
Security proof with dishonest keys?

Hubert Comon-Lundh1, Véronique Cortier2, and Guillaume Scerri1,2

1 LSV, ENS Cachan & CNRS & INRIA, France
2 LORIA, CNRS, France

Abstract. Symbolic and computational models are the two families of
models for rigorously analysing security protocols. Symbolic models are
abstract but offer a high level of automation while computational models
are more precise but security proof can be tedious. Since the seminal work
of Abadi and Rogaway, a new direction of research aims at reconciling
the two views and many soundness results establish that symbolic models
are actually sound w.r.t. computational models.
This is however not true for the prominent case of encryption. Indeed,
all existing soundness results assume that the adversary only uses hon-
estly generated keys. While this assumption is acceptable in the case of
asymmetric encryption, it is clearly unrealistic for symmetric encryption.
In this paper, we provide with several examples of attacks that do not
show-up in the classical Dolev-Yao model, and that do not break the
IND-CPA nor INT-CTXT properties of the encryption scheme.
Our main contribution is to show the first soundness result for symmet-
ric encryption and arbitrary adversaries. We consider arbitrary indistin-
guishability properties and an unbounded number of sessions.
This result relies on an extension of the symbolic model, while keep-
ing standard security assumptions: IND-CPA and IND-CTXT for the
encryption scheme.

1 Introduction

Formal proofs of security aim at increasing our confidence in the security proto-
cols. The first formal proofs/attacks go back to the early eighties (for instance
[DY81]). Such proofs require a formal model for the concurrent execution of pro-
cesses in a hostile environment (for instance [AG99,AF01]). As a consequence,
the security proof only proves something about a formal model. That is why
we were faced to paradoxical situations, in which a protocol is proved to be se-
cure and later an attack is found. This is the case for the Bull authentication
protocol [RS98], or the Needham-Schroeder-Lowe protocol [War03,BHO09]. In
such cases, the proof is simply carried in a model that differs from the model in
which the attack is mounted. There are much more examples, since the security
proofs always assume some restrictions on the attacker’s capabilities, ruling out
? The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no 258865, project ProSecure.

some side-channel attacks. The examples show however that we need to specify
as precisely as possible the scope of the proofs, i.e., the security assumptions.

This is one of the main goals of the work that started ten years ago on
computational soundness [AR00,BPW03]: what is the scope of formal proofs in a
Dolev-Yao style model ? This is important, because the automatic (or checkable)
proofs are much easier in a Dolev-Yao, called symbolic hereafter, model, in which
messages are abstract terms and the attacker is any formal process that can
intercept and send new messages that can be forged from the available ones.

Numerous results have been obtained in this direction, but we will only focus
on the case of symmetric encryption. If we assume only two primitives: symmetric
encryption and pairing, to what extent is the symbolic model accounting for
attacks performed by a probabilistic polynomial time attacker ? The first result
[AR00] investigates the case of a passive attacker, who cannot send fake messages,
but only observes the messages in transit. Its goal is to distinguish between two
message sequences, finding a test that yields 1 on a sequence and yields 0 on
the other sequence (for a significant subset of the sample space). The authors
show for instance that, if the encryption scheme is IND-CPA, is “which key-
preserving” (two encrypted messages with the same key are indistinguishable
from two messages encrypted with different keys) and hides the length, then the
symbolic indistinguishability implies the computational indistinguishability. In
short, in that case, the symbolic model accounts for the probabilistic polynomial
time attacks on the implementations of the messages.

To our knowledge, only two further works extend this result: first M. Backes
et al in [BP04] and two of us in [CLC08a]. Both works try to consider an active
attacker, thus allowing an interaction of the attacker with the protocol. Both
works require additional assumptions: INT-CTXT for the encryption scheme,
no dynamic corruption of keys, no key cycles,... The main difference between
the two results lies in the security properties that are considered: while [BP04]
considers trace properties, [CLC08a] considers equivalence properties. Therefore
the proof methods are quite different.

We wish however to insist on another issue: in [CLC08a], the encryption keys
are assumed to be authentic. In other words, if the attacker forges a key, then
this key must be generated using the key generation algorithm. This is a strong
assumption, that is hard to ensure in practice. For a public key cryptosystem,
we can imagine that the public keys are certified by a key-issuing authority and
that this authority is trusted. But in the case of symmetric encryption, there
are many examples in which a participant generates himself a session key. This
limitation and its consequences are discussed at length in [CC11].

Concerning [BP04], the case of dishonest keys is not mentioned explicitly,
while the proof assumes that there is no such key: the paper implicitly assumes
that all keys are generated using the key generation algorithm.

On the other hand, the problem of dishonest keys is important: the cryp-
tographic assumptions, such as IND-CPA, INT-CTXT, IND-CCA,... rely on a
sampling of the keys. This does not say anything on any particular key: there
could be a key for which all the properties fail and such a key could be chosen

2

by the attacker. As we show in section 2, there are many situations in which
we can mount an attack, even when the encryption scheme has all the desired
properties.

The main source of examples of formal security proofs of protocols using
symmetric key encryption (not assuming that keys are always honest) is Cryp-
toVerif [Bla08]. These proofs show, as an intermediate step, that the keys used
for encryption by a honest agent for a honest agent are honestly generated. In
this way, the security properties of the encryption scheme are only applied to
ciphertexts using a randomly generated key. This works for many protocols, but
cannot work for a soundness result since there are protocols that are secure,
while at some point a honest agent may use a fake key (sent by the attacker) for
encrypting a message sent to a honest participant.

In this paper, we propose a solution to the dishonest keys problem, adding
capabilities to the symbolic attacker. We try to capture the ability to forge a key,
that has an arbitrary behavior (choosen by the attacker), on messages that have
been sent so far. Roughly, the attacker may forge a particular key k, such that
given any pair of known messages (m1,m2), the encryption (resp. decryption) of
m1 with k yields m2. As we show in an example in section 2, the attacker must
also get any encryption/decryption of a message that uses a fake key.

This model is formalized in section 3, building on the applied π-calculus of
[AF01]. We then show in section 5 that this model is computationally sound,
without assuming of course that keys are honestly generated. More precisely,
we prove, in the case of simple processes, that, if two processes P , Q are obser-
vationally equivalent, then their implementations JP K, JQK are computationally
indistinguishable, provided that the encryption scheme is IND-CPA and INT-
CTXT. In other words, as in [CLC08a] we (also) cover equivalence properties.
This soundness proof is similar to the proof of [CLC08a]: we prove a tree sound-
ness result and a trace mapping. There are some significant technical differences,
that will be pointed out. Also, a gap in the final proof of [CLC08a] is fixed here,
considering a new indistinguishability game.

Finally, we show that our soundness result does not give too much power
to the symbolic attacker: we give a computationally secure process in our ex-
tended model, in which the attacker may send fake keys that are then used for
decryption.

2 Motivation : some examples of insufficiency of current
models

Standard cryptographic assumptions do not provide any guarantee for keys that
are not generated using the key generation algorithm. In particular, the IND-
CPA and IND-CTXT properties do not exclude the case where some keys have
particular properties. We provide below several examples of protocols whose
security is broken due to the behavior of dishonestly generated keys. For the
sake of clarity, we provide with an informal specification of the protocols and
we consider attacks that consist of some agent reaching an undesired bad state.

3

These examples could be easily turned into examples with confidentiality or
authenticity properties. For simplicity, we also omit the randomness used for
encryption.

A first fact about dishonest keys is that decrypting honest cyphertexts with
dishonest keys does not necessary fail and may, on the contrary, result into
plaintext that can be exploited by an attacker.

Example 1. Assume kAB is a secret key shared between A and B.

A→ 〈c, {c}kAB 〉
B ← 〈z, {{b}z}kAB 〉
B → bad

B waits for a key z and a message looking like {{b}z}kAB and goes in a bad
state. For all usual formal models, B can not reach the bad sate. On the other
hand, it is computationally feasible for an adversary to forge a key k such that
D(c, k) = b (D(c, k) is the decryption of c with k), in that case B goes in the
bad state receiving 〈k, {c}kAB 〉.

This example can easily be generalized to the case where the decryption of
several ciphertexts with some dishonest key yields exploitable results.

Example 2. Assume kAB is a secret key shared between A and B.

A→ 〈〈c, {c}kAB 〉, 〈d, {d}kAB 〉〉
B ← 〈k, 〈{{b}k}kAB , {{b′}k}kAB 〉〉
B → bad

The standard cryptographic assumptions do not prevent the adversary from
forging a key k such that D(c, k) = b and D(d, k) = b′ simultaneously.

The two previous examples seem to rely on the fact that the adversary knows
the (honest) cyphertexts that are decrypted. This is actually not needed to
mount attacks.

Example 3. Assume kAB is a secret key shared between A and B and s be a
secret known only to A.

A→ {s}kAB
B ← 〈k, {{b}k}kAB 〉
B → bad

In the computational setting the adversary could forge a key k such that, if s
is randomly chosen , D(s, k) = b with a non negligible probability. Receiving
k, {s}kAB , B would reach the bad state with non negligible probability.

Another important behavior of dishonest keys is the fact that attempting to
decrypt a message with a dishonest key may actually reveal the message.

Example 4. Consider the following protocol where s is secret.

A→ {s}kAB
B ← 〈k, {{z}k}kAB 〉
B → ok

4

The agent B simply tries to decrypt the message received under kAB and outputs
ok if he succeeds. In any usual formal model, s stays secret.

Let us consider a key ki such that ki decrypts s if and only if the i-th bit of
s is with a 0. Sending ki, {s}kAB to a copy of B the adversary learns the i− th
bit of s and is then able to learn s entirely.

The previous examples exhibit problematic behaviors when decrypting with
a dishonest key. Similar issues occur when encrypting with a dishonest key. The
next example shows that the adversary may use dishonest keys to build equalities
between cyphertexts.

Example 5. Assume kAB is a secret key shared by A and B.

A→ {a}kAB
A← k
A→ {{s}k, {a}kAB}kAB

B ← {x, x}kAB
B → bad

As previously, nothing prevents the adversary from building a key k such that
for a random s, {s}rk = {a}kAB with non negligible probability. Using that key,
it is possible to drive B in the bad state.

More generally, {x}k may be an arbitrary function of (x, r) and the previous
knowledge of the adversary.

Example 6. Assume kAB is a secret key shared by A and B, s is a secret nonce
known to A and s′ is a nonce (not necessarily secret).

A← k
A→ {{〈s, s′〉}k}kAB

B ← 〈k′, {{〈s, s〉}k′}kAB 〉
B → bad

The adversary could forge k, k′ such that D({〈x, y〉}rk, k′) = 〈x, x〉 (when x
and y are of equal length) which allows B to go in the bad state.

One could think that the collisions induced by a dishonest key k are deter-
mined by the message under encryption/decryption and the knowledge of the
adversary at the moment he forged k. The last example shows that it is actually
not the case.

Example 7. Assume that kAB is a secret ket shared by A and B and that s is
initially secret.

A← 〈k0, k1, k2〉
A→ 〈{k0}kAB , {k1}kAB , {k2}kAB
A→ {〈A,A〉}kAB
A→ s
A← {〈x, s〉}kAB
A→ bad

B ← 〈{k}kAB , {t}kAB 〉
B → {{t}k}kAB

Running B an arbitrary (polynomial) number of times yields a computational
attack. Consider the three following keys :

5

– k0 such that {〈i, n〉}k0 = 〈i+ 1, n〉
– k1 such that {〈i, n〉}k1 = 〈i− 1, n〉
– k2 such that {〈i, n〉}k2 = 〈i, n′〉 where n′ is the same bitstring as n apart

from the i-th bit which is flipped.

With these keys, we can use role B to transform any cyphertext {〈m1,m2〉}kAB
into {〈x, s〉}kAB .

Let us summarize the lessons provided by these examples. Clearly, existing
symbolic models are unsound. Examples 1, 2, and 3 show that we need to let the
adversary adds equations when decrypting or encrypting with a dishonest key.
Examples 5 and 6 show that these equations may depend on the knowledge of the
attacker when he add them. Example 4 demonstrates that any message under
decryption/encryption with a dishonest key should be added to the adversary
knowledge. Example 7 shows that we have to delay the commitment on the prop-
erties of the dishonest key until the state, at which the encryption/decryption
with that key is used.

Let us note that in some examples we try to decrypt a honest nonce which
should be forbidden by tagging but it is easy to patch these examples by replacing
the honest nonces by honest encryptions.

3 Model

Our model is an adaptation of the applied pi-calculus [AF01], enriched with a
syntax that allows the attacker to create new equalities between terms, corre-
sponding to equalities permitted by the IND-CCA and the IND-CTXT proper-
ties, as illustrated in the previous section.

3.1 Syntax and deduction

Messages are represented by terms build upon a set V of variables, a setNames of
names and the signature F = {{_}__, 〈_,_〉,dec(_,_), π1(_), π2(_)}. As usual,
the term {s}rk represents the encryption of s with the key k and the randomness
r, 〈u, v〉 represents the concatenation of u and v, while dec(_,_), π1(_), π2(_)
represent respectively the decryption and the left and right projections of a
concatenation. We may write 〈x, y, z〉 for 〈〈x, y〉, z〉. The set of ground terms
(i.e. terms without variables) is denoted by T (F). We divide the set Names into
three (infinite) subsets: K1 for honest keys, K2 for dishonest keys, and N for the
nonces. The set V is divided into V1 = {x1, x2, · · · } and V2 = {y1, y2, · · · } that
will be respectively used to store terms and equations.

We assume given a length function l : T (F) 7→ H from ground terms to a set
H that measures the symbolic length of a term. An example of a length function
will be given in the Section 4.2.

We write {x1 7→ u1, . . . , xn 7→ un} for the substitution that maps xi to
ui. The substitution is ground when every term ui is ground. The application
of a substitution σ to a term u is denoted uσ. The signature F is equipped

6

with an equational theory, that is closed under application of function symbols,
substitution of terms for variables. We writeM =E N when the equationM = N
is in the theory E. We may omit the subscript E when it is clear from the
context. In this paper, we will consider in particular the theory E0 defined by
the following (infinite, yet recursive) set of equations.

dec({x}zk, k) = x for k ∈ K1 ∪ K2 π1(〈x, y〉) = x π2(〈x, y〉) = y

E0 will then be enriched by the equalities created by the adversary.
The current knowledge of an adversary is represented by a frame φ = νn̄ · σ

where σ is a ground substitution that represents the messages accessible to the
adversary while n̄ denotes the private names (that the adversary does not know
initially). From its knowledge φ, an attacker can then deduce any term that it
can build from the terms in σ and applying function symbols and public names.

Definition 1 (deductibility). A ground term s is deducible from φ = νn̄ · σ
and an equation set E (we write φ `E s) if there exists a public term (i.e. not
containing names from n̄) R such that Rσ =E s.

Example 8. Let φ = νn1, n2, n3, r1, r2, r3 · σ with σ = {x1 7→ {n1}r1k1 , x2 7→
〈{n2}r2n1

, {n3}r3n2
〉}. Then φ `E0

n3. The corresponding public term is : R =
dec(π2(x2),dec(π1(x2),dec(x1, k1)))

As in [CLC08b], we first extend the applied pi-calculus with predicates that
represent the tests that an adversary can perform. We consider four predicates:
M(u) states whether a term u is valid (i.e. will have a computational inter-
pretation); EQ(u, v) checks whether two terms are equal; Psamekey(u, v) checks
whether u and v are two cyphertexts using the same key; and EL(u, v) checks
whether two terms have the same length. A formula, as defined in Figure 1, is a
Boolean combination of these atomic formulas.

The processes are then defined as usual (in Figure 1) with the addition of
two new constructors (eq and neq) that allow to generate new equalities or dise-
qualities between terms. These constructions may appear in attackers processes,
but not in the protocols.

The behaviour of a process depends on the equational theory. We therefore
consider localized process E,Xw, Xc, P where E is a set of ground equations and
disequations, that have already been added by the adversary, Xw and Xc are sets
of variables and P is a process. The adversary will be allowed to add equations
in E “on-the-fly” depending on what he learns. More precisely, when we need
to evaluate a test, that involves dishonest keys, the attackers enters a “ADD”
mode in which he has to commit to the (non)-validity of equalities containing
such keys. In this mode, the frame of P records, using the variables in Xw,
the equalities that need a commitment. It also records, using the variables Xc,
the equalities on which he committed since he entered the “ADD” mode. When
leaving the mode, committed (dis)-equalities have been flushed in E.

7

Φ1, Φ2 ::= Formula
EQ(s, t),M(s),Psamekey(s, t),EL(s, t) predicate application
Φ1 ∧ Φ2 conjunction
Φ1 ∨ Φ2 disjunction
¬Φ1 negation

P,Q,R ::= Processes
c(x) · P, c̄(s) · P input, output on channel c
eq(s, t) · P, neq(s, t) · P equation, disequation
0 null process
P‖Q parallel composition
!P replication
(να)P restriction
if Φ then P else Q conditional

A,B ::= Extended processes
P process
A‖B parallel composition
(να)A restriction
{x 7→ s} substitution

For simplicity reasons we will often write if Φ then P else cout(⊥) as [Φ]P .

Fig. 1. Syntax of Formula and Processes.

Example 9. Let us consider the protocols of the Examples 4 and 5. For the sake of
conciseness, we do not describe the role of A. We instead directly enrich the initial
frame with the message emitted by A. We also make use of a pattern-matching
notation like in ProVerif [Bla05]. For example, c(〈a, {y}kab〉).c̄(y) denotes the
process c(x).[(π1(x) = a) ∧M(dec(π2(x), kab))].c̄(dec(π2(x), kab)).

The process modeling the protocol described in Example 4 is:

P4 = (νk, r, kAB){x 7→ {s}rkAB}‖!cin(〈z1, {z2}kAB 〉).[M(dec(z2, z1))]cout(ok)

where s = {n}rk. Similarly, the process modeling Example 5 is:

P5 = (νk, r, r1, r2, r3, kAB){x1 7→ {a}r2kAB , x2 7→ k, x3 7→ {{s}r1k , {a}
r3
kAB
}r2kAB}

‖cin({z1, z2}kAB).[EQ(z1, z2)]cout(bad)

where s = {n}rk.

3.2 Operational Semantics

Our operational semantics is inspired by the applied π-calculus. For localized
processes of the form E,Xw, Xc, A, terms are interpreted in T /E ∪ E0. E ∪ E0

is completed into a convergent rewriting system, that minimizes the number of
destructors in a term. t↓E will denote the normal form of the term t w.r.t. such

8

E,Xw, Xc, A‖0 ≡ E,Xw, Xc, A
E,Xw, Xc, A‖B ≡ E,Xw, Xc, B‖A

E,Xw, Xc, (A‖B)‖C ≡ E,Xw, Xc, A‖(B‖C)
E,Xw, Xc, (να)(νβ)A ≡ E,Xw, Xc, (νβ)(να)A
E,Xw, Xc, (να)(A‖B) ≡ E,Xw, Xc, A‖(να)B if α 6∈ fn(A) ∪ fv(A)

E,Xw, Xc, (νx){x 7→ s} ≡ E,Xw, Xc,0
E,Xw, Xc, (να)0 ≡ E,Xw, Xc,0

E,Xw, Xc, !P ≡ E,Xw, Xc, P‖!P
E,Xw, Xc, {x 7→ s}‖A ≡ E,Xw, Xc, {x 7→ s}‖A{x 7→ s}
E,Xw, Xc, {x 7→ s} ≡ E,Xw, Xc, {x 7→ t} if s =E t

E, ∅, Xc, P ≡ E, ∅, ∅, P

Fig. 2. Structural equivalence.

a rewrite system. More generally, in what follows, when we refer to E, we will
implicitly assume E ∪ E0.

Structural equivalence is very similar to applied π-calculus and is defined in
Figure 2.

We first define the semantics of the four predicates as follows.

– E � M(s) if, for all subterms t of s, t↓E does not contain destructors or
variables and uses only keys in key position.

– E � EQ(s, t) if E � M(s) ∧M(t) and s↓E= t↓E .
– E � Psamekey(s, t) if E � M(s) ∧ M(t) and ∃k, u, v, r, r′ such that E �

EQ(s, {u}rk) ∧ EQ(t, {v}r′k)
– E � EL(s, t) if E � M(s) ∧M(t) and l(s) = l(t).

The semantics of formulas is then defined as expected.
We are now ready to define how an attacker can add new equalities between

terms. A first condition is that equalities should be well-formed in the sense that
they should not contradict previously added equalities and they should involve
either dishonest encryption or dishonest decryption.

Definition 2. Let s and t be two ground terms such that l(s) = l(t) and t is
without destructors. An equation s = t is well formed with respect to an equation
set E, a set of expected equations Y and a frame φ (written wfEY,φ(s = t)) if

– E 6� (s = t)
– if (v 6= w) ∈ E, E ∪ {s = t} 6� v = w
– E ∪ {s = t} 6� n = n′ with n, n′ names and n 6= n′

– E ∪ {s = t} 6� {u}rk = {u′}r′k′ with k, k′ ∈ K1 and k 6= k′ or r 6= r′

– E ∪ {s = t} 6� u = v when u is a pair and v is not a pair or when u is a
ciphertext and v is a private name.

and the equation satisfies of one of the two following sets of conditions:

1. s = {u}rk with k ∈ K2 and 〈u, k, r, t, enc〉 ∈ Y
2. φ, u ` t

9

3. u is in normal form for E and without destructors

i s = dec(u, k) with k ∈ K2 and 〈u, k dec〉 ∈ Y and (dec(u, k) = ∗) 6∈ E
ii φ, u ` t or t = ⊥
iii u is in normal form for E, without destructors, and u is either a public

nonce or an encryption.

Similarly, a disequation (s 6= t) is well formed, denoted wfEX,φ(s 6= t) if s is
also without destructors and

– s = {u}rk with k ∈ K2 and 〈u, k, r, t, enc〉 ∈ X
– E ∪ E0 6� s = t

We define wfEφ (e) to hold if there exists X such that wfEX,φ(e) holds.

Intuitively, an adversary can add an equation of the form {u}rk = t or dec(u, k) =
t only if t is deducible from φ, u since dishonest encryption and decryption must
be function of the current knowledge φ and their input u.

After receiving a message, an agent typically checks the validity of some con-
dition. This test may pass or fail, depending on the value of dishonest encryptions
and decryptions performed during the test. As illustrated in Example 4, this may
provide the adversary with an additional knowledge, which we define now:

Definition 3. Let E be a set of ground equations, ϕ and X be two frames, and
Φ be a formula. The additional knowledge induced by the condition Φ w.r.t. E
and X, writen KE

X,ϕ(Φ) is the union of the two following sets :
the set of all 〈s, k, dec〉 s.t.

– There exists a literal M(u) in Φ such that dec(s, t) ∈ St(u) with E � M(s),
t↓E= k and k ∈ K2.

– E 6� M(dec(s, k)) (to ensure that the condition is not trivially true, in which
case the adversary does not learn anything)

– ∀y′ ∈ V2,∀s′ =E s, {y′ 7→ 〈s′, k, dec〉} 6∈ X (avoiding redundancy)

and the set of all 〈s, k, r, v, enc〉 s.t.

– there exists a literal EQ(t, u) in Φ such that E � M(t) ∧ M(u) and t↓E=
C[t1, · · · , tn], u↓E= C[u1, · · · , un]

– for all i ∈ {1, · · · , n} there exist si and ki ∈ K2 such that
• either ti = {si}riki and wfEϕ (ti = ui). In that case we let vi = ui.
• or ui = {si}riki and wfEϕ (ui = ti). In that case we let vi = ti.

– ∃i ∈ {1 · · ·n} such that si = s, ki = k, ri = r, vi = v (we chose a pair of
terms)

– ∀y′ ∈ V2, {y′ 7→ 〈s, k, r, v, enc〉} 6∈ X (to avoid redundancy).

Example 10. Back to Example 4 ,K∅∅,(νs,r,kAB){x 7→{s}rkAB }
(M(dec(s, k))). Indeed,

the only literal in the condition is M(dec(s, k)), and the knowledge set is empty,
therefore K∅∅,(νs,r,kAB){x7→{s}rkAB }

(M(dec(s, k))) = 〈s, k, dec〉.

10

ỹ are the next #KE
φ(P)|Xw ,φ(P)\(Xw∪Xc)(tΦ(P)) free variables in V2

E,Xw, Xc, P
ε−→ E,Xw ∪ {ỹ}, Xc, P‖{ỹ 7→ KE

Xw (PtΦ(P))}
R-Add

wfEφ(z),φ\(Xw∪Xc)(s = t) z ∈ Xw
E,Xw, Xc, eq(s, t).P‖φ

τ−→ E ∪ {s = t}, Xw\z,Xc ∪ {z}, P‖φ
R-Eq

wfEφ(z),φ\(Xw∪Xc)(s 6= t) z ∈ Xw
E,Xw, Xc, neq(s, t).P‖φ

τ−→ E ∪ {s 6= t}, Xw\z,Xc ∪ {z}, P‖φ
R-Neq

E, ∅, ∅, c(x).P‖c̄(t).Q τ−→ E, ∅, ∅, P‖Q‖{x 7→ t}
R-Com

E ∪ E0 � Φ

E, ∅, ∅, if Φ then P else Q
τ−→ E, ∅, ∅, P

R-Cond1

E ∪ E0 6� Φ
E, ∅, ∅, if Φ then P else Q

τ−→ E, ∅, ∅, Q
R-Cond2

φ(P) denotes the maximal frame which can be extracted from process P . If X =
{x1, · · · , xn} is a set of terms (ordered), then {ỹ 7→ X} denotes the frame {y1 7→
x1, · · · , yn 7→ xn}. φ\X stands for φ|V\X . tΦ(P) is set of conditions that occurs in
head in P , that is tΦ(P) = {Φ1, . . . , Φn} if P ≡ νn̄[Φ1]P1‖ · · · ‖[Φn]Pn‖Q where n is
maximal.

Fig. 3. Reduction semantics.

The reduction semantics is defined in Figure 3. The rules R-Com, R-Cond1,
R-Cond2 are the standard communication and conditional rules. Note that
these rules require the sets Xw and Xc to be empty. The validity of a condition
Φ may depend on the behavior of dishonest encryption/decryption performed
when evaluating the condition. The R-Add rule adds to the frame the knowledge
induced by the conditions that are about to be evaluated, making it available to
the attacker. Simultaneously, R-Add adds in Xw the variables referring to all
the equations that need to be decided before evaluating the conditions. It is then
necessary to apply the rules R-Eq and R-Neq until Xw is empty, in order to de-
cide whether each possible equality involving a dishonest encryption/decryption
should be set at true or false.

The R-Add rule should be applied before evaluating a condition (i.e. be-
fore applying R-Cond1, R-Cond2). Therefore, we define →∗ as the smallest
transitive relation containing ≡, (

τ−→ ε−→) and closed by application of contexts.

We will write, if t#ñ : P
c(t)−−→ Q if P →∗ E,Xw, Xc, (νñ)c(x).P ′‖Q′, and

E,Xw, Xc, (νñ)P ′‖Q′‖{x 7→ t} ε−→→∗ Q

We also write, if t#ñ : P
c̄(t)−−→ Q if P →∗ E,Xw, Xc, (νñ)c̄(t).P ′‖Q′, and

E,Xw, Xc, (νñ)P ′‖Q′‖{x 7→ t} ε−→→∗ Q

11

We also write E,Xw, Xc, P
(n)eq(s,t)−−−−−−→ E ∪ {s = t}, X ′w, X ′c, Q if we have

E,Xw, Xc, P‖(n)eq(s, t)→∗ E ∪ {s(6=) = t}, X ′w, X ′c, Q

3.3 Examples

We show how the computational attacks described in Section 2 are now reflected
in our symbolic model.

For attacking the process P4, we consider the following (symbolic) adversary:

A4 = cin(〈k, x〉).eq(dec(π2(y1)), n).c(π2(y1))

With rule R-Com and some structural congruences, ∅, ∅, ∅, A4‖P4 reduces to
∅, ∅, ∅, Q1 where Q1 is:

(νs, r, kAB){x 7→ {s}rkAB}‖[M(dec(s, k))]cout(ok)

‖eq(dec(π2(y1)), n).c(π2(y1))‖{z 7→ 〈k, {s}rkAB 〉}

As explained in Example 10, K∅∅,(νs,r,kAB){x 7→{s}rkAB }
(M(dec(s, k))) = 〈s, k, dec〉.

Applying R-Add we get that ∅, ∅, ∅, Q1 reduces to ∅, {y1}, ∅, Q2 where Q2 is:

(νs, r, kAB){x 7→ {s}rkAB}‖[M(dec(s, k))]cout(ok)

‖eq(dec(π2(y1)), n).c(π2(y1))‖{z 7→ 〈k, {s}rkAB 〉}‖{y1 7→ 〈dec, s, k〉}

With rule R-Eq and some structural congruences, as dec(s, k) = n is well formed,
we obtain {dec(s, k) = n}, ∅, {y1}, Q3 where Q3 is:

(νs, r, kAB){x 7→ {s}rkAB}‖[M(dec(s, k))]cout(ok)

‖c(s)‖{z 7→ 〈k, {s}rkAB 〉}‖{y1 7→ 〈dec, s, k〉}

With rule R-Cond1 and some structural equivalence, we have {dec(s, k) =
n}, ∅, ∅, Q4 where Q4 is :

(νs, r, kAB){x 7→ {s}rkAB}‖{z 7→ 〈k, {s}
r
kAB 〉}‖{y1 7→ 〈dec, s, k〉}

‖cout(ok)‖c(s)

The adversary is now able to emit s on channel c and, even if it was not necessary
to learn s, the process P4 has progressed to his last state, which would not have
been possible with another symbolic model.

Let now show how we also capture the computational attack described for
Example 5. The adversary is as follows :

A5 = cin(x3).eq({π1(y1)}π3(y1)
π2(y1), x1)

The localized process ∅, ∅, ∅, P5‖A5 reduces in some steps to ∅, {y1}, ∅, Q1 where
Q1 is

(νs, r, r1, r2, kAB){x1 7→ {a}rkAB , x2 7→ k, x3 7→ {{s}r1k , {a}
r
kAB}

r2
kAB
}

‖{z 7→ {{s}r1k , {a}
r
kAB}

r2
kAB
}‖{y1 7→ 〈s, k, r1, {a}rkAB , enc〉}

‖[EQ({s}r1k , {a}
r
kAB]cout(bad)‖eq({s}r1k , {a}

r
kAB)

12

∅, {y1}, ∅, Q1

eq({s}r1k ,{a}
r
kAB

,ε,τ,ε
−−−−−−−−−−−−−−→ {{s}r1k = {a}rkAB}, ∅, ∅, Q2 where Q2 is :

(νs, r, r1, r2, kAB){x1 7→ {a}rkAB , x2 7→ k, x3 7→ {{s}r1k , {a}
r
kAB}

r2
kAB
}

‖{z 7→ {{s}r1k , {a}
r
kAB}

r2
kAB
}‖{y1 7→ 〈s, k, r1, {a}rkAB , enc〉}

‖cout(bad)

where P5 is in the bad state we wanted to avoid.

3.4 Observational equivalence

We recall the classical definition of observational equivalence, stating that there is
no context (or adversary) yielding an emission on a channel c in one experiment,
and no emission on c in the other experiment:

Definition 4 (observational equivalence). An evaluation context is a pro-
cess C = (νᾱ)([·]‖P) where P is a process. We write C[Q] for (νᾱ)(Q‖P). A
context (resp. process) is called closed if fv(C) ∩ V1 = ∅. Let us note that we do
not forbid free names.

The observational equivalence relation ∼o is the largest equivalence relation
on completed processes such that A ∼o B implies :

– If, for some evaluation context C, term s and process A′, A ∗−→ C[c̄(s) · A′],
then for some context C ′, term s′ and process B′, B ∗−→ C ′[c̄(s′) ·B′]

– If A ∗−→ A′, then for some B′, B ∗−→ B′ and A′ ∼o B′
– For any closed evaluation context C, C[A] ∼o C[B]

In the proof, we also rely on static equivalence, in order to model the indis-
tinguishability of two sequences of term for the adversary. Two frames φ, φ′ are
statically equivalent if, for any public term sequence s1, . . . , sk and any predicate
p, E |= p(s1, . . . , sk)φ iff E |= p(s1, . . . , sk)φ′.

4 Computational interpretation

We only need a small fragment of our calculus in order to describe the vast
majority of protocols. These are called simple processes and are built as described
in Section 4.1. We then provide their computational interpretation in Section 4.2.

4.1 Simple processes

Definition 5. A simple condition with respect to a set of terms S is a conjunc-
tion of atomic formulas of one of the following forms :

– M(s) where s contains only destructors, names and variables
– EQ(s1, s2) where each si is of one of the two following forms :
• si contains only destructors, names and variables

13

• si is a subterm of the a term in S.
We also exclude the case in which s1 and s2 are two subterms of the frame.

Let x̄ be a sequence of variable in V1, i a name called pid (the process
identifier), and n̄ a sequence of names, S be a set of terms such that fv(S) ⊆ x̄
and fn(S) ⊆ n̄. We define recursively basic processes B(i, n̄, x̄, S) as follows.

– 0 ∈ B(i, n̄, x̄, S)
– If B ∈ B(i, n̄, x̄, S ∪ {s}), s ∈ T (n̄, x̄), Φ is a simple condition with respect

to S such that fn(Φ) ⊆ n̄ and fv(Φ) ⊆ x̄, then :

[Φ ∧M(s)]cout(s).B ∈ B(i, n̄, x̄, S)

If Φ is true, the the process checks if s is well formed and sends it out.
– If B ∈ B(i, n̄, x̄, x, S) and x 6∈ x̄ then

cin(x) · [EQ(π1(x), i)]B ∈ B(i, n̄, x̄, S)

The process checks that it was the intended recipient of the message and
processes it.

Basic processes are sequences of inputs and tests followed by an output. Else
branches must be trivial. Basic processes are used to build simple processes.

Definition 6. A simple process is obtained by composing and replicating ba-
sic processes, hiding some names and variables. Formally it is a process of the
following form :

(νn̄)[(νx̄1, n̄1B1‖σ1)‖ · · · ‖(νx̄k, n̄kBk‖σk)‖
!(νz̄1, l1, m̄1cout()B

′
1)‖ · · · ‖!(νz̄n, ln, m̄ncout()B

′
n)]

with Bj ∈ B(ij , n̄] n̄j , x̄j , ∅),dom(σj) ⊆ x̄j , B
′
j ∈ B(lj , n̄] m̄j , z̄j , {lj}). Let us

note that each replicated process outputs its pid in order to let the adversary
communicate with it.

We also assume that for every subterm {t}vk occurring in a process, v is a
name which occur only in this term and is restricted. We allow several occur-
rences of the term {t}vk. This ensures that the randomness of an encryption is
re-used somewhere else.

In what follows, we also assume that no key cycle is generated by the process.
This can be ensured by defining a key hierarchy.

4.2 Computational model

As in [CLC08b] each simple process is interpreted as a Communicating Turing
Machine (), and we can relate each state of a process to a state of the corre-
sponding Turing Machine. We only give the implementation hypotheses here.

14

The implementation of the symmetric encryption is a joint IND-CPA and
INT-CTXT symmetric encryption scheme. Let K be the key generation algo-
rithm, E the encryption algorithm an D the decryption algorithm. All honest
keys are drawn using K and, for any key k, message m, and randomness r,
D(E(m, k, r), k) = m.

We assume that pairing is non ambiguous and that there are four different
tags, one for the pairs, one for the encryptions, one for the keys and one for
the honest nonces; every bitstring starts with the tag corresponding to the last
constructor used to build it. Dishonest messages need not to be properly tagged.
We assume that the symbolic length function l is such that two terms have the
same length if and only if the corresponding bitstrings have the same length.
It is easy to build such a function for example if the length of the nonces are
proportional to the security parameter η, the computational length of pair is
|v‖w| = |v|+|w|+a.η for some a and the length of the encryption is |E(m, k, r)| =
|m|+ b.η for some b.

We also need to give the implementation of the predicates used by the simple
processes : JMK is the set of bitstring which are different from ⊥, and JEQK is
the set pairs of non ⊥ identical bitstrings.

Let us note that for simple processes, the computation of the network answer
to a request is always in polynomial time. This ensures that if the attacker is a
PPT (with an oracle for the process), then running it with the process as oracle
is still in polynomial time.

5 Main result

We show two main results. First, any computational trace is now reflected by
a symbolic one, even in the presence of an attacker that dishonestly generates
its keys. This allows to transfer all trace-based properties. Second, we show that
we can also transfer equivalence-based properties, showing that observational
equivalence implies computational indistinguishability.

5.1 Results

Let us start by defining the sequence of the messages exchanged between P and
A, and what it means for such a trace to be fully abstracted in the process P .
Note that, given τ and η, the behaviour of A interacting with P , denoted by
JP Kτη‖Aτ , is deterministic.

Definition 7.

Let us now define symbolic traces of a process P :

Definition 8. s = α1. · · · .αn is a trace of P if ∅, ∅, ∅, P α1−→ E1, X1
w, X

1
c , P1

α2−→
· · · αn−−→ En, Xn

w, X
n
c , Pn and for all i ≤ n if , then Pi−1 = P ′‖φ with φ a frame

and φ `Ei−1 .

15

Definition 9 (Full abstraction). Let γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln be an
execution, s be a trace of P . Let us write s = α1. · · · .αm. Let αn1

· · ·αnk be the
subsequence of s which are inputs.

s fully abstracts γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln if = n and ∀j ≤ n

–
– If P

α1.··· .αnj+1−1

−−−−−−−−−→ Ej , Xj
c , X

j
w, Q

j‖φj with
• JQjKτη = γj
• Jφj ∩ {x 7→ t|t ∈ T , x ∈ V1}Kτη = Lj
• ∀(s = t) ∈ Ej , JsKτη = JtKτη
• ∀(s 6= t) ∈ Ej , JsKτη 6= JtKτη

A computational trace Γ is fully abstracted if there exists a trace s of the
process P which fully abstracts Γ .

We are now able to give our full abstraction theorem :

Theorem 1. Let P be a simple process without key cycles. For every PPT A,
for every security parameter η, the sequence Messages(P, η, τ) is fully abstracted
with overwhelming probability (over τ).

This result ensures that it is sufficient to prove trace properties in our model
for them to hold in the computational model. Our second result is the compu-
tational soundness of observational equivalence.

Theorem 2. Let P and Q be two simple processes without key cycles, such that
P ∼o Q. Then JP K ≈ JQK.

This second result allows us to prove any indistinguishability property in our
model instead of proving it in a computational setting.

5.2 Sketch of proof

The main tool of the proof of Theorem 2 is the use of execution trees. The exe-
cution tree of a process is the set of traces of a process organized in a tree. An
example is provided in Figure 4. An execution tree is not necessarily the execu-
tion tree of a process. This generalization allows to consider transformations on
process trees, which would not have being possible directly on processes.

The proof then proceeds in the following steps.

1. We show that the observational equivalence of processes transfers to equiv-
alence of process execution trees.

2. We then replace all honest encryptions in a process tree by encryption of
zeros, showing that the trees are symbolically equivalent.

3. If two trees are equivalent, then their computational interpretation are in-
distinguishable.

16

P, ∅, ∅

?
∀t · t

[M(dec(t, k)))]cout(dec(t, k)), {x1 7→ t, y1 7→ 〈t, k,dec〉}, ∅

�
�

�
�
�
�	

0, {x1 7→ t, y1 7→ 〈t, k,dec〉, x2 7→ t}, {dec(t, k) = u}

∀u · (dec(t, k) = u)

@
@
@
@
@
@
@
@
@R

0, {x1 7→ t, y1 7→ 〈t, k,dec〉, x2 7→ ⊥}, {dec(t, k) = ⊥}

(dec(t, k) = ⊥)

The edge labelled by ∀t · t is in fact a multiple edge representing the edges t for all t.
As well the edge ∀u · (dec(t, k) = u) is a multiple edge representing the edge for all u.

Fig. 4. Process execution tree corresponding to the process P = cin(x) ·
if M(dec(x, k)) then cout(x) else cout(⊥) with k dishonest.

4. The only result left to prove is that a process is computationally indistin-
guishable from its process tree. As all the traces are listed in the tree, this
amounts in proving Theorem 1. For this, we need to classify the cases in
which the full abstraction fails, and we then add these failure cases in the exe-
cution trees (this is the originality of our approach with respect to [CLC08b])
and prove that these cases can not be found with a non negligible probability
by the adversary given the computational hypotheses.

6 Application

We show how our framework can be used to show the computational security
for protocols, even in the case where the attacker can create interesting equal-
ities between ciphertexts using dishonest keys. This section also demonstrates
that our symbolic model does not over-approximate too much the behavior of
computational attackers: our model is fine enough to complete security proof.

6.1 Specification of the protocol

We describe below a protocol that is designed in such a way that honest partici-
pants may indeed use dishonest keys, making the security proof more challenging.
The protocols aims at securely transmitting sAB from B to A. We will use N as
a shortcut for {N ′}rNkN where kN is a secret key known only to A. We actually
simply need N to be of type cyphertext to make our example more interesting.

17

A −→ B k1, {{{k2}k3}k1 , N}kAB
B −→ A {{k2}k3 , N}kAB
A −→ B {N, k3}kAB
B −→ A {sAB}k2
kAB is a long term shared key between A and B, the keys k1, k2, and k3 are

fresh and N is a fresh “session” nonce.
We first specify this protocol in the applied π-calculus, using a syntax with

pattern matching for simplicity reasons. The interpretation is that the protocol
checks with M and EQ all the constraints given by the pattern matching. For the
sake of clarity, we omit the verifications of process session identifiers. But it would
be easy to transform our process into a simple process. Instead of restricting all
the names used in N , we simply write (νN) as a shortcut for (νN ′, kN , rN).

PA = (νk1, k2, k3, N, r1, r2, r3, r4)cout(〈k1, {{{k2}r1k3}
r2
k1
, N}r3kAB 〉).

cin({{k2}r1k3 , N}
−
kAB

).cout({N, k3}r4kAB)

PB = (νr5, r6)cin(〈x1, {{x}−x1
, xN}−kAB 〉).cout({x, xN}

r5
kAB

).

cin({xN , x3}−kAB).[M(dec(x, x3))]cout({sAB}r6dec(x,x3))

The process we consider is (νkAB , sAB)!PB‖!PA and the security property we
want to prove is as follows. For every A PPT with an oracle :

Pr(A‖[(νkAB , sAB)!PB‖!PA]→ sAB) = negl(η)

where for a PPT M , M ← m stands for M accepts writing m on its output
tape.

This a priori not straightforward since introducing dishonest keys allows the
attacker to tamper with the normal behavior of the protocol. For example, the
adversary can learn any instance of N and can obtain as output {u, kl3}kAB where
u is any deducible term, with kl3 an instance of k3. Indeed, once the attacker
knows {N, k3}kAB , it can forward it to B together with a dishonest key, that is
sending k∗1 , {N, k3}kAB . As explained in Example 4, attempting to decrypt with
the dishonest key k∗1 potentially revealsN to the attacker. Then for any deducible
message u, the attacker can forge a dishonest key k∗2 such that dec(N, k∗2) = u,
which allows the attacker to obtain {u, kl3}kAB from B.

6.2 Security

Despite the behaviors described in the preceding section, the protocol is secure
and we are able to prove it. Applying Theorem 1, it is sufficient to prove weak
secrecy in our symbolic model, that is, it is sufficient to prove the following
proposition.

Proposition 1. The process (νkAB , sAB)!PB‖!PA‖cin(x).[x = sAB].cerror never
emits on channel cerror .

18

The process cin(x).[x = sAB].cerror serves as a witness, checking whether the
intruder is able to emit sAB . The idea of the proof is that the second component
of the pair is only transmitted,so dishonnest keys will not help learning something
about it, and the k3 stays secret, which ensures that k2 also stays secret. This
is formally proved by computing on over-approximation of the messages learned
by the attacker.

7 Conclusion

We designed a symbolic model, for which the observational equivalence is sound,
even when the attacker may forge his own keys. We believe that it is the first
result on computational soundness considering dishonest keys.

We assumed in this work that the processes do not contain non-trivial con-
ditional branching and no nested replications, but it should not be very hard to
extend our results to these cases.

Another issue, that might be the subject of future work, concerns the au-
tomatisation of the proofs of observational equivalence, in this new model. It is
likely that deducibility constraint solving can be extended to ground equational
theories, which is what we need.

References

[AF01] M. Abadi and C. Fournet. Mobile values, new names, and secure communi-
cation. In Principles of Programming Languages (POPL’01), pages 104–115,
2001.

[AG99] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols: the spi
calculus. Information and Computation, 148(1), 1999.

[AR00] M. Abadi and P. Rogaway. Reconciling two views of cryptography: the com-
putational soundness of formal encryption. In Int. Conf. on Theoretical
Computer Science, volume 1872 of LNCS, 2000.

[BHO09] G. Bana, K. Hasebe, and M. Okada. Computational semantics for first-order
logical analysis of cryptographic protocols. In LNCS, volume 5458 of Lecture
Notes in Computer Science, pages 33–56. Springer, 2009.

[Bla05] Bruno Blanchet. An automatic security protocol verifier based on resolu-
tion theorem proving (invited tutorial). In 20th International Conference on
Automated Deduction (CADE-20), Tallinn, Estonia, July 2005.

[Bla08] Bruno Blanchet. A computationally sound mechanized prover for security
protocols. IEEE Trans. on Dependable and Secure Computing, 5(4):193–207,
2008. Special issue IEEE Symposium on Security and Privacy 2006.

[BP04] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-
yao style cryptographic library. In Proc. IEEE Computer Security Founda-
tions workshop, 2004.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In Proc. 10th ACM Concerence on Computer
and Communications Security (CCS’03), 2003.

19

[CC11] H. Comon-Lundh and V. Cortier. How to prove security of communication
protocols? A discussion on the soundness of formal models w.r.t. computa-
tional ones. In 28th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’11), volume 9 of LIPIcs, pages 29–44, 2011.

[CLC08a] H. Comon-Lundh and V. Cortier. Computational soundness of observa-
tional equivalence. In ACM Conf. Computer and Communication Security
(CCS’08), 2008.

[CLC08b] H. Comon Lundh and V. Cortier. Computational soundness of observational
equivalence. Research Report RR-6508, INRIA, 2008.

[DY81] D. Dolev and A.C. Yao. On the security of public key protocols. In Proc.
IEEE Symp. on Foundations of Computer Science, pages 350–357, 1981.

[KT09] R. Küsters and M. Tuengerthal. Computational Soundness for Key Ex-
change Protocols with Symmetric Encryption. In 16th ACM Conference on
Computer and Communications Security (CCS 2009), pages 91–100, 2009.

[MW04] D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-
Rogaway language of encrypted expressions. Journal of Computer Security,
2004.

[RS98] P. Ryan and S. Schneider. An attack on a recursive authentication protocol:
a cautionary tale. In Information Processing Letters, volume 65, pages 7–10.
1998.

[War03] B. Warinschi. A computational analysis of the needham-schroeder(-lowe)
protocol. In 16th Computer Science Foundation Workshop (CSFW’03), pages
248–262, 2003.

20

A Rewriting Systems

We assumed that E ∪ E0 can be completed into a convergent rewriting system,
that minimizes the number of destructors. Let us precise here this statement and
show that the completion can indeed been performed (actually in polynomial
time), when E is a finite set of ground equations (which is what we need: E is
always a finite set of ground equations in localized processes).

Lemma 1. Let E be a finite set of ground equations over the finite alphabet
A ∪ N where A = {{_}__,dec(_,_), 〈_,_〉, π1(_), π2(_)}. We can compute in
polynomial time (w.r.t. E,N) a canonical term rewriting system RE such that
=R is the smallest congruence on ground terms T (A∪N) that contains =E∪E0

.

Proof sketch: In a first step, we flatten the equations in E, introducing a
linear number of additional constants C0: we may assume w.l.o.g. that equations
in E are of one of the following forms: f(a1, a2) = a, g(a1) = a, a1 = a where
f, g, a1, a2, a ∈ A ∪ C0.

We choose then an arbitrary linear ordering ≥ on constants and run a Knuth-
Bendix completion procedure w.r.t. a lexicographic path ordering extending the
precedence

dec > π1 > π2 > {_}__ > 〈_,_〉 > C0 > N

Every rule that is eventually generated by this procedure is of one of the
forms f(a1, a2)→ a, g(a1)→ a, a1 → a and dec({x}za1 , a2)→ x, π1(〈x, y〉)→ x,
π2(〈x, y〉) → y, where a1, a2, a are constants. The only non-trivial overlap is
between a rule dec({x}za, b)→ x and a rule {c}ra → d, which yields dec(d, b)→ c,
that has the desired form.

Since there are at most a cubic number of such rules, the procedure halts in
cubic time.

In addition, if the input set of ground equations E only contains equations
of one of the following forms:

– dec(u, k) = v where u, v contain only constructors and names and k ∈ K1∪K2

– {u}rk = v where u, v contain only constructors and names and k ∈ K1 ∪ K2

then, for any u that does not contain any constant in C0, u↓E∈ C0 iff there is a
t containing only constructors and names (and such that key positions are held
with elements in K1 ∪ K2) such that t↓E= u↓E . This is simply an invariant in
the completion that was sketched in the previous lemma.

In other words: given the type of equations that are added in E, E |= M(u)
iff there is a term v, built with constructors and names only, using only key
names in key positions and such that u =E∪E0

v. This is used in a subcase of a
proof in the appendix G.

21

B Key hierarchy

We say that u is a plaintext subterm of t if u appears as a subterm of t in a
position which is not a key position or a randomness position and u is a name,
a constant or a variable. Let us define this more formally :

Definition 10. Let us write pst(t) for the set of plaintext subterms of t, we
have : pst(n) = {n} if n is a name, a constant or a variable, pst(〈t1, t2〉) =
pst(t1) ∪ pst(t2) et pst{u}rv = pst(u).

Example 1 pst(〈k1, {{a}r2k2}
r1
k1
〉) = {a, k1}

We say that k encrypts k′ in a set of terms S if S contains a subterm of the
form {u}rk such that k′ ∈ pst(u). We say that there is a key cycle in S if there
exists k1, · · · , kn such that ki+1 encrypts ki for 1 ≤ i ≤ n − 1 and k1 encrypts
kn.

The usual way to avoid key cycles is to define a key hierarchy. In order to
define a key hierarchy we need to explain how renaming is done in processes. This
appears mostly in the replication of a process : !((νn)P)→ (νn)P‖!((νn)P). We
will assume that the name n is successively renamed in n1, n2, n3, · · ·

Definition 11. We say that a simple process P admits a key hierarchy if there
exists a strict order < on the honest key of P such that for every honest key
k, k′ in the image of σ, for every evaluation context C, for every process Q such
that C[P]

∗−→ Q and such that νn̄ · σ is the frame of Q, then if k encrypts k′ in
σ then k′ < k.

We note that if there exists a key hierarchy, then no key cycle can be created.
We also note that if there exists a key hierarchy, no honest key can be learned
by the adversary.

C computational hypotheses

Definition 12. A cryptographic scheme is said IND-CPA if for every non zero
polynomial P , for every PPT A with a oracle, there exists N such that for every
η > N ,

|Pr{k R←− K(η), r, r̄
R←− U : AOk(0η|r) = 1}−

Pr{k R←− K(η), r, r̄
R←− U : AO

′
k(0η|r) = 1}| ≤ 1

P (η)

With r̄ = r1, r2, · · · the sequence of randomness used by, Ok the oracle which on
a request x sends out E(x, k, ri) and O′k the oracle which on a request x sends
out E(0l(x), k, ri).

22

Definition 13. A cryptographic scheme is said INT-CXT if for every non zero
polynomial P , for every PPT A with a oracle, there exists N such that for every
η > N ,

|Pr{k R←− K(η), r, r̄
R←− U : ∃x, r′.AOk(0η|r) = {x}r

′

k ∧ {x}r
′

k 6∈ S}| ≤
1

P (η)

Where S = {{x1}r1k , {x2}r2k , · · · } is the sequence of answers of the oracle
Ok(xi) = {xi}rik

Let us note that these two hypotheses do not ensure anything on dishonest
keys.

D Trees

D.1 Static Equivalence

Definition 14 (Static equivalence). Let φ = νn̄σ be a frame, E an equa-
tion set. Let p be a predicate, s1, · · · , sk terms. We write φ �E p(s1, · · · , sk) if
s1, · · · , sk are public and E � p(s1φ, · · · , skφ). We say φ1 = νn̄1 · σ1, E1 and
φ2 = νn̄2 · σ2, E2 are statically equivalent (written φ1, E1 ∼ φ2, E2) if

1. dom(φ1) = dom(φ2)
2. ∀s1, · · · , sk ∈ T ,∀p ∈ P. φ1 �E1

p(s1, · · · , sk)⇔ φ2 �E2
p(s1, · · · , sk)

D.2 Execution trees

Let us define execution trees. Let S be the set of pairs 〈i, u〉 of a pid and a
term (for the request u to the process i) and equations ({s}rk = v), ({s}rk 6=
v), (dec(s, k) = t) (for the equalities added by the adversary)

For simplicity reasons, we will write t ∈ φ for a term t and a frame φ if
t ∈ φ(V).

Definition 15. An execution tree T is a function from a prefix-closed set Pos(T)
of S∗ (called positions of T) to the triples (P, φ,E) with P a process φ = νn̄ · L
and E an equation set. If p ∈ Pos(T), and T (p) = (P, φ,E) we write φ = φ(T, p)
and E = E(T, p). T should satisfy the following constraints :

– ∀p, q ∈ Pos(T) if p > q then φ(T, q) ⊆ φ(T, p), E(T, q) ⊆ E(T, p)
– ∀p · t ∈ Pos(T), t ∈ φ(T, p · t) or t ∈ E(T, p · t)
– ∀p · t ∈ Pos(T), φ(T, p) `E(T,p) t
– ∀p ∈ Pos(T) t ∈ E(T, p) if and only if t ∈ p
– ∀p · t ∈ Pos(T) if t is an equation or a disequation, then wf

φ(T,p)
E(T,p)(t)

– ∀p · t, p · u ∈ Pos(T) if t =E(T,p) u then t = u (this condition simply ensures
that all branches are really different in order to have a deterministic tree)

– ∀p ∈ Pos(T) there is a finite number of s, k such that ∃t, p.(dec(s, k) = t) ∈
Pos(T).

23

– ∀p ∈ Pos(t) there is a finite number of s, k, r, v such that p.({s}rk = v) ∈
Pos(T) or p.({s}rk 6= v) ∈ Pos(T)

– There is no infinite suffix containing only equations
– ∀p ∈ Pos(T) if there exists a successor p.t of p such that t is an equation,

then for all s ∈ S such that p.s ∈ Pos(T), s is an equation

Let us note that process trees are not necessarily finite. They can contain in-
finite branching and infinite paths. This will not lead to a problem as the number
of messages exchanged on the computational side is polynomially bounded.

As we want to prove soundness for observational equivalence, we need to
define an observational equivalence on trees.

Definition 16. ∼ is the largest equivalence relation on execution trees such that
if T1 ∼ T2 then

– φ(T1, ε) ∼ φ(T2, ε)
– there exists a bijection β from S into itself such that for every size 1 position

of T1 we have T1|t ∼ T2|β(t)

D.3 Process trees

TP is the ordered set of all execution of P . Each node of TP is labeled by (Q,φ,E)
where Q is the current state of the process, E the equation set and φ the sequence
of messages sent or received by P on the network plus the additional knowledge
given to the adversary.

Definition 17. Let us define TP by induction.
TP (ε) = (P, ∅, ∅). Let p ∈ Pos(TP), we write TP (p) = ([E,Xw, Xc, P

′], ν̄n̄′ ·
L, E)

– Let us consider the case Xw = ∅, in that case Xc = ∅. The only reductions
of E,Xw, Xc, P

′ are as follows. A message u = 〈li, u′〉 is sent to a process
of pid li :

P ′ = νn̄, νx̄ ·Qp1‖σ
p
1‖ · · · ‖Q

p
N‖σ

p
N‖S

Where Qpj is either 0 or c(xpj) · P
p
j . Then q = p · α ∈ Pos(TP) if α = 〈li, u〉,

Qpi 6= 0, and νn′ · L `E α. Let then P pi = [Φ]Q. We have

E, ∅, ∅, P pi ‖{x
p
j 7→ α} ε−→ E, Yw, ∅, ϕ‖P pi ‖{x

p
j 7→ α}

for some ϕ. In that case,
• If Yw 6= ∅ the adversary should commit on some equations.

TP (p · α) = ([E, Yw, ∅, νn̄, νx̄ ·Qp1‖σ
p
1‖ · · · ‖

P pi ‖{x
p
j 7→ α}‖ · · · ‖QpN‖σ

p
N‖S], νn′ · L · α · ϕ,E)

where L.α.ϕ is L.α.γ̄ where γ̄ is the sequence ϕ(y1), · · · , ϕ(yn) where
{y1, · · · yn} is the domain of ϕ ordered according to the increasing order
on V2

24

• If Yw = ∅ then there are no equations to add and

E, ∅, ∅, Qpi ‖σ
p
i

cin(α)−−−−→ cout(α1),··· ,cout(αn)−−−−−−−−−−−−−→ E, ∅, ∅, Qqi ‖σ
p
i ‖{x

p
i 7→ α}

Let us now define Qqj = Qpj and σqj = σpj for j 6= i.

TP (p · α) = ([E, ∅, ∅, νn̄, νx̄ ·Qq1‖σ
q
1‖ · · · ‖Q

q
N‖σ

q
N‖S],

νn′ · L · (α, α1, · · · , αn), E)

– Let us now consider the case where Xw in non empty. The adversary should
commit on an equation :

P ′ = νn̄, νx̄. ·Qp1‖σ
p
1‖ · · · ‖P

p
i ‖ · · · ‖Q

p
N‖σ

p
N‖S

With exactly one P pi = [Φ]Q. Let us write ϕ for the maximal frame of P ′. In
that case p.α ∈ Pos(TP) if wfEXw,ϕV\Xc (α) (note that α can be an equation
or a disequation). We write q = p.α.

Let us write E,Xw, Xc, P
p
i ‖ϕ

eq(α)−−−→ ε−→ E ∪ {α}, Yw, Yc, φ, P pi ‖ϕ
• If Yw 6= ∅. Defining Qqj = Qpj for i 6= j as previously and Qqi = P pi .

TP (p · α) = ([E ∪ {α}, Yw, Yc, νn̄, νx̄ ·Qq1‖σ
q
1‖ · · · ‖Q

q
N‖σ

q
N‖S],

νn′ · L · α · φ,E ∪ {α})

• If Yw = ∅. Let n be maximal such that

E ∪ {α}, ∅, ∅, P pi
τ−→ cout(α1),··· ,cout(αn)−−−−−−−−−−−−−→ E ∪ {α}, ∅, ∅, Qqi

In that case :

TP (p · α) = ([E ∪ {α}, ∅, ∅, νn̄, νx̄ ·Qq1‖σ
q
1‖ · · · ‖Q

q
N‖σ

q
N‖S],

νn′ · L · α · φ · (α1, · · · , αn), E ∪ {α})

– The last case is the case in which we activate a copy of a replicated process
in S = S1‖ · · · ‖Sk. In that case q = p.newj ∈ Pos(TP) with 1 ≤ j ≤ k if
Xw = ∅.
Let us write Sj =!(νȳ, l, n̄jcout(l) ·B). We have

TP (p.newj) = (E, ∅, ∅, νn̄νx̄νȳνlνn̄j ·Qp1‖σ1‖ · · · ‖QpN‖σn‖B‖S,
νn′νnj · L · l, E)

In order to use this definition, we need the following lemma :

Lemma 2. Let P and Q be simple processes. If P ∼o Q then TP ∼ TQ.

Proof. Assume that TP 6∼ TQ, and let us build a context which distinguishes
between P and Q. First of all, we will construct, by induction on the length of
p ∈ Pos(TP) a family of one to one functions βp such that :

25

– if βp is defined, then, for any q < p, βq is defined. We define inductively B
by B(p.α) = B(p).βp(α).

– if βp is defined, then, for any q ≤ p, φ(TP , q) ∼ φ(TQ, B(q))
– either φ(TP , p) 6∼ φ(TQ, B(p)), then βq is undefined for q ≥ p
– or βq is defined for all q < p and φ(Tp, p) ∼ φ(TQ, B(p)), in which case βp is

defined and TP |p 6∼ TQ|B(p) implies that, for some α, TP |p.α 6∼ TQ|B(p.α).

Let us now build βp.

– If β is defined on any strict prefix of p and TP |p ∼ TQ|B(p), we use the
definition of ∼: there is a one to one function βp such that, for every p.α ∈
Pos(TP), TP |p.α ∼ TQ|B(p).βp(α)

– If β is defined on any strict prefix of p and TP |p 6∼ TQ|B(p) and φ(TP , p) ∼
φ(TQ, B(p)), we define βp as follows : let φ(TP , p) = νn̄1.σ

p
1 , E(TP , p) = E1

and φ(TQ, B(p)) = νn̄2.σ
p
2 , E(TQ, B(p)) = E2

• if for all α such that p.α ∈ Pos(TP) we have α is a term, then, by
definition, σp1 `E1

α, then there is a term tα such that fn(tα) ∩ n̄1 = ∅
and E1 � tασ

p
1 = α. We let βp(α) = tασ

p
2 . Let us now show that βp is

one to one from T (N)/ =E1 to T (N)/ =E2 . If βp(α) =E2 βp(α
′) then

there are two term t and u, such that E2 � tσp2 = uσp2 and E1 � tσp1 =
α∧uσp2 = α′. Since φ(TP , p), E1 ∼ φ(TQ, B(p)), E2 and equality is in our
set of predicates we have E1 � α = α′.
• if for all α such that p.α ∈ Pos(TP) we have α = (α1 = α2) is an

equation, then, by definition, σp1 `E1 α1, α2. There are two terms tα, uα
such that fn(tα, uα) ∩ n̄1 = ∅ and E1 � tασ

p
1 = α1 ∧ uασp1 = α2. We let

βp(α) = tασ
p
2 = uασ

p
2 . As previously, βp is one to one.

This concludes the construction of the family βp.
As TP 6∼ TQ there is a minimal position p where βp is undefined. Let p =

p1.α, p2 = B(p1). α can not be a constant newj since, in that case, νn̄1.L1, E1 =
φ(TP , p1), E(TP , p1) ∼ φ(TP , p2), E(TP , p2) = νn̄2.L2, E2 implies νn̄′1.L1.l1, E1 ∼
νn̄′2.L2.l2, E2 and then rewriting the previous relation, we have :

φ(TP , p1.newj), E(TP , p1.newj) ∼ φ(TP , p2.newj), E(TP , p2.newj)

A direct consequence of the definition of the process execution trees is that at
each position p, the equation set of the process Q labelling the tree at position p
is equal to the equation set E(TP , p) and the set of restricted names of φ(TP , p)
is equal to the set of restricted names of Q. It also follows that at each position
the tree accepts term if and only if the process accepts terms.

Let us also note that if two sequences l1. · · · .ln and m1. · · · .mn are statically
equivalent, if li stores knowledge obtained from tests (results from the rule (R−
Add)) the mi also does as the constants enc and dec exist only at this type of
positions.

Let us define

– TP (p1) = (E1, Xw,1, Xc,1, P1), νn̄1.L1, E1

– TQ(p2) = (E2, Xw,2, Xc,2, P2), νn̄2.L2, E2

26

– φ1, E1 = νn̄1.L1, E1 ∼ νn̄2.L1, E2 = φ2, E2

and, if Xw,1 = Xc,1 = ∅ :

– P1 = (νn̄′1νx̄1)Q1‖θ1
1‖ · · · ‖QN‖θ1

N‖S1 where Qi ≡ cin(xi).Q
′
i

– E1, ∅, ∅, Qi
cin(α)−−−−→ ¯cout(α1),··· , ¯cout(αm)−−−−−−−−−−−−−−→ E1, Yw, ∅, Q′′i ‖θ1

i ‖{xi 7→ α}‖{Yw 7→ γ̄}
where m is maximal.

– φ(TP , p1.α) = νn̄′1.L1 · (α, γ̄, α1, · · · , αm)
– P2 = (νn̄2νx̄2)R1‖θ2

1‖ · · · ‖RN‖θ2
N‖S2 where Rj ≡ cin(zj).R

′
j

– E2, ∅, ∅, Rj
cin(βp1 (α))
−−−−−−−→

¯cout(α
′
1),··· , ¯cout(α

′
m′)−−−−−−−−−−−−−−→

E2, Y
′
w, ∅, R′′j ‖θ2

j‖{zj 7→ βp1(α)}‖{Y ′w 7→ γ̄′}
where m′ is maximal.

or, if Xw,1 6= ∅ :

– P1 = (νn̄1νx̄1)Q1‖θ1
1‖ · · · ‖QN‖θ1

N‖S1 where Qi ≡ [Φ1]Q′i

– E1, Xw,1, Xc,1, Qi
eq(α)−−−→ ¯cout(α1),··· , ¯cout(αm)−−−−−−−−−−−−−−→ E1 ∪ {α}, Zw, Zc, Q′′i ‖θ1

i ‖{Ywγ̃}
where m is maximal.

– φ(TP , p1.α) = νn̄′1.L1 · (α, γ̄, α1, · · · , αm)
– P2 = (νn̄2νx̄2)R1‖θ2

1‖ · · · ‖RN‖θ2
N‖S2 where Rj ≡ [Φ2]R′j

– E2, Xw,2, Xc,2, Rj
eq(βp1 (α))
−−−−−−−→

¯cout(α
′
1),··· , ¯cout(α

′
m′)−−−−−−−−−−−−−−→

E2 ∪ {βp1(α)}, Z ′w, Z ′c, Q′′i ‖θ2
j‖{Y ′wγ̃′}

where m′ is maximal.

We first build a process Ip1 with free variables x̃ = (z1, · · · , zM) where
(z1, · · · , zM) is the range of the canonical subsitution associated with the list
L1 (and L2), such that

E1, ∅, ∅, Ip1‖(νn̄′1L1)‖P1
∗−→ c̄(a).I1

while for any I2
E2, , ∅, ∅, Ip1‖(νn̄′2L2)‖P2 6

∗−→ c̄(a).I2

or its converse.
Let us write Yw = {y1, · · · , yq} and Y ′w = {y1, · · · , yq′}
Since Φ(TP , p1.α), E(TP , p1.α) 6∼ Φ(TP , p2.βp1(α)), E(TP , p2.βp1(α)), either

m 6= m′, or q 6= q′ or there is a test distinguishing the two frames.
Let us assume that m > m′ (possibly exchanging the processes)

Ip1 =

{
νx̄. ¯cin(tα).cout(x1). · · · .cout(xm).c̄(a) if α is a term
νx̄.eq(tα = uα).cout(x1). · · · .cout(xm).c̄(a) if α is an equation

such that fn(Ip1) ∩ n̄′1 = ∅ following from fn(tα, uα) ∩ n̄′1 = ∅.
Let us now assume q′ > q (possibly exchanging the processes)

Ip1 =

{
νx̄. ¯cin(tα).[M(x1) ∧ · · · ∧M(xm)]c̄(a) if α is a term
νx̄.eq(tα = uα).[M(x1) ∧ · · · ∧M(xm)]c̄(a) if α is an equation

27

such that fn(Ip1) ∩ n̄′1 = ∅ following from fn(tα, uα) ∩ n̄′1 = ∅.
Ifm = m′ and q = q′, there are term u1, · · · , un such that fn(ui)∩(n̄′1∪n̄′2) = ∅

and a predicate symbol p such that σ1, E1 � p(u1, · · · , un) while σ2, E2 6�
p(u1, · · · , un) (possibly exchanging the processes), if σ1, σ2 are the canonical sub-
stitutions associated with lists L1.(α, α1, · · · , αm) and L2.(βp1(α), α′1, · · · , α′m).
We build Ip1 as follows (we will only give the case where α is a term, the equation
case is similar), using p to distinguish P1 and P2

Ip1 = (νx̄) ¯cin(tα).cout(zM+q+1). · · · .cout(zM+q+m).[p(u1, · · · , un)]c̄(a)

We have distinguished the processes at positions p1 and p2, we now need to
move up along the paths p1, p2 in order to distinguish the processes P and Q.
For every prefix q of p1, let

TP (q) = (P1,q, νn′1,q.L1,q, E1,q) and TQ(B(q)) = (P2,q, νn′2,q.L2,q, E2,q)

We then build, by backward induction on q a context Iq that distinguishes be-
tween

E1,q, P1,q‖νn′1,q.L1,q and E2,q, P2,q‖νn′2,q.L2,q

Let q.α be a length n + 1 prefix of p. We will only show the case where
α is an equation (α1 = α2) as the case where α is a term is very similar.
Assume L1,q.α = L1,q.(α, α1, · · · , αm) and L1,q.α = L1,q.(βq(α), α′1, · · · , α′m) and
let σq1, σ

q
2 be the two substitutions associated with L1,q,L2,q. Let k be the length

of L1,q (which is the length of L2,q). There are two terms uα and tα such that
fn(tα, uα) ∩ (n′1,q ∪ n′2,q) = ∅ and E1,q � tασ

q
1 = α1 ∧ uασq1 = α2 and E2,q �

tασ
q
2 = βq(α1)∧uασq2 = βq(α2). Let (x1, · · · , xl) be the subsequence of variables

in V1 of (zk+1, · · · , zk+m). Let us now define Iq

Iq = eq(tα = uα).cout(xk+1). · · · .cout(xk+m).Iq.α

We then have :

E1,q, Iq‖P1,q‖ν(n′1,q)σ
1
q
∗−→ E1,q.α, Iq‖P1,q.α‖(νn′1,q.α)σ1

q.α

E2,B(q), Iq‖P2,B(q)‖ν(n′2,B(q))σ
2
B(q)

∗−→ E2,B(q.α), Iq‖P2,B(q.α)‖(νn′2,B(q.α))σ
1
B(q.α)

We conclude by applying the induction hypothesis.
Applying this to q = ε, we get a process I which distinguishes between P

and Q.

D.4 Computational trees

We also need to define a computational counterpart to the trees. We first need
to define a parsing function as follows :

Definition 18. Let us define a (stateful) parsing function κτη : {0, 1}η → T as
follows : take w ∈ {0, 1}η, let K1 be the set of honestly generated keys, and H
be the set of already known bitstring-term associations. We apply the following
rules with in order.

28

– If H(w) is defined, κτη(w) = H(w)
– If w is the computational counterpart of newj then κτη(w) = newj
– If w is the pair w1‖w2 then κτη(w) = 〈κτη(w1), κτη(w2)〉
– If there exists a k ∈ K1 such that D(w, JkKτη) = w1 with w1 6= ⊥ (we consider

the smallest such key for the key order) we create a fresh name r and κτη(w) =
{κτη(w1)}rk

– If w is a key, we take a fresh name k ∈ K2 and κτη(w) = k
– If no previous rule apply we take a fresh name u and κτη(w) = u

Each time we do an association between a term and its implementation, by build-
ing the computational counterpart of a term or by parsing a bitstring, we record
it in H.

Let us note that our parsing function verifies the following property : if u is
a subterm of κτη(m) for some bitstring m, then κτη(JuKτη) = u.

We now have to define how the tree oracle OT answers to a request w of a
computational attacker when the current position is p.

1. First of all we compute t = κτη(w), we go down in the tree at position p.t, if
there is no such position OT outputs 0.

2. If T is waiting for equations, we chose one, we test its computational validity
and go down in T a the position corresponding to the result of this test (as
we also record disequations). We loop at point 2 as long as T waits for
equations.

3. When T is not waiting for equations, let q be the position of T at this
point. Let us write φ1 = φ(T, p), φ2 = φ(T, q). OT outputs Jxφ2Kτη for all
x ∈ (dom(φ2)\ dom(φ1)) ∩ V1

An important remark is that the order in which equations are added is not
important as we will have to go through the whole set of equations before out-
putting anything.

E Suppressing encryption

We start be replacing all honest cyphertexts by encryptions of zeros. We will
follow the key hierarchy, starting from a maximal key. The function Ψk replaces
the plaintexts under a k encryption by a constant Ol of same length.

ψk(n) = n if n is a name or a constant
ψk(〈t1, t2〉 = 〈ψk(t1), ψk(t2)〉
ψk({t}rk) = {0l(t)}rk
ψk({t}rk′) = {ψk(t)}rk′ if k 6= k′

ψk(πi(t)) = πi(ψk(t))

ψk(dec(t, u)) = dec(ψk(t), ψk(u)) if u 6= k and undefined otherwise

29

As the randoms from encryptions of two different term are different, ψk is
injective. We extend ψk to trees by applying it at each term in the positions,
frames and equation sets.

We now need to show that if φ is a frame and E a correct equation set for
φ, such that φ 6`E∪E0

k, and u is such that φ `E∪E0
u, then ψk(u↓E0∪E) =

ψk(u)↓E0∪ψk(E) in order to prove the results we need. This result is proven in
the next subsection.

E.1 Commutation lemma

In the following part, we will always assume that the frames are built of ground
terms without destructors with respect to the equational theory.

Let k be a secret key and u a deducible term. We want to show that ψk(u↓E
) = ψk(u)↓ψk(E) for some oublicly generated set of equations E.

Lemma 3. Let k, ϕ such that ϕ 6` k, we assume that ϕ is in normal form. Let
R be a public context.

ψk(Rϕ↓E0) = Rψk(ϕ)↓E0

Proof. This result is proven in [CLC08b]

Lemma 4. Let k, ϕ be such that ϕ 6` k. Let E be a well-formed equation set. If
t is a subterm of φ, then t is in normal form and ψk(t) is in normal form with
respect to ψk(E)

Proof. The first part is true by the fact that the frame is supposed to be ground
with respect to E.

Let us prove the second part by induction on the term. If t is a name the
result is trivial. If t = 〈t1, t2〉 as, by induction hypothesis, ψk(t1) and ψk(t2) are
ground the form of the equations ensures that t is ground. For the same reason
ψk({t1}k) with k honest is ground. Let us now consider the case {t1}k with k
dishonest. As ψk(t1) is ground by induction hypothesis, if ψk(t) is not ground,
then there exists ψk(e1) = ψk(e2) in ψk(E) such that ψk(t) = ψk(ei) for some
i ∈ {1, 2}. As ψk is bijective then t = ei which contradicts the fact that t is
ground.

Lemma 5. Let φ be a frame in normal form with respect to E a publicly gen-
erated equation set. If u is a deducible term, t is a subterm of u, t is a subterm
of φ or t is deducible. If t is directly under a destructor it is deducible.

Proof. Let us prove the result by induction on the size of E. If E is of size 0, the
trivially holds by a simple induction on the length of the E0 reduction, as E0 is
subterm convergent. If E is of size n, let e1 = e2 be the last equation of E, as e1

and e2 are deducible with E\{e1 = e2} (the last equation is deducible with the
previous equation set, and as the equations are well formed), the result holds on
e1 and e2. We will write E = {e1 = e2} ∪ E′.

Let u be a deducible term, let R be a public term such that R→∗E∪E0
u, let

us prove our result by induction on the length of the reduction. If the reduction

30

is of size 0, the result trivially holds. Let us assume the result for any such
reduction of size at most m. Let R →m

E∪E0
u′ →E∪E0

u. The result holds on
u′ by induction hypothesis. Let e′1 = e′2 be the equation such that u′ = C[e′1]
and u = C[e′2], let t be a subterm of u. If t is a subterm of e′2 and e′1 = e′2 is
in E the result holds by induction hypothesis if it is a strict subterm of e′2 it
cannot be under a destructor as the second member of equations cannot contain
destructors, and if it is e′2, it is deducible. If t is a subterm of e′2 and e′1 = e′2
is in E0 it is also a subterm of u′ and the result holds by induction hypothesis
(let us note that if it is directly under a destructor, it already was in u′ as E0

only deletes destructors). The last case is t = C ′[e′2]. As the frame is in normal
form, t′ = C ′[e′1] is not a subterm of the frame. As C ′[e1] is a subterm of u′, it
is deducible, and then t is also deducible.

Lemma 6. Let k, ϕ be such that ϕ 6` k. Let E be a well-formed equation set.
Let u be a deducible term. We have

u→E v =⇒ ψk(u)
=−→ψk(E) ψk(v)

Proof. We prove the result by induction on the length of u. If u is a name of a
variable, the result trivially holds. Let now u→E u′ with u of size more than 1.

– If u = 〈u1, u2〉 then the reduction is a reduction of u1 or u2 and as u1 and
u2 are deducible, the induction hypothesis gives the result.

– If u = {u1}ru2
where u2 is not a key. Let us assume that the reduction takes

place in ui, then as the frame is in normal form, ui is not a subterm of the
frame, it is then deducible (previous lemma) and we apply the induction
hypothesis.

– If u = {u1}rk′ where k′ is honest, with k 6= k′, the reduction takes place in
u1. As the frame is in normal form, u1 is not a subterm of the frame, it is
then deducible (previous lemma) and we apply the induction hypothesis. The
redex can not be the entire term because of the orientation of our equations.

– If u = {u1}rk′ where k′ is dishonest if the redex is u, then ψk(u) is reducible
by ψk(E), otherwise we apply the induction hypothesis as previously.

– If u = {u1}rk, the reduction takes place in u1.As the equations preserve length
we have ψk(u′) = {0l(u1)}rk = ψk(u).

– If u = πi(u1) if u1 = 〈t1, t2〉, if the reduction is the E0 reduction at top level,
then it can be matched, otherwise the reduction takes place in u1 and as
previously the result holds as u1 is deducible by the previous lemma.

– If u = dec(u1, k), k is dishonest since directly under a destructor (previous
lemma), if the reduction does not take place at top level, we apply the
induction hypothesis as previously. If it takes place at top level the result
holds.

Corollary 1. Let φ be a frame in normal form, E be a publicly generated equa-
tion set under ψk(φ) and k a honest key such that φ 6`E k. If φ `E u then
ψk(φ) `ψk(E) ψk(u)

31

Proof. Let R be a public term such that Rφ→∗E u with the previous lemma we
have

ψk(Rφ)→∗ψk(E) ψk(u)

and as R is public and thus does not contain k

Rψk(φ)→∗ψk(E) ψk(u)

Lemma 7. If u is deducible and in normal form with respect to E (publicly
generated equation set) and φ a frame in normal form, then ψk(u) is in normal
form with respect to ψk(E)

Proof. We prove the result by induction on the length of u. If u is a name or a
variable the result trivially holds.
– If u = 〈u1, u2〉. Then u1 and u2 are in normal form and so is ψk(u) =
〈ψk(u1), ψk(u2)〉 by induction hypothesis.

– If u = {u1}ru2
where u2 is not a key.The same argument holds.

– If u = {u1}rk′ with k 6= k′, u1 is either a subterm of the frame or deducible.
In the first case we apply the lemma 4, in the second we use the induction
hypothesis.

– If u = {u1}rk, we have ψk(u) = {0l(u1)}rk which is in normal form.
– If u = πi(u1) as u1 is deducible by lemma 5, we can apply our induction

hypothesis.
– If u = dec(u1, u2), u1 and u2 are deducible (lemma 5), and we apply the

induction hypothesis.

We then have as a corollary

Corollary 2. Let k, ϕ such that ϕ 6` k. Let E be well-formed wrt φ Let u be a
deducible term.

ψk(u↓E) = ψk(u)↓ψk(E)

E.2 Equivalence under ψk

Lemma 8. For every execution tree T , and for every key k not deductible from
a frame of T , T ∼ ψk(T)

Proof. β is chosen to be ψk . It is a one-to-one function on labels, since ψk is
one-to-one. It remains to show that for any frame φ such that φ 6`E k, we have
φ ∼ ψk(φ). For any deducible term u, ψk(u ↓E) = ψk(u) ↓ψk(E) by corollary
2. Moreover, the predicates M, EQ, EL, Psamekey are stable by replacement of
zeros under encryption: E � P (t1, t2)[{u}rk → {0l(u)}rk] ⇔ P (t1, t2) This yields
the desired property.

We now need to prove that once all plaintexts under honest encryption have
been replaced by zeros, equivalence is exactly equality up to renaming.

Lemma 9. Let φ1, φ2 be two frames, such that for every subterm of φ1 or φ2

of the form {u}rk we have u = 0l for some l ∈ N. If Psamekey and EL are in the
predicate set, then φ1 ∼ φ2 iff φ1 and φ2 are equal up to renaming.

This lemma is already proven in [CLC08b], and their proof holds in our
model.

32

F Computational soundness of tree equivalence

Let us define what it means for two trees to be computationally indistinguishable.

Definition 19. We say that two symbolic trees T1, T2 are computationally in-
distinguishable (written T1 ≈ T2) if, for all PPT A :

|Pr{τ, r : AOT1,τ (0η|r) = 1} −Pr{τ, r : AOT2,τ (0η|r) = 1}| = negl(η)

The computational soundness result we want is as follows :

Lemma 10. If TP1 ∼ TP2 and for i = 1, 2, TPi admits a key hierarchy, then, if
the cryptographic scheme is jointly IND-CPA and INT-CTXT, we have TP1

≈
TP2

Proof. We will prove the result using a hybrid argument. Let us write T1 :=
TP1

and T2 := TP2
. Assume that there is a PPT A distinguishing T1 and T2

with a non negligible probability. A does only a finite number of requests newj ,
and thus forces the generation of a polynomial number of honest keys. More
precisely, when A interacts with Ti, it does request until a depth of at most
p(η) where p is a polynomial. Let us write T/n the execution tree obtained
from T by removing all nodes at depth more than n. Let si be the number of
replicated processes in Pi, m1

i , · · · ,m
si
i be the numbers of secret keys generated

in S1
i , · · · , S

si
i and m0

i be the number of secret keys in Pi without the replicated
processes. We now know that Ti/p(η) contains at most ni := p(η).(

∑si
j=1m

j
i)+m0

i

secret keys. This allows us to transform our tree key after key, showing each step
is distinguishable with negligible probability, and concluding that the first and
last steps are distinguishable with only negligible probability.

Let <i be an order on the keys of Ti/p(η). Let k1
i , · · · , k

ni
i be the honest keys

of Ti/p(η) ordered such that k1
i <i k

2
i <i · · · <i k

ni
i . Let us write T 1

i = Ti/p(η)

and T j+1
i = ψkji

(Tj) for j = 1..ni. The lemma 8 gives us T j+1
i ∼ T ji . Transitivity

gives Tn1
1 ∼ Tn2

2 . With these results : either A distinguishes T ji and T j+1
i with

non negligible probability for some i, j, or A distinguishes Tn1
1 et Tn2

2 .
Let us start with the case in which A distinguishes T ji and T j+1

i with non
negligible probability. We show that in that case we break the IND-CPA or INT-
CTXT game on key kji . Without loss of generality, we will assume i = 1. Let us
build a PPT B simulating OT j1 or OT j+1

1
in polynomial time, using the IND-CPA

and INT-CTXT oracles for the implementation of the key kj1.
B behaves exactly as OT j1 apart from the fact that it does not pick kji but

uses the IND-CPA oracle to encrypt and the INT-CTXT oracle to decrypt with

this key. It outputs b if A stop and outputs b. B
O
k
j
1 behaves as A

O
T
j
1 and B

O′
k
j
1

behaves as A
O
T
j+1
1 apart from the cases in which we break INT-CTXT (the cases

in which we succeed at decrypting a non already encrypted term). This means
that B breaks joint IND-CPA, INT-CTXT when A breaks T j1 ≈ T

j+1
1 .

33

Also B runs in polynomial time as simulating the protocol is polynomial,
parsing is polynomial, and there is only a polynomial number of equations to
test.

The case left is A distinguishes Tn1
1 and Tn2

2 with non negligible probability.
Let β1 be the bijection from Tn1

1 → Tn2
2 and β2 be the bijection from Tn2

1 → Tn1
2 .

For every position p in Tn1
1 the frame φ(Tn1

1 , p) is equivalent to φ(Tn2
1 , β(p)).

By lemma 9, the two frames are equals up to renaming. As the two frames
contain the requests from the adversary at the same places, β1 and β2 are the
identical functions (up to alpha renaming). As Tn1

1 =α T
n2
2 are equals, they are

indistinguishable by A.

G Trace mapping

We now know from lemmas 2 and 10 that if P ∼o Q then TP ≈ TQ. We now
need to show that if TP ≈ TQ then P ≈ Q. We will do this in two steps, the
first one being the classification of the traces of P which are not abstracted in
TP , and the second one being the fact that under our cryptographic hypotheses,
these cases can not occur with non negligible probability.

Let us start by defining the sequence of the messages exchanged between P
and A, and what it means for such a trace to be fully abstracted in the tree
TP . In order to do that note that given τ and η, the behaviour of JP Kτη‖Aτ is
deterministic.

Definition 20. Messages(P, η, τ,A) is the sequence an defined as follows. Let
γAn be the sequence of configurations of A, along its deterministic computation,
on the random τ , interacting with JP Kτη. Let δAn be the subsequence of configura-
tions following a new, send, or receive action of γAn .

– If δAn follows a new action, let j be the content of the control tape in δAn
and l be the content of the receive tape in the same configuration. Then
an = s(newj).r(l).

– If δAn follows a send action, we let an = s(〈i,m〉) where i (resp. m) is the
content of the control (resp. send) tape in δAn .

– If δAn follows a receive action, then an = r(m) where m is the content of the
receive tape in δAn

Lemma 11. We can assume without loss of generality that Messages(P, η, τ,A)
is a sequence of the form s(m1).R1.s(m2).R2 · · · s(mn), Rn where each Ri is a
sequence r(m′1). · · · .r(m′ni).

In that case we can represent more elegantly Messages(P, η, τ,A) as a se-
quence L1

m1−−→ L2 · · ·
mn−−→ Ln where Li is the increasing sequence of messages

: Li+1 = Li.Ri.mi. We then write SMessages(P, η, τ,A) = (m1, · · · ,mn) the
subsequence of messages sent by A.

In order to bind more closely the computational processes to symbolic pro-
cesses let us write γi the computational configuration of the network before the

34

ith action send of A, this allows us to describe the execution of Aτ‖JP Kτη as
follows :

γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln

Definition 21 (Full abstraction). Let γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln be
an execution, p be a position of the tree T . Let us write p = α1. · · · .αm. Let
αn1 · · ·αns be the subsequence of p which are not equations.

We say that p fully abstracts γ1, L1
m1−−→ γ2, L2 · · ·

mn−−→ γn, Ln if s = n and
∀j ≤ n

– JαjKτη = mj

– If T (α1 · · ·αnj) = (Qj , φj , Ej) then
• JQjKτη = γj
• Jφj ∩ {x 7→ t|t ∈ T , x ∈ V1}Kτη = Lj
• ∀(s = t) ∈ Ej , JsKτη = JtKτη
• ∀(s 6= t) ∈ Ej , JsKτη 6= JtKτη

We now want to prove that it is impossible for the attacker to produce a
trace which is not fully abstracted with non negligible probability. First of all
we need to classify the traces that can not be fully abstracted.

Lemma 12. Let P be a simple process, TP its execution tree. Given a security
parameter η, a random τ and an attacker A, let Γ be the execution of Aτ‖JP Kτη
defined as previously. There is a path p in Pos(TP) such that one of the following
properties holds :

1. p fully abstracts Γ
2. TP (p) = (Q,φ,E) and there is a transition γn, Ln

m−→ γn+1, Ln+1 in Γ such
that p fully abstracts the prefix of Γ ending at γn, Ln and one of the following
conditions holds.

3. φ 6` κτη(m).
4. m = 〈li,m′〉, there exists a process Pi with pid li in Q and Pi = cin(x) · [R]

and
– ∃M(u) ∈ Φ such that dec(s, t) ∈ St(u) with t↓E= k and k ∈ K2

– E � M(s) ∧ ¬M(dec(s, k))
– D(JsKτη , JkKτη) = m′′ with φ, s 6` κτη(m′′)

5. m = 〈li,m′〉, there exists a process Pi with pid li in Q such that Pi =
cin(x) · [Φ]R and
– ∃EQ(u, v) ∈ Φ such that u↓E= C[u1, · · · , un], v↓E= C[v1, · · · , vn]
– JuKτη = JvKτη
– for every i ∈ {1, · · · , n} there exists si et ki ∈ K such that
• either ui = {si}riki . We let ti := vi.
• either vi = {si}riki . We let ti := ui.

– for every i ∈ {1, · · · , n}, E ∪ E0 � M(si) ∧ ¬EQ(ui, vi).
– ∃i ∈ {1 · · ·n} such that φ, si 6` ti and ki ∈ K2.

6. m = 〈li,m′〉, there exists a process Pi with pid li in Q such that Pi =
cin(x) · [Φ]R and

35

– ∃M(u) ∈ Φ such that dec(s, t) ∈ St(u) with t↓E et k ∈ K1.
– E � M(s)
– dec(s↓E , k) is in normal form.
– D(JsKτη , JkKτη) 6= ⊥ and k is honest.

7. m = 〈li,m′〉, there exists a process Pi with pid li in Q such that Pi =
cin(x) · [Φ]R and
– ∃EQ(u, v) ∈ Φ such that u↓E= C[u1, · · · , un], v↓E= C[v1, · · · , vn]
– for every i ∈ {1, · · · , n} there exists si and ki ∈ K such that
• either ui = {si}riki . We let ti := vi.
• either vi = {si}riki . We let ti := ui.

– for each i ∈ {1, · · · , n}, E � M(si) ∧M(ti)
– ∃i ∈ {1 · · ·n} such that dec(ti, k) is in normal form and J{si}rikiK

τ
η = JtiKτη

et ki ∈ K1 et ti = {·}·k with k 6= ki et k ∈ K1.
8. m = 〈li,m′〉, there exists a process Pi with pid li in Q such that Pi =

cin(x) · [Φ]R and
– ∃EQ(u, v) ∈ Φ such that u↓E= C[u1, · · · , un], v↓E= C[v1, · · · , vn]
– for each i ∈ {1, · · · , n} there exists si and ki ∈ K such that
• either ui = {si}riki . We let ti := vi.
• either vi = {si}riki . We let ti := ui.

– for all i ∈ {1, · · · , n}, E � M(si) ∧M(ti)
– ∃i ∈ {1 · · ·n} such that ti = {si}rki , and r 6= ri with ki ∈ K1.

9. There exists two honest names s and t, honestly generated such that JsKτη =
JtKτη

10. There exists s honest name and t dishonest name such that t was in H before
the generation of s and JsKτη = JtKτη.

11. There exists s honest encryption and t dishonest name such that t was in H
before the generation of s and JsKτη = JtKτη.

Proof. It is clear that there are only two cases in which a trace can not can not
be completely abstracted :

– The case in which the tree receives a bitstring m such that κτη(m) would be
accepted by a process but does not exist in the tree. In that case κτη(m) is
non deducible and we fall in case 3.

– The case in which the term is accepted on both sides but the tree does not
behave as the process. This means that there is a condition Φ in a subprocess
such that Φ is computationally true but symbolically false and no well formed
equations would make it symbolically true. The reminder of the proof deals
with this case.

Let us start with the M predicate. Assume E � ¬M(s[x̄]σ) and JM(s[x̄]σ)Kτη =
1. Let us write u = s[x̄]σ. The evaluation of JM(u)Kτη is the evaluation of JuKτη . We
know that JuKτη 6= ⊥. Let Po be the set of position p in u such that E � ¬M(u|p).
Po 6= ∅, let p be maximal in Po. We are in one of the following cases :u|p = πi(t)
or u|p = dec(t, v) with E � M(t) ∧M(v) as x ∈ x̄, xσ and all its subterms are
wellformed (they are without destructors), and p is maximal.

– If u|p↓E= πi(t), let us consider the following cases :

36

• If t is a pair, E � M(πi(t)), this can not occur.
• If t is an encryption, the tagging hypotheses ensure that Jπi(t)Kτη = ⊥

which can not be the case as JuKτη 6= ⊥.
• If t is a honest name, as previously Jπi(t)Kτη = ⊥ which is impossible due

to tagging hypotheses.
• If t is a dishonest name, and Jπi(t)Kτη 6= ⊥, then JtKτη is a pair, and parsing

ensures that this case is impossible.
– If u|p = dec(t, v), as E � M(v) then v ↓E= k with k ∈ K, otherwise, as

previously we get a contradiction as a decryption succeeds only if it is done
with a proper key and tagging ensures that only the elements of K are
interpreted as keys.
• If k is honest, then for every well formed u we have E 6� dec(t, k) = u.

As D(JtK, JkK) 6= ⊥, this case falls in case 6
• If k is dishonest dec(t, k) = ⊥ and κτη(D(JtK, JkK)) = u and dec(t, k) = u

is not a well formed equation (otherwise it would appear in the tree and
thus it would be possible to abstract the equation),
∗ The equation creates an equality of two name and we fall in case 9

or 10.
∗ The equation creates an equality {t}rk = {t′}r′k′ with k 6= k′ or r 6= r′

and k and k′ honest keys. We fall in case 7 or 8.
∗ The equation create an equality {t}rk = n with n dishonest name.

The computational hypotheses ensures that n is dishonest and the
parsing hypotheses ensure that n was created before {t}rk, we fall in
case 11.
∗ The second member of the equation is not deducible and we fall in

case 4.

We easily check that the converse : E � M(u) and JuKτη = ⊥ is impossible as
all the equations added are computationally true (and thanks to the properties
explained in the appendix A).

We will now deal with the EQ predicate. Take EQ(s1[x̄1]σ, s2[x̄2]σ), we as-
sume w.l.o.g. that M(s1[x̄1]σ) and M(s2[x̄2]σ) are are in the condition and thus
have already been dealt with, we can assume that E � M(s1[x̄1]σ)∧M(s2[x̄2]σ).
In that case s1[x̄1] ↓E := u1 and s2[x̄2] ↓E := u2 are without destructors. We
have EQ(s1[x̄1]σ, s2[x̄2]σ) is logically equivalent to EQ(u1, u2). Assume E 6�
EQ(u1, u2) and Ju1Kτη = Ju2Kτη . Let us reason inductively on the first function
symbol in u1 and u2.

– If u1 is a honest name, then tagging hypotheses gives us that u2 is a name.
If u2 is a honest name we fall in case 9. If u2 is a dishonest name, the parsing
hypotheses ensure that u2 was in H before the creation of u1 and we fall in
case 10 with C = [·]. The case where u2 is honest and u1 dishonest is treated
exactly in the same way.

– If u1 and u2 are dishonest names, parsing ensure that u1 = u2. The cases
where u2 is not a name will be treated later.

37

– If u1 is a pair, the tagging hypotheses ensures that u2 is also a pair. Let
us write u1 = 〈u11, u12〉 and u2 = 〈u21, u22〉. The computational hypotheses
ensures that Ju11Kτη = Ju21Kτη and Ju12Kτη = Ju22Kτη . We have E 6� EQ(u11, u21)
or E 6� EQ(u12, u22), let us assume, w.l.o.g that we are in the first case. The
induction hypothesis gives us a context C1 corresponding to EQ(u11, u21),
if EQ(u12, u22) = ⊥ let C2 be the corresponding context, otherwise we let
C2 = u12. We let C = 〈C1, C2〉 and the failure case is the one of the induction
on EQ(u11, u21)

– If u1 is a dishonest encryption, and u2 is not an encryption by the same
dishonest key with the same random. In that case we have an invalid equa-
tion, otherwise it would appear in the tree an we could abstract the trace.
The equation is not well formed and as the only cases in the definition of a
well formed equation that would not contradict directly the computational
hypotheses are the following cases :
• The equation creates an equality of two name and we fall in case 9 or 10
• The equation creates an equality {t}rk = {t′}r′k′ with k 6= k′ or r 6= r′ and
k and k′ honest keys. We fall in case 7 or 8.

• The equation create an equality {t}rk = n with n dishonest name. The
computational hypotheses ensures that n is dishonest and the parsing
hypotheses ensure that n was created before {t}rk, we fall in case 11.

• The second member of the equation is not deducible and we fall in case
5

In each of the previous cases, we pick C = [·].
– If u1 is an encryption with a honest key k, and u2 is not an encryption by k,

if it is a dishonest we can apply the same arguments as in the previous case.
If u2 is a dishonest name the parsing hypotheses ensure that it was present
in H before the encryption and we fall in case 11. The only case left is the
case where u2 is a honest encryption and we fall in case 7. We pick C = [·].

– If u1 is a honest encryption by k and u2 is an encryption by k with a different
random we fall in case 8. In that case we pick C = [·]

– If u1 = {u′1}rk and u2 = {u′2}rk, we apply the induction hypothesis to
EQ(u′1, u

′
2), let C ′ be the corresponding context. We take C = {C ′}rk and

the failure case is the one of the induction.

We see that the cases in which the abstraction fails, apart from the case where
the adversary gives a non deducible term, are very similar to the equations that
can be “legally” added. We add these transitions in the tree in the same way
as normal equations in order to build a new tree T̃P . Let us explain a bit more
what we mean by adding these equations in the tree. When we find a invalid
symbolic equation, the tree answers the failure case and the involved terms. this
allows us to treat invalid equations as we have treated valid equations, and then
to use the tools we have on execution trees. This is the point which allows us to
patch the proof of [CLC08b].

Example 11. Let us consider the following process :

P = (νk)cin(x) · if M(dec(x, k)) then cout(x) else cout(⊥)

38

its tree is as follows :

P, νk · ∅, ∅

?
∀t · t

[M(dec(t, k)))]cout(dec(t, k)), νk · {x1 7→ t}, ∅

�
�

�
�

�
�	

0, νk · {x1 7→ t, x2 7→ error(5,dec(t, k), u)}, ∅

∀u · (dec(t, k) = u)

@
@
@
@
@
@R

0, νk · {x1 7→ t, x2 7→ ⊥}, ∅

(dec(t, k) = ⊥)

where the edge labelled by ∀t · t is in fact a multiple edge representing the
edges t for all t. As well the edge ∀u·(dec(t, k) = u) is a multiple edge representing
the edge for all u.

Let us not that the error message gives out all interesting information on the
error.

We apply ψk to these trees as previously, apart for the right member of the
equalities 4 and we prove in the same way that if T̃ is such a tree, ψk(T̃) ≈ T̃ .

Lemma 13. Let P be a process without key cycles, we have P ≈ OTP
Proof. Let η be a security parameter, τ a random sample, A a computational
adversary. The lemma 12 proves that A can distinguish P and TP only if AOT̃P
gives a failure case, otherwise AP and AOTP behave exactly in the same way.

As T̃P ≈ T̃n1

P , we can replace T̃P by T̃n1

P . The problem is now to find a failure
case in T̃n1

P . Let us use a joint IND-CPA, INT-CTXT oracle on all honest keys
that are used. Let us define a simulator B, which will play against the security
game, and which behaves as OT̃n1

P
appart from the fact that it uses the oracle

to encrypt and decrypt. The oracles can be used for encrypting as we use only
zeros as plaintexts (for honest keys).

Let us now explain how B behaves on a failure case :

– As the only honest encryptions are encryptions of zeros, all honest encryp-
tions that are performed are deducible. Every non deducible term has a
subterm which is a honest encryption unknown to the adversary or a secret
honest nonce. Then finding a non deducible term breaks the INT-CTXT
property or is information theoretically impossible. With this property, if
B finds a non deducible term in an invalid equality or receives a non de-
ducible term, it breaks INT-CTXT. This can not occur with non negligible
probability, which rules out the cases 3, 4 and 5 from lemma 12.

39

– In the case 6 where a honest decryption succeeds when it should fail, the
parsing function ensures that the term was not some already produced en-
cryption. This breaks INT-CTXT.

– In the case 7 where we have an equality between two encryptions with two
different honest keys and we break the “confusion freeness” of the crypto-
graphic scheme, i.e. INT-CTXT (see [MW04]).

– If the case 8 occurs with non-negligible probability, then there exists a par-
ticular key on which it occurs. In that case for some 0 < l < η :

Pr{r, r′ R←− U, k R←− K, E(0l, k, r) = E(0l, k, r)}is not negligible

This can not occur with an IND-CPA scheme. If it was the case the following
adversary would win with non negligible probability against IND-CPA
A takes l R←− {1, · · · , η}
A gets m = O(0l)
A gets m′ = O(1l)

If m = m′ A sends out 0 otherwise A outputs b R←− {0, 1}
A would win with non negligible probability against IND-CPA which con-
tradicts the hypotheses.

– The only cases left are 9 in which two honest names are equals or the cases
10 and 11 in which the adversary guesses a name or an encryption which
is still not generated. As there is a polynomial number of names and an
exponential number of possible values the case 9 can not occur with non
negligible probability. By information theoretic arguments the cases 10 and
11 can only occur with an exponentially small probability, as the random
can only be used once and there is an exponential number of values for the
encryption of the same constant (as the encryption scheme is IND-CPA).

As no failure case can occur with a non negligible probability, and there is
only a finite number of failure cases, the proof is complete.

H Secrecy proof for the protocol of Section 6

H.1 Proof

We want to prove an over-approximation on which kAB cyphertexts can be
obtained by the attacker. First of all let us note that the secrecy of kAB is
ensured by the fact that it is never used as a plaintext subterm.

Let (ki1)i∈N (resp. (ki2)i∈N, (ki3)i∈N, (N i)i∈N) be the successive renaming of
k1 (resp. k2, k3, N) in the process PB , we use the same renaming convention for
the randomness used in the encryptions in PB .

We prove the following result for every trace s of (νkAB , sAB)!PA‖!PB .

Lemma 14. Let s be a trace of (νkAB , sAB)!PA‖!PB. Let E,Xw, Xc, Q‖φ be
such that

∅, ∅, ∅, (νkAB , sAB)!PA‖!PB
s−→ E,Xw, Xc, Q‖φ

40

1. φ 6`E k2 and φ 6`E k3

2. for every u ∈ T , if φ `E u then

νñ, ({ki2}
ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N `E u

where ñ stands for all possible instantiation of the restricted names of PA.
3. for every u, r if φ `E {u}rkAB then

– u = 〈u1, u2〉
– νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N `E u1

– there exists i ∈ N such that u2 = N i or u2 = ki3

Proof. The lemma trivially holds when the trace is empty, and any trace should
begin with an input.

Let us reason by induction. Let s.α be a trace such that the invariant is true
for s. Let E,Xw, Xc, Q‖φ be such that

∅, ∅, ∅, (νkAB , sAB)!PA‖!PB
s−→ E,Xw, Xc, Q‖φ

If α is an equation, the only point to check is 1. As the equation added should
be well formed with respect to φ, and k2, k3 were secret, we know that k2 and
k3 remain secret. The lemma still holds on s.α.

If α is cin(u), the lemma still trivially holds on s.α.
If α does not fall in the previous cases, let cin(u) be the last input in

s. The only interesting case is the case in which a copy of PB takes u for
first input. As kAB is secret and the lemma holds on s, if u is not of the
form 〈k, {v, w}−kAB 〉 where k is a dishonest key and w is either an instance of
k3 or an instance of N the process simply rejects the message and the next
step in the trace must be an input action. If u is of this form, the process
checks that M(dec(v, k)) holds, possibly giving 〈v, k, dec〉 to the adversary. As
v, k must be deducible from νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N, then the
lemma still holds after adding this knowledge to the frame. As shown previ-
ously adding an equation dec(v, k) = t can not yield to breaking our invariant
and as t must be deducible from φ ∪ {y 7→ 〈v, k,dec〉}, t is deducible from
νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N. If (possibly after adding an equation
dec(v, k) = ⊥) the decryption does not succeed, the process should be waiting
for an input. If the decryption dec(v, k) = t with t 6= ⊥, then t is either the right
member of an equation which was added at the previous step or dec(v, k)↓E and
as k is known and v is deducible from νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N,

then t is deducible from νñ, ({ki2}
ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N. If dec(v, k) =

t, then the process outputs {t, w}rkAB for some secret r, and this cyphertext is
of the form of kAB cyphertext in the lemma, which can not break the invariant.
The process then waits for an input.

All other cases are easy, as our invariant ensures that the process only de-
crypts with honest keys and checks equalities between honest encryption which

41

(with our restrictions on equations) can not add knowledge to the adversary nor
lead to adding equations a simple look at the relations between input and output
of a process ensures that we do not break the invariant.

Corollary 3. sAB only occurs under encryption by a honest key, and then re-
mains secret for any attacker A interacting with (νkAB , sAB)(!PA‖!PB).

Proof. The lemma ensures that the key k used for encrypting sAB must be
dec(u, v) with {u, v}rkAB deducible from νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N.
As the lemma ensures that v can only be an instance of N or an instance of k3,
then as the decryption must succeed, v is an instance of k3. The lemma en-
sures that u is deducible from νñ, ({ki2}

ri1
ki3

)i∈N, (k
i
1)i∈N, (r

i
2)i∈N, (N

i)i∈N, and as
dec(u, ki3) succeed for some i ∈ N, and ki3 is secret, the restrictions on the equa-
tions forces u = {ki2}

ri1
ki3
, and then k = ki2 which, by the previous lemma, is

secret.

Corollary 4. The process (νkAB , sAB)!PB‖!PA‖cin(x).[x = sAB].cerror never
emits on channel cerror .

Proof. As proven previously, sAB remains secret in any trace of the process
(νkAB , sAB)(!PA‖!PB), then in any trace of (νkAB , sAB)!PB‖!PA‖cin(x).[x =
sAB].cerror in which the witness process has not taken any input. When the
witness process receives an input it can not be sAB as sAB is still secret, and
then, as sAB is a honest name, no matter what was the input u the equation
u = sAB can not be added which ensures that the condition is false.

H.2 Non trivial traces

Let us show that this process has traces that would not be present in another
symbolic model. For simplicity reasons, we will omit the restrictions on our
frames, as the set of restricted names is quite clear.

We show that any instance of N (recall that N = {N ′}rNkN) can be learned
by the adversary and that the process can produce an output {u, kl3}rkAB where
u is any deducible term, with r some nonce and kl3 an instance of k3. Let N i be
the target instance of N . Let us assume that the adversary has “activated” the
(i − 1)-th version of PA (it is clearly possible by doing i − 1 inputs). From this

42

point, the following trace is correct, if φ is the current frame :

φ
cout(k

i
1,{{{k

i
2}
ri1

ki3

}r
i
2

ki1

,Ni}r
i
3
kAB

)

−−−−−−−−−−−−−−−−−−−→ φ ∪ {x1 7→ ki1, {{{ki2}
ri1
ki3
}r
i
2

ki1
, N i}r

i
3

kAB
}︸ ︷︷ ︸

φ1

cin(ki1,{{{k
i
2}
ri1

ki3

}r
i
2

ki1

,Ni}r
i
3
kAB

)

−−−−−−−−−−−−−−−−−−−→ φ1

cout({{ki2}
ri1

ki3

,Ni}r
i
5
kAB

)

−−−−−−−−−−−−−−−→ φ1 ∪ {x2 7→ {{{ki2}
ri1
ki3
, N i}r

i
5

kAB
}︸ ︷︷ ︸

φ2

cin({{ki2}
ri1

ki3

,Ni}r
i
5
kAB

)

−−−−−−−−−−−−−−→ φ2

cout({Ni,ki3}
ri4
kAB

)

−−−−−−−−−−−−→ φ2 ∪ {x3 7→ {N i, ki3}
ri4
kAB
}︸ ︷︷ ︸

φ3

cin(k,{{Ni,ki3}
ri4
kAB
}

−−−−−−−−−−−−−→ φ3 ∪ {y1 7→ 〈N i, k, dec〉}
eq(dec(Ni,k)=u)−−−−−−−−−−−→ φ3 ∪ {y1 7→ 〈N i, k, dec〉}
cout({u,ki3}

r
i+1
5
kAB

)

−−−−−−−−−−−→ φ3 ∪ {y1 7→ 〈N i, k, dec〉, x4 7→ {u, ki3}
ri+1
5

kAB
}

It is clear that with the last frame of this trace, N i is deducible.

43

