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ABSTRACT
We propose a new measure for privacy of votes. Our measure
relies on computational conditional entropy, an extension of the
traditional notion of entropy that incorporates both information-
theoretic and computational aspects. As a result, we capture in a
unified manner privacy breaches due to two orthogonal sources of
insecurity: combinatorial aspects that have to do with the number
of participants, the distribution of their votes and published elec-
tion outcome as well as insecurity of the cryptography used in an
implementation.

Our privacy measure overcomes limitations of two previous ap-
proaches to defining vote privacy and we illustrate its applicability
through several case studies. We offer a generic way of applying
our measure to a large class of cryptographic protocols that includes
the protocols implemented in Helios. We also describe a practical
application of our metric on Scantegrity audit data from a real elec-
tion.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information The-
ory—Information Theory; K.4.1 [Computers and Society]: Public
Policy Issues—Privacy

General Terms
Measurement, Security, Theory

Keywords
Voting, Privacy, Entropy, Cryptography

1. INTRODUCTION
The design and analysis of voting systems has a long and rich

history. Existing systems range from traditional paper-only bal-
lot systems to purely electronic voting schemes where voters may
vote from the privacy of their own computers (e.g., Helios [1, 2]
or Civitas [11]) and also include hybrid systems that make use of
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paper ballots but where computers facilitate the tally (e.g., Three-
Ballot [28], Prêt-à-Voter [29] and Scantegrity [10]).

Of the many security properties that voting systems should sat-
isfy, privacy of votes is of central concern. The development of rig-
orous security models for this important property started with the
work of Benaloh [12, 3] but soon evolved towards the related (but
seemingly much stronger) notions of receipt-freeness and coercion
resistance [4, 24, 19]. Achieving these stronger notions is certainly
desirable but it seems to come at the expense of efficiency and us-
ability. It should then come as no surprise that systems in use (e.g.
Helios) chose usability over coercion-resistance and aim to achieve
“only” vote privacy. The study of this notion has only recently
started to receive more attention with new models being developed
in both symbolic models [13] and computational ones [21, 23, 5].

Models for related notions like confidential message transmis-
sion serve as a good but insufficient source of inspiration: unlike
in those applications, vote privacy is not absolute but relative to
specific election bylaws and voter choices. An extreme but rele-
vant example is that of a voting system that discloses the number
of votes received by each candidate. Such a system essentially re-
veals how each voter voted in the improbable but not impossible
event that all voters vote for the same person. Yet classifying the
system as insecure is clearly undesirable and one should search for
a more nuanced classification.

A second difference concerns the information that the adversary
tries to learn. In other scenarios where privacy is important it is usu-
ally clear what information the adversary targets (e.g. the privacy
of plaintexts for the case of encryption). In contrast, adversaries
against voting protocols may be interested in many possible targets
ranging from how some individual voted, to complex relations be-
tween votes (e.g. have certain persons voted in the same way, or has
a certain subset of voters supported a candidate more than another
subset [2]). These two examples perfectly reflect the shortcom-
ings of existing models for vote privacy which either target specific
classes of protocols or are limited in the class of adversarial targets
that they consider.

Contributions
In this paper we motivate and propose new privacy measures for
voting schemes. We develop our definitions in two steps. The start-
ing point is an information theoretic variant which, very roughly,
declares the privacy of the information that the adversary targets to
be the entropy left in the targeted information given what the ad-
versary learns during the election process. This definition is too
strong as it essentially requires security against unbounded adver-
saries and would declare practical systems where encryptions of
votes are made public as completely insecure. In the second step,



we extend the applicability of our definition to systems where secu-
rity is ensured only against computationally bounded adversaries.
We do so by replacing information theoretic entropy with a con-
ditional computational entropy which we introduce. We obtain a
privacy measure that is a function of three parameters: the distri-
bution D on the votes of honest parties, the information that is the
target of the adversary T , and the voting protocol π (and implicitly
the tallying function which the voting protocol computes). We now
discuss some of the features and shortcomings of our definition.

Simplicity. Entropy has long been identified and used as a nat-
ural measure of the uncertainty (and therefore privacy) of criti-
cal information [31]. Since our definition ultimately relies on en-
tropy it inherits its associated intuition that has been used in many
other contexts before (e.g., anonymity [8], leakage [32], informa-
tion flow [32]). The move to computational entropy, although a
bit technical, preserves this intuition and extends the applicability
of the information theoretic approach to systems that employ cryp-
tography.

Generality. The rather straightforward approach that we took in
defining our privacy measure turns out to be quite powerful. We
establish a link between a particular case of our notion and one
recently proposed by Küsters, Truderung, and Vogt [23]: in the
purely information-theoretic case, their notion can be obtained for
a very specific distribution of the votes and by a particular choice of
the parameters of our measure. We also show how a previously in-
troduced computational notion [5] can be seen as a tool for moving
from the computational to the IT version of our measure.

We keep our notion of privacy as independent as possible from
the details of any fixed execution model. In particular, our defini-
tion requires and employs only an abstract notion of an adversarial
view. Defining such a view is system/execution model dependent
but on the one hand the details of how this is done are standard, and
on the other such details are irrelevant to the understanding of our
privacy measure and would only obscure our approach.

Usability. The general approach we took makes our measure of
privacy applicable to a large variety of systems. The relaxation to
computational entropies allows to meaningfully account for privacy
breaches that are due to weak cryptography, the underlying use of
entropy allows capturing insecure ways of releasing results, and
the inclusion of an arbitrary distribution on the honest votes allows
measuring the impact on privacy of some a priori knowledge of the
votes the adversary may have. Our privacy measure could be used
to identify systems that are clearly insecure (those for which the
measure of privacy is always close to 0). However, we envisage its
primary usage to be in comparing the level of privacy that different
parameters and systems ensure. For example, consider a situation
where one has to choose between different tallying systems, say
one which reveals only the winner of an election, one where the
number of votes each candidate obtain is revealed, or one that re-
veals a permutation of the individual ballots. While there is clearly
a difference in the privacy offered by these options, our measure
helps in understanding the different choices within the parameters
of the election (e.g. the loss of privacy may strongly depend on the
number of voters). Our approach can not only be applied to analyze
a voting protocol but also to the data of a specific election. We dis-
cuss data from the 2009 Takoma Park election organized with the
Scantegrity system [7]. The privacy of the Scantegrity protocol has
been studied by Küsters et al. [22]; we do not redo such an analysis
in this paper but we study privacy implications that arise from the
specific results and audit data of one election:

• The audit data, which contain anonymized ballots, are enough
to favor an Italian attack as soon as there are more than 2 can-
didates on a single question. Indeed, while almost all possi-

ble ballot fillings appear on the bulletin board for questions
with two candidates, approximately 75% of the possible bal-
lots do not appear for questions with three candidates.

• If someone obtains access to the receipts of voters, which are
not expected to be kept confidential, then the privacy of those
voters might be fully compromised. This is for instance the
case for one specific voter in one of the six wards in this
election.

We think that our observations could motivate some adaptations in
the Scantegrity for future elections.

Definitional obstacles. Entropy is an appealing notion with a
well-established place in defining privacy of communication. Its
uses in the context of our work raises two specific obstacles that we
needed to overcome. In general, computational entropies (involve
an existential quantifier over an infinite class of simulators and) are
difficult to compute. For systems that do not involve cryptography
we show that our privacy notion collapses to an information theo-
retic entropy which can be computed in a similar manner as in pre-
vious work [23]. For systems that involve cryptography we provide
a theorem which allows the following two-step approach. First,
show cryptographic indistinguishability from an idealized system
(essentially security in the sense of a computational model [5]).
This technique is common in cryptography and has already been
informally applied to voting protols [21, 23]. In the second step we
can simply use information-theoretic entropy.

A second difficulty is that there are many different flavors of
entropy and it is not immediately clear which of the many well-
established variants should form the basis of our notion. It turns
out that there is no unique correct answer to this question as the
different notions reflect related but different aspects of security (e.g.
worst-case versus average-case insecurity). We study some of the
most prominent choices and clarify the applicability of the different
options through examples.

2. RELATED WORK AND LIMITATIONS
The quantification of privacy has been studied from many differ-

ent angles. Our paper is concerned only with a small part of this
research area: how to deal with cryptographic constructions in an
analysis of privacy of voting systems. To place our paper in con-
text, we begin by reviewing some work that is relevant to our area
and point out the limitations of some existent approaches.

The work on privacy in the context of anonymous communica-
tion (see Chaum [9] and numerous subsequent work) is mostly fo-
cused on traffic analysis techniques. While some voting protocols
might rely on anonymous communication to ensure privacy, this
is not necessary, and it is often possible to have elections offering
private voting without anonymous channels [12]. Besides, traffic
analysis is often based on getting statistics from repeated or corre-
lated events, while the task of secure function evaluation is a one-
shot procedure (one is not able to repeat an election for instance).
The work on database privacy, including the differential privacy
approach [15] for example, is interested in limiting whether the ad-
dition or removal of a record in a database might affect the outcome
of a statistic. While, at first sight, auctions or voting can be seen
as taking a statistic on a set of records, the concerns are again dif-
ferent: we actually expect that one single record might completely
change a statistic (by changing the highest bid for instance) and still
want to consider that an auction or election may offer some level of
privacy even though it does not provide any differential privacy.

The cryptographic literature also contains numerous examples
of definitions of what it means for a protocol to offer privacy (see,
e.g., Goldreich et al. [18]). Their work however concentrates on ex-
pressing that a protocol offers as much privacy as an ideal task, but



not on giving meaningful measures of privacy loss when a privacy
gap exists.

Early work on vote privacy. The same criticism applies to early
definitions of privacy proposed for voting by Benaloh [12, 3]. Fur-
thermore, this work focuses on the comparison of honest vote as-
signments that offer the same sub-tally, which seems too restric-
tive for general tallying functions (e.g. if the tallying function only
announces the winner). It also does not capture the information
that an adversary can learn if it knows the expected distribution
of the votes in advance. Privacy is also mentioned in several pa-
pers defining receipt-freeness [4, 24] or coercion-resistance [19,
33, 21]. While privacy informally seeks to hide information on
votes, receipt freeness and coercion resistance are stronger proper-
ties that require that a voter cannot prove how he/she voted even if
he is willing to (or forced to) do so. However, receipt freeness and
coercion-resistance may simply not be satisfied for some systems
that are designed for low-coercion environments such as Helios [1,
2].

Symbolic models. Vote privacy has also been defined in the con-
text of symbolic models, where messages are represented by terms.
For example in [13], a protocol is said to preserve privacy if an at-
tacker cannot detect when two votes are swapped. This again does
not apply to all voting scenarios. For example, if voters can give a
score of 0, 1, or 2, it may be the case that an attacker cannot distin-
guish a pair of votes (0, 2) from (2, 0) but could well distinguish
(0, 2) from (1, 1). Of course, symbolic models also have the usual
drawback of being too abstract, possibly missing attacks that occur
with only some probability (not 1 nor negligible).

Computational privacy notions. In [5], the authors define a game-
based notion of privacy that is used to analyze the privacy of He-
lios [2]. Their definition however is tailored to a class of voting
schemes where casting a vote corresponds to submitting an en-
crypted ballot to some bulletin board. This is of course not the
case for all voting systems (see e.g. ThreeBallot [28]).

Küsters, Truderung, and Vogt provide a privacy definition for
voting which is closest to the notion we propose [23]. Very roughly,
they measure the difference observed by an attacker when an (hon-
est) voter changes his vote, while all of the other (honest) votes
follow a given distribution. The authors show how to analyze the
privacy offered by several voting protocols such as ThreeBallot and
VAV.

Their definition is the first that can be used to capture information-
theoretic aspects (e.g. how much information can be inferred from
the results of the election) but is limited in several respects. First,
their definition is more restricted than ours with respect to the pos-
sible distributions on the honest voters’ choices: every honest voter
except one “target” voter casts a vote drawn independently from
the same distribution. Secondly, they focus on wondering whether
an adversary can decide whether a single voter voted in one way
or another. These limitations exclude, for example, a scenario with
two voters who always cast opposite votes in a yes/no ballot and an
adversary who tries to tell which one voted “yes”; such a scenario
appears in a privacy notion using symbolic models [13]. Thirdly,
the following example explains why the definition of [23] is some-
times too strong (and then non informative) for some very natural
cases.

Consider an election with one million voters doing approval vot-
ing on 100 candidates, and where the outcome of the election is
a shuffled version of all ballots: this is the view of the election
officers doing the tally in a traditional paper-based election for in-
stance, or the view of everyone in an election relying on verifiable
mixnets for the tally. For such an election, whatever distribution
of votes is followed by honest voters, there will be at least two of

the 2100 possible votes, say v and v′, that appear with probability
at most 2−80 ≈ 106/2100. But then, an adversary who looks for
the votes v and v′ in the tally will be able to distinguish the cases
where a voter submitted a vote for v or for v′ with probability al-
most 1: the probability that v′ or v gets submitted by a honest voter
is close to 2−80. What this example shows is that for elections
where the so called short ballot assumption [28] does not hold (i.e.
the number of possible votes is much larger than the total number
of voters), the definition of [23] would declare a complete privacy
breach, whereas this may not be the case. Indeed, it is clearly rea-
sonable to consider that voters taking part to such an election do
have some level of privacy: no one is able to decide which one of
the one million submitted ballots comes from a specific voter. Our
privacy notion aims to address these limitations. We provide a more
detailed comparison with the notion of [23] in Section 6.2.

3. ENTROPY NOTIONS
As explained in the introduction the privacy measure that we

consider relies on a computational version of conditional entropy.
In this section we briefly review some standard notions of entropy
and explain how to transfer the definitions from an information the-
oretic to a computational setting. Here and throughout the paper we
denote random variables by boldface capital letters and use P and
E to denote probability and expected value. We also use boldface
capital letters for ensembles of random variables.

Information-theoretic entropy
For any k ∈ [0,∞] the Rényi entropy [26] with parameter k of a
random variable X with range X is defined as:

Hk(X) :=
1

1− k
log

 X
x∈X

P [X = x]k
!

(where the values 1 and ∞ are understood as limits). Three in-
stances of k yield particularly useful, well-known notions of en-
tropy: the case k = 0 is Hartley entropy, k = 1 is Shannon entropy
and k = ∞ min-entropy.

For any fixed entropy notion H there are several possibilities for
defining the conditional entropy of one random variable given an-
other (and each of these variants can be used as privacy measures).
The conditional entropy of X given Y is defined as the expected
value of the entropy of X, where the expectation is taken over Y:

H(X | Y) := Ey∈Y [H(X | Y = y)]

Note that H(X | Y = y) is not a conditional entropy: the expres-
sion over which the entropy is taken is simply a random variable.

The minimal entropy of X given Y is defined as the min value
of the entropy X, where the min is over all possible values of Y:

H⊥(X | Y) := min
y∈Y

H(X | Y = y).

Finally, one can consider average entropy, similar in spirit to the
above but computed by taking the expected value of an exponen-
tial function of the entropy under consideration and applying the
logarithm to this result. In general we denote average entropy by
H̃(X | Y). Unlike for conditional and minimal entropy, there is
no universally established way to define average conditional en-
tropies, and existing notions are usually informed by the intended
applications, or intuitive appeal. Dodis et al. [14] defined average
min-entropy as:

H̃∞(X | Y) := − log

„
E

y∈Y

h
2−H∞(X|Y=y)

i«



This measures the average probability of successfully guessing the
value of x given y. Later in the paper (Section 6.2) we expand the
above point and explain why this way of defining average condi-
tional min-entropy extends the notion of min-entropy as maximal
guessing probability to conditional random variables.

We propose an analogue for the notion of average Hartley en-
tropy. Recall that Hartley entropy measures the size of the range of
a random variable: if X has range X then H0(X) = log |X |. Our
average Hartley entropy measures the average size of the range of
the random variable (X|Y = y) where the average is taken over
Y.

H̃0(X | Y) := log

„
E

y∈Y

h
2H0(X|Y=y)

i«
Note that the formula differs in the lack of minus signs from the one
for average min-entropy. This is a technical but important detail.
Each of these notions measures a different aspect of the “uncer-
tainty” about the random variable X when the value of the random
variable Y is available. We discuss this point in further detail in
Section 4.

Conditional Privacy Measures
Each of the information-theoretic notions defined above can serve
as a basis for our computational notion of privacy. It turns out that
we can offer a unified treatment of the resulting possibilities by ab-
stracting the many variants of entropy into a single notion which we
call conditional privacy measure (the name is due to its application
in defining privacy). The following definition sets two minimal and
desirable conditions that such measures should satisfy.

DEFINITION 1. A conditional privacy measure F(T | L) is a
function mapping a pair of random variables to a positive real
number and satisfying the following conditions. The names of the
variables are mnemonics for the "target" of the adversary and the
"leaked" information to which the adversary has access.

• If T can be computed as a (probabilistic) function of L then
F(T | L) = 0.

• If L and L′ are two (probabilistic) functions such that L′ can
be computed as a function of L then for all T,
F(T | L′) ≥ F(T | L).

All of the different notions of conditional entropy satisfy these two
conditions.

Computational Entropy
Information theoretic entropy quantifies uncertainty of random vari-
ables in face of unbounded adversaries. Computational entropy is
the analogue notion for the case of efficient adversaries. Intuitively,
a random variable has computational entropy if it is computation-
ally close to one that has information theoretic entropy. In the rest
of the section we abuse notation and refer to ensembles of random
variables as random variables.

DEFINITION 2. Two random variables ensembles X = (Xi)i∈N

and Y = (Yi)i∈N are computationally close, written X
C
≈ Y, if

the quantity |P [A(Xi) = 1]− P [A(Yi) = 1]| is negligible as a
function of i, for all polynomial-time algorithms A.

We propose a computational notion of conditional entropy, based
on previous work by Reyzin et al. [27] and Gentry et al. [17]. Our
definition is in the setting of asymptotic security as opposed to con-
crete and/or non-uniform adversaries. Furthermore, the application

to voting motivates a variation from the typical way of extending
information theoretic entropies to computational versions. We dis-
cuss this variation after we give the definition.

DEFINITION 3. Let T,R and L be ensembles of random vari-
ables to which we refer to as target, result, and leakage functions.
Let F be a conditional privacy measure.1 We say that T has at
least r bits of computational conditional privacy given R and L
(for which we write Fc(T | R,L) ≥ r) iff ∃S = (Si)i∈N s.t.

• (T,R,L)
C
≈ (T,R,S)

• (∀i ∈ N) F(Ti | Ri,Si) ≥ r

To understand the above definition, it helps to think of T as some
sensitive information, R as some information about T that is cer-
tainly leaked, and L as some information about that T that is cryp-
tographically hidden. Informally, the above definition says that tar-
get T has at least r bits of computational entropy given result R
and leakage L if there is a distribution S such that L is computa-
tionally close to S, even when T and R are known, and for any
security parameter i the information theoretic entropy in T given
R and S is at least r.

The following example should help understanding the intuition
behind computational conditional entropy and how we employ it
later in the paper to measure vote privacy. Consider the encryption
Encpk(M) of some message M under a public key pk, and as-
sume that M is selected from a distribution with non-zero entropy
(say just 1 bit). Imagine that an adversary obtains in the execution
of some system the encryption Encpk(M) and some side informa-
tion on M , say the XOR of its bits, ⊕iMi. In this situation, the
information theoretic entropy left in M is 0 (as an unbounded ad-
versary can decrypt the ciphertext and recover M ). However, since
for an efficient adversary the ciphertext looks like an encryption of
a random message (assuming that the encryption scheme is secure)
we would like to conclude that the loss of entropy in M is only
due to revealing ⊕iMi. The definition above captures this intu-
ition: the computational entropy in M given⊕iMi and Encpk(M)
is the (information theoretic) entropy of M given ⊕iMi and the
encryption Encpk(R) of a random message (independent of M ).
This latter encryption plays the role of S in our definition above:

(M,⊕iMi, Encpk(M))
C
≈ (M,⊕iMi, Encpk(R)).

4. VOTE PRIVACY
In this section we introduce our measure of privacy. We start

by fixing some necessary details regarding the execution model but
leave others unspecified. For example, we do not enforce a partic-
ular communication infrastructure nor do we assume a particular
communication model. We even abstract away many details of the
adversarial model. The result is a flexible framework focused on
those aspects that are essential for defining privacy. We then intro-
duce our notion of privacy based on the details that we fix. The
definition can then be easily instantiated for particular execution
models/communication infrastructures etc.

Execution
We assume that voting involves a set of parties, some of which are
under the control of the adversary. We do not make a distinction
between voters and authorities. We write P for the set of all parties
andH for the set of honest parties. Throughout the paper we let nP
be the total number of voters and nH the number of honest voters.
We write V for the set of possible votes (including abstention).
1Think about F as some fixed information theoretic entropy notion.



A voting protocol is given by a set of interactive programs (pro-
cesses), one for each party involved. Each program may use some
secret information (e.g. signing keys that users use to authenticate,
decryption keys that tallying authorities use to decrypt the result
of the election) and the information that is publicly available. The
programs for the voters also take as input a vote in V , and we as-
sume that these votes are selected according to a joint distribution
D on set VnH . We write π for a generic voting protocol, i.e. a
description of the programs for the parties involved.

As discussed above we do not require a particular execution model
as our definition and results do not depend on the model. We thus
only assume that whatever the model one can formally define the
information that an adversary obtains during the execution through
its view of the execution. The view of the adversary is a standard
cryptographic notion.

We define the view of the adversary as the (distribution of) his
output; an adversary may output anything he chooses including the
entire state and history of his execution and his random choices.

Clearly the view depends on the details of the execution model
which formally specifies which channels are public/private what
parts of the system can be corrupted, if corruption is static or adap-
tive, how does the adversary accesses the bulletin board (if any),
how it accesses the result of the election, etc. We use the nota-
tion View(A, π(D)) for the random variable that defines the view
of the adversary A that interacts with the voting protocol π, when
the votes of the honest participants are selected according to the
distribution D. By abusing notation we also write View(A, π(D))
for the ensemble of random variables that define the view of the
adversary for the different security parameters, and sometimes we
simply write View when the various parameters are clear from the
context. In a voting process that aims to compute a function ρ of
the votes, this view includes the result of the election, which is the
random variable (ensemble) RD,vA,π , where vA is the distribution
(ensemble) that represents the votes cast by corrupt parties.

Our Privacy Measure
In this section we motivate and define a measure for the privacy
of votes in an election. We model privacy with respect to a tar-
get function T that models the information that the adversary is
interested in. This is an important parameter of our definition as it
allows modelling multiple scenarios of interest. Examples of po-
tential adversarial targets include the vote of one, some, or even
all voters. More complex information, e.g. whether two particular
voters voted for the same candidate or whether a particular subset
of voters supported a candidate more than others is also covered.

In addition to T , we aim to measure privacy along two dimen-
sions: the distribution of the votes D and the election protocol π.
Extreme situations where D contains no entropy or π simply re-
veals the vote of each participant entail no privacy. As soon as
there is some uncertainty on how honest voters vote and these votes
are somehow protected (e.g. cryptographically), then vote privacy
clearly increases.

The intuition behind our definition is simple: we capture the pri-
vacy of the information targeted by the adversary T (D) as the en-
tropy left in the target given what the adversary learns from the
voting process. The relation between the information in the target
and the view of the adversary can be looked at from various angles.
So we use the abstract notion of conditional privacy measure to en-
compass, succinctly, the different variants. We define two versions
of privacy, against bounded and unbounded adversaries.

DEFINITION 4. Let π be a voting protocol for result function ρ,
D a distribution on the honest votes, and T a target function. Let
A be the class of efficient adversaries, I the class of unbounded

adversaries, and F be a computational privacy measure. The com-
putational privacy M(D, T, π) is defined by

inf
A∈A

Fc(T(D) | RD,vA,π, View(A, π(D)))

Information theoretic privacy of MI(D, T, π) is defined as

inf
A∈I

F(T(D) | RD,vA,π, View(A, π(D)))

Notice that the above definition in fact introduces a family of pri-
vacy measures MF, one for each fixed conditional privacy measure
F. Our intention is to let F vary over the different existing notions
of entropy and rely on their associated intuition to understand the
guarantees entailed for the privacy of votes by the resulting mea-
sures. Indeed, we are convinced that evaluating our privacy mea-
sure for different entropy notions gives answers to different natural
questions that voters might have about the confidentiality of their
vote.

The Choice of Entropy Notions
We discuss here different variants based on different types of Rényi
entropies (min, Hartley and Shannon) and different forms of con-
ditional entropies (average, minimal and conditional).

For the sake of our discussion, we consider the following election
example:

• The ballot takes the form of one question asking for approval
on 100 choices (it can therefore be filled in 2100 ways).

• The distribution of the votes by the honest voters is uniform,
except for a couple voters P1 and P2 , who vote as follows:
with probability 1/2, they agree on their choices before vot-
ing and vote exactly in the same way (one single uniform
choice for both) but, if they disagree, then their choices are
simply indepedent (uniform distribution on all pairs of dis-
tinct votes).

• The tallying function ρ reveals the vote of P1 and P2 if they
are equal and reveals nothing otherwise.

• The target is the vote of P1.
Let us now consider the privacy of P1 with for the vote distribu-

tion and the ρ function above.
Min-entropy based notions. A first natural question for P1 is:

“What is the probability that an observer will be able to guess my
vote?” The answer to this question is given by using min-entropy,
which provides a measure of the success probability of the best
guess that an observer can make. If the election outcome ρ is not
empty, which happens with probability 1/2, the observer can make
a correct guess with probability 1. Otherwise, the probability of
success is 2−100. Using average min-entropy as our measure, we
get a measure of the success probability of approximately one bit:
H̃∞(v1 | ρ) = − log

`
1
2
· 1 + 1

2
· 2−100

´
≈ 1. This single bit of

entropy is in line with the behaviour of our system: on average,
an observer will be able to make a correct guess with probability
just slightly higher than 1

2
. Now, if we use min-min-entropy as

our measure, we get a measure of the success probability given the
worst possible outcome from a privacy point of view, which hap-
pens when ρ is not empty: H⊥

∞(v1 | ρ) = − log(1) = 0. This ab-
sence of entropy reflects that there is an election outcome for which
v1 has no privacy at all. Besides these two natural questions, the
conditional min-entropy measures the average of the min-entropy
on all possible outcomes: H∞(v1 | ρ) = 1

2
· 0 + 1

2
· 100 = 50.

This last measure seems much less useful however.
Hartley entropy based notions. A second natural question for P1

is: “In how many different ways can I pretend that I have voted?”
The answer to this question is given using Hartley entropy and,
in particular, by the min-Hartley entropy which gives a measure



of the minimum number of ways P1 is guaranteed to be able to
pretend that he has voted: H⊥

0 (v1 | ρ) = log(1) = 0. This reflects
the case where ρ reveals P ′

1s choice. The average Hartley entropy
gives a measure of the number of ways P1 can expect to be able to
pretend he voted: H̃0(v1 | ρ) = log

`
1
2
· 1 + 1

2
· 2100

´
≈ 99. This

information of an average equivocation level of 299 seems however
less useful: while being correct, it hides the fact that, in half of the
cases, there is no ambiguity left on the vote. Conditional Hartley
entropy seems even less useful.

Another observation can be made of the min-Hartley entropy:
just as the classic Hartley entropy, this notion does not require any
probabilities: it only reflects the size of the smallest set in a set of
sets. So, this measure can be used meaningfully even when one
ignores the probability distribution of the honest votes, but only
know which votes are possible.

Shannon entropy based notions. Shannon entropy measures the
average number of extra bits of information that an observer would
need to determine a vote (or any other target) given the election
outcome. We should however keep in mind that Shannon entropy
remains an average notion: the measure we get here is the average
number of bits needed for the worst possible outcome. So, even if
the minimal Shannon entropy is very high, it remains possible that
some votes could be identified with a single extra bit of informa-
tion.

The minimal Shannon entropy gives that measure for the worst
possible outcome from a privacy point of view: H⊥(v1 | ρ) =
0, which reflects the case where ρ is not empty. The conditional
Shannon entropy gives the average case: H(v1 | ρ) = 1

2
· 0 +

1
2
· 100 = 50. This measure reflects that, in half of the cases, the

choice of P1 keeps 100 bits of Shannon entropy and 0 bits in the
remaining cases. It however seems even less informative than the
previous one, as it hides the worst case which happens with high
probability. Average Shannon entropy seems also quite unnatural
in our context.

Conclusion Our analysis of the example above shows that at least
three entropy notions provide useful information:

• Average min-entropy measures, for a given distribution of
the votes, the probability that an observer guesses the target
function of the votes.

• Min min-entropy measures the probability that an observer
guesses the target function of the votes for the worst possible
election outcome that is in the support of the vote distribu-
tion.

• Min Hartley entropy measures the minimum number of val-
ues that the target function can take for any assignment of the
votes.

This last notion can be particularly convenient when the distribu-
tion of the votes is unknown and as an indication of the level of
deniability that voters can expect.

Other entropy notions might be of interest in specific cases.

5. DISCUSSION AND EXAMPLES
In this section, we test the robustness and meaningfulness of our

privacy measures in several different ways.
We first demonstrate that, for ideal elections where all that the

adversary sees are the choices made by the corrupted voters and
the election outcome, our computational privacy measures coin-
cide with the corresponding purely information theoretic measures
and identify the worst adversary from a privacy point of view. We
believe that this is an important sanity check. Furthermore we will
also show, in the next section, the benefits of this property for the

modular analysis of voting systems that rely on computationally
secure cryptographic primitives.

We next illustrate, through simple case studies, the impact on
the privacy of the votes of several important parameters: the result
function, which may correspond to the election outcome but also to
the content of various audit data, and the ballot format and filling
rules.

Finally, we perform an analysis of the audit data provided as part
of the audit trail of the 2009 Takoma Park election and discuss some
practical lessons that can be taken from this analysis.

For readability, from now on we use the following notational
convention. We write Mk for a computational privacy measure
when the underlying conditional privacy function is Hk(· | ·) for
some k. Furthermore, for average versions of the entropy functions,
i.e. H̃k(· | ·), we write M̃k for the resulting computational privacy
measure. For example M̃∞(·, ·, ·) is the computational privacy
measure we obtain if F is the average conditional min-entropy H̃∞.

Since F captures the loss of privacy that revealing the results of
the election entails, it is sufficient to understand the relation to the
context of an idealized system where a trusted third party gathers
the vote and publishes the results.

5.1 Ideal Protocols
Assume that ρ is an arbitrary function on V∗. We define Iρ,

the ideal process that computes ρ as follows. The process samples
the honest votes according to D and allows the adversary to cast
votes on behalf of the remaining voters. The adversary then signals
that it wants to receive the result and obtains ρ(~v), where ~v is the
list of all cast votes. Notice that we are tacitly assuming that ρ
is such that the order in which the votes are cast does not matter.
[23] analyzes the privacy offered by several protocols of this type.
Similar idealizations are possible for complex result functions; one
simply needs to specify more carefully how and when the votes are
cast by the honest parties and the adversary.

The following theorem says that for ideal protocols, the pri-
vacy with respect to MF is essentially the information-theoretic
privacy of the function ρ. This is obtained by having the adversary
cast votes from a distribution v∗C that minimizes the information-
theoretic entropy left in D, given the result of the vote:

THEOREM 5. Let ρ be an order independent function on V∗.
Let v∗C = argmin

vA

F(T(D) | RD,vA,Iρ). Then,

MF(D, T, Iρ) = F(T(D) | RD,v∗
C

)

In other words, the conditional computational privacy of an ideal
protocol is the minimum information theoretic entropy that can be
obtained by setting the votes of the adversary. The proof of the
theorem is in the full version of our paper.

5.2 The Role of the Result Function
We now give some examples on how the result function can in-

fluence the privacy measure. As we would intuitively expect, the
more the result function reveals about the votes, the lower the level
of privacy.

Consider a poll in which each voter may cast a single yes/no vote
by submitting 1 or 0 to the trusted party in an ideal protocol. Fix
the distribution D to be as follows: let there be three voters and let
every voter pick his vote uniformly at random. Let T be the vote
of the first voter. We compare the privacy of the following result
functions where |~v|0 is the number of 0-votes in the vector ~v of all
votes cast.



ρ1 c (const.)
ρ2 1 if |~v|1 ≥ |~v|0 else 0
ρ3 (|~v|0, |~v|1)
ρ4 ~v

Each of these result functions contains strictly more information
than the previous one. The first is just a constant, the second is the
majority vote (with 1 in case of a tie), the third is the number of 0-
and 1-votes submitted and the fourth reveals all votes.

We consider the privacy measures based on the three entropy
notions highlighted the previous section, namely the average min-
entropy H̃∞, the min-min-entropy H⊥

∞, and the min-Hartley en-
tropy H⊥

0 .

ρ M̃∞ M⊥
∞ M⊥

0

ρ1 1 1 1
ρ2 ≈ 0.415 ≈ 0.415 1
ρ3 ≈ 0.415 0 0
ρ4 0 0 0

We give some interpretation of these results.
• Rows 1 and 4 of this table are obvious: if nothing about the

target vote (that starts with one bit of entropy) is revealed,
the entropy remains at 1 bit; if everything is revealed the
conditional privacy drops to zero.

• M⊥
0 (ρ2) = 1 occurs because for any of the two possible

outcomes (majority vote is 0 or 1) the target voter could
have cast a 0-vote or a 1-vote. In other words, the condi-
tional probabilities P [T = t | R = r] (where R is the ran-
dom variable for the result) are nonzero for any (t, r) pair in
their respective domains. We may observe that M̃0(ρ2) has
the same value.

• However, in the case of average-min and min-min entropies,
the level of privacy decreases. This reflects the fact that,
given any outcome, the probability that P1 supported the
winning candidate is 3/4, resulting in an entropy of 0.415 ≈
− log 3/4.

• In the case of ρ3, the min-min and min-Hartley entropies fall
to 0. This is because the worst-case outcomes (0, 3) and
(3, 0) determine the choice of P1.

• The average min-entropy does not decrease, though, which
might be surprising. We can however observe that the prob-
ability of the adversary guessing the choice of P1 remains
equal to 3/4: with probability 1/4, the three candidates voted
in the same way, giving a probability of guessing the choice
of P1 equal to 1, and with probability 3/4, two candidates
voted in one way and one voted in the other, giving a proba-
bility of 2/3 of doing a correct guess given the outcome. We
eventually observe that 1 · 1/4 + 1/3 · 3/4 = 3/4.

All these results hence are in accordance with the intuition that
we can get from those simple examples.

5.3 The Role of the Ballot Format
Ballot formats differ largely among elections: ballots can contain

from one or two candidates up to a few hundred candidates and
even offer the possibility to voters to nominate people who are not
listed, they can require the voter to pick a single candidate, to pick
up to a fixed number of candidates, to rank the candidates, and so
on. The tallying rules can be very diverse as well.

One common approach for running verifiable elections, espe-
cially when ballots are complex, is to use mixnets [9, 30, 16, 7,
6]. All voters encrypt their vote, the encrypted ballots are shuffled
by a series of mixers and then decrypted. This allows any observer
to verify the result (as they can recompute it themselves from the

revealed votes) but the random order does not allow anyone to link
votes to voters as long as at least one of the mixers is honest. How-
ever, mixnet-based tallying can destroy entropy if the number of
choices a voter is presented with greatly exceeds the number of
voters. We give an example.

Consider a poll in which each of 210 voters is asked to answer
n yes/no questions, whose answers are encrypted in a single ci-
phertext to be shuffled. The main factor that distinguishes mixnet-
based tallying from the other main approach to cryptographic vot-
ing, namely homomorphic tallying, is that the ballots themselves
can reveal relations between the answers to the various questions:
for example, it may be possible to observe that the second ques-
tion was more often answered with “yes” by voters who also said
“yes” to the first question. This kind of information would not be
deducible from the number of “yes” answers given to each question
individually.

We consider the level of privacy offered by such an election as
a function of the number n of questions. The level of privacy can
clearly not exceed n: there are just 2n choices. It might however
be lower than n when the number of voters becomes smaller than
2n: there will not be enough voters to make all possible choices,
which will allow an observer to eliminate some of them. So, in our
election, the level of privacy is also upper bounded by 10, since no
more than 210 choices can be made.

Assuming that the voters make their choices uniformly at ran-
dom, we estimate our privacy measure based on average min-entropy
for different values of n.

n 2 6 10 14 18 22
M̃∞ 1.9 5.3 7.5 8.7 9.1 9.9

This table shows that, for 2 and 6 choices, the measure of pri-
vacy is fairly close to optimal: an observer will not be able to guess
the choice of a specific voter much better than by a random guess.
When the number of choices increases, the measure of privacy pro-
gressively tends to 10. This corresponds to the fact that, when see-
ing the decrypted ballots, an observer can be convinced that any
voter made one of the ≈ 210 choices that appear after decryp-
tion instead of the 2n choices that were initially possible. These
≈ 210 choices still give 10 bits of privacy, a non-negligible mea-
sure, which is acknowledged by our measure.

Our measures of min-min-entropy and min-Hartley entropy will
all provide an outcome equal to 0. There is indeed a non-zero prob-
ability that the 210 voters make exactly the same choice, in which
case they completely lose their privacy.

5.4 Analysis of the 2009 Takoma Park Elec-
tion Data

The Scantegrity [10] voting system has been used in two pub-
lic elections in Takoma Park, in 2009 [7] and in 2011. Scantegrity
is a paper-based universally verifiable voting system. As part of
the voting process, each voter is invited to fill in his paper ballot
with a special pen: every time a voter marks a candidate, a confir-
mation code is unveiled, which the voter is invited to write on his
receipt. When coming back home the voter has then the possibil-
ity to check the presence of the receipt codes he noted on a public
bulletin board. The design of the system is expected to guarantee
that it is not possible to link any specific code to a particular voter
choice.

The tallying procedure then proceeds to a verifiable shuffle of
the ballots, and the shuffled ballots are made available on the bul-
letin board as well, for audit purposes. We note that this mixnet-
based tallying procedure provides voters with more information
than usual: all voters can now see all shuffled ballots, while they are



usually only able to see the final election outcome only (expressed
in terms of number of votes for each candidate), unless they are
part of the tallying officers.

The Takoma Park elections have another specifics: they are based
on instant-runoff voting (IRV), that is, voters are invited to rank any
number of candidates on their ballot (including a write-in position).
A first side-effect of IRV is that there is a very large number of ways
to fill in a ballot, even for a relatively small number of candidates:
for n candidates, there are

Pn
i=0

n!
(n−i)!

valid ways of filling a bal-
lot. Furthermore, if we take into account the fact that voters are not
forced to respect the ranking rule (e.g., they can produce ballots
with several candidates ranked first, or they can skip positions in
their ranking), this number grows to (n + 1)n. So, even for rela-
tively small values of n, we can expect that specific choices that are
possible in theory, given the election outcome, will be ruled out just
by looking at the bulletin board. A second side-effect of IRV is that
not all voters will rank the same number of candidates. As a result,
a voter’s receipt actually leaks some information on the choices of
that voter: the number of choices he made.

So, there seem to be three natural levels of privacy to compare in
such elections:
View 1 The amount of privacy that voters have when the only in-

formation revealed is the election outcome, that is, the pri-
vacy obtained with respect to a non-tallying voter if the Scan-
tegrity audit trail is not available.

View 2 The amount of privacy that voters have when they also see
the bulletin board, which is the actual view of the voters for
the Takoma Park elections using Scantegrity.

View 3 The amount of privacy that voters keep if they show their
receipt to someone else. We stress that receipts are not sup-
posed to be kept secret.

We select our measure M(D, T, π) with privacy measure F as
follows:

• Our target T will be the exact vote of an individual voter.
Other choices could have been made as well, like the first
choice of any individual voter, but we keep targeting the full
vote as it is a more challenging target.

• Since we do not have any a priori knowledge about the dis-
tribution of the votes, we consider any distribution whose
support contains all possible vote assignments that is consis-
tent with the view of the adversary, and use Hartley entropy
as our privacy measure.

• To perform our analysis, we use the audit data provided for
the 2009 Takoma Park election.2 Since the view of the ad-
versary is fully determined by these audit data, the choice
between average, conditional and min Hartley entropy is ir-
relevant.

The result of our analysis appears in Table 1. Privacy measures
appear for the answers to the two questions (0 and 1) that were
submitted to the voters in each of the 6 wards of this election. We
see that we have a fairly high level of entropy when the adversary
only sees the election outcome: 6 bits for a question with 3 choices,
3.17 bits for a question with 2 choices. The level is just a bit lower
than ideal for Question 0 in Ward 4, as one of the candidates was
not ranked first by anyone there.

The level of privacy substantially decreases in many cases when
the bulletin board becomes available: viewing the submitted ballot
allows ruling out a lot of potential combinations. While this does
not seem alarming from a pure privacy point of view, this decrease
of privacy might be sufficient to force a voter to submit a ballot
with an unusual ranking of the candidates, and this voter might

2See https://scantegrity.org/svn/data/.

legitimately fear that nobody else will submit a ballot with the same
choices if he does not do it. This is a well-known issue in elections
in which ballots can be filled in many ways, traditionally called the
Italian attack. Our measure shows, considering the actual votes,
that this attack could be fairly effective as soon as a question has
3 candidates. This quantifies the bound related to the short ballot
assumption [28] used in similar contexts.

Now, if the adversary sees the receipt of specific voters, the level
of privacy substantially decreases again. Here, we display the mini-
mum level of privacy depending on the number of codes appearing
on the receipt. In particular, we see that we do not have any en-
tropy left for at least one voter of Ward 5. Checking the audit data,
it indeed appears that only one voter in that ward ranked all 3 can-
didates. This voter ranked the write-in candidate first, Candidate 1
second and Candidate 2 as third.

We believe that this potential loss of privacy indicates that voters
should be encouraged to keep their receipt secret and suggests that
a mechanism should be put in place to prevent information from
leaking from the receipts. One possibility would be to have dummy
codes available on the ballots, that would be offered for completion
by the voters, allowing all voters to obtain the same number of
unveiled codes on their receipts.

We stress that, even though it uses data from a real election,
our analysis may not completely reflect the actual votes, and there
might be in reality more than one voter who ranked all 3 candidates
in Ward 5. Indeed, the audit data do not exactly match the pub-
lished election results (but the differences are small and both tallies
agree on the identity of the winners.)

6. RELATION WITH TWO PREVIOUS PRI-
VACY DEFINITIONS

We show that our framework is sufficiently general to capture
two existing and quite different notions of privacy based on crypto-
graphic indistinguishability. For lack of better names, we we refer
to the notion of Bernhard et al. [5] as the game-based notion and
to the notion of Küsters, Truderung, and Vogt [23] as δ-privacy (al-
though both these notions involve cryptographic games); we call
our own notion that we introduce in this paper entropy-based pri-
vacy.

6.1 Comparison with the game-based notion
Game-based privacy [5] (our terminology) is a privacy notion for

a class of cryptographic voting protocols inspired by cryptographic
security for encryption. Bernhard et al. [5] analyze the Helios [1]
voting protocol and show that with an encryption scheme meeting
certain requirements, Helios meets their security notion. In this sec-
tion we introduce their model and state a theorem that any scheme
secure in the game-based model is as good as the ideal protocol for
the same election parameters according to our privacy measure, for
any choice of conditional privacy measure.

As a corollary, we get that Helios offers the same level of privacy
(using our measure) as an ideal protocol. We stress that we do not
need to perform a detailed analysis of Helios to get this result, as
we can build on the result that Helios offers game-based privacy.

Single-Pass Voting
In single-pass voting, we consider a set P of voters, a subset H ⊆
P of honest voters, a set of administrators and a bulletin board B.
All parties may post messages to the bulletin board at any time;
the board decides to accept or reject a message based on its current
state and a public algorithm πB . A single-pass protocol πρ for
a result function ρ executes in three phases. The board stores all



Ward 1 2 3 4 5 6
#Ballots 470 277 481 212 85 198
Question 0 1 0 1 0 1 0 1 0 1 0 1
Entropy for View 1 6 3.17 6 3.17 6 3.17 5.95 3.17 6 3.17 6 6
Entropy for View 2 4.32 3 4.32 2.81 4.09 3 3.17 3 3.17 2.58 3.91 3.58
Entropy for View 3 1.58 1.58 2 1.58 2 1.58 1 1.58 0 1 2 1.58

Table 1: Privacy measures for the Takoma Park 2009 election

accepted messages and any party may read the board at any time to
obtain the current phase and the list of all accepted messages and
their senders, in the order that they were posted. The board starts
out empty and in the setup phase.

The name single-pass comes from the observation that voters
only have to post a single message to the bulletin board to cast their
vote and need take no further part in the election.

1. In the setup phase, the board expects one message from each
administrator (in any order) after which it may either transi-
tion to the voting phase or abort.

2. In the voting phase, the board accepts one message from each
party in P , in any order. After receiving these messages, the
board transitions to the result phase.

3. In the result phase, the board expects one message from each
administrator; after receiving these it halts (accepts no more
messages but can still be read).

Correctness. We need the following correctness assumption on
the execution of a single-pass protocol which intuitively says that
if everyone acts correctly, the protocol indeed computes ρ on the
votes submitted.

A protocol πρ is correct for result function ρ if there is an ef-
ficient algorithm that computes either a (claimed) result r in the
range of ρ or a symbol ⊥ to denote failure from a board that has
halted successfully. We define the result of a board as being the
output of this algorithm on the board and say the board is valid if
the result is not ⊥. Furthermore, if all parties execute the protocol
correctly then the result r of the board is the correct election result,
i.e. r = ρ((vP )P∈P) where vP is the vote cast by voter P .

Extractibility. In addition to correctness, we require that all ad-
ministrators together can extract votes from individual ballots. This
is a technical point that is required in some security proofs. Al-
though slightly stronger than the original model of [5], extractibil-
ity is satisfied by all voting protocols that we know of, in particular
Helios [1].3

Game-based privacy
Consider a game between a challenger C who controls the admin-
istrators, bulletin board and honest voters and an adversary A who
controls the set of corrupt voters. The adversary may in addition
choose the votes of the honest voters, even adaptively:4 during the
voting phase the adversary may both submit ballots on behalf of

3Helios has voters encrypt their votes under a key shared among
the administrators. In a real execution of the Helios protocol, ad-
ministrators never decrypt individual votes and as long as at least
one administrator is honest, no-one can extract votes. Extractibility
does not weaken vote privacy.
4In the original game [5] the adversary can even choose adaptively
which voters are honest or corrupt. Security w.r.t. the original no-
tion implies our version, which is sufficient to show the relationship
with entropy.

his own, corrupt voters and inform the challenger that he wishes a
certain honest voter to vote in a way of his choice.

The challenger chooses a random bit β at the beginning of the
protocol. If β = 0, the challenger and adversary just run π to-
gether. If β = 1, when the adversary asks a honest voter to vote,
the challenger notes this vote but has the voter submit a ballot for
a fixed value vε instead. In the result phase, the challenger always
announces to the adversary the correct result based on the ballots
of the dishonest voters and the votes that the adversary chose for
the honest voters.5

The adversary’s goal it to guess the challenger’s bit β. A protocol
has game-based privacy if no efficient adversary can guess β with
probability non-negligibly better than 1/2.

Relation between entropy-based and game-based pri-
vacy
Security in the sense of the game described above leads to the fol-
lowing intuitive argument: since the adversary cannot distinguish
ballots containing the true votes of the honest users — even if the
adversary can choose these votes — from ballots containing a fixed,
constant vote then the adversary cannot extract any information
about the votes from ballots. Therefore, we expect that the condi-
tional computational entropy of the honest votes given the bulletin
board (which together with the random coins of the adversary form
its view of the execution) to be equal to the computational entropy
that the votes have on their own (the adversary can see the result
of the result function on the votes in both cases). This intuition is
formalized by the following theorem.

THEOREM 6. Suppose that π is a correct and secure single-
pass voting protocol for a set P of voters and a result function ρ.
Fix any set H ⊆ P , any efficiently samplable distribution D on H
and any target function T . Then

M (D, T, π) = M (D, T, Iρ) .

The proof is in the full version of our paper.

Discussion
We have shown that, informally speaking, a single-pass protocol
for computing some tally function ρ which is secure in the game-
based sense achieves the same level of privacy as the ideal protocol
(see Section 6.1) for ρ, in the sense of entropy-based privacy. One
immediate interpretation of this result is that from a protocol secure
in the game based sense the adversary can extract as much infor-
mation as it can extract from only seeing the result and nothing
more. This is a very desirable and intuitively appealing property
as it reduces understanding the level of privacy of a protocol to
that of understanding the level of privacy of a corresponding ideal
protocol. Furthermore proofs using the game-based definition are
5If β = 1 then the announced result will not match the ballots on
the board. It is part of the game-based definition that the challenger
can produce such a “fake” result without the adversary noticing
whereas in a real election, faking a result should be infeasible.



more standard and easier to construct than those using the compu-
tational conditional entropy notions. Whenever possible, proving
game-based privacy is therefore desirable.

There are several downsides to the game-based notion. The no-
tion does not account for the loss of privacy due to the result func-
tion ρ. A voting protocol where ρ is the identity function and which
is implemented by letting the tallying authorities to simply decrypt
the ballots and output the votes in clear would be secure in the
game-based sense. Clearly however privacy of the votes is actually
lost. The theorem we gave in this section allows for the following
methodology: prove game-based security for a voting protocol and
then analyze the privacy of the ideal protocol for ρ to understand
the entropy-based privacy of the overall protocol.

This route is not possible for protocols that are not in the single-
pass class, or for protocols that are single-pass but where some “lit-
tle” (potentially useless parts) information about the honest votes
is revealed. In both cases our entropy-based notion may still apply
and in the latter case, it allows for giving a more refined quantifi-
cation of the loss of privacy, than simply declaring the protocols
insecure.

6.2 Relation with δ-privacy
In this section we establish a relation between the notion of pri-

vacy introduced by Küsters, Truderung, and Vogt [23] at IEEE S&P
2011 and the privacy measure that we introduce in this paper.

Definition of δ-privacy
In the model for δ-privacy, the adversary’s target is the vote of a sin-
gle “voter under observation”. This vote is restricted to being one
of two votes. All other voters cast votes according to some fixed
distribution.6 The adversary interacts with the protocol by control-
ling a set of dishonest parties (voters and/or authorities). At the end
of the execution, the adversary outputs a bit to indicate which of the
two possible target votes he thinks the voter under observation has
cast. The system offers δ-privacy if the adversary can distinguish
between the two situations with probability no better than δ (so the
smaller δ the better).

The adversary is quantified over an abstract set of “observer pro-
cesses” which is either the set of bounded computations or that of
unbounded computations. This dichotomy gives rise to two distinct
privacy notions, one computational and the other one information
theoretic. Below, we call the set over which the adversaries is quan-
tified admissible adversaries.

We restate the definition of privacy definition of [23] but use
slightly different notation. Without loss of generality we assume
that the voter under observation is the first voter. We write Dj for
the distribution where the vote of the first voter is set to j and the
votes of all other parties are selected according to D. We write
Aπ(D) for the random variable (ensemble) that describes the out-
put of an adversary A interacting with protocol π when the honest
votes are selected according to D. δ-privacy of π requires that no
adversary can tell if the first voter votes for i or votes for j except
with probability δ (no matter what i and j are). We refer to an
adversary for this experiment as a distinguishing adversary.

DEFINITION 7 ([23]). A protocol π achieves δ-privacy if for
any admissible distinguishing adversary A and any two distinct

6In fact, the assumption in [23] is that everyone else votes inde-
pendently and identically distributed according to some probability
vector ~p on the possible votes but this can be easily generalised.
In particular, one may consider a joint distribution D′ on all other
honest voters.

votes i and j there exists a negligible function ν such that

Advdist
A,i,j(k) = P [Aπ(Di) = 1]− P [Aπ(Dj) = 1] ≤ δ + ν(k).

A protocol is exactly δ-private if it achieves δ-privacy and does
not achieve δ′-privacy for any δ′ < δ. We write δ(π,D) for the
exact level of privacy achieved by protocol π when the honest votes
are selected according toD. By a slight abuse of notation, we write
δ(π,Dij) for the maximum level of privacy achieved if i and j are
fixed and only the adversary is allowed to vary.

Relation between entropy-based privacy and δ-privacy
First, we link δ-privacy with the ability of any adversary to cor-
rectly guess the vote of the first voter, if this vote is either i or j.
Specifically, let the distribution Dij be such that the vote of the
first voter is selected uniformly at random from the set {i, j}, and
the votes of the remaining honest voters are selected according to
D. Consider a modified version of the experiment that defines δ-
privacy. In this modified version the votes of the honest voters are
distributed according toDij and the goal of the adversary is to out-
put a guess g ∈ {i, j} as to what the vote of the first voter is. We
refer to such an adversary as a guessing adversary. The adversary
wins if it guesses correctly, i.e. we define its guessing advantage
as Advguess

A,i,j = P [Aπ(Dij) = v1], where v1 ∈ {i, j} is the vote
cast by the first voter in the execution. The following lemma es-
tablishes a well-known relation between winning a “distinguishing
game” and guessing the value to be distinguished.

LEMMA 8. Let i, j be fixed. For any admissible (distinguish-
ing) adversary D there exists an admissible (guessing) adversary
GD such that:

Advguess
GD,i,j(k) ≥ 1

2
·
“
Advdist

D,i,j(k) + 1
”

.

Conversely, for any admissible (guessing) adversary G there ex-
ists an admissible (distinguishing) adversary DG such that:

Advdist
DG,i,j(k) ≥ 2 ·Advguess

G,i,j(k)− 1.

One implication of the above lemma is that for protocols which
achieve δ-privacy only for large δ there are adversaries that are suc-
cessful in guessing the vote of the first party. This relation between
δ-privacy and guessing abilities suggests a link between δ-privacy
and a privacy measure that captures the ability of the adversary to
guess a target vote.

We make this intuition formal by instantiating our privacy mea-
sure in a particular way. We set the distribution on the votes to be
Dij (the vote of the first voter is i or j with probability a half),
we set the target function to T1, the function that returns the vote of
the first voter, and set the underlying entropy measure to be H̃∞ the
average conditional min-entropy (that measures precisely the abil-
ity of the adversary to guess the target). We thus relate δ-privacy
with M̃∞(Dij , T1, π), where i, j are the votes of the first voter that
yield that largest possible δ. The relation between guessing prob-
ability and average min-entropy is the following. Consider T and
L two (possibly correlated) random variables. Then for any ad-
versary A, the probability that A guesses T given that it sees L is
P [A(L(T)) = T], which is the same as:X

l

P [L = l] · P [A(L(T)) = T | L = l] =

E
l

“
2−H∞(A(L(T))=T|L=l)

”
= 2−H̃∞(T|L)

We use this connection to relate δ-privacy with M̃∞(D, T, π)

for the case of bounded adversaries, and with M̃I
∞(D, T, π) for un-

bounded ones. For unbounded adversaries the connection is made



precise by the following theorem which says that δ-privacy in the
sense of [23] is equivalent to privacy as captured by M̃I

∞(Dij , T1, π).
(The proof is in the full version of our paper.)

THEOREM 9. Let i, j arbitrary votes. For unbounded adver-
saries δ(π,Dij) = 21−M̃I

∞(Dij ,T1,π) − 1

Perhaps unsurprisingly, for bounded adversaries we were able to
prove a connection only in one direction. Specifically, we argue
that if a protocol is not δ-private (i.e. there exists i, j votes for
the first voter, and a distinguishing adversary with advantage larger
than δ), then our computational privacy measure M̃∞(Dij , T1, π)
is also upperbounded appropriately. We omit the proof due to space
limitations.

THEOREM 10. Let π be an arbitrary protocol, T1 the target
function that returns the vote of the first voter and D a distribution
on the honest votes. Then for any i, j:

δ(π,Dij) ≤ 21−M̃∞(Dij ,T1,π) − 1.

The following corollary (obtained by setting i and j appropri-
ately) makes the relation between δ-privacy and M̃∞ precise.

COROLLARY 11. Let π be an arbitrary protocol that is not δ-
private. Then there exists i and j such that

M̃∞(Dij , T, π) ≤ 1− log (1 + δ)

Discussion
The results of this section show that security in the sense captured
by one instantiation of our privacy notion implies security in the
sense defined by δ-privacy. Furthermore, for information theoret-
ically secure protocols (e.g., ideal ones) and for specific distribu-
tions the two notions coincide. We think that the relations exhibited
in this section between our entropy-based notion, the cryptographic
notion of [5] and δ-privacy [23] support all three notions and their
respective approaches to privacy. Our privacy measure allows us
to make statements about privacy in cryptographic voting protocols
that would be much harder to establish using the game-based model
of [5] directly. Our measure also applies to a more general class of
protocols, vote distributions and targets than those that have been
studied previously using δ-privacy.

7. CONCLUSION
Entropy is a natural choice to measure privacy in an information-

theoretic setting and we demonstrate how different formulations of
conditional entropy answer different intuitive questions about vote
privacy. Through an appropriate notion of computational condi-
tional entropy we have extended the reach of this idea to the com-
putational setting and have established a theorem that enables ac-
curate analysis of privacy offered by complex cryptographic voting
protocols while simply disregarding the details of their implemen-
tation. Furthermore, the underlying entropy-based approach makes
our measure applicable to non-cryptographic protocols and we have
shown through the Takoma Park example how to obtain meaning-
ful results for a real election. We completed the investigation of
our notion by establishing powerful connections with two existing
privacy notions for votes [23, 5].

As our definition does not concentrate on any specific election
rule or on any specific target function, in future work we plan
to explore if and how it can be applied to related problems, e.g.,
sealed-bid auctions [25, 20] or more generally any secure function
evaluation problem.
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