
Tractable inference systems: an extension with a
deducibility predicate

Hubert Comon-Lundh1, Véronique Cortier2, Guillaume Scerri12

1 LSV, CNRS & ENS Cachan, France
2 LORIA, CNRS, France

Abstract. The main contribution of the paper is a PTIME decision
procedure for the satisfiability problem in a class of first-order Horn
clauses. Our result is an extension of the tractable classes of Horn clauses
of Basin & Ganzinger in several respects. For instance, our clauses may
contain atomic formulas S ` t where ` is a predicate symbol and S
is a finite set of terms instead of a term. ` is used to represent any
possible computation of an attacker, given a set of messages S. The class
of clauses that we consider encompasses the clauses designed by Bana &
Comon-Lundh for security proofs of protocols in a computational model.
Because of the (variadic) ` predicate symbol, we cannot use ordered res-
olution strategies only, as in Basin & Ganzinger: given S ` t, we must
avoid computing S′ ` t for all subsets S′ of S. Instead, we design PTIME
entailment procedures for increasingly expressive fragments, such proce-
dures being used as oracles for the next fragment.
Finally, we obtain a PTIME procedure for arbitrary ground clauses and
saturated Horn clauses (as in Basin & Ganzinger), together with a par-
ticular class of (non saturated) Horn clauses with the ` predicate and
constraints (which are necessary to cover the application).

1 Introduction

1.1 The application context

The design of automated security proofs is a topic extensively studied for over
20 years. One problem that was raised about 12 years ago is the validity (or the
scope) of such proofs. More specifically, for most of the automatic security proofs
messages are abstracted by terms and the attackers capabilities are restricted to
a specific set of operations. In contrast, modern cryptography typically consid-
ers attackers that can perform any computation that does not require too much
time (say, in probabilistic polynomial time). This includes of course some com-
putations that are not explicitly specified. This issue has been first addressed by
M. Abadi and P. Rogaway [1], followed by many authors. The idea is to prove
that the symbolic formal model is sound with respect to the more concrete com-
putational model: if there is no attack in the symbolic model, then there is no
attack in the computational model, except with negligible probability. There are
several such soundness proofs, for various primitives and in various contexts (see

e.g. [11, 2, 9] to cite only a few). However, all these results require heavy proofs
and assume strong hypotheses, some of which are not quite realistic. Typical
examples of unrealistic assumptions include: a key cycle is never created, or the
attacker does use his own keys.

These difficulties lead to try to prove the security protocols directly in the
computational model. For instance CryptoVerif [7] or Easycrypt [5] are de-
signed in this spirit. The proofs have however to account for probability distri-
butions computations, attacker’s time computation, and are relatively difficult,
often requiring user interactions. We study here an alternative approach pre-
sented in [4] which consists in specifying formally what the attacker cannot do.
Each axiom in such a specification can be a consequence of an assumption on
the primitives, which yields the soundness of the model by construction. The
drawback is however the proof automation in this model: there was no evidence
that this is possible in a reasonably efficient way. This is the problem that we
want to address in this paper.

In the model of [4], transitions of the system are possible, as soon as they do
not contradict the axioms. Hence, an attack consists in a sequence of attacker’s
actions, that is consistent with the axioms and the negation of the security
property. Conversely, if all (symbolic) transition sequences yield a formula, which
is inconsistent with the axioms and the negation of the security property, then
the protocol is secure, for any attacker, in any model that satisfies the axioms.
The clauses make use of a deducibility predicate `, whose interpretation is not
fixed: it stands for any attacker’s computation. In other words, S ` h states that
the attacker must be able to compute h from his knowledge at this stage.

In summary, checking for cryptographic security amounts to checking the
satisfiability of a finite set of ground formulas Φ together with axioms A (which
are Horn clauses) and the negation of the security property π (a ground fact).
Since, in practice, this satisfiability check has to be performed for any interleaving
of (symbolic) actions, it must be efficiently performed. Fortunately, the formulas
are not arbitrary first-order formulas. We introduce them informally below.

– Φ contains only literals (positive or negative). We actually prove that satis-
fiability is in PTIME as soon as Φ only contains (ground) Horn clauses.

– A could be arbitrary, in principle, provided that it is consistent with π. In
practice, we may assume that A∪{π} is a finite set of (possibly constrained)
Horn clauses with equality (see [3] for a complete example). A typical exam-
ple of an axiom (a consequence of IND-CCA, see [4]) is the secrecy axiom

∀X, x, y.
[
X; enc(x, pk) ` n(y) → X ` n(y)

]
‖ sk /∈ X

The expression n(y) represents a function that returns a random number.
The formula states that the encryption of x does not help in deducing the
nonce n(y), unless the decryption key sk appears as a plain text of some
term in X.

The problem that we consider in this paper is then the following one: when
is such a satisfiability check tractable?

2

1.2 Difficulties

Following the approach of D. Mc Allester [10], D. Basin and H. Ganzinger [6]
show that, if a set of Horn clauses is saturated, with respect to a well suited
ordering and a well suited notion of redundancy, then the associated inference
system is tractable. The main restriction in this paper is on the ordering with
respect to which the clauses have to be saturated: given a ground term t, there
should be only polynomially many terms smaller than t. (The subterm ordering,
is an example. The term embedding does not satisfy this property).

However, the Horn clauses derived from security assumptions are beyond the
scope of these results for several reasons that we describe below.

– The deducibility predicate ` can be seen as a variadic predicate symbol,
whose arguments (except the last one) are unordered. This is a problem,
since Basin and Ganzinger method yields an NP decision procedure with
such a predicate: even if A is saturated (modulo the set axioms for the left
part of the ` predicate), when we use A to reduce a ground atom S ` t,
potentially all subsets of S will be considered (see Section 3 for an example).

– Axioms (i.e. Horn clauses) are constrained. A priori, this is not an obstacle
to the Basin and Ganzinger procedure, as the constraints can be checked on
each superposition between an axiom and a ground clause. However, the very
notion of saturation of a set of constrained clauses is an issue (as reported
for instance in [12] for basic strategies or [8] for order constraints). In short:
we cannot assume our set of axioms to be saturated.

– Clauses contain an equality predicate. This is not too tricky, since we may
assume that A does not contain any equality. Hence equalities appear only
as ground literals. We can then easily extend Basin and Ganzinger algorithm
to clauses modulo a ground equational theory.

1.3 Overview of the results and proofs

Including a variadic predicate. We consider sets of ground Horn clauses with
equality, whose atomic formulas may (also) be S ` t where S is a finite set of
(ground) terms and t is a ground term, together with a saturated set of clauses
A with no deducibility predicate and the following set of clauses A0:

A0 =

X ` x → X; y ` x weakening

X ` x, Y ;x ` y → X;Y ` y transitivity
→ x ` x

X1 ` x1, . . . , Xn ` xn → X1; . . . ;Xn ` f(x1, . . . , xn) f function symbol

Note that the left argument of ` is a set. We write X;x for X ∪ {x} and X;Y
for X ∪ Y and we compute modulo the set properties.

We prove first that satisfiability of such a set of clauses is in PTIME, therefore
extending Basin and Ganzinger result, on the one hand with equalities (this is
not the difficult part) and on the other hand with the deducibility predicate.

3

The main idea then is to use another layer of ground Horn clauses entailment
problem: given S1 ` t1, . . . , Sn ` tn, S ` t, whether S1 ` t1, . . . , Sn ` tn entails
S ` t can be solved in PTIME. This is done by transforming literals S ` t into
clauses S → t. Since the resulting clauses do not contain ` anymore, this can be
used as an oracle in a (modified) ground Horn clauses entailment problem.

Adding axioms on the deducibility predicate. The previous result is not sufficient
for our purpose as, for instance, simple axioms such as secrecy (provided in
Section 1.1) cannot be expressed in the considered fragment.

We therefore extend the previous results, adding formulas of the form

S ` x, S;u(x) ` t(y) → S ` t(y)

S;u(x) ` v(y) → S ` v(y)

These formulas are relevant for our application. Indeed, the secrecy axiom
described in Section 1.1 is an axiom of the second form. The axioms of the first
form are useful to express e.g. non malleability of encryption:

∀X, x, y. X ` x X; dec(x, k) ` n(y) → X ` n(y) ‖ P (x)

The decryption of a deducible message x does not help to learn a nonce n(y),
provided that x does not appear as subterm of X, which can be encoded in a
predicate P .

We show again in this case that the satisfiability is in PTIME. The first
idea consists in seeing these clauses as new inference rules. For instance the first
above axiom can be seen as a generalized cut (it is a cut when u(x) = x). As
before, we first consider the entailment problem for deduction atomic formulas,
which in turn can be seen as an entailment problem for Horn clauses. This can
also be easily reduced to the problem of deducing the empty clause.

We design a strategy, which is complete for this extended deduction system
and for which the proof search is in PTIME. Let us explain how it works. With
the usual cut rule (and not the extended one above), whether the empty clause
can be derived, can be decided in PTIME using a unit strategy. This is not
the case with an extended cut rule. However, introducing some new rules and
additional syntactic constructions, we design a proof system, whose expressive
power is the same as the original proof system, and for which the unit strategy
is complete, yielding a PTIME decision procedure. In other words, our strategy,
that cannot be explained as a local strategy of application, can be reduced to a
unit strategy, thanks to some memorization.

Adding constraints. Our application case requires to consider constraints, typ-
ically expressing that some term does not occur in the left side of a deduction
relation. Such constraints have good stability properties: if they are satisfied by
two sets of literals, then they are satisfied by their union and, if a constraint is
satisfied by a set of literals S, then it is satisfied by any subset of S. Our main
restriction is however that there are only a fixed set of possible constraints. We
show again that the satisfiability is in PTIME.

4

We cannot simply use the previous strategy, checking that constraints are
satisfied whenever we need to apply them. The extended deduction system of
the previous section is proved to be complete by a proof transformation that may
not preserve constraint satisfaction. We therefore refine the strategy, memorizing
additional information in the formulas: on the one hand, we store the constraints
that are necessarily satisfied by all instances of the clause (this is inherited in the
deduction rules) and, on the other hand, the constraints that have to be satisfied
in the remainder of the proofs. Using this new syntax and inference rules, we
show that they do not increase the expressiveness and yet that the unit strategy
is refutation complete for these new rules. This shows the PTIME membership.

In the next step, we show that the entailment problem is decidable in PTIME
in this new syntax. We need however to memorize a third component, which
depends on the instance of the entailment problem.

Final result. From the previous paragraphs, we can build a PTIME entailment
algorithm which, given S1 ` t1 . . . Sn ` tn, S ` t and clauses

A1 =
{

S ` x, S;ui(x) ` t(y) → S ` t(y) ‖ Γi

S; sj(x) ` v(y) → S ` v(y) ‖ ∆j

where Γi,∆j are finite sets of constraints, decides in PTIME whether S1 `
t1, . . . , Sn ` tn, A1, A0,A |= S ` t.

This algorithm can be used as an oracle in a variant of the Basin and
Ganzinger algorithm, to decide the satisfiability of a set of clauses including for-
mulas extending A0, A1 together with ground clauses with equality. Altogether,
we obtain a PTIME procedure for arbitrary ground clauses and saturated Horn
clauses (as in Basin & Ganzinger), together with the aforementioned clauses.
This is exactly what we needed for our application, that is checking satisfiability
of clauses corresponding to the computational security of a protocol.

Beyond our tractability results, we hope that our techniques and ideas of
memorization can be reused in other contexts for the design of efficient strategies.

2 Formal setting

Let F be a finite set of function symbols (together with their arity) and P be
a finite set of predicate symbols together with their arity. T (F) is the set of
ground terms built on F (which is assumed to contain at least one constant)
and T (F ,X) is the set of terms built on F and a set of variable symbols X . We
also use set variables (written using upper case letters X, Y, Z, ...) ranging in a
set SX and a function symbol, denoted by a semicolon, for set union. Extended
terms ET (F ,X ,SX) are expressions s1; . . . ; sn where si ∈ T (F ,X) ∪ SX . As
a shortcut, when n = 0 in the previous definition we denote the extended term
as ∅. A basic ordering is an ordering on terms, which is : 1. Compatible with
substitutions and 2. such that, for every ground term t, the number of terms
smaller than t is polynomial in the size of t. (An example of such an ordering is
the subterm ordering).

Atomic formulas are of the following forms:

5

– P (t1, . . . , tn) where P ∈ P and t1, . . . , tn ∈ T (F ,X)
– t1 = t2 where t1, t2 ∈ T (F ,X)
– S ` t where t ∈ T (F ,X) and S ∈ ET (F ,X ,SX).

We consider clauses that are built on these atomic formulas. The axioms for the
set theory ACIN (associativity, commutativity, idempotence and neutral element
∅) are implicitly assumed without mention on the left side of the `. As usual,
Horn clauses are clauses with at most one positive literal.

Given an extended term S and a substitution σ, mapping variables of SX
to finite subsets of T (F) and variables of X to terms in T (F), Sσ is defined by
∅σ = ∅, (s;S)σ = {sσ}∪Sσ if s ∈ T (F ,X), and (X;S)σ = Xσ∪Sσ if X ∈ SX .

3 Tractability of deducibility axioms

We first consider the consistency problem of a very specific case: let C be a set
of ground clauses built on the deducibility predicate only. Is C ∪ {→ X;x `
x, X ` x → X; y ` x, X ` x, X;x ` y → X ` y} consistent? (We call
respectively r(eflexivity), w(eakening) and t(ransitivity) the three last clauses).

Consider for instance a ground clause a1, . . . , an ` a →⊥. If we simply use
a unit resolution strategy (which is refutation complete for Horn clauses), this
single clause, together with the weakening clause, may generate all unit clauses
S ` a →⊥ where S ⊆ {a1, . . . , an}. This should be avoided since we seek for a
polynomial time algorithm. Similar problems occur with transitivity, if we try to
use binary resolution with a simple strategy. Here is a more concrete example.

Example 1. Let C = {a1; a2; a3`a0 →⊥, → a1; a4`a0, → a2`a4}. C∪{w, t}
is provably unsatisfiable using binary resolution modulo ACIN only.

→ a1; a4`a0 X1`x1 → X1; y1`x1

→ a1; a4; y1`a0 X2`x2, X2;x2`y2 → X2`y2

a1; y1`a4 → a1; y1`a0

with unifiers X1 = a1; a4, X2 = a1; y1, x1 = a0, x2 = a4 and y2 = a0

a1; y1`a4 → a1; y1`a0

→ a2`a4 X3`x3 → X; y3`x3

→ a2; y3`a4

→ a1; a2`a0

with unifiers X3 = a2, y1 = a2 and y3 = a1

and

→ a1; a2 ` a0 X4 ` x4 → X4; y4 ` x4

→ a1; a2; y4 ` a0 a1; a2; a3 ` a0 →⊥

⊥

with unifiers X4 = a1; a2, x4 = a0 and y4 = a3.

6

This derivation introduces the clause → a1; a2 ` a0, where a1; a2 is a new
set (i.e. it does not appear in the initial sets). This is actually unavoidable: any
derivation of the empty clause requires as an intermediate step the derivation of
either → a1; a2 ` a0 or a1; a4; a3 ` a0 →⊥. Both of them involve sets that are
not in the initial class.

However if we move from the object level to the meta-level, viewing weakening
and transitivity as inference rules and deducibility atoms as clauses, we can at
least solve this very particular case. More precisely, consider the inference system:

R
X;x ` x

X ` x
W

X; y ` x

X ` x X;x ` y
T

X ` y

where X is a logical variable ranging over extended terms and x, y are logical
variables ranging over terms.
Let R,W,T be the derivability relation associated with these two inference rules.

Lemma 1. Given ground atomic formulas S1 ` t1, . . . , Sn ` tn and S ` t, we
can decide in linear time whether {S1 ` t1, . . . , Sn ` tn} R,W,T S ` t.

Proof. We associate with each term occurring in S1∪ . . .∪Sn∪S∪{t1, . . . , tn, t}
a proposition variable. We claim that S1 ` t1, . . . , Sn ` tn R,W,T S ` t iff S → t
is derivable from S1 → t1, . . . , Sn → tn using the propositional binary resolution,
excluded middle and weakening rules only. Indeed we notice that T , R and W
can be simulated by resolution and excluded middle. For W the proof rewriting
is straightforward. We present the proof rewriting for T and R :

S` t S; t`u
T

S`u
=⇒

S → t S, t → u
Res

S → u

R
S; t` t

=⇒
Excl

t → t
====== Weak
S, t → t

Conversely the resolution, excluded middle and weakening can be simulated
by R, T and W . The proof rewriting is straightforward for excluded middle and
weakening, we only present it for resolution :

S1 → t S2, t → u
Res

S1, S2 → u
=⇒

S1` t
======= W
S1;S2` t

S2; t`u
========= W
S1;S2; t`u

T
S1;S2`u

Then derivability of S → t is equivalent to unsatisfiability of S1 → t1, . . . , Sn →
tn, S,¬t (where Si is a shortcut for the conjunction of propositional variables cor-
responding to terms occurring in Si), which can be decided in linear time: it is
a HornSat problem.

Now, the trick of viewing the clauses w, t as new inference rules allows to
decide our problem in PTIME. We write Resu+R+W+T for the derivability
with inference rules R, W , T and unit resolution.

7

Lemma 2. Given a set of ground Horn clauses (built on `) C, the satisfiability
of C ∪ {r, w, t} is decidable in cubic time.

Proof. We show first that C ∪ {r, w, t} is unsatisfiable iff the empty clause can
be derived from C, using unit resolution R + W + T . If we can derive the empty
clause in this system, then we can derive the empty clause from C ∪ {r, w, t} by
resolution, thanks to simple proof rewriting rules :

R
S; t` t

=⇒ S; t` t (instance of r)

π1

S` t
W

S;u` t

=⇒
π1

S` t
X `x → X; y`x

Res
S;u` t

π1

S` t
π2

S; t`u
T

S`u

=⇒

π1

S` t
X;x`y, X `x → X `y

Res
S; t`y → S`y

π2

S; t`u
Res

S`u

Conversely, if we cannot derive the empty clause from C using unit resolution R
+ W + T , then let M = {S ` u | C Resu+R+W+T S ` u}. We claim that M is
a model of C ∪{r, w, t}: As M is closed by R,W, T , it is a model of {r, w, t} and,
if B1, . . . , Bn → H ∈ C, then either Bi /∈ M for some i or else, by construction,
for every i, C Resu+R+W+T Bi, hence, by unit resolution, C Resu+R+W+T H.
In all cases, M |= B1, . . . , Bn → H.

It only remains to prove that whether C Resu+R+W+T⊥ or not can be
decided in cubic time. Let B be the set of atomic formulas occurring in C. Let
M be the least fixed point of

f(X) = {S ` u ∈ B | C ∪X Resu S ` u or C ∪X R+W+T S ` u}

Since f is monotone, there is a least fixed point, which is contained in B. Com-
puting M can be performed in quadratic time, as there are at most |B| iterations
and each step requires at most a linear time, thanks to the Lemma 1.

If the empty clause can be derived from M, C using unit resolution, then
C Resu+R+W+T⊥. Let us show the converse implication. For this, we prove,
by induction on the proof size that, for every atomic formula S ` t ∈ B,
C Resu+R+W+T S ` t implies S ` t ∈M.

8

If the last rule of the proof is a unit resolution, then the proof can be written:

π1

S1 ` t1

π2

S2 ` t2

πn

Sn ` tn
(S1 `t1, . . . , Sn `tn→S`t) ∈ C

S1` t1, . . . , Sn` tn → S` t

S1 ` t1, . . . , Sn−1 ` tn−1 → S ` t
...

S1 ` t1, S2 ` t2 → S ` t

S1 ` t1 → S ` t

S ` t

S1 ` t1, . . . , Sn ` tn ∈ B and, by induction hypothesis, S1 ` t1, . . . , Sn ` tn ∈M.
It follows that M, C Resu S ` t, hence S ` t ∈ f(M) = M.

If the last rule of the proof is W or T , then there are atomic formulas S1 `
t1, . . . , Sn ` tn such that S1 ` t1, . . . , Sn ` tn R+W+T S ` t and, for every i,
either Si ` ti ∈ C or the last rule in the proof of Si ` ti is a resolution step and, as
noticed previously all, Si ` ti are in B. In all cases Si ` ti ∈ B and, by induction
hypothesis, Si ` ti ∈M. By definition of the function f , S ` t ∈ f(M) = M.

If C Resu+R+W+T⊥, then there is a negative clause S1 ` t1, . . . , Sn ` tn →⊥
in C such that, for every i, C Resu+R+T+W Si ` ti, hence Si ` ti ∈ M as we
just saw. Then ⊥ can be deduced from C,M using unit resolution (which can
be decided in linear time again).

Example 2. Applying Lemma 2 to Example 1, checking the satisfiability of C ∪
{r, w, t} simply amounts into checking whether {a1; a4 → a0, a2 → a4} (does
not) entail a1; a2; a3 → a0.

3.1 Adding equality

Now, we assume that atomic formulas in C may contain equalities on terms (not
extended terms). The equality axioms (the equality is a congruence) are implicit
in what follows.

Lemma 3. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} is decidable in polynomial time.

Proof sketch: First, we extend the Lemma 1. Given a finite set of equations E,
the transitivity rule is extended to

x =E z X ` x X; z ` y
T (E)

X ` y

Given S1 ` t1 . . . , Sn ` tn, S ` t and a finite set of ground equations E, we
can decide in polynomial time whether S1 ` t1, . . . , Sn ` tn R,W,T (E) S ` t.
We only have to check, for every pair of terms u, v in S1, t1, . . . , Sn, tn, S, t,
whether u =E v. This can be completed in polynomial time, for instance using

9

a quadratic time congruence closure algorithm. We may then choose one repre-
sentative for each congruence class and use the same proof as in the Lemma 1
on the representatives.

Then, as in the lemma 2, we consider the set B` of atomic formulas S ` t
occurring in C and B= the set of equations occurring as atomic formulas in C.
We consider the monotone function

f(X, E) = ({S ` t ∈ B` | C ∪X Resu(E) S ` t or C ∪X R+W+T (E) S ` t},
{s = t ∈ B= | C ∪X Resu(E) s = t})

where Resu(E) is the unit resolution on representatives of the clauses w.r.t. E.
The least fixed point of f can be computed in polynomial time, as each

iteration is polynomial and there is a polynomial number of iterations. C∪{r, w, t}
is satisfiable iff the empty clause can not be derived by unit resolution from this
least fixed.

3.2 Adding a function axiom

We extend now the clauses specifying ` with the clauses (denoted by f(F) later):
X ` x1, · · · X ` xn → X ` g(x1, . . . , xn), for every function symbol g
in a set of function symbols F (which is later omitted).

Lemma 4. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} ∪ f(F)} is decidable in polynomial time.

Proof sketch: Again, adding an inference Fg for each of the new clauses, we
first show that deciding S1 ` t1, . . . , Sn ` tn R+W+T (E)+{Fg,g∈F} S ` t is in
PTIME. We use a proof similar to the Lemma 3, with an additional observation:
given a finite set E of ground equations and ground terms t1, . . . , tn, t, we can
decide in PTIME whether there is a context C (built using function symbols
in F) such that C[t1, . . . , tn] =E t. To prove this we may for instance compute
a tree automaton At that recognizes the equivalence class of t and decide the
emptiness of the intersection of L(At) with the set of terms C[t1, . . . , tn]. All
these steps can be performed in a total time, which is polynomial in the size of
E, t1, . . . , tn, t.

Example 3. b ` c, ` a R+W+T (g(g(a))=b)+Fg
` c since there is a context C (with

C[] = g(g())) such that C[a] = b.

4 More clauses using the deducibility predicate

We now enrich the class of clauses involving the deducibility predicate. Given
a term p (later called the pattern), we consider a finite set of clauses of the
following forms:

cs(u) : X;u ` p → X ` p where u is a term that does not share variables with p

10

cc(w) : X ` y, X;w ` p → X ` p where w is a term that does not share variables
with p, and y is a variable of w.

Example 4. The secrecy axiom described in introduction

X; enc(x, pk) ` n(y) → X ` n(y)

is an instance of the first class of clauses above, with p = n(y) and u = enc(x, pk).
The condition sk /∈ X requires constraints, that are considered in Section 5.

As explained in the previous section, we may turn the additional clauses into
new inference rules, using ≤E , the matching modulo E (a term t satisfies u ≤E t
if there is a substitution σ such that t =E uσ).

u ≤E x X;x ` p
Stru

X ` p

(y, w) ≤E (x, z) X ` x X; z ` p
Cutw

X ` p

Let I be the inference system defined by a finite collection of rules Stru,Cutw,
the rules R,W, T (E) for a finite set of ground equations E and the rules Fg for
a set of function symbols g.

We are going to prove that, again, I can be decided in polynomial time. How-
ever, we cannot use the same proof as in the previous section. S1 ` t1, . . . , Sn `
tn I S ` t can no longer be reduced to a problem S1 → t1, . . . , Sn → t1, S Resu

t (modulo a PTIME oracle).

Example 5. Assume E is empty and we have a single rule Cutf(x,k) for the pat-
tern p = n. f(a, k) ` f(b, k), f(b, k) ` n I a ` n:

R
a ` a

f(a, k) ` f(b, k)
W

a; f(a, k) ` f(b, k)

f(b, k) ` n
W

a; f(a, k); f(b, k) ` n
T

a; f(a, k) ` n
Cutf(x,k)

a ` n

We cannot use a unit version of T (or resolution) in this example. And moving
to a general binary resolution would yield an exponential procedure.

As before, after turning the clauses into inference rules, we turn the deducibil-
ity atomic formulas into clauses. We call again I the resulting inference system.
We have to be careful however: this is a purely syntactic transformation and the
inference rules resulting from this translation are no longer correct in a classical
semantics. For instance Cutw becomes

A1, . . . , An → y w,B1, . . . , Bm → p

A1, . . . , An, B1, . . . , Bm → p

where the premises are matched modulo a set of ground equations E.
In order to apply a simple fixed point computation, we would like to be

able to transform any proof into a unit strategy proof. Since this is not possible

11

with the current proof system (as shown by Example 5), we introduce additional
inference rules that will allow such a strategy, however bookkeeping what the
rest of the proof owes, in order to enable a translation back into the original
proof system.

Example 6. Continuing Example 5, the unit proof of → n from the hypotheses
→ a, f(a, k) → f(b, k), f(b, k) → n will look like this:

→ a f(a, k) → f(b, k)
Cut1f(x,k)→p f(b, k) f(b, k) → n

Cut2

→ n

The rule Cut1u is a generalisation of Cutu since the constraint of being an instance
of the pattern p on the right is dropped. It bookkeeps however a duty as a mark
p on the arrow. The mark on a clause S →p t can in turn be erased only when a
clause S′, t → p is one of the premises. Such a mechanism allows both to use a
complete unit strategy and to enable reconstructing an original proof from the
extended one, as we will prove (here the annotation is erased in the last rule as
the second premise is an instance of S, f(x, k) ` n).

Intuitively, the head s of a marked clause can only be used in a proof that
will end up deriving an instance of the pattern.

We extend the syntax, allowing both unmarked clauses S → t and marked
clauses S →p t. For simplicity, we first do not consider the set of ground equations
E nor the function axioms. We write S →? t when it does not matter whether
the arrow is marked or not. We then consider the inference system J consisting
of T (E), W and the following rules (for each Cutw there are two rules Cutiw and
for each rule Stru there are two rules Striu):

A1, . . . , An →? x B1, . . . , Bm, w →? v
Cut1w

A1, . . . , An, B1, . . . , Bm →p v

A1, . . . , An →? x w, B1, . . . , Bm → p
Cut2w

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →? x B1, . . . , Bm, x →? v
Cut1

A1, . . . , An, B1, . . . , Bm →? v

in which the conclusion is marked iff one of the premises is marked.

A1, . . . , An →? x x, B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An, u →? x
Str1u

A1, . . . , An →p x

A1, . . . , An, u →? p
Str2u

A1, . . . , An → p

Note that the above system has no classical semantics.

12

Lemma 5. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S I→ s if and
only if S J→ s.

Proof sketch: For one implication we prove that W is not necessary, hence I
can be simulated by J . For the other implication, we rewrite a proof in J as
follows. We consider a last rule that introduces a mark. Since the marks must
eventually disappear, there is also a matching rule that removes the mark. This
part of proof is then rewritten as explained on the following example:

Sn → tn

S2 → t2

S1 → t1 S, wσ → vσ
Cut1w

S1, S →p vσ
Cut1w2

S′2 →p vσ
...

Cut1wn
S′n →p vσ S0, tσ

′ → pθ
Cut2t

S0, S
′
n → pθ

rewrites to

Sn → tn

S1 → t1

S, wσ → vσ S0, tσ
′ → pθ

Cutt
S0, S, wσ → pθ

Cutw
S0, S1, S → pθ

...
Cutwn

S0, S
′
n → pθ

The proof rewriting terminates and we end up with a proof in I. See Appendix
A for more details.

The unit strategy for J consists in applying the rules only when n = 0 for
the Cutiw rules (i.e. when the left premise of a Cutiw is a unit clause).

Lemma 6. If S J→s then →s is derivable from S in J using the unit strategy.

Proof sketch: We prove it by induction on the proof size. We assume w.l.o.g. that
all proofs of literals (whether marked or not) labeling a node in the proof (except
the root) use a unit strategy. We consider the last step that does not comply with
the unit strategy. If A1, . . . , An →? s is its conclusion, then all atoms A1, . . . , An

can be proved in J with the unit strategy. We therefore simplify the premises
accordingly, which yields an inference rule complying with the unit strategy.

Theorem 1. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S, together with T,W and finitely many clauses cs, cc, that
are built on the same pattern p.

Proof sketch: we first observe that, thanks to the lemmas 5 and 6 (and using a
fixed point computation), it is possible to decide in PTIME whether, given the
ground atoms S1 ` t1, . . . , Sn ` tn, S ` t, S1 ` t1, . . . , Sn ` tn I S ` t. We then
conclude using an argument similar to the one given in Section 3.

13

4.1 Adding other predicate symbols

We now consider the case where the clauses cs, cn, cc are guarded with literals
built on a set of predicate symbols P not containing ` and that are defined using
a saturated set of Horn clauses A0. For instance, cc(w) is extended to clauses
of the form P1(s1), . . . , Pn(sn), X ` y, X;w ` p → X ` p. The variables of
s1, . . . , sn are assumed to be a subset of the variables of w, y.

We modify the rules Cutiw adding as premises the literals P1(s1), ..., Pn(sn).
Lemma 5 still holds, provided we add to S finitely many ground atoms on the
new alphabet of predicates. To see this, we need to check that the proof trans-
formation yields the same instances of Pi(si). Lemma 6 is unchanged. These
properties rely on the fact that guards (and their instances) do neither depend
on the set variable X (nor its instances) nor on the instances of the pattern.

Theorem 1 can then be extended to this case: when computing the fixed
point, the instances of applicable inference rules are known at each step and
we only have to check whether the corresponding instances of the guards are
consequences of A0 (and possibly a finite set of ground atoms), which can be
performed in PTIME, thanks to [6]. As a consequence, we get:

Theorem 2. Let P be a set of predicate symbols, not containing `,= and A0 be
a set of Horn clauses built on P and which is saturated w.r.t. a basic ordering.
If S is a set of ground clauses built on ` (possibly with guards using P), we can
decide in PTIME the satisfiability of S ∪ A0, together with T,W and finitely
many clauses cn, cs, cc, that are built on the same pattern p and which may be
guarded by atomic formulas that use the predicate symbols in P.

4.2 Adding equality

We can extend again Theorem 2 to ground equalities in the atomic formulas of
S. The procedure is the same as in Lemma 3: for a fixed E, Lemmas 5 and 6
can be extended, considering representatives modulo =E . Then we only have to
compute a fixed point of a function f on the atomic formulas of S, using the
PTIME oracles provided by (extensions of) Lemmas 5 and 6.

5 The general case

Finally, we extend the results of the previous section to clauses with constraints.
A constraint Γ is a formula interpreted as a subset of ((T (F))∗)n (n-uples

of finite sets of ground terms) if n is the number of free variables of Γ . We write
S1, . . . , Sn |= Γ when (S1, . . . , Sn) belongs to this interpretation. A constrained
clause is a pair of a clause and a constraint, which is written φ ‖ Γ . Given
a constrained clause φ ‖ Γ , we let Jφ‖Γ K = {φσ‖σ satisfies Γ}. A model of
φ ‖ Γ is, by definition, a model of Jφ‖Γ K. A constraint Γ is monotone if

– if S1, . . . , Sn |= Γ and, for every i, S′i ⊆ Si, then S′1, . . . , S
′
n |= Γ

– if S1, . . . , Sn |= Γ and S′1, . . . , S
′
n |= Γ , then S1 ∪ S′1, . . . , Sn ∪ S′n |= Γ .

14

We typically use constraints of the form t /∈ X (where t ∈ T (F)), satisfied by
any S that does not contain t as subterm. Such constraints are monotone.

Adding a fixed set of possible constraints increases significantly the difficulty:
Lemmas 5 and 6 no longer hold, as shown by the following example:

Example 7. Consider the clause cf(y,k) : X ` y, X; f(y, k) ` n → X `
n ‖f(a, k), f(b, k), f(c, k) /∈ X. Consider the ground deducibility formulas: S =
{(f(a, k) ` f(b, k), f(b, k); f(c, k) ` n}. Does cf(y,k) and S entail a; c ` n ?

Following the procedure of Section 4,

→ c

→ a f(a, k) → f(b, k)
Cut1f(y,k)→p f(b, k) f(b, k); f(c, k) → n

Cut2

f(c, k) → n
Cut2f(y,k)→ n

in which each Cutif(y,k) satisfies the constraint that f(a, k), f(b, k), f(c, k) do not
appear in the context: the instance of X is empty in each case. The procedure
would then incorrectly answers “yes” to the entailment question.

Indeed, the proof rewriting of Lemma 5 yields the following (invalid) proof,
in which the constraints are not satisfied in the first application of Cutf(x,k),
since the corresponding instance of X is the one element set f(c, k) :

→ c

→ a

f(a, k) → f(b, k) f(b, k); f(c, k) → n
Res

f(a, k); f(c, k) → n
Cutf(x,k)

f(c, k) → n
Cutf(x,k)→ n

Our solution consists in designing another inference system, along the same
ideas as before, for which Lemmas 5 and 6 still hold. To do so, we memorize more
information in the mark (typically the constraints that need to be satisfied) so
that the matching rule (removing the mark) can be applied only if the actual
clauses would satisfy the constraints recorded in the mark.

Example 8. To explain the main idea, we give a simplified example of how the
new proof system works. Coming back to Example 7, in our system we gety:

→ a f(a, k) → f(b, k)
Cut1f(y,k)→f(a,b),f(b,k),f(c,k)/∈X f(b, k)

But we cannot apply Cut2 since its application requires that the context satisfies
the constraint in the mark, which is not the case. We could apply a Cut1, without
removing the mark but then the mark could not be removed any more since the
marks can never be removed from the “pattern premisse” of a Cutiw rule.

15

If the clause is less constrained, for instance assume that we only impose
f(b, k) /∈ X, then we can prove → n as follows:

→ c

→ a f(a, k) → f(b, k)
Cut1f(y,k)→f(b,k)/∈X f(b, k) f(b, k); f(c, k) → n

Cut2

f(c, k) → n
Cut2f(y,k)→ n

This time, we may remove the mark, as the instance of X is the singleton
{f(c, k)}, that does not contain f(b, k).

We get an analog of Lemmas 5 and 6, which yields a PTIME decision pro-
cedure (because the number of possible marks is fixed).

Theorem 3. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S together with T,W and finitely many constrained clauses
cs, cc built on the same pattern p, provided the constraints are monotone.

Again, this can be extended, as in the theorem 2, guarding the clauses with
predicates that are defined by a saturated set of Horn clauses A0 (w.r.t. a basic
ordering). This can be extended also to the case where S contains equalities.

6 Conclusion

We designed a technique for proving tractability of a collection of proof systems
(or Horn clauses): the idea is to extend the proof system with marked clauses such
that the expressivity is unchanged while the unit strategy becomes complete. Our
technique captures a class of clauses relevant to a computer security application.

PTIME membership is obtained by nesting PTIME oracles. We did not suc-
ceed however in showing a more abstract combination result allowing, say, to
combine two tractable inference systems, one of which depends on the other.
For instance, when we add guards to another system (resp. equalities in the
input clauses) we would like to get automatically a tractability property from
the tractability of the system without guards (resp. without equality) and the
tractability of the guards entailment (resp. tractability of the word problem).

Another perspective is to provide a more abstract statement of the proof
method, which does not rely on the specific deducibility predicate. Moreover, our
work is not fully complete since we did not consider the function and reflexivity
axioms in the two last sections. We could also investigate the case of several
patterns and/or constraints that involve both a (non-ground) term and a set.

References

1. M Abadi and P. Rogaway. Reconciling two views of cryptography (the computa-
tional soundness of formal encryption). J. Cryptology, 15(2):103–127, 2002.

16

2. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao
style cryptographic library. In 17th IEEE Computer Science Foundations Work-
shop (CSFW’04), pages 204–218, 2004.

3. G. Bana, P. Adao, and H. Sakurada. Computationally complete symbolic attacker
in action. In 32nd Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’12), pages 546–560, 2012.

4. G. Bana and H. Comon-Lundh. Towards unconditional soundness: Computation-
ally complete symbolic attacker. In 1st International Conference on Principles of
Security and Trust (POST’12), volume 7215 of LNCS, pages 189–208, 2012.

5. G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin. Computer-aided
security proofs for the working cryptographer. In Advances in Cryptology
(CRYPTO’11), volume 6841 of LNCS, pages 71–90. Springer, 2011.

6. D. Basin and H. Ganzinger. Automated complexity analysis based on ordered
resolution. J. of the Association of Computing Machinery, 48(1):70–109, 2001.

7. B. Blanchet. A computationally sound mechanized prover for security protocols.
In IEEE Symposium on Security and Privacy (S&P’06), pages 140–154, 2006.

8. H. Comon and R. Treinen. The first-order theory of lexicographic path orderings
is undecidable. Theoretical Computer Science, 176(1-2):67–87, April 1997.

9. A. Datta, A. Derek, J.C.Mitchell, and B.Warinschi. Computationally sound com-
positional logic for key exchange protocols. In 19th IEEE Computer Security Foun-
dations Workshop (CSF’06), pages 321–334, 2006.

10. David McAllester. Automatic recognition of tractability in inference relations.
Journal of the ACM, 40(2), 1993.

11. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence
of active adversaries. In Theory of Cryptography Conference (TCC 2004), volume
2951 of LNCS, pages 133–151, 2004.

12. R. Nieuwenhuis and A. Rubio. Handbook of Automated Reasoning, chapter
Paramodulation-Based Theorem Proving. Elsevier Science and MIT Press, 2001.

A Proof of lemma 5

Lemma 5. Let S be a set of ground clauses, and s be a ground term. In case
E = ∅ and removing the function and reflexivity axioms from I, S I→ s if and
only if S J→ s.

Proof. We first prove that, if there is a proof Π of s in I from S, then there is
a proof Π ′ without W . Indeed, we may push W to the bottom of the proof as
follows:

A1, . . . , An → x
W

A1, . . . , An, C → x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm, C → p

can be rewritten to

A1, . . . , An,→ x B1, . . . , Bm, w → p
Cutw

A1, . . . , An, B1, . . . , Bm,→ p
W

A1, . . . , An, B1, . . . , Bm, C → p

17

W also commutes with the rules Stru. Since the proof of a unit clause cannot
end with W , Π does not contain W .

Now let us show that if there is a proof of → s in J then there is a proof
of → s in I : Consider a minimal (in number of Cut1, Cut1w, Str1u rules) proof
Π of S → t in J . Consider a subproof Π ′ of Π that uses once Cut2w, as a last
inference rule. We show that Π ′ can be rewritten into a strictly smaller proof
(w.r.t. the size). This contradicts the minimality of Π, hence this proves that
the minimal size proof does not make use of any extra rule.

First note that, according to labels inheritance, once a clause is annotated,
then the label cannot be removed completely, unless we apply Cut2w or Cut2.
Since the leaves of Π ′ are not annotated, we can write Π ′ as :

...

...
π1

S1 → t
R1

...
Rn

Sn →p t
π2

S, wσ → pσ
Cut2w

Sn, S → pσ

where R1, . . . , Rn are Cut1w, Cut1 or Str1u.
We argue that Π ′ can be rewritten into

...

...

π1

S1 → t
π2

S, wσ → pσ
Cut2w

S1, S → pσ
R̃1

...
R̃n

Sn, S → pσ

This is a strictly smaller proof. It only remains to define the rules R̃i and check
that the above proof is a valid proof in the new inference system indeed.

If Rk =
V k

2 →p tk V k
1 , w′σ →p t

Sk →p t

We let R̃k =
V k

2 →p tk S, V k
1 , w′σ → pσ

S, Sk → pσ

The rule Cut1w′ is therefore replaced with a rule Cut2w′ .

If Rk =
V k

1 , vσ →p t

V k
1 →p t

we let R̃k =
S, V k

1 , vσ → pσ

S, V k
1 → pσ

The rule Str1v is replaced with a rule Str2v.
It is now enough to note that the choice of R̃k ensures that Π ′ is a valid

proof in the I inference system.

18

B Proof of tractability of deducibility axioms

B.1 Adding equalities

Let us recall the transitivity rule:

X ` x X; z ` y x =E z
T (E)

X ` y

We define the unit resolution rule with equalities Resu(E) as follows, where
the predicate p ranges over = and `

p(t1, t2) p(u1, u2), A1, · · · , An → B
t1 =E u1, t2 =E u2

A1, · · · , An → B

We also define an equality elimination rule Elim(E) as follows :

t1 = t2, A1, · · · , An → B
t1 =E t2

A1, · · · , An → B

Lemma 7. Given a list of terms S1 ` u1, · · · , Sn ` un, a finite set of ground
equations E and a goal term S ` u, the problem E,S1 ` u1, · · · , Sn ` un, (x `
x)x∈T ?

W,T (E) S ` u is decidable in polynomial time with access to an oracle
deciding E.

Proof. Let T be the set of terms occurring in S1, . . . , Sn, S, u1, . . . , un, u. Split T
into disjoint equivalence classes modulo E, calling (at most) a quadratic number
of times the oracle deciding E. For each equivalence class, choose a representative
and replace the terms in S1 ` u1, · · · , Sn ` un, S ` u with their representatives.
Then, the resulting entailment problem can be turned into a HornSat problem (as
before), replacing every representative of an equivalence class with a proposition
variable.

We then get the main lemma :

Lemma 3. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} is decidable in polynomial time.

Proof. Let B1 be the set of occurring in C. Let B2 be the set of S ` t occurring
in C, as well as ⊥.

We want to compute the least fixed point of the following function F which
takes as input a set of equations E ⊆ B1 and a set of ` literals B and returns E′

and B′ built as follows :

B′ = {S ` t ∈ B2|C ∪B Resu(E),Elim(E) S ` t}∪{S ` t ∈ B2|B R,W,T (E) S ` t}

E′ = {u = v ∈ B1|C ∪ B Resu(E),Elim(E) u = v}

Our algorithm answers Unsatisfiable iff ⊥ is derivable using from the least
fixed point of F using unit resolution.

19

E is always a finite (polynomially bounded) set of ground equations. Hence
there is an polynomial time oracle that decides the equality modulo E, for in-
stance using a congruence closure algorithm. Then, thanks to lemma 7, F can
be computed in polynomial time. Furthermore, the number of iterations of F is
linear. Hence the fixed point cand be computed in polyniomial time.

Let Bf , Ef be the least fixed point of F . Let us prove now that C ∪ {r, w, t}
is satisfiable iff ⊥/∈ Bf .

If ⊥∈ Bf , then C ∪{r, w, t} is unsatisfiable since every deduction step used in
the computation of F is a consequence of C ∪{r, w, t} (and the equality axioms).

Conversely, if ⊥/∈ Bf , we consider the first-order structure M, in which the
interpretation domain is the quotient T / =Ef

of the set of ground terms by
the congruence generated by Ef and the interpretation of ` is the set {S `
t | B2 R,W,T (Ef) S ` t}.

M is, by construction, a model of r, w, t. If S1 ` t1, . . . , Sn ` tn, u1 =
v1, . . . , um = vm → H is a clause of C, and, for every i, M |= Si ` ti and,
for every j, uj =Ef

vj , then, for every i, Bf R,W,T (Ef) S ` ti. Hence Si ` ti is
in the first component of F (Bf , Ef), hence in Bf .

It follows that, Bf , C Resu(E),Elim(E) H. Hence H 6=⊥ and H is in either
components of F (Bf , Ef) = (Bf , Ef). Therefore M |= H.

We have proved that M is a model of each clause of C. Since it is a model of
t, w, r, this concludes the proof.

B.2 Adding a function axiom

First, note that the axiom Ff : S ` x1, · · · , S ` xn → S ` f(x1, · · · , xn) is
equivalent (modulo weakening and transitivity) to t1; . . . ; tnf

` f(u1, · · · , unf
)

Now we know by lemma ?? that C ∪ {r, w, t} ∪ f(F) is satisfiable if and only
if the empty clause is not derivable from C ∪ {t1; . . . ; tnf

` f(u1, · · · , unf
)|f ∈

F , u1, . . . , unf
∈ T } with the rules T (E), Resu(E), Elim(E) and W .

Lemma 8. Given a set of ground equations E, a set of ground terms u, t1, . . . , tn,
and F a set of function symbols. The problem ∃C.C[t1, . . . , tn] = u with C
(multi)context built on F is decidable in polynomial time.

Proof. We proceed as follows (the steps will be precised later) :

1. Build a tree automaton A (of polynomial size) that recognizes the set of all
t such that t =E u.
(a) Compute (in polynomial time in |E|) a flat convergent rewriting system

R for E (of polynomial size in the size of E).
(b) Build a tree automaton (of polynomial size in |R| + |t|), which accepts

the terms that rewrite to t↓R.
2. Build a tree automaton B (of polynomial size in Σi|ti|) that recognizes the

language {C[t1, . . . , tn]}.
3. Check (in polynomial time in |A|+ |B|) whether L(A) ∩ L(B) = ∅.

20

1a - We add a constant cu for every subterm u of E, t and add an equation
cu = u to E. In this way, we may now assume w.l.o.g that every equation in
E has the form f(a1, . . . , an) = a or a1 = a. We choose an arbitrary linear
order on symbols in which the non-constant function symbols are greater than
the constants and run a Knuth-Bendix completion on E using a lexicographic
path ordering that extends this precedence. This yields a flat convergent rewrite
system R whose size is polynomial in E. This requires only a polynomial time.

1b - We want to recognize the set of terms u such that u↓R= t↓R. Note that
t↓R is a constant ct. Now build a tree automaton A as follows :

– the set of states of A is the set S of constants appearing in R,
– for each constant c add a transition c() → c

– for each rule f(a1, . . . , an) → a in R add a transition f(a1, . . . , an) → a in
A

– for each rule a1 → a in R and every transition f(a1, . . . , an) → a1 replace
a1 by a in the transition (applying this point starting from the highest a1 in
the order chosen to complete E).

– the accepting state of A is ct

Note that this procedure yields a polynomial size A in polynomial time. If A
recognizes u, it is clear that the accepting run of A can be seen as a rewrite
sequence from u to ct. Conversely, each accepting run on a term u yields a
rewrite sequence from u to ct.

2 - Build the tree automata A1, . . . ,An recognizing the terms t1, . . . , tn
with accepting state q0. Now let A′ be the automaton recognizing the language
t1, . . . , tn with accepting state q0 (it is the sum of the n previous automata). Let B
be the automaton obtained extending A′ with the transitions f(q0, . . . , q0) → q0.
Note that B is built in polynomial time and is of polynomial size. It is clear that
B recognizes the language {C[t1, . . . , tn]| C context built on F}.

3 - Build the product automaton that recognizes L(A)∩L(B) (of polynomial
size) and test for emptiness in polynomial time.

Lemma 9. Given a list of terms S1 ` u1, · · · , Sn ` un, a finite set of ground
equations E and a goal term S ` u, the problem S1 ` u1, · · · , Sn ` un, (t1; . . . ; tnf

`
f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T ?

W,T (E) S ` u is decidable in polynomial time.

Proof. Note that in the proof of lemma 7 we saturate S1 → u1 . . . Sn → tn, S,
modulo the unit verion of T (E) and check if we obtain u. Now, we need to
saturate S1 → u1 . . . Sn → tn, S,¬u, (f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T modulo the

unit version of T (E). Observe the following : if a function clause is used to derive
u then it is used in a proof that has the following structure (we omit here that

21

everything is done modulo E)

ti

tl t1, . . . , tn → f(t1, . . . , tn)

t1, . . . , tl−1, tl+1, . . . , tn → f(t1, . . . , tn)

. . .

ti → f(t1, . . . , tn)

f(t1, . . . , tn) f(t1, . . . , tn), A1, . . . , Ak → B

A1, . . . , Ak → B

In its turn either ti is a term in U =
⋃

i Si ∪ S ∪ {t1, . . . , tn} or its proof has the
structure shown above. Therefore, there exists v1, . . . , vl, w ∈ U (and the units
v1, . . . , vl are derivable) such that w = f(t1, . . . , tn) and C[v1, . . . , vl] =E w.
Note that this observation gives us the following :

E, S1 ` u1, · · · , Sn ` un,

(t1; . . . ; tnf
` f(t1, · · · , tnf

))f∈F,t1,...,tnf
∈T ?

W,T (E) S ` u

is decidable in PTIME by saturating E,S1 → u1, · · · , Sn → un, S by

x X, z → y
∃C.C[t1, . . . , tn] =E z

X → y

(where t1, . . . , tn are units provable with the previous rule) and checking whether
∃C.C[v1, . . . , vk] =E u where v1, . . . , vk are the units derived by the saturation.
As checking the condition ∃C.C[t1, . . . , tn] =E u is decidable in PTIME, the
saturation in in PTIME.

Lemma 4. Given a set of ground Horn clauses (built on ` and =) C, the sat-
isfiability of C ∪ {r, w, t} ∪ f(F)} is decidable in polynomial time.

Proof. The proof goes exactly as the proof of lemma 3 except that we use the
oracle of lemma 9 instead of the oracle of lemma 7.

C Proof for section 4

Recall the inference rules:

A1, . . . , An →? x B1, . . . , Bm, w →? v
Cut1w

A1, . . . , An, B1, . . . , Bm →p w

A1, . . . , An →? y w,B1, . . . , Bm → p
Cut2w

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An →? x B1, . . . , Bm, x →? v
Cut1

A1, . . . , An, B1, . . . , Bm →? v

22

in which the conclusion is marked iff one of the premises is marked.

A1, . . . , An →? x x, B1, . . . , Bm → p
Cut2

A1, . . . , An, B1, . . . , Bm → p

A1, . . . , An, u →? x
Str1u

A1, . . . , An →p x

A1, . . . , An, u →? p
Str2u

A1, . . . , An → p

Recall lemma 6

Lemma 6. If S J→s then →s is derivable from S in J using the unit strategy.

Proof. Let Π be a proof of → s in J minimal in the number of non unit cuts.
Assume, by contradiction that Π uses at least one non-unit rule, for example
the following instance of Cut2w,

R0
S →p u S′, wσ → pσ

S, S′ → pσ

then as the conclusion of Π is a unit clause, Π has a subproof of the following
form :

R0

S0 → pσ
R1

S1 → pσ

...
Rn

→ pσ

Let I = {i1, . . . , il} be the set of indices such that Si\Si−1 ⊆ S. If i ∈ I and

Ri
→? ti Si−1 → pσ

Si → pσ

we let

R̃i
→? ti S ∩ Si−1 →p u

S ∩ Si →p u

and if i ∈ I and

Ri
Si−1 → pσ

Si → pσ

we let

R̃i
Si−1 →p u

Si →p u

23

Then replacing the original subproof by the following one in Π yields a proof
with one less non-unit cut.

S →p u
R̃i1

. . .
R̃il

→p u S′, wσ → pσ

S′ → pσ

Theorem 1. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S, together with T,W and finitely many clauses cn, cs, cc, that
are built on the same pattern p.

Proof. First observe that the unit resolution strategy in 6 yields a PTIME de-
cision procedure for the problem : S J→s. Now to solve , S J S→s observe
that it is enough to erase the elements of S in all premises of clauses in S (yielding
S ′) and check if S ′ J→s which is decidable in PTIME.

Now we only have to use the previous oracle instead of the one of lemma 7
in the proof of lemma 3 yielding our theorem.

D Proof of the general case

Consider rules :

Cuti

X → y X ′, ui(y) → p(x)
Γi(X ∪X ′)

X;X ′ → p(x)

and

Stri

X; vi(y) → p(x)
∆i(X)

X → p(x)

We consider now labeled clauses S ∆→Γ t where ∆, Γ are finite sets of
constraints.

We add the following rules :

Cut1
i

X ∆1→Γ1 y X ′, ui(y) ∆2→Γ2 x
Γi(X ∪X ′), Γi ∈ ∆1, Γ1(X ′)

X, X ′
∆2→Γ1,Γ2,Γi x

Cut2
i

X ∆1→Γ1 y X ′, ui(y) → p(x)
Γi(X ∪X ′), Γi ∈ ∆1, Γ1(X ′)

X, X ′ → p(x)

Str1
i

X, vi(y) ∆→Γ x
∆i(X)

X ∆→Γ∪∆i x

(Context)
X → x

X ∆ → x
∆ ⊆ {Γ |Γ (X)}

24

Lemma 10. The previous Cut1
i ,Cut2

i ,Str1
i , (Context) are sound and com-

plete with respect to Cuti,Stri cut and weakening.

Proof. Assume that S is a set of Horn clauses (without annotations with con-
straint sets) and that S → t is a clause, that is derivable in the inference system
that includes the new extra rules. We show below that S → t is also provable
without the extra rules.

We first note that, if one of the premisses of a rule has a non-empty left or
right constraint, it is also the case of the conclusion, except for the rule Cut2

i .
Therefore, any proof of a clause S → t that uses one of the additional rules, must
also use at least once Cut2

i . Consider a minimal (in size) proof Π of S → t, that
might use the extra rules. Consider a subproof Π ′ of Π that uses once Cut2

i , as
a last inference rule. We show that Π ′ can be rewritten into a strictly smaller
proof (w.r.t. the size). This contradicts the minimality of Π, hence this proves
that the minimal size proof does not make use of any extra rule.

First note that, according to labels inheritance, once a clause is annotated
with sets of constraints, then the labels cannot be removed completely, unless we
apply Cut2

i . Since the leaves of Π ′ are not annotated with sets of constraints,
we can write Π ′ as :

...

...

π1

S1 → t
∆1

1(S1)
S1

∆→∅ t
R1

...
Rn

Sn
∆n

1
→Γ n

1
t

π2

S, ui(t) → p(u)
Γi(Sn, S), Γi ∈ ∆n

1 , Γn
1 (S)

Sn, S → p(u)

where π1, π2 are proofs that do not use the extra rules and R1, . . . , Rn are in
Cut1

i ,Str1
i . In particular, Γ 1

1 ⊆ . . . ⊆ Γn
1 since these two rules only increase the

right set of constraints.
We argue that Π ′ can be rewritten into

...

...

π1

S1 → t
π2

S, ui(t) → p(u)
Γi(S1, S)

S1, S → p(u)
R̃1

...
R̃n

Sn, S → p(u)

This is a strictly smaller proof, which is what we want. It only remains to define
the rules R̃i and check that the above proof is a valid proof in the new inference
system indeed.

25

If

Rk =
V k

2 ∆k
2
→Γ k

2
tkV k

1 , ui(tk) ∆k
1
→Γ k

1
t

Sk
∆k

1∩∆k
2
→Γ k

1 ,Γ k
2 ,Γk

t
Γk(V k

1 , V k
2), Γk ∈ ∆k

2 , Γ k
2 (V k

1)

we let

R̃k =
V k

2 ∆k
2
→Γ k

2
tkS, V k

1 , ui(tk) → p(u)

S, Sk → p(u)
Γk(S, V k

1 , V k
2), Γk ∈ ∆k

2 , Γ k
2 (S, V k

1)

The rule Cut1
i is therefore replaced with a rule Cut2

i . The conditions are satis-
fied indeed (we get a valid proof):

– Γk ∈ Γ k
1 ∪ Γ k

2 ∪ {Γk} = Γ k+1
1 ⊆ Γn

1 and S satisfies Γn
1 , hence Γk(V k

1 , V k
2)

=⇒ Γk(S, V k
1 , V k

2)
– Γ k

2 ⊆ Γ k+1
1 ⊆ Γn

1 , and S satisfies Γn
1 , hence Γ k

2 (V k
1) =⇒ Γ k

2 (S, V k
1)

If

Rk =
V k

1 , vi(uk) ∆k
1
→Γ k

1
t
∆i(V k

1)
V k

1 ∆k
1
→Γ k

1 ∪{∆i} t

we let

R̃k =
S, V k

1 , vi(uk) → t
∆i(S, V k

1)
S, V k

1 → t

The rule Str1
i is replaced with a rule Stri. The condition is satisfied since , as

before, ∆i ∈ Γn
1 and S satisfies Γn

1 .

In order to have a unit strategy, we need to modify the rules a little. Intu-
itively, the multiset L stands for a set of cuts that are done in advance. Note
that remembering the precise cut is not usefull, it is enough to remember the
constraints involved in the cut.

Cut1
i

X ∆1 →
L1
Γ1

yX ′, ui(y) ∆2 →
L2
Γ2

x

X, X ′
∆1∩∆2 →

L1,L2
Γ1,Γ2,Γi

x

Γi(X∪X′), Γi∈∆1, Γ1(X
′),

∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

Cut2
i

X ∆1→
L1
Γ1

y X ′, ui(y) →L2 p(x)
Γi(X∪X′), Γi∈∆1,Γ1(X

′),
∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

X, X ′ →L1,L2 p(x)

Str1
i

X, vi(y) ∆→L1
Γ x

∆i(X), ∀(¬Γ → ¬∆′) ∈ L1.∆i 6∈ ∆′

X ∆→L1
Γ∪∆i

x

(Context)
X →L x

X ∆ →L x
∆ ⊆ {Γ |Γ (X), ∀(¬Γ → ¬∆) ∈ L.Γ 6∈ ∆}

we also add :

26

(1′p)i
∆1 →

L1
Γ1

yX ′, ui(y) ∆2 →
L2
Γ2

x

X ′
∆1∩∆2 →

L1,L2,(¬Γ1,Γi→¬∆(ui(y))c)
Γ2

x
Γi ∈ ∆1

(1′′p)i
∆1→

L1
Γ1

y X ′, ui(y) →L2 p(x)
Γi ∈ ∆1

X ′ →L1,L2,(¬Γ1,Γi→¬∆(ui(y))c) p(x)

(2′p)i

X, vi(y) ∆→L1
Γ x

X ∆→L1,(¬∆i→¬∆(ui(y))c)
Γ x

(Remove1)
X ∆1→

L,(¬Γ→¬∆)
Γ1

x

X ∆1→L
Γ1,Γ x

Γ (X), ∀(¬Γ ′ → ¬∆′) ∈ L.Γ 6∈ ∆

(Remove2)
X →L,(¬Γ→¬∆) p(x)

X →L p(x)
Γ (X), ∀(¬Γ ′ → ¬∆′) ∈ L.Γ 6∈ ∆

We now have to show that adding these new rules is sound.

Lemma 11. If S entails S (∆)→(Γ) t with the modified rules then S entails
S (∆)→(Γ) t with rules Cuti,Stri,Cut1

i ,Cut2
i ,Str1

i and Context, cut and
weakening.

Proof. First of all, note that if a proof Π with the new rules does not use
(1′p)i, (2′p)i, (1′′p)i then for all clause S (∆)→L

Γ) t in Π, L is empty. Note that with
L empty, the old and the new version of Cut1

i ,Cut2
i ,Str1

i are the same as the
old ones, therefore, Π is a valid proof in the old proof system.

Let Π be a proof of S (∆)→(Γ) t. Assume that the number of rules (1′p)i, (2′p)i, (1′′p)i

is minimal in Π. By contradiction assume that there is a rule (1′p)i, (2′p)i, (1′′p)i

in Π. Assume that it is the following (1′p)i rule :

R0 ∆1 →
L1
Γ1

uS, ui(u) ∆2 →
L2
Γ2

v

S ∆1∩∆2 →
L1,L2,(¬Γ1,Γi→¬∆(ui(u))c)
Γ2

v
Γi ∈ ∆1

As the conclusion of Π is not annotated by (¬Γ1, Γi → ¬∆(ui(u))c) there is in
Π after the previous cut a Remove rule of the following form – assume that
it is a Remove1 rule (the Remove2 case is similar) – we take Rn as the first
occurence of such a rule after R0

Rn S′ ∆→L,(¬Γ1,Γi→¬∆(ui(u))c)
Γ v′

S′ ∆ →L
Γ,Γi,Γ1

v′
Γi, Γ1(S′), ∀(¬Γ ′ → ¬∆′) ∈ L.Γi, Γ1 6∈ ∆′

Let R1, . . . , Rn−1 be the path in Π from the R0 to Rn. If Ri is

Rk
Sk

1 ∆1→
Lk

1
Γ1

ukSk
2 , ui(uk) ∆2→

Lk
2

Γ2
vk

Sk
1 , Sk

2 ∆1∩∆2→Lk

Γ1,Γ2,Γi
vk

Γi(S
k
1∪Sk

2), Γi∈∆1, Γ1(S
k
2),

∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

27

if Rk−1 is the left premise of Rk, we take R̃k as

R̃k
Sk

1 , ui(u) ∆1→L̃k−1

Γ1
ukSk

2 , ui(uk) ∆2→
Lk

2
Γ2

vk

Sk
1 , Sk

2 ∆1∩∆2→
fLk

Γ1,Γ2,Γi
vk

Γi(S
k
1 ,Sk

2 ,u), Γi∈∆1, Γ1(S
k
2),

∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

With L̃k = L̃k−1, Lk
2 . As (¬Γ1, Γi → ¬∆(ui(u))c) is in L2, we know that Γi, Γ1 6∈

∆(ui(u))c, therefore, Γi(ui(u)) holds and Γ1(ui(u)) holds, the constraints of R̃k

are satisfied.
We make the same transformation if Rk is any other rule, and the same

argument gives the fact that these transformations are correct. Note that L̃k =
Lk\({(¬Γ1, Γi → ¬∆(ui(u))c)} ∪ L1).

Now write :

R̃n ∆1→
L1
Γ1

uS′, ui(u) ∆2→L̃n−1

Γ2
v′

S′ ∆1∩∆2→
L1,L2
Γ1,Γ2,Γi

x

Γi(S
′), Γi∈∆1, Γ1(S

′),
∀(¬Γ→¬∆)∈L.Γi,Γ1 6∈∆

Let Π ′ be Π in which we remove R0 and for k = 1..n we substitute R̃k

for Rk. The inference Π ′ is a valid inference of S (∆)→(Γ) t, with one less
(1′p)i, (2′p)i, (1′′p)i rule than Π wich contradicts our hypothesis. We conclude,
that there is no (1′p)i, (2′p)i, (1′′p)i in Π, therefore Π is an inference in the old
inference system.

Lemma 12. With the previous rules, a unit saturation strategy is complete.

Proof. Let Π be a proof of → t with a minimal number of non unit rules. Let
us assume, by contradiction that Π contains at least one non unit rule, let R0

be a bottommost such rule, assume that R0 is an instance of Cut2
i

R0
S ∆1→

L1
Γ1

u S′, ui(u) →L2 p(v)
Γi(S∪S′), Γi∈∆1, Γ1(S

′),
∀(¬Γ→¬∆)∈L1,L2.Γi,Γ1 6∈∆

S, S′ →L1,L2 p(v)

We know that all rules following R0 are unit rules, so there is a path in Π such
that :

R0

S0 →L1,L2 p(v)
R1

S1 →L1
p(v)

...
Rn

→Ln

p(v)

Consider the sublist (Rk1 , . . . , Rkl) of (Ri)i=1..n where Ski\Ski−1 ∈ S. Let us
define wi = Ski\Ski−1 and S̃i as S\{w1, . . . , w

i}.
Let us define inductively, for i = 1..l the rules R̃ki , R̃mki and L̃ki . L̃0 = ∅. If

Rki ∆i
1
→Li

1
Γ i

1
vi Ski+1, uji

(vi) →Lki
p(v)

Γji ∈ ∆1
Ski+1 →Li

1,Lki ,(¬Γ i
1 ,Γji

→¬∆(uji
(ui))c) p(v)

28

then

R̃mki
∆i

1
→Li

1
Γ i

1
vi S̃i, uji(v

i) →L1,L̃ki−1 ,L̃i−1
p(v)

Γji
∈ ∆1

S̃i+1 →Li
1,L1,L̃ki−1 ,(¬Γ i

1 ,Γji
→¬∆(uji

(ui))c) p(v)

and L̃ki = L̃ki−1 , (¬Γ i
1, Γji → ¬∆(uji(u

i))c) and

R̃ki
Ski\S →Lki−1,(gLkl\L̃ki−1) p(v)

Ski+1\S →Lki ,(gLkl\gLki) p(v)

Note that R̃ki is simply the identity rule. We define R̃mki , L̃ki , R̃ki the same
way if Rki is an instance of (2′p)i

If

Rki ∆i
1
→Li

1
Γ i

1
vi Ski+1, uji

(vi) →Lki
p(v) Γji

∈∆i
1,Γ i

1(Ski+1),Γ i
1(Ski+1),

∀(¬Γ→¬∆)∈Li
1,Lki .Γji

,Γ i
1 6∈∆Ski+1 →Li

1,Lki
p(v)

then

R̃mki
∆i

1
→Li

1
Γ i

1
vi S̃i, uji(v

i) →L1,L̃ki−1 ,L̃i−1
p(v)

Γji
∈ ∆1

S̃i+1 →Li
1,L1,L̃ki−1 ,(¬Γ i

1 ,Γji
→¬∆(uji

(ui))c) p(v)

and L̃ki = L̃ki−1 , (¬Γ i
1, Γji → ¬∆(uji(u

i))c) and

R̃ki
Ski\S →Lki−1,(gLkl\L̃ki−1) p(v) Γji

(Ski\S),Γ i
1((Ski\S),

∀(¬Γ→¬∆)∈Lki ,(gLkl\gLki).Γji
,Γ i

1 6∈∆
Ski+1\S →Lki ,(gLkl\gLki) p(v)

Note that R̃ki is a valid Remove rule. We define R̃mki , L̃ki , R̃ki the same way
if Rki is an instance of Str1

i .

If j 6∈ {k1, . . . , kl}, if ki < j < ki+1 we define R̃j as

R̃j
Sj−1\S →Lj−1,(gLkl\gLki) p(v)

Rj

Sj\S →Lj ,(gLkl\gLki) p(v)

29

Now note that

S ∆1→
L1
Γ1

u
R̃mk1

...
R̃mkl

∆1→
L1,gLkl

Γ1
S′, ui(u) →L2 p(v)

R̃0

S0\S →L0,gLkl p(v)
R̃1

S1\S →L1′
p(v)

...
R̃n

→Ln

p(v)

is a valid proof of →Ln

p(v) with one less non unit cut, which contradict our
hypothesis.

Let us call K the previous set of inference rules.

Lemma 13. The problem S1 → t1, . . . , Sn → tn K S → t is in PTIME

Proof. In S ∆→L
Γ t it is easy to see that whether the multiplicity of x ∈ L is

2 or strictly greater than 2 is not relevant, as if x appears 2 times in L and a
Remove can be applied for x (yielding a clause C annotated with L′ with x of
multiplicity 1 in L′), then it can be applied repeatedly if x appears more than
twice in order to yield the same C.

First of all note that we know how to decide the problem S1 → t1, . . . , Sn →
tn K→ t as we can apply a unit strategy, and there are only a bounded number
of annotations the decision procedure is in PTIME.

Now in order to decide the entailment problem, let Λ be a new constraint such
that for all S, ¬Λ(S). Now for every clause in Ci = Si → ti and every constraint
Γ let SΓ

i = Si\{u ∈ S|¬Γ (u)} and CΓ
i = SΓ

i →(¬Λ→¬Γ). We observe that
S1 → t1, . . . , Sn → tn K S → t iff there exists Γ such that S1 → t1, . . . , Sn →
tn K→(¬Λ→¬Γ) t. Clearly if S1 → t1, . . . , Sn → tn K→(¬Λ→¬Γ) t (le Π be a
proof of →(¬Λ→¬Γ) t in K) then as the (¬Λ → ¬Γ ′) annotations can never be
removed, replacing the leafs of Π that are CΓ

i by Ci = CΓ
i ∪ {u ∈ S|¬Γ (u)}

yields a proof of S′ → t with S′ ⊆ S. Conversely, if there exists a proof of S′ → t
with S′ ⊆ S with S′ ⊆ S without weakening, then one can build a proof of
→(¬Λ→¬Γ) t from the CΓ

i by backtracking the origin of the atoms in S′.

Theorem 3. If S is a set of ground clauses built on `, we can decide in PTIME
the satisfiability of S together with T,W and finitely many constrained clauses
cn, cs, cc built on the same pattern p, provided the constraints are monotone.

Proof. Computing the least fixed point of the function defined in the proof of
lemma 3 using the oracle computing whether S1 ` t1, . . . , Sn ` tn �K S ` t
yields a PTIME decision procedure.

30

