (Q1 =E a2)θiσ
0
i σL and (Q2 =E si)θiσ

0
i σL. Thus, since θiσ0

i σL ≈s
θiσ

0
i σR, those equalities holds with θiσ0

i σR and we can finally state that:

blind(vi, s(idi))θiσ
0
i σR = dec(blind(renc(ei, Q1), Q2), a3)θiσ

0
i σR,

and we conclude.

We are now ready to prove Proposition 2.

Proposition 2. Let R be the relation defined in Definition 15 (Section F). Then, R is verifying properties
(2) and (3) of Definition 4.

Proof. Let us prove thatR verifies properties (2) and (3) of Definition 4.
INTERNAL REDUCTIONS: We must show for all extended processes A and B, where ARB, that if

A → A′ for some A′, then B →∗ B′ with A′RB′ for some B′. We observe that if ARB by (1), (2), (4),
(6) to (8), (10), (12), (13), (15), (16), (18), (20) to (22), (24), (26), (27), (29), (30), (32) to (36), (39), (41),
(43), (45) or (46), then there is no extended process A′ such that A → A′. We proceed by case analysis
depending on which relation is satisfied:

(3) In that case, we haveA ≡ Z0

[
V 1

3 | R1,n
1

]
σL andB ≡ Z0

[
V 1

3 | R1,n
1

]
σR withZk[_] = Ck,0,01

[
_ | V 2

1 | D1 | A1,n
1 | {ball1/ba1 ,

ball1 /ba′
1
}
]
.

If A → A′, it must be the case that A ≡ Z0

[
cRV1〈ok〉 . V 1

4 | cRV1(go
1
r) . R

1,n
2

]
σL and we have

A′ ≡ Z1

[
V 1

4 | R1,n
2

]
σL. Now, since we have that B ≡ Z0

[
cRV1〈ok〉 . V 1

4 | cRV1(go
1
r) . R

1,n
2

]
σR,

it follows that B → B′ where B′ = Z1

[
V 1

4 | R1,n
2

]
σR and we derive A′RB′ by relation (4) and

the closure ofR under structural equivalence.

(5) In that case, we haveA ≡ Z
[
R1,n

3

]
σL andB ≡ Z

[
R1,n

3

]
σR with the contextZ[_] = C1,0,0

1

[
_ | V 1

4 | V 2
1 | D1 | A1,n

1 | M̃0,0
1

]
and a term M1 such that fv(M1) ⊆ dom(C1,0,0

1) and fn(M1) ∩ bn(C1,0,0
1) = ∅. If A → A′, then

A ≡ Z
[
if φR(idp1, x1) then R1,n

4

]
σL and either A′ ≡ Z

[
R1,n

4

]
σL or A′ ≡ Z [0]σL. In the

first case (resp. the second case), φR(idp1,M1)θ0σ
0
0σL, which is equivalent to φR(idp1, x1)σL in

the Z context, must be equivalent (resp. not equivalent) to ok in E. Then, using Lemma 19, we
know that φR(idp1,M1)θ0σ

0
0σR (i.e. φR(idp1, x1)σR in the Z context) is also equivalent (resp. not

equivalent) to ok in E. It follows from B ≡ Z
[
if φR(idp1, x1) then R1,n

4

]
σR that B → B′ with

B′ = Z
[
R1,n

4

]
σR (resp. B′ = Z [0]σR) which leads us to relation (7) (resp. (6)) and we conclude.

(11) In that case, we haveA ≡ Z
[
V 1

6

]
σL andB ≡ Z

[
V 1

6

]
σR with the contextZ[_] = C1,1,0

1

[
_ | V 2

1 | R1,n
7 | D1 | A1,n

1 | M̃1,1
1 | Ñ1

]
with terms M1, N1 s.t. fv(M1) ⊆ dom(C1,0,0

1), fv(N1) ⊆ dom(C1,1,0
1), fn(M1) ∩ bn(C1,0,0

1) = ∅
and fn(N1)∩bn(C1,1,0

1) = ∅. IfA→ A′, we haveA ≡ Z
[
if φV(id1, idpR, v1, e1, p1, si1, x

1
b , x

1
r) then V 1

7

]
σL

and eitherA′ ≡ Z
[
V 1

7

]
σL orA′ ≡ Z [0]σL. In the first (resp. the second) case, φV(id1, idpR, v1, e1, p1, si1, N1, P)θ1σ

0
1σL

with P = d(p(id1), dec(Π2(M1), a3)), equivalent to φV(id1, idpR, v1, e1, p1, si1, x
1
b , x

1
r)σL in the Z

context, must be equivalent (resp. not equivalent) to ok inE. Then, using Lemma 20, φV(id1, idpR, v1, e1, p1, si1, N1, P)θ1σ
0
1σR

(i.e. φV(id1, idpR, v1, e1, p1, si1, x
1
b , x

1
r)σR in the Z context) is also equivalent (resp. not equivalent)

to ok inE. It follows from the following equivalenceB ≡ Z
[
if φV(id1, idpR, v1, e1, p1, si1, x

1
b , x

1
r) then V 1

7

]
σR

that we have B → B′ with B′ ≡ Z
[
V 1

7

]
σR (resp. B′ ≡ Z [0]σR) which leads us to relation (13)

(resp. (12)) and we conclude.

54

(42) In that case, we have A ≡ Z [A4]σL and B ≡ Z [A4]σR with the context Z[_] = C5

[
_ | D4 | W̃n

]
and free termsM1, . . . ,Mn,N1,N2,U1, . . . ,Un andW1, . . . ,Wn such that fv(Mi) ⊆ dom(Ci+1,i,i

1),
fn(Mi) ∩ bn(Ci+1,i,i

1) = ∅ for i ∈ J1, nK, fv(Ni) ⊆ dom(Ci,i,01), fn(Ni) ∩ bn(Ci,i,01) = ∅ for
i ∈ {1, 2}, fv(Ui) ⊆ dom(C4), fn(Ui) ∩ bn(C4) = ∅ for i ∈ J1, nK and fv(Wi) ⊆ dom(C5),
fn(Wi) ∩ bn(C5) = ∅ for i ∈ J1, nK. If A → A′, we must have the following equivalence A ≡
Z [if φA(hd, hr1, . . . , hrn, hb1, . . . , hbn) then A5]σL and either A′ ≡ Z [A5]σL or A′ ≡ Z [0]σL.
In the first case (resp. second case), we have φA(hash(〈U1, . . . , Un〉), hb1

r, . . . , hb
n
r ,W1, . . . ,Wn)θnσ

n
nσL

with hbir = 〈idpi, hash(Π1(Mi))〉, which is equivalent, in theZ context, to φA(hd, hr1, . . . , hrn, hb1, . . . , hbn)σL,
must be equivalent (resp. not equivalent) to ok in E. Since this test is fully public and θnσnnσL ≈s
θnσ

n
nσR, φA(hash(〈U1, . . . , Un〉), hb1

r, . . . , hb
n
r ,W1, . . . ,Wn)θnσ

n
nσR (which is equivalent, in the

Z context, to φA(hd, hr1, . . . , hrn, hb1, . . . , hbn)σR) is also equivalent (resp. not equivalent) to
ok in E. It follows from B ≡ Z [if φA(hd, hr1, . . . , hrn, hb1, . . . , hbn) then A5]σR that we have
B → B′ with B′ ≡ Z [A5]σR (resp. B′ ≡ Z [0]σR) which leads us to relation (44) (resp. (43)) and
we conclude.

The cases (9), (14), (17), (23), (28), (37), (38), (40) and (44) are similar to case (3), (19) is very similar
to case (5) and, finally, (25) and (31) can be treated as case (11).

LABELLED REDUCTIONS: We must show for all extended processes A and B, where ARB, that if
A

α→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅ for some A′, then B →∗ α→→∗ B′ with
A′RB′ for some B′. We observe that if ARB by (3), (5), (6), (9), (11), (12), (14), (17), (19), (20), (23),
(25), (26), (28), (31), (32), (37), (38), (40), (42), (43), (44), or (46), then there is no extended process A′

such that A α→ A′. We proceed by case analysis on the remaining cases:

(1) In that case, we haveA ≡ Z0

[
V 1

1

]
σL andB ≡ Z0

[
V 1

1

]
σR with the contextZk[_] = C0,0,0

k

[
_ | V 2

1 | R1,n
1 | D1 | A1,n

1

]
(we consider C0 = C0,0,0

0). If A α→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then
it must be the case that A ≡ Z0

[
cout〈ball1〉.V 1

2

]
σL and A′ ≡ Z1

[
V 1

2 | {ball1/ba1
}
]
σL where

α = νba1.cout〈ball1〉 and ba1 /∈ dom(Z0). It follows from B ≡ Z0

[
cout〈ball1〉.V 1

2

]
σR that

B
α→ B′ where B′ ≡ Z1

[
V 1

2 | {ball1/ba1}
]
σR and we derive A′RB′ by relation (2) and the closure

ofR under structural equivalence.

(4) In that case, we haveA ≡ Z
[
R1,n

2

]
σL andB ≡ Z

[
R1,n

2

]
σR with the contextZ[_] = C1,0,0

1

[
_ | V 1

4 | V 2
1 | D1 | A1,n

1

]
.

If A α→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that
A ≡ Z

[
cBR(x1).R1,n

3

]
σL and A′ ≡ Z

[
R1,n

3 | M̃0,0
1

]
σL where α = cBR(M1) and a free term

M1 such that fn(M1) /∈ bn(Z). It follows from B ≡ Z
[
cBR(x1).R1,n

3

]
σR that B α→ B′ where

B′ ≡ Z
[
R1,n

3 | M̃0,0
1

]
σR which leads us to relation (5) and we conclude.

(45) In that case, we have A ≡ ZS
[
DS

5

]
σL and B ≡ Z

tS
[
D
tS
5

]
σR with ZS [_] = CS6

[
_ | W̃n

]
, a

set S ∈ 2J1,nK \ {∅}, tS = S[1 7→ 2, 2 7→ 1], two permutations δS : S → J1,#SK and δtS :
tS → J1,#tSK with S = J1, nK \ S (note that #tS = #S), and free terms M1, . . . , Mn, N1, N2,
U1, . . . , Un and W1, . . . , Wn such that fv(Mi) ⊆ dom(Ci+1,i,i

1), fn(Mi) ∩ bn(Ci+1,i,i
1) = ∅ for

i ∈ J1, nK, fv(Ni) ⊆ dom(Ci,i,01), fn(Ni) ∩ bn(Ci,i,01) = ∅ for i ∈ {1, 2}, fv(Ui) ⊆ dom(C4),
fn(Ui) ∩ bn(C4) = ∅ for i ∈ J1, nK and fv(Wi) ⊆ dom(C5), fn(Wi) ∩ bn(C5) = ∅ for i ∈ J1, nK.
If A α→ A′ such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅ then it must be the case that
A ≡ ZS

[
cout〈deci〉.DS\{i}

5

]
σL with i ∈ S and α = νresj .cout〈resj〉 and resj /∈ dom(ZS) with

j = n+ 1−#S. Then, we consider two cases:

• Either i ∈ J3, nK. Let S′ = S \ {i}. We consider two cases:

– If S′ 6= ∅ (i.e. j < n), we have S′ = S ∪ {i}. Thus, A′ ≡ ZS
′
[
DS′

5

]
σL with

δS′ : S′ → J1,#S′K and δS′ = δS ◦ [j 7→ i]. Since i ∈ J3, nK, we also have that

55

tS′ = tS \{i}, thus, it follows fromB ≡ ZtS
[
cout〈deci〉.D

tS\{i}
5

]
σR thatB α→ B′ where

B′ ≡ ZtS′
[
D
tS′

5

]
σR with δtS′ = δtS ◦ [j 7→ i]. Since we have δtS = [1 7→ 2, 2 7→ 1] ◦ δS

and since δtS′(j) = δS′(j) = i, we still have that δtS′ = [1 7→ 2, 2 7→ 1] ◦ δS′ which leads
us back to relation (45) and we conclude.

– S′ = ∅ (i.e. j = n), we have S′ = J1, nK. Thus A′ ≡ Cδ7
[
W̃n

]
σL with δ = δS ◦ [n 7→ i].

it follows from B ≡ Z
tS [cout〈deci〉]σR that B α→ B′ where B′ ≡ C

tδ
7

[
W̃n

]
σR with

tδ = δtS ◦ [n 7→ i]. Since we have δtS = [1 7→ 2, 2 7→ 1] ◦ δS and since δtS′(n) =
δS′(n) = j, we still have that δtS′ = [1 7→ 2, 2 7→ 1] ◦ δS′ which leads us to relation (46)
and we conclude.

• Or i ∈ {1, 2}. W.l.o.g., suppose that i = 1 and let S′ = S \ {1}. We consider two cases:

– If S′ 6= ∅ (i.e. j < n), we have S′ = S ∪ {1}. Thus, A′ ≡ ZS′
[
DS′

5

]
σL with δS′ : S′ →

J1,#S′K and δS′ = δS ◦ [j 7→ 1]. Since 1 ∈ S, we know, by definition of tS, that 2 ∈ tS.
Thus, we have that tS′ = tS \{2}, thus, it follows fromB ≡ ZtS

[
cout〈dec2〉.D

tS\{2}
5

]
σR

that B α→ B′ where B′ ≡ Z
tS′
[
D
tS′

5

]
σR with δtS′ = δtS ◦ [j 7→ 2]. Since we have

δtS = [1 7→ 2, 2 7→ 1] ◦ δS and since δtS′(j) = 2 = [1 7→ 2, 2 7→ 1] ◦ δS′(j), we still
have that δtS′ = [1 7→ 2, 2 7→ 1]◦δS′ which leads us back to relation (45) and we conclude.

– S′ = ∅ (i.e. j = n), we have S′ = J1, nK. Thus A′ ≡ Cδ7
[
W̃n

]
σL with δ = δS ◦ [n 7→ 1].

it follows from B ≡ Z
tS [cout〈dec2〉]σR that B α→ B′ where B′ ≡ C

tδ
7

[
W̃n

]
σR with

tδ = δtS ◦ [n 7→ 2]. Since we have δtS = [1 7→ 2, 2 7→ 1] ◦ δS and since δtS′(n) = [1 7→
2, 2 7→ 1]◦δS′(n), we still have that δtS′ = [1 7→ 2, 2 7→ 1]◦δS′ which leads us to relation
(46) and we conclude.

The cases (2), (7), (8), (13), (15), (16), (21), (22), (27), (33), (34) and (35) are similar to case (1). Cases
(10), (18), (24), (29), (30), (36), (39) and (41) are very similar to (2).

56

