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ABSTRACT
Computational soundness results show that under certain
conditions it is possible to conclude computational secu-
rity whenever symbolic security holds. Unfortunately, each
soundness result is usually established for some set of cryp-
tographic primitives and extending the result to encompass
new primitives typically requires redoing most of the work.
In this paper we suggest a way of getting around this prob-
lem.

We propose a notion of computational soundness that we
term deduction soundness. As for other soundness notions,
our definition captures the idea that a computational adver-
sary does not have any more power than a symbolic adver-
sary. However, a key aspect of deduction soundness is that
it considers, intrinsically, the use of the primitives in the
presence of functions specified by the adversary. As a conse-
quence, the resulting notion is amenable to modular exten-
sions. We prove that a deduction sound implementation of
some arbitrary primitives can be extended to include asym-
metric encryption and public data-structures (e.g. pairings
or list), without repeating the original proof effort.

Furthermore, our notion of soundness concerns crypto-
graphic primitives in a way that is independent of any pro-
tocol specification language. Nonetheless, we show that de-
duction soundness leads to computational soundness for lan-
guages (or protocols) that satisfy a so called commutation
property.
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1. INTRODUCTION
Security protocols are programs that aim at securing com-

munications over public (insecure) networks. Their design is
notoriously error prone and multiple approaches have been
devised for rigorous protocol analysis. These techniques fall
under one of two categories. Symbolic models ignore most
of the cryptographic details using abstract structures like
terms (a variant of labeled finite trees). What an adversary
can compute out of a set of messages is then typically cap-
tured by a symbolic deduction system (that states e.g. that
the adversary can decrypt whenever he has the correspond-
ing decryption key). This approach leads to simple models
that allow the development of fully automatic decision pro-
cedures for security (e.g. [19, 2]). The second category em-
ploys computational models. These models are more accu-
rate: they consider a lower level of abstraction and powerful
(probabilistic) polynomial time adversaries. Here security
does not rely on an axiomatization of the basic primitives,
but rather on the difficulty of solving various computational
tasks (e.g. factoring or taking discrete logarithms). Proofs
in the computational model thus imply stronger guarantees
than those in the symbolic models but devising and verifying
such proofs is tedious. Even for moderately-sized protocols
proofs become extremely long, difficult, and error prone.

An important research direction [7, 1, 5, 4, 20, 13] aims to
bridge the gap between the symbolic and the cryptographic
approaches via computational soundness results. These re-
sults typically show that under reasonable standard crypto-
graphic assumptions, proofs of security with respect to sym-
bolic models directly imply security with respect to the more
detailed computational ones. This is a promising approach
that allows to obtain strong guarantees while benefiting from
the simplicity of symbolic models.

Soundness results have been established for various prim-
itives such as concatenation, asymmetric encryption [5, 13],
symmetric encryption [9, 18], signatures [7, 13], hash func-
tions [17, 11], zero-knowledge proofs [6], and non-malleable
commitments [14]. See the recent survey [12] for an exten-
sive list. However, each result is dedicated to a small subset
of these primitives, typically for a few primitives at a time.

Each of the above results typically considers the security of
a few primitives at a time and it is likely the techniques can
be extended to cope with new primitives (as long as sound
axiomatizations for such primitives are possible). However,
the approach of sequentially extending existing results with
new primitives has an important drawback. Each new exten-
sion requires duplicating large amounts of work and this ren-
ders a ”unifying” soundness result difficult to obtain. What



is missing is a more modular approach where it is possible to
study the soundness of various axiomatizations in isolation
and still conclude that the abstraction remains sound when
the primitives are used together.

For existent approaches to computational soundness such
a result is probably too optimistic. An intuitive counterex-
ample is as follows. Consider some simple programming
language that involves only pairing, nonces, and asymmet-
ric encryption. A soundness result for such a language would
require that the encryption scheme be IND-CCA secure, but
only when used to encrypt bitstrings that arise naturally
in the execution of the protocols (i.e. pairs, nonces, ci-
phertexts). When applied to other bitstrings (say to dig-
ital signatures) encryption can be completely insecure (e.g.
the identity function) without affecting the soundness re-
sult. The extensibility now becomes problematic: adding to
the specification language digital signatures would lead to
an unsound axiomatization. Protocols may still be symboli-
cally secure but their implementation would be insecure due
to the use of an insecure encryption scheme. The example
can be easily adapted to show that it is equally problematic
to add even a simple datastructures (like lists) in a modular
way to existing computational soundness. In both cases the
source of the problem is the same: the starting soundness re-
sult for encryption does not account for other primitives (or
data structures) but those in the programming language un-
der consideration. One can cope with this problem by chang-
ing the axiomatization for encryption to reflect its insecurity
when encrypting signatures, but this direction is ad-hoc and
not modular. More structured approaches to computational
soundness that use general compositional frameworks (e.g.
[5, 8, 18]) alleviate the scalability problems, but do not yield
easily extendable frameworks.

Our results
In this paper we propose and study a computational sound-
ness notion that is amenable to modular extensions. This
notion, which we term deduction soundness reflects the idea
that a symbolic deduction system soundly abstracts the se-
curity of the computational implementation for a set of prim-
itives, even when these primitives are used in the presence
of other functions for which the implementation is provided
by the adversary. This should allow to establish soundness
of an implementation, even when additional primitives are
around: adding new primitives essentially boils down to fix-
ing the implementation of some of the unspecified functions
(as opposed to letting the adversary provide their implemen-
tation).

Importantly, in the deduction soundness game, the ad-
versary is only allowed to provide implementations that are
transparent, which simply means that the implementations
must be efficiently invertible. Nonetheless, we confirm that
the resulting notion enjoys modular extensibility. We first
show that deduction soundness can be extended, essentially
for free, with arbitrary data-structures. This is perhaps not
surprising as public data structures are given by transpar-
ent functions. More interestingly however, we show that
deduction soundness can also be extended to asymmetric
encryption. The intuition is that encryption under keys for
which the adversary knows the corresponding decryption key
is essentially a transparent function whereas for other keys
encryption can be modelled via transparent constants. We
expect that similar extensions can be proved for hash func-

tions (modelled as random oracles) and symmetric encryp-
tion.

An important question is whether transparent function
can be used to model any other cryptographic primitive.
The answer is unfortunately “no”. The axioms that define
transparent functions only talk about the secrecy (or rather
non-secrecy) of their arguments and thus they provide no
authentication guarantees. Extensions of our notion with
authentication primitives (e.g. signatures and message au-
thentication codes) needs to account for the possible more
intricate interaction of the axioms with those for signatures
and message authentication codes.

A second aspect of deduction soundness is that it is solely
concerned with the implementation of the primitives, and
is independent of any protocol structure or programming
language where the primitives may be used. The idea to
focus only on the axiomatization of individual primitives
while disregarding the protocols where the primitives are
used can be traced from the work of Herzog [15], through to
that of Backes, Pfitzmann, and Waidner [5], and to the more
recent CoSP framework of Backes, Hofheinz, and Unruh [3].
As in these latter works we show that soundness (in the form
of a mapping lemma) for protocol specification languages
can be recovered using our notion. In turn this allows for
the translation of trace properties from symbolic models to
computational ones.

2. MODELS
In this section we introduce some notations and set our ab-

stract and concrete models. Throughout we assume familiar-
ity of basic cryptographic security notion like indistinguisha-
bility under chosen cipher attacks(IND-CCA) for asymmetric
encryption schemes, existential unforgeability under chosen
message attacks for digital signature and message authenti-
cation codes (EU-CMA).

2.1 Abstract algebras
Our abstract models—called abstract algebras—consist of

term algebras defined on a first-order signature with sorts.
Specifically a signature (S,F) consists of a set of sorts

S = {s, s1 . . .}, a set of labels labels = labelsH∪ labelsA, and
a set of symbols F = {f, f1 . . .} together with arities of the
form ar(f) = s1 × . . . × sk → s, k ≥ 0. Symbols that take
k = 0 arguments are called constants; their arity is simply
written s. We fix an infinite set of variables X = {x, y . . .}.
We assume that variables are given with sorts. The set of
terms of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| f l(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that l ∈ L, ti is a
term of some sort si and ar(f) = s1 × . . .× sk → s.

Intuitively, for names, we use (randomized) constants. For
example, assume that n ∈ F is a constant. Then usual
nonces can be represented by nr1 , nr2 , . . . where r1, r2 ∈ L
are labels. Labels in labelsH will be used when the function
has been applied by an honest agent (thus the randomness
has been honestly generated) whereas labels in labelsA will
be used when the randomness has been generated by the
adversary. Often when the label for a functional symbol is
clear from the context (e.g. when there is only one label



that suits a particular functional symbol) we may omit this
label.

We always assume a supersort term containing all other
sorts. We also assume a constant gs ∈ F for any s ∈ S that
will be used for representing garbage of sort s. Garbage will
typically be the terms associated to bit-strings produced by
the adversary and which cannot be parsed as a meaningful
term. Therefore we require in what follows that for any term
gl

s, the randomness l has to be adversarial: l ∈ labelsA. As
usual, we write var(t) for the set of variables occurring in t.
A term is ground or closed iff it has no variables. The set of
terms is denoted by Term.

Substitutions are written σ = {x1 = t1, . . . , xn = tn}
with dom(σ) = {x1, . . . , xn}. We only consider well-sorted
substitutions, that is substitutions σ = {x1 = t1, . . . , xn =
tn} for which xi and ti have the same sort. σ is closed iff
all of the ti are closed. We extend the notation var(.) from
terms to substitutions in the obvious way. The application
of a substitution σ to a term t is written σ(t) = tσ.

Symbols in F are intended to model cryptographic prim-
itives, including generation of random data like e.g. nonces
or keys. Identities will be typically represented by con-
stants. The term algebra is equipped with a deduction rela-
tion `⊆ 2Term × Term that models the information available
to a formal adversary. S ` m means that a formal adversary
can build m out of S, where m is a term and S a set of terms.
We say that m is deducible from S. Deduction relations are
typically defined through deductions rules systems.

Definition 1. A deduction system D is a set of rules
u1 ··· uk

u
such that u1, . . . , uk, u ∈ Term. The deduction

relation `D⊆ 2Term × Term associated to D is the smallest
relation S satisfying:

• for any t ∈ S, S `D t;

• If S `D u1θ, . . .S `D ukθ for some substitution θ and
u1 ··· uk

u
∈ D then S `D uθ.

We may omit the subscript D in `D when it is clear from
the context.

2.1.1 Specification for signatures and MACs
For example, digital signatures and message authentica-

tion codes could be formalized using algebras with the sig-
nature Σsm defined as follows. The set of sorts are given by
Ssm = {id, spair, vkey, skey, sigs, macs, mkey} and the set of
operations Fsm are given by:

idi :→ id for i ∈ N
skeypair : id→ spair mackey : id× id→ mkey
vk : spair→ vkey sk : spair→ skey
sign : skey × term→ sigs mac : mkey × term→ macs

Abusing notation, we often write sk(id) for sk(skeypair(id)),
write vk(id) for vk(skeypair(id)) and write mackeyij for
mackey(idi, idj). Also, recall that by an earlier assumption
the signature also contains constant garbage symbols of each
sort.

The deduction system Dsm that models the security of sig-
natures and macs is given by rules in Figure 1. The first line
specifies that the adversary can recover the verification key
of any party, and that it can produce garbage of any type.
The next two lines specify, for signature and macs, respec-
tively, that signatures and macs always reveal the message

that is being authenticated (even when produced honestly),
and that given the secret key the adversary can produce
signatures and macs.

vk(x) gl
s

signl(sk(x), t)

t

sk(x) t

signlA(sk(x), t)

macl(mkey(x, y), t)

t

mackey(x, y) t

maclA(mackey(x, y), t)

where x, y ∈ id, s ∈ S, t ∈ term, l ∈ labels, lA ∈ labelsA.

Figure 1: Deduction rules for signatures and macs.

2.2 Concrete implementations for algebras
If A is a randomized algorithm we write y ← A(x; r) for

the process of obtaining y by running A on x with random
coins r. We assume a non-empty set of bit-strings [[s]] ⊆
{0, 1}∗ for each sort s ∈ S. For the supersort term , we
assume [[term]] = {0, 1}∗. We now give terms a concrete
semantics, parametrized by:

• a security parameter η,

• an (S,F)-concrete implementation of the primitives,
given by some Turing Machine M such that for any
f ∈ F , with ar(f) = s1 × . . .× sk → s,

(M f) : [[s1]] × · · · × [[sk]] × {0, 1}η → [[s]]

The concrete implementation is used in the game that de-
fines computational soundness. In particular, the implemen-
tation determines how to parse bitstrings as terms and how
to generate the bitstrings that correspond to terms. Next
we give some specifics related to these two points.

2.2.1 Assignation sets
The concrete interpretation of a symbolic term is usually

obtained by replacing each symbolic function in the term
with its concrete implementation. In cryptographic appli-
cations functions are often randomized and the same ran-
dom coins may occur in different places within the same
term. This is the case for instance when the same nonce
occurs twice in the same term. We record this information
via assignation sets. Such a set L is simply a set of cou-
ples (c, U) where c is a bitstring and U is a list of terms.
The idea is that the terms in U are the possible interpreta-
tions of the bitstring c. In particular, each such U is either
of the form [gl(c)] or of the form [f l(g1, . . . , gk); gl(c)] where

gl(c), g1, . . . , gk are garbage symbols. The two different forms
for U corresponds to the following two situations, respec-
tively. In the first case, c is interpreted as a garbage (i.e. we
do not have any special information on it, except possibly
its sort). In the second case c is interpreted as f l(g1, . . . , gk)
meaning that c is interpreted as the application of f l to the
interpretation of g1, . . . , gk. In the second case, for conve-
nience, we store the two possible interpretations of c which
usually are obtained through successive refinements. We
may write (b, u) ∈ L instead of (b, [u]) ∈ L when [u] is a list
with a single element. We say that an assignation set L is



one-to-one and onto if for any (c, U1), (c, U2) ∈ L, we have
U1 = U2 and for any (c1, U), (c2, U) ∈ L, we have c1 = c2.

An assignation set L defines the substitution θL associated
to an assignation set L. This is simply the union of the sub-
stitutions g 7→ f l(g1, . . . , gk) for any (c, [f l(g1, . . . , gk); g]) ∈
L. For this notion to be well-defined, the substitution needs
to be loop free, and in what follows we will ensure that this
property is satisfied. A partial substitution associated to L
is a substitution associated to some assignation set L′ ⊆ L.

2.2.2 Generating function.
Given an assignation set L we define a generating function

that associates a concrete semantics for terms (given the
terms already interpreted in L). For reasons that will be
clear later, we are only interested in giving semantics to
terms labeled by an honest label.

The generation function uses a random tape R that essen-
tially implements a mapping R : Term → {0, 1}η, mapping
a term to random coins used by the randomized operations
in that term. Given a closed term t and an assignation set
L, generate(t, L) is defined as follows. We have that t is of
the form f l(t1, . . . , tn) (with possibly n = 0).

• If there is (c, u :: U) ∈ L with t = uθ for some θ partial
substitution associated to L, then return (c, L).

• Otherwise, if l ∈ labelsA then the request is rejected
(generate is undefined).
Otherwise, let r = R(f l(t1, . . . , tn)), let
(ci, L) = generate(ti, L), 1 ≤ i ≤ n and let
c = (M f)(c1, . . . , cn, r). Then the function returns

(c, L ∪ {(c, [f l(gl(c1), . . . , gl(cn)); gl])}).

Note that generate(t, L) not only returns a bitstring c asso-
ciated to t but also updates L (to remember, for example,
the value associated to t). Note also that generate depends
on the concrete implementation M and the random tape R.
When needed, we show explicitly this dependency, but in
general we avoid it for readability.

2.2.3 Parsing function
Conversely, we define a function to convert bitstring into

terms. A parsing function for a (S,F)-concrete implemen-
tation M is a function that takes as input a bitstring c and a
(one-to-one and onto) assignation set L and returns a term t
and a (one-to-one and onto) assignation set that extends L.
We impose a particular structure for the function parse. This
assumption allows to later extend the parse function associ-
ated to an implementation when other primitives are added
to the implementation. More precisely, the parse function
uses an auxiliary function saturate (which does the actual
parsing). Formally, we assume that the parse function is
defined as follows:

parse(c, L):
If there exists (c, t :: U) ∈ L

then output tθL;

else let L = saturate(L ∪ {(c, [gl(c)])});
(we assign a new garbage symbol to c with
label l(c) ∈ labelsA)

let (c, t :: U) ∈ L, output tθL;

The saturate function takes as input an assignation set and
outputs an assignation set. Intuitively, the saturate function

tries to interpret as a term any bitstring left uninterpreted
(to which the current interpretation is set to garbage), given
the information present in the assignation set. Notice that
when saturate is called, a new bitstring that is interpreted as
garbage had just been added to the assignation set. While
interpreting such a bitstring, new bitstrings without an in-
terpretation can be discovered and these are added to the
assignation set. The process is repeated until the assignation
set does not change.

The exact definition of saturate function is left unspeci-
fied, as it depends on the particular implementation. How-
ever, we demand two properties from any saturate functions
used to define parsing. First, if saturate adds a new bit-
string to the assignation set then, the term associated to
this bitstring is by default a garbage symbol with adversar-
ial label. Formally, we assume that for any L1, L2 such that
L2 = saturate(L1) then for any (b, f l(g1, . . . , gk) :: U) ∈ L2

if l ∈ labelsH then (b, f l(g1, . . . , gk) :: U) ∈ L1: no new term
with honest labels are introduced. The second assumption is
that the order in which the function processes an assignation
set does not matter.

saturate(saturate(L1) ∪ L2) = saturate(L1 ∪ L2)

The examples that we give later in the paper satisfy these
properties.

2.2.4 Implementation for signatures and MACs
For the implementation that we use for our running ex-

ample, we assume an efficiently computable, efficiently in-
vertible, one-to-one encoding function 〈 〉 that takes a tuple
of bitstrings as input (separated by commas) and returns
an encoding of that tuple. If A is a set of bitstrings, and
x is a bitstring, then by a slight abuse, we write 〈A, x〉 for
the set {〈a, x〉 | a ∈ A}, and we extend this notation in the
obvious way to the case when encode receives several argu-
ments as input. The concrete support sets for every sort s
of the signature Σsm is given by [[s]] = 〈{0, 1}∗, s〉, that is
any element of the support set is an encoding of a bit-string
followed by the name of the support set. The concrete imple-
mentation Msm (which we define below) depends on a digital
signature scheme DigSig = (K,S,V) and a message authen-
tication code Mac = (MK, T ,MV). We assume that from
any secret key sk produced by the key generation algorithm
of the signature, one can immediately recover its associated
verification key vk. Below, (and elsewhere) we write [[f ]]
for the algorithm that gives the concrete semantics for op-
eration f . We assume some public (efficiently computable)
mapping that maps each constant idi of the signature to
some bitstring idi.

• (Msm idi): output 〈idi, id〉

• (Msm skeypair): is K(η) (to the output of which we tag
spair)

• (Msm sk)(s): parse s as 〈(sk, vk), spair〉 and outputs
〈sk, skey〉.

• (Msm vk)(s): parse s as 〈(sk, vk), spair〉 and outputs
〈vk, vkey〉

• (Msm sign)(s1, s2, r) : parse s1 as 〈sk, skey〉, calculate
σ ← S(sk, s2; r), output 〈σ, s2, vk, sigs〉, where vk is
the verification key associated to sk.



• (Msm mackey): is justMK(η) (to the output of which
we tag mackey)

• (Msm mac)(s1, s2): parse s1 as 〈k, mkey〉 and output
〈s2, T (k, s2), macs〉.

Next, we give the parsing algorithm (that is we specify
the function saturatesm) for the implementationMsm.

saturatesm(L)
let L′ = L
repeat
let L = L′

for all (c, [gl(c)]) ∈ L s.t. c is of the form 〈m, t〉 with t ∈ Ssm

if t = id then if m = idi for some i

then L← L \ {(c, [gl(c)])} ∪ {(c, [idi, g
l(c)])}

if t = vkey then L← L \ {(c, [gl(c)])} ∪ {(c, [gl(c)
vkey, g

l(c)])}
if t = skey then L← L \ {(c, [gl(c)])} ∪ {(c, [gl(c)

skey , g
l(c)])}

if t = sigs and m = s1, s2, s3 and there is a such that
(s3, vk(a) :: U) ∈ L) and V(s3, (s2, s1)) = true

then L← L \ {(c, [gl(c)])}∪
{(c, [signl(c)(sk(a), gl(s2)); gl(c)]), (s2, g

l(s2))}
if t = macs and m = s2, s3 and there exist some a, b
such that (s1, mackey(a, b) :: U) ∈ L and
MV(s1, s2, s3) = true

then L← L \ {(c, [gl(c)])}∪
{(c, [macl(c)(mackey(a, b), gl(s2)); gl(c)]), (s2, g

l(s2))})
until L = L′

return L

As explained earlier the function saturate attempts to parse
all bitstrings in L that are currently interpreted as garbage
symbols. For each such occurrence, if the bitstring does not
have associated a type, then nothing happens (i.e. the as-
sociated term remains a garbage constant). Otherwise the
procedure attempts to parse the bitstring depending on the
type of the bitstring. For example, when the type is sigs
(that is the bitstring is supposedly a signature) the proce-
dure determines that this is a valid signature on some mes-
sage s2 for the public key of some party. If this is so, a new
interpretation for c is added to the assignation list, as a sig-
nature on some new garbage symbol associated to s2, and
(s2, g

l(s2)) is added to the assignation list (to be parsed in
the next pass over the repeat loop).

2.3 Transparent implementation
Typical primitives that are usually considered in sound-

ness results include encryption, signature scheme, hash func-
tion, etc. We define and study soundness of such primitives
when they are used together with a class of functions which
we call transparent functions.

Intuitively, such functions are efficiently invertible, and
the type of their output can be efficiently determined. An
example of such functions are data structures (i.e. pairs,
lists, XML documents etc.). Formally, a transparent imple-
mentation of a signature (S,F) is a polynomial-time Tur-
ing machine M such that for all f ∈ F , with ar(f) =
s1 × . . .× sk → s,

(M evaluate f) : [[s1]] × · · · × [[sk]] × {0, 1}η → [[s]]
(M type) : {0, 1}∗ → F ∪ {⊥}
(M proj f i) : {0, 1}∗ → {0, 1}∗ ∪ {⊥}

such that for any mi ∈ [[si]], 1 ≤ i ≤ k, for any r,

(M proj f i)((M evaluate f)(m1, . . . , mk, r)) = mi

(M type)((M evaluate f)(m1, . . . , mk, r)) = f

As hinted above, our notion of soundness does not consider
primitives when used stand-alone, but considers their use
together with a (infinite, but countable) set of transparent
functions.

We next explain how to extend, generically, an algebraic
signature and its associated deduction system with transpar-
ent functions. Furthermore, we explain how to extend the
parsing algorithm associated to an implementation when one
adds an implementation for transparent functions.

Let Σ1 = (S1,F1) be a signature and DΣ1 be a set of
deduction rules inducing a deduction system such as the
deduction system defined in Example 2.1.1. Let Σtran =
(Stran,Ftran) be a signature representing a set of transparent
functions. Then we define its associated deduction system
Dtran(Σtran) as follows.

Dtran(Σtran) =

8><>:
t1 ··· tk

fl(t1,...,tk)
l ∈ labelsA, f ∈ Ftran

fl(t1,...,tk)
ti

1 ≤ i ≤ k, l ∈ labels, f ∈ Ftran

9>=>;
The deduction relation `Σ1∪Σtran is the deduction relation
induced by DΣ1 ∪ Dtran(Σtran).

Given a parsing algorithm parse (that is, the saturate algo-
rithm) for signature Σ1 and given an implementation M for
the transparent functions in Ftran, we define the algorithm
parsetran(M). This algorithm parses bitstrings as terms over
F1 ∪ Ftran. In Figure 2 we specify the function saturatetran

(that defines parsetran). Notice that we will from now on omit
the dependency of this extension on M , since M will always
be clear from the context. The extension is (necessarily) a
bit technical: Here we are attempting to parse a bitstring as
a term over the functions in F1 ∪Ftran, but have only black-
box access to the parsing (saturate) algorithm corresponding
to F1. This algorithm may classify as garbage strings that
can potentially be successfully interpreted as terms over F2.
We need therefore to maintain the link between the interpre-
tation of the same bitstring as garbage with respect to F1,
but as some term with respect to Ftran. For this we intro-
duce a mechanism which uses an auxiliary function collapse.
Given two signatures Σ1, Σ2, the collapse function takes as
input an assignation set L and replaces any subterm with
its head symbol in Σ2 with a fresh garbage of the same sort.
Since the labels of the term and of the garbage symbol are
the same (i.e. the bitstring to which they correspond) the
result is simply a substitution that replaces garbage symbols
in Σ1 with terms in Σ2.

Function collapseΣ1,Σ2
(L)

Let Mem = ∅; (memorizes garbage symbols and
their associated terms)

for any f l(t1, . . . , tk) occurring as subterm in u,
where (c, u) ∈ L and f ∈ Σ2 is of sort s1 × · · · × sk → s

let Mem = Mem ∪ {(gfl(t1,...,tk)
s , f l(t1, . . . , tk))}

return Mem

As explained above, the collapse function returns the set
Mem which we view as a substitution. Its application to a
term or (more generally) to an assignation set L is written by
LMem. We define Mem−1 to be {(u, g) | (g, u) ∈ Mem}. It
can be viewed as a replacement function. LMem−1 denotes



L where each term u occurring as subterm in L such that
(u, g) ∈ Mem−1 is replaced by g, where the replacement is
applied top-most.

Function saturatetran(L)
Let Mem = collapseΣ1,Σtran

(L);
(Mem links terms headed by transp. functions to garbage)

let L′ = L
repeat

let L = L′;
let L′ = saturate(L′Mem−1)Mem;

(L′ is parsed according to the signature Σ1)
if there is (b, gl) ∈ L s.t. gl is of sort term
and (Mtype)(b) 6= ⊥

let f = (Mtype)(b), f is of arity s1 × · · · × sk → s
if there is 1 ≤ i ≤ k s.t. (M proj f i)(b) = ⊥

then L′ = L′
gl 7→gl

s

else let bi = (M proj f i)(b), 1 ≤ i ≤ k
let Vi = Ui if there exists (bi, Ui) ∈ L,

otherwise Vi = [gl(bi)] with l(bi) ∈ labelsA;
let L′ = L′ \ {(b, gl)}∪
{(b, [f l(gl(b1), . . . , gl(bk)); gl]), (b1, V1), . . . , (bk, Vk)}
(We update L′ with the bitstring obtained
by projection.)

let Mem = Mem ∪ {(gl, f l(gl(b1), . . . , gl(bk)))}
until L = L′

return L.

Above, Lu 7→v is obtained from L by replacing each element
(c, [u]) of L with (c, [u, v])

Figure 2: Extending parsing to transparent func-
tions.

3. DEDUCTION SOUNDNESS
In this section we give a notion of soundness of an im-

plementation with respect to a symbolic deduction relation.
The definition is through a game which, informally, is as
follows. The game, maintains internally an assignation set
(that is, the interpretation of bitstrings as terms). The ad-
versary is allowed two types of actions. First, he can see
interpretation of whatever terms it wants: here the game
runs internally the generate function defined earlier using
the current assignation set and returns the bitstring that is
obtained this way. Secondly, the adversary is allowed to see
parsings of whatever bitstrings it wants: here the game runs
internally the parse algorithm and returns the term that it
obtains. Soundness holds if with overwhelming probability
the bitstrings that the adversary asks to be parsed corre-
spond to terms that can be deduced by the adversary from
the terms for which it had seen interpretations. This defi-
nitional idea can be traced back to the work of Herzog [15]
and captures the idea that a computational adversary (that
operates with bitstrings) is essentially limited to performing
Dolev-Yao operations on the bit-strings that it receives.

The novel aspect of our definition is that the implemen-
tation of primitives is not analyzed standalone. Instead, we
consider an extended signature that includes a countable
number of transparent functions. The implementation for
these functions is selected by the adversary. In effect, our

Game GameS,F,A,M1,parse,D(η):
Set S = ∅; (set of requested terms)
Set L = ∅; (assignation set)
DY = >; (only deducible terms have been received)
Valid = >; (only valid requests have been received)
R← {0, 1}∗
M2 ← A(η); where M2 has to be a transparent

implementation for (S,F \ F1)
On request parse c do:

Compute (t, L′) := parsetran(c, L);
Let L := L′;
If S 6`D∪Dtran(S,F\F1) t

then DY = ⊥, output (DY, Valid), stop
else return t

On request evaluate t do
S := S ∪ {t};
If ¬Pvalid(S)

then Valid = ⊥, output (DY, Valid), stop
else compute (c, L′) := generateM1∪M2,R(t, L)
Let L := L′;
return c

On request stop do
output (DY, Valid), stop

Figure 3: Game defining deduction soundness.

game demands that the axiomatization of the primitives re-
mains sound, even if the primitive is used in conjunction
with arbitrary (adversarially chosen) other functions. This
aspect of the definition is what enables compositionality of
our notion.

Let Σ = (S,F) be a signature, a (symbolic) deduction sys-
tem D associated to Σ and a concrete implementation M1

for the functions F1 ⊂ F . We define a game that captures
the soundness of M1 with respect to the deduction relation
D in Figure 3. The game is parametrized by an adversary A,
the set of sorts S and a set of symbols F as above, a (S,F1)-
concrete implementation M1 and, importantly, a predicate
Pvalid on a set of terms. This predicate restricts the queries
of the adversary in various ways. For example, Pvalid can be
used to specify that the adversary is not allowed to create
key cycles, only ask for well-formed terms, etc.. The last
parameter is a parsing function parse. The game also main-
tains two flags DY and Valid initially set to true. The game
allows three kinds of requests:

• The adversary sends a bit-string and gets a term that
should represent the bit-string;

• The adversary sends a term t and gets its computa-
tional interpretation. In producing these interpreta-
tions the game needs random coins. These coins are
generated as needed, so strictly speaking they are uni-
formly distributed in a finite set that depends on the
running time of the adversary A. To avoid introduc-
ing explicit bounds for this set we abuse notation and
write R ← {0, 1}∗ for the (online) process of generat-
ing these coins.

• Finally, the adversary may decide to stop the game.

Two events may occur during the game:



• The flag DY is set to false if the adversary sends a
request parse c such that the returned term t is non
deducible symbolically, that is S 6` t. This corresponds
intuitively to cases where the adversary deviates from
symbolic Dolev-Yao behaviors.

• The flag Valid is set to false if the list of requests
S does not satisfy the predicate Pvalid (which, as ex-
plained above, ensures that the adversary’s requests
are benign.)

We say that a computational implementation is deduction
sound if the deduction relation ` reflects the power of a
computational adversary, that is if any bit-string sent by
the adversary can be associated to a term deducible from
previously seen terms.

Definition 2. Let S be a set of sorts and let F be a
set of symbols. A (S,F1)-concrete implementation M1 is
deduction sound w.r.t. a deduction system D, a parsing
function parse and a predicate Pvalid if for any probabilistic
polynomial time Turing machine (p.p.t) A (for which the
game always stops)

P [GameS,F,A,M1,parse,D(η) = (⊥,>)]

is a negligible function of η, that is, remains eventually
smaller than any η−n (n > 0) as η tends to infinity.

Proving soundness in the sense of the definition above is
not really more complex than when using other definitions
in the literature. As an example, we prove the soundness of
the implementation that we gave in our running example.

3.1 Soundness for signatures and MACs
In this section we show that the implementation of sig-

natures and MACs specified in Section 2.2.4 is deduction
sound. The predicate Psm that restricts the queries of the
adversary in the deduction soundness game only checks that
signing keys have been generated before any signature gen-
eration request is issued (i.e. before the adversary sees the
interpretation of a term that contains a signature).

Proposition 1. Let Ftran be an arbitrary set of functional
symbols with arity of the form term × . . . × term → term.
Assume that the digital signature scheme and MAC scheme
used to define Msm are EU-CMA secure. Then Msm is a
(S,Fsm ∪ Ftran)-concrete implementation that is deduction
sound with respect to Dsm, parsing function parsesm and pred-
icate Psm.

Assume that there exists an adversary A which wins the
game for deduction soundness with non-negligible proba-
bility. A simple structural induction shows that the term
f(t1, t2, . . . , tk) that is non Dolev-Yao (nonDY) according
to the deduction relation induced by Dsm ∪ Dtran must con-
tain a subterm which has its head symbol in Fsm. The only
non-deducible terms in Fsm are secret keys (signing or mac
keys), and signatures or macs on messages that have not
been signed (or mac’ed) before. Intuitively, this corresponds
to the adversary breaking the primitives underlying the im-
plementation Msm. We formalize this intuition by construct-
ing adversaries against the primitives, one against the sig-
nature scheme, and one against the mac scheme.

Here, we only explain how the adversary against the signa-
ture scheme works – the other adversary works analogously.

Assume that we know which of the messages of the adver-
sary A contains the nonDY subterm, and that this subterm
is a signature valid under the public key of some party a on
a message that this party did not produce. Also assume that
we know the identity a of this party. Both of these quantities
can be guessed with non-negligible probability. Adversary
B that we construct against the digital signature receives as
input some verification key vk and access to a signing ora-
cle under the corresponding secret key sk. Adversary B then
simulates the deduction soundness game for A in such a way
that the signing key of party a, that is, the interpretation of
vk(a) is set to vk. All of the other secrets in the game (mac
keys, signing keys) are generated by B. Adversary B simu-
lates the behaviour of the game (that is algorithms parsetran

and generate) as if on the internal assignation list where
the verification key of a is set to vk. Whenever B needs to
produce signatures under vk it uses its signing oracle. No-
tice that the adversary A never asks for the interpretation
of sk(a) (which B cannot provide), as otherwise the signa-
ture would actually be a Dolev-Yao message. The nonDY
message that A produces contains a signature that verifies
under vk on some message m that a did not previously sign
(and which thus was not queried to the signing oracle of B).
The same simulation can be provided by B when the nonDY
message is the signing key associated to a. In this case, B
simply signs some fresh message to produce its forgery.

4. COMPOSITION THEOREMS
Our notion of deduction soundness enjoys the nice prop-

erty of being easily extendable: if a computational algebra
is deduction sound for a given set of primitives, it is pos-
sible to add other primitives, one by one, without having
to prove deduction soundness, from scratch for the result-
ing set of primitives. In this paper we provide two results:
we show how to extend in a modular way deduction sound-
ness to encompass public data structures and asymmetric
encryption.

4.1 Adding public datastructures
An immediate observation with interesting implications

is the following. Consider some implementation M1 for the
functions in F1 ⊆ F for some signature (S,F). Now, extend
M1 to implement, in a transparent way additional functions
in F \F1. Then, the resulting implementation is also deduc-
tion sound. The intuition behind this result is simple: if M1

is sound when the functions in F \ F1 are implemented via
a transparent implementation selected by the adversary, im-
plementing some (or even all) of the functions in F \F1 with
some fixed transparent implementation preserves soundness.
This idea is formalized by the following theorem.

Theorem 1. Assume that M1 is an (S,F1)-concrete im-
plementation for some signature (S,F1 ∪ F2 ∪ F3) that is
computationally sound with respect to deduction D, parse
function parse and predicate Pvalid. Then, if M2 is an ar-
bitrary transparent implementation for the functions in F2,
then M1||M2 (the implementation that implements functions
in F1 with M1 and functions in F2 with M2) is a (S,F1 ∪
F2)-concrete implementation for (S,F1 ∪ F2 ∪ F3) that is
deduction sound with respect to D ∪ Dtran(F2), parse func-
tion parsetran and predicate Pvalid. The function parsetran is
defined via saturatetran (Figure 2) with the transparent im-
plementation set to M2.



The proof of the theorem is by reduction. Consider an ad-
versary A that breaks deduction soundness for the (S,F1 ∪
F2)-concrete implementation. We construct the following
adversary B against the soundness of the implementation
M1. Adversary B runs internally A: when A outputs its
transparent interpretation M3 for the functions in F3, ad-
versary B outputs M2||M3 as its transparent interpretation
for the functions in F2∪F3. After this, B simply forwards the
queries of A to the game and forwards the returns. When A
requests the parse of a string that corresponds to a nonDY
term with respect to D∪Dtran(F2) this term is in fact nonDY
with respect to D, so B wins its own game.

The above theorem is important as it allows to add, essen-
tially for free, public data structures to any implementation
that is deduction sound (in the sense of our definition) as
typically data structures are implemented by transparent
implementations.

For example lists can be added to a deduction soundness
results as follows. Assume that the set of transparent func-
tions Flist contains two functions empty and @ with arities
empty :→ term and @ : term→ term, respectively. Consider
the following implementation Mlist for lists.

• (Mlist evaluate empty) outputs 〈ε, list〉 where ε is some
fixed bitstring.

• (Mlist evaluate @) on input x0 and U , parses U as
〈x1, x2, . . . , xk, list〉 for some k. If k = 1 and x1 is ε then
return 〈x0, list〉, otherwise return 〈x0, x1, . . . , xk, list〉.

• (Mlist type) on input x parses U as 〈x1, . . . , xk, list〉 for
some k ≥ 0 and x1, x2, . . . , xk arbitrary bitstrings. If
parsing fails, then the algorithm returns ⊥. If k = 1
and x1 = ε then return empty, otherwise return @.

• (Mlist proj @ 1) on input x attempts to parse x as
〈x1, x2, . . . , xk, list〉. If this does not succeed it outputs
⊥. Otherwise it outputs x1.

• (Mlist proj @ 2) on input x attempts to parse x as
〈x1, x2, . . . , xk, list〉. If this does not succeed it out-
puts ⊥. If k = 1 then return 〈ε, list〉, otherwise output
〈x2, x3, . . . , xk, list〉.

The above implementation clearly satisfies the properties of
a transparent implementation. Theorem 1 works for arbi-
trary sets of transparent symbols. By replacing in the state-
ment of the theorem F2 with Flist, and M2 with Mlist one
obtains a soundness result for the extension of the implemen-
tation of M1 with Mlist with respect to the deducibility rela-
tion induced by Dsm ∪ Dlist. Here, Dlist is simply Dtran(Flist).
We use this notation later in the paper.

Of course, other possible implementations for lists are pos-
sible and the theorem can be reused for each of these dif-
ferent implementations (as long as they are transparent).
It is also possible to provide similar specifications for the
usual pairing operation or more complex data structures
(e.g. XML documents), and the corresponding extension
result holds.

4.2 Adding asymmetric encryption
In this section we give a theorem that allows to extend a

deduction sound implementation with asymmetric encryp-
tion. Our modeling assumes that corrupted keys are “hon-
estly” generated by the key generation for the primitive.

This assumption is quite common in existing soundness re-
sults (e.g.[5, 13, 16]) and is rarely circumvented (e.g.[8, 18]).
For asymmetric primitives, as in the case of asymmetric en-
cryption, the assumption can be ensured through a PKI.
The reason for this assumption is that the problems out-
lined in [10] for the case of symmetric encryption also apply
for asymmetric encryption.

For an algebraic signature S,F we define its extension
Senc,Fenc to asymmetric encryption. We define

Senc = S ∪ {id, keypair, ekey, dkey}

where id represents agent identities and sorts keypair, ekey,
dkey contain key pairs, keys for encryption, and decryption
respectively. We assume keypair, ekey, dkey /∈ S while id may
already be in S. Moreover, id is a sub-sort of term. We con-
sider Fenc = F ] {keypair, ek, dk, enc}. The function keypair
of arity id→ keypair takes on input an identity and returns
the key pair associated to the identity. The function ek of
arity keypair → ekey (resp dk of arity keypair → dkey) is
defined on the sort keypair and returns the encryption key
(resp. the decryption key) associated to the key pair. The
encryption function enc has arity ekey × term → ciphertext.
Note that, by construction, well-sorted terms do not contain
strict subterms of sort dkey. By abuse of notation, we will
often write ek(a) instead of ek(keypair(a)).

Let ` be a deduction relation defined by a deduction sys-
tem D. We extend this deduction system with rules that
capture the security of encryption:

Denc =

8><>:
encl(ek(v),u) dk(v)

u
, ek(v) u

encl(ek(v),u)
l ∈ labelsA,

encl(ek(v),u)
u

l ∈ labelsA

9>=>;
where v is a variable of sort id and u is a variable of sort
term. We write `enc for the deduction relation induced by
D ∪Denc

We now give a concrete implementation Menc for encryp-
tion. The implementation uses some asymmetric encryption
scheme Π = (G, E ,D). As usual, here G is a generation al-
gorithm for key pairs, E is an encryption algorithm and D
is a decryption algorithm. Note that E is an algorithm that
takes three inputs: the encryption key, the message to be
encrypted and the randomness that is used for encryption.
We consider an implementation that affixes to bitstring a tag
that indicates how it has been generated. The four possible
tags are tenc, tkeypair, tek and tdk for cyphertexts, keypairs,
encryption keys and decryption keys resp. The computable
interpretations of keypair, ek, dk, enc are as follows:

• (Menc keypair a) is G(η) to the output of which we
append the tag tkeypair;

• (Menc enc) : (k, m, r): parse k as 〈pk, tek〉, compute
c← E(pk, m, r) and output 〈c, pk, enc〉.

• (Menc ek) is the function that extracts the encryption
key from a key pair and adds the tag tek;

• (Menc dk) is the function that extracts the decryption
key from a key pair and adds the tag tdk.

Next, we show how to extend the parsing parse algorithm
for the original implementation M to take into account the
newly added primitive. In Figure 4 we define the func-
tion saturateenc (that in turn defines the parsing algorithm



parseenc), starting from the abstract algorithm saturate un-
derlying the parsing algorithm for the implementation M .
The algorithm works as expected: it tries to interpret the
strings that are parsed as garbage symbols by the original
algorithm (i.e. saturate) as encryptions. If this does not suc-
ceed, the interpretation of these bitstrings does not change.
Otherwise, the bitstrings are decrypted and the plaintext
is then parsed according to saturate. The process is re-
peated until the assignation set remains unchanged (i.e. it
is not possible to parse some bitstring that is interpreted as
garbage in the current assignation set).

We assume that whenever there is (ek , ek(a)) ∈ L then there
is (a unique) (dk , dk(a)) ∈ L. It is easy to check that this
property is preserved by the saturateenc function.

Function saturateenc(L)
Let Mem = collapseΣ,Σenc

(L);
(Mem links terms headed by functions outside Σ to garbage)

let L′ = L
repeat
let L = L′;
let L′ = saturate(L′Mem−1)Mem;
(L′ is parsed according to the signature Σ)

if there is (b, gl) ∈ L where g is of sort term
and b is of the form 〈b′, ek , enc〉,
and there is (ek , ek(a)) ∈ L thus a unique (dk , dk(a)) ∈ L,
and D(b′, dk) 6= ⊥, do
let m = D(b′, dk),
if there is (m, U) ∈ L′ then let V = U

otherwise let V = [gl(m)] where l(m) ∈ labelsA;

let L′ = L′ \ {(b, gl)} ∪ {(b, [encl(ek(a), gl(m)); gl]), (m, V )}
let Mem = Mem ∪ {(gl, encl(ek(a), gl(m)))}

until L = L′

return L

Figure 4: Extending parsing to asymmetric encryp-
tion.

We now show that the extension of a deduction-sound
implementation with asymmetric encryption, as specified
above remains deduction-sound, provided that the encryp-
tion scheme used in the implementation is IND-CCA secure.
More precisely, we show that soundness of the extension
holds with respect to deduction system D∪Denc and parsing
function parseenc. The predicate that validates the requests
of the adversary needs to be changed (as the signature has
changed). In particular, the generate requests in the new
game should satisfy that requests remain valid w.r.t. to the
initial signature and some additional constraints due to the
use of encryption. Formally, given a predicate Pvalid for a
signature (S,F1 ∪ Ftran), Pvalid

enc
is any predicate that con-

forms to the following restrictions (one would consider the
least restrictive version).

• The adversary may generate keys (i.e. perform re-
quests generate ek(keypair(a)) or generate keypair(a),
with a ∈ id) but only at the beginning of the game
(before any encryption request is made); this require-
ment corresponds to allowing only static corruption of
encryption keys.

• After this first phase, keypair(a) do not do not ap-

pear in terms except inside a sub-term of the form
ek(keypair(a));

• Importantly, the requests for the implementation that
includes encryption, should remain valid w.r.t. the ini-
tial signature. To specify an appropriate extension of
Pvalid we remark the following about the workings of
the game. As far as the adversary is concerned, ci-
phertexts are either entirely opaque (encrypted under
honest keys) or entirely transparent (encrypted under
corrupted keys). We can interpret then bitstrings with
respect to the original signature as either garbage con-
stants or as transparent functions. The validity re-
quirement is then that terms with respect to the joint
signature are, under this substitution valid with re-
spect to the game for the original signature. Formally,
we capture this idea as follows.

We define the auxiliary function replace(H,C) which is
parameterized by two sets of agents H and C such that
id = H ∪C, from terms in F1 ∪Ftran ∪Fenc to terms in
F1 ∪ Ftran as follows:

– replace(H,C)(f
l(t1, . . . , tn)) =

f l(replace(H,C)(t1), . . . , replace(H,C)(tn)) if f 6= enc;

– replace(H,C)(encl(ek(b), t)) = f l
ek(b)(replace(H,C)(t))

if b ∈ C;

– replace(H,C)(encl(ek(a), t)) = f
l(encl(ek(a),t))

ek(a) if a ∈
H and l ∈ labelsH;

– replace(H,C)(encl(ek(a), t)) = gencl(ek(a),t) if a ∈ H
and l ∈ labelsA;

Then, Pvalid is any predicate such that for any choice
of H and C such that id = H ∪ C the following holds:

replace(H,C)(Pvalid
enc

) ⊆ Pvalid (1)

where f l
ek(b) is a unary symbol and f

l(encl(ek(a),t))

ek(a) is a constant

symbol.
Our next theorem shows that any deduction sound set

of primitives can be automatically extended to asymmetric
encryption.

Theorem 2. Let S1 be a set of sorts, F1 be a set of sym-
bols. Let Ftran and Ftran′ be two disjoint sets of functions
symbols of arity of the form term × · · · × term → term such
that they contain an infinite countable number of functions
of each arity. Let M1 be a (S1,F1 ∪ Ftran ∪ Ftran′)-concrete
implementation which is deduction sound w.r.t. a deduction
system D, a parsing function parse and a predicate Pvalid. Let
Senc, Fenc, Denc, Menc as defined in Section 4.2.

Then (M1‖Menc) is a deduction sound ((S1 ∪ Senc,F1 ∪
Fenc ∪ Ftran))-concrete implementation w.r.t. the deduction
system D∪Denc, the parsing function parseenc and any pred-
icate Pvalid

enc
that satisfies Equation 1, provided that the en-

cryption scheme used by Menc is IND-CCA.

The proof of Theorem 2 works in two stages. First, we trans-
form the deduction-soundness game for the (S1 ∪ Senc,F1 ∪
Fenc∪Ftran)-concrete implementation (M1‖Menc) into a game
Gamefake where the encryption function is replaced by a func-
tion that encrypts with zeros when called on “honest” iden-
tities. The sets H and D of honest and dishonest identities



are determined during the first phase of the game, when
the adversary does not request any encryption: dishonest
identities are those for which the adversary knows both the
public and private corresponding keys while honest identi-
ties are the remaining ones. The IND-CCA assumption on
the encryption function ensures that the two games are in-
distinguishable.
The second (and main) step of the proof is a reduction. As-
sume the existence of an adversary A that breaks the game
Gamefake. Building upon A, we construct an adversary B
that wins the game GameS1,F1∪Ftran∪Ftran′ ,B,M1,parse,D, that is,
an adversary that contradicts the soundness of implementa-
tion M1. In the first phase, B generates the key pairs (honest
and dishonest) itself. The key idea is to show how the trans-
parent functions in Ftran′ can be used by B to apply encryp-
tion inside terms it does not have access to. The simulation
of encryption by transparent function works as follows. For
each dishonest key ek(b) ∈ D, we assume given a transpar-
ent function fek(b) ∈ Ftran′ of arity 1, whose interpretation
(provided by B) is to encrypt with ek(b). The associated
projector is simply the decryption with the corresponding
decryption key. For each honest key ek(a) and length l ∈ N,
we assume given a transparent function fek(a),l ∈ Ftran′ of

arity 0 (a constant) that simply encrypts 0l by ek(a). This
function symbol being a constant, it does not have a pro-
jector. We can then conclude the proof by showing that
B interacting with GameS1,F1∪Ftran∪Ftran′ ,B,M1,parse,D exactly

simulates Gamefake.

5. APPLICATIONS
In this section we present two applications of our notion.

First, we show that the composability property of our sound-
ness notion allows to combine, several different primitives:
we obtain deduction soundness for mac, signatures, lists
and asymmetric encryption. In the following proposition
parsesm,list,sm is the parsing algorithm parsesm extended to lists
and encryption as specified earlier in the paper and predi-
cate Psm is any predicate that satisfies Equation 1 (where
Pvalid is replaced by Psm) and parsesm,list,sm.

Proposition 2. Msm||Mlist||Menc is a concrete implemen-
tation for (Senc, (Fsm ∪Flist)enc) that is deduction sound with
respect to Dsm∪Dlist∪Denc, parsing function parsesm,list,enc and

predicate Psm, if the digital signature scheme and the MAC
scheme used in Msm are EU-CMA secure and the encryption
scheme used in Menc is IND-CCA secure.

The proof of the proposition is an immediate consequence
of Proposition 1 and Theorems 1 and 2.

Next, we show that deduction soundness allows computa-
tionally sound symbolic analysis for a wide class of protocols.
We specify this class through an abstract property that links
symbolic and computational versions of the same protocol.
To this end, we regard protocols as state transition systems.
So, a symbolic protocol is simply a state-based transition
system that takes terms as inputs and outputs terms. A
computational protocol is state-based transition system that
takes bitstrings as inputs and outputs bitstrings. Symbolic
protocols could be specified for instance using some pro-
cess calculus, whereas computational protocols are specified
through communicating Turing machines.

The property that we define next, and which we call com-
mutation property links symbolic and computational proto-
cols. Intuitively the property says that the computational

interpretation of the symbolic behavior of the protocol cor-
respond to its implementation.

Definition 3 (Commutation property). Let P s be
a symbolic protocol and P c be a computational protocol. In-
tuitively, P s and P c should be respectively the symbolic and
computational interpretation of the same protocol P . Let S
be a set of sorts, F be a set of symbols. Let M1 be a (S,F1)-
concrete implementation and parse be a parsing function.
We say that (P s, P c) has the commutation property if the
two following games are computationally indistinguishable
by any polynomial adversary.

1. Game 1: A interacts with P c directly.

2. Game 2:

Set L = ∅; (assignation set)
On input c from A do:

(t, L) := parse(c, L)
send t to P s, getting u
(c′, L) := generateM1

(u, L)
return c′ to A

For example, for any protocol described by the language
of [13] (with input and output of messages, conditional with
no else branch and replication of processes) the formal and
computational interpretations of the protocol enjoy the com-
mutation property. A similar property has been identified
by Backes, Hofheinz, and Unruh as a sufficient condition to
obtain soundness results in their CoSP framework [3]. They
elaborate in the full version of their paper and show how to
prove this commutation property for all protocols written in
a specific language. Similar results are possible within the
framework that we propose.

Next, we show that for protocols that satisfy this commu-
tation property one can prove a soundness result: whenever
a formal protocol enjoys a security property (for a symbolic
adversary), the corresponding computational protocol also
enjoys the same security property. The focus of this paper
is on trace-based properties which are naturally specified in
terms of deducibility relations.

We write P
?u!v−→ P ′ if a protocol at state P outputs v on

input u, moving to state P ′. A trace is then a sequence of
input/output messages. Formally, a formal (resp. compu-
tational) execution trace of a formal (resp. computational)
protocol P is a sequence of the form ?u1!v1?u2!v2 · · ·?un!vn

such that the ui, vi are terms (resp. bitstrings) and P
?u1!v1−→

P1?u2!v2−→P2 · · · ?un!vn−→Pn. For formal protocols, we
say that a formal execution trace ?u1!v1?u2!v2 · · ·?un!vn is
valid w.r.t. to a deduction system D if {v1, . . . , vi−1 `D ui}
for any 1 ≤ i ≤ n. Valid execution traces ensures that
the symbolic adversary only makes valid (deducible) queries.
A security property can be any predicate on the execution
traces.

Definition 4. Let φs (resp. φc) be a predicate on formal
(resp. computational) traces. Let P s be a symbolic protocol
and P c be a computational protocol. Let D be a deduction
system. We say that P s satisfies φs, denoted P s |=s φs if
φs holds for any valid execution trace of P s, w.r.t. D. Sim-
ilarly, we say P c satisfies φc, denoted P c |=c φc if for any
p.p.t. adversary A, the predicate φc holds with overwhelming
probability on execution traces of P c interacting with A.



Deduction soundness allows the transfer of security prop-
erties for any formal / computation interpretation that en-
joys the commutation property from the symbolic to the
computational setting.

Proposition 3. Let P s be a symbolic protocol and P c

be a computational protocol. Let φs be a predicate on formal
traces. Let S be a set of sorts, F a set of symbols, D a deduc-
tion system, Pvalid a predicate and parse a parsing function.
Assume M1 is a deduction sound (S,F1)-concrete imple-
mentation, w.r.t. D, Pvalid and parse. Assume that (P s, P c)
has the commutation property and that all valid executions
of Ps satisfy Pvalid. Then

P s |=s φs ⇒ P c |=c φc

where φc is the image of φs. Formally, φc = {tc | tc =
L(ts) for some ts ∈ φs, L ∈ L} where L is the set of all L
that can be constructed in Game 2.

6. CONCLUSION
In this paper we propose deduction soundness, a novel

computational soundness framework. The key feature of
our notion is that it allows for modular extensions and we
provide two concrete examples. We show that implementa-
tions for arbitrary cryptographic primitives that are deduc-
tion sound can be extended with public data structures and
asymmetric encryption without repeating the original proof
effort.

There are several obviously interesting directions for fur-
ther work. The first is to show that deduction soundness can
be extended, modularly, to other cryptographic primitives.
We expect that the techniques developed in this paper for
the case of asymmetric encryption would apply virtually un-
changed to the case of hash functions (modeled as random
oracles) and symmetric encryption schemes. However, in its
present form, deduction soundness does not extend to au-
thentication primitives (e.g. digital signature and message
authentication codes). The main reason is that the cur-
rent definition does not account for the interaction between
the axioms that are proved deduction sound and those that
characterize the implementation provided by the adversary,
as far as authentication aspects are concerned. A modu-
lar extension with signatures and macs needs to limit, in
a fairly non-restrictive manner, the interaction between the
axioms for these authentication primitives and those of for
which soundness had already been proved. We leave such
an extension for further work.

The notion of deduction soundness is concerned directly
with the implementation of cryptographic primitives and
is independent of any particular protocol specification lan-
guage. Computational soundness for such languages can
however still be established if a certain property which we
call a commutation property holds. The commutation prop-
erty ensures that a real execution of a protocol (with primi-
tives implemented as expected) is the same as the execution
of the protocol with primitives implemented as in the game
that defines soundness. If this property holds, then a real
execution of the protocol can be mapped to a symbolic one
and this, in turn, leads to a soundness result in the form of
a mapping lemma.

Mapping lemmas allow for the translation of authentica-
tion properties from symbolic models to computational ones

but they do not directly yield similar results for secrecy prop-
erties. An intriguing open question is therefore to develop
modularly extensible frameworks for computational sound-
ness that allow for the transfer of secrecy properties. Speci-
fication through equivalence notions (rather than deducibil-
ity) lend themselves naturally to capturing secrecy proper-
ties (both symbolically and computationally). A possible di-
rection would therefore be to define equivalence soundness,
the analogous of our notion for equivalences (rather than
deducibility).

Finally, we note that proving that the commutation prop-
erty holds for a general specification language is not partic-
ularly difficult, but it is rather tedious, as evidenced by the
work of Backes, Hofheinz, and Unruh (in the long version
of [3]), where such a property had been proved. An inter-
esting research question is to find ways to prove, also in a
modular way that the commutation property holds.
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