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Abstract. We consider a new extension of the Skolem class for first-order
logic and prove its decidability by resolution techniques. We then extend this
class including the built-in equational theory of exclusive or. Again, we prove
the decidability of the class by resolution techniques.

Considering such fragments of first-order logic is motivated by the automatic
verification of cryptographic protocols, for an arbitrary number of sessions;
the first-order formalization is an approximation of the set of possible traces,
for instance relaxing the nonce freshness assumption.

As an application of the decision results for extensions of the Skolem class,
we get some new decidability results for the verification of cryptographic
protocols without the perfect cryptography assumption: we may include the
algebraic properties of exclusive or.

The proof of our main result relies on classical techniques: ordered strategies,
narrowing modulo AC, semantic trees.

1 Introduction

The verification of cryptographic protocols deserved a lot of attention in the past
few years, because of the huge application domain of secure communications via
public channels. In this context, the full automation of verification tools is important
because, in general, the same protocol appears in multiple contexts in a slightly
altered form; each instance has to be verified since it is never clear whether a small
modification has an impact on the security property or not.

Such verification problems are typically relevant to model checking: given a proto-
col P and a security property ¢, does P satisfy ¢ ? And indeed, model-checking tools
have been used successfully to find some attacks (the most famous one is due to G.
Lowe [18]). However, proving the correctness of a protocol is much harder for several
reasons. First of all, we must be very precise on the semantics of protocols and secu-
rity properties; there is still today a debate on these aspects. Next, whatever model
of the protocols is chosen, it is both infinite in depth (traces have an unbounded
length, because arbitrarily many instances of the protocol, also called sessions can
be involved) and infinitely branching (depending on an attacker’s input). Finally
most of the protocols use nonces, which are supposed to be randomly generated
numbers. As demonstrated by several authors [8, 13, 1], this yields undecidability of
model checking, even in very restricted cases.

** Partially supported by INRIA project SECST and RNTL project EVA.



There are two possible research directions, which proved to be relevant: either
consider a bounded number of sessions, which is sufficient to restore decidability as
shown e.g. in [23], or to counsider an abstraction of the model, which may be sufficient
for proving the protocol correct, but may also output “dummy” attacks. This line
of research is followed by e.g. [25, 3, 5] and that is also what we will consider in this
paper.

A first abstraction consists in replacing nonces (randomly generated numbers)
with terms depending on the context. That is what is done in all abstraction tech-
niques we know. Then, protocols can be modeled within first-order logic [4,25, 3]
and the satisfaction of most popular security properties such as secrecy and authen-
tication reduces to satisfiability of a set of clauses (see e.g. [11]).

However, even for protocols without nonces (or considering the above abstrac-
tion), the verification of simple properties remains undecidable (e.g. [8]). On the
other hand, experiments using general purpose automatic theorem provers such as
SPASS, show that, most of the time, the proof search terminates. Trying to ex-
plain this phenomenon reduces to finding decidable fragments of first-order logic in
which most of the protocols can be expressed (with the above sketched abstraction
for nonces). For instance, we have shown in [7] that, for a significant class of pro-
tocols, the confidentiality problem can be reduced to the solvability of a class of
set constraints with equality, itself shown to be decidable using tree automata with
memory.

On a completely different side, all automated verification results rely, so far, on
the perfect cryptography assumption, which, roughly, says that the message algebra
is a free term algebra. Such an hypothesis is too strong since many protocols use
cryptographic primitives which do have algebraic properties. A typical example is
the exclusive or. As an example, Bull’s authentication protocol was proved to be
secure with the perfect cryptography assumption, while there is an attack when the
algebraic properties of xor are considered [21,24]. Up to our knowledge, there are
very few results on verification of cryptographic protocols with xor: the only other
result is a proof of decidability in case of a bounded number of sessions [10].

The work described in this paper has two motivations: on one hand to explain the
reasons why first-order theorem provers often terminate on protocol verification, on
the other hand study the extensions considering the algebraic properties of exclusive
or and an unbounded number of sessions.

We already realized in [7] that one reason for undecidability, which does not occur
in practice, is the agents ability to copy and locally modify two distinct pieces of a
message, hence enabling the simulation of two counters machines. That is why we
will consider here protocols in which an agent can copy “blindly” at most one piece
of the message he receives. “Blindly” has the following (informal) meaning: protocols
consist in messages exchange between (say) two agents. Upon receiving some message
m, agent A breaks m into pieces, decrypting what she can decrypt. Each piece she
gets is either known to her (it can be a public value such as an agent name or a
nonce she generated earlier,...) or something she does not know (a cyphertext that
she cannot decrypt, a nonce generated by the other party). Such data are represented
by variables: an intruder could for instance replace them by arbitrary values. If the
message that A is supposed to send makes use of such variables, we say that she
copies “blindly” their content.



Such an hypothesis on the uniqueness of blind copies seems relevant since most of
the protocols of [6] falls into the class. On the model side, this corresponds to first-
order clauses involving at most one variable. We will give more details in section
4. This gives however a first idea on why we consider here the fragment of first-
order logic consisting in clauses which contain at most one variable. Actually, we
have to consider a larger fragment, because we need to express for instance intruder
capabilities, which do not fall in this category. More precisely, we consider a clausal
fragment in which every clause C either contains at most one variable or is such that
every subterm ¢ is either ground, a variable, or contains all variables of the clause. We
prove that this fragment of first-order logic is decidable in section 2, using ordered
resolution techniques. This fragment is actually similar to the extension ST of the
Skolem class as defined in [15]. Still, it is different since for instance, we will allow
literals P(z) in multiple variables clauses. We also allow arbitrary ground literals.

Our main result is however the extension of this decidable class, considering the
algebraic properties of xor: we prove in section 3 the decidability of fragment of
first-order logic, which contains both the above class and the equality axioms for
xor. For, we design a set of deduction rules and an ordered strategy, which we prove
complete and terminating.

One difficulty here is that there is almost no ordering on terms with variables,
which is stable by substitution. Hence we use an ordering which is stable by “non-
collapsing” substitutions, restoring the completeness using a rule similar to narrow-
ing. Another difficulty is to control the number of variables occurring in clauses
(which we need for termination). To this end, we impose stronger restrictions on res-
olution and factorization, restoring completeness by adding in particular eztensions.

Termination relies on technical results on unification with associativity, commu-
tativity, identity and nilpotence (ACUN) and free symbols (which is known to be in
NP [20]), typically concerning the sizes of mgus. Finally, completeness is obtained
via classical semantic trees methods.

In section 4, we show how the previous results apply to the verification of cryp-
tographic protocols, hence providing the first decidability result for an unbounded
number of sessions, and considering the algebraic properties of xor. We illustrate
the result, proving the correctness of a simple protocol. In [10], it is proved that
protocol security is decidable in presence of xor, for a bounded number of sessions.
Let us emphasize that we do not assume here a bounded number of sessions, however
assuming some other properties of the protocol. The two results are actually disjoint
and rely on completely different techniques: first-order logic is not relevant for a
bounded number of sessions since it would require to give a bound on the number of
times a clause is used (e.g. using rigid variables). On the other hand, in [10], there
is no hypothesis on the number of blind copies and the result relies on constraint
solving techniques and locality properties in the spirit of [19].

Due to space limitations, many proofs are only given in appendix.

2 A simple decidable fragment of first-order logic

2.1 Definitions

Let F be a finite set of function symbols, V a set of variables and P a finite set of
predicates. For every clause C, V(C) is the set of variables of C. If P is a positive



literal, we write L = =P for L € {P,—~P}. If v and ¢ are terms of 7T(FUYV) and if «
is a variable of u, u[t/x] is the term u where every occurrence of = has been replaced
by t.

Definition 1. A clause set S belongs to the class C if for every clause C in S, either
C contains at most one variable or, for every literal L in C' :
1. either L = £P(x;) for some P € P;
2. or L = £P(ul[f(x1,...,2n)/y]) for some P € P and some f € F such that
{z1,..., 2, } = V(C) and u is some term of T(F U{y}).

We may write that a clause C' is in C instead of saying that the set {C'} is in C to
express that C' is a clause of the form described above.

This class is incomparable with the class ST as described in [15]. We believe that,
with some additional technical details, we can extend our result so that our class
contains ST. This is however not relevant for our application nor for the extension
of the next section. As examples of sets of clauses that can be expressed in this class,
let us mention for instance two-way alternating tree automata (see e.g. [9], chapter
7); since the emptiness of the automaton can also be expressed as a clause in the
class, the decidability of C implies the emptiness decidability for two-way alternating
automata.

Ift € T(FUV), |t| is the depth of ¢ (maximal size of its positions). For z € V, |t|,
is the maximal depth of an occurrence of x in t. By convention, it is 0 if ¢ V(¢).
|| and |.|, are extended to literals by |P(¢)| = |t| and |P(t)|. = |t]s-

We will prove the decision result by ordered resolution, using the ordering derived
from the following definition.

Definition 2. Let A, B be two literals.

A< B if |Al<|B|] andif VxeV(A)UV(B) |A|, <|B|s-
A<BifA<BorA=B.
Note that when A < B, we have in particular that V(A) C V(B).

A sufficient condition for completeness of ordered resolution is to use a liftable
ordering [17,15], also called stable ordering in [16].

Definition 3 (liftability). An ordering <g is liftable if, for all atoms A, B and
all substitutions 6, A < B implies A0 < B6.

Proposition 1. < is a liftable ordering.

2.2 Decidability result

Theorem 1 (decidability of C). Let S be a finite set of clauses such that S belongs
to C. The satisfiability of S is decidable.

Proof sketch
We use splitting (see e.g. [26]), ordered factorization and ordered binary resolution
(see e.g. [2]), w.r.t. the partial ordering defined above, using a classical redundancy
criterion [2], also called a posteriori criterion in e.g. [15]; we apply resolution on two
clauses C; and C5 only if no atom of the resolvent is greater than the resolved atom.
Such an ordered strategy is complete [2, 15]. It only remains to show termination.



First, after splitting, we only generate clauses in C. Then, define ||C|| as the
maximal depth of its literals and let N be the maximum of ||C]| for clauses in S.
We show that, for every generated clause C' (after splitting), either ||C’|| < N, or
else C' is ground and ||C’|| < 2 x N. This is a consequence of simple lemmas on the
unifiers of terms containing at most one variable, for instance:

Lemma 1. Let u,v be two terms such that V(u) = {z} and V(v) = {y}. If they are
unifiable with mgu o, then either uo is ground and |uc| < 2 x max(|u|, |v]) or else
|uo| < max(lul, [v]).

Then, thanks to the ordered strategy, which only unifies maximal literals, we get the
bound on ||C]| for the generated clauses C.

The termination follows from the fact that there are only finitely many clauses
in C whose size is bounded and to which splitting does not apply.

3 An extension including the exclusive or

We are going to extend the result of the previous section, including algebraic prop-
erties of a binary symbol. We will proceed as in the previous section: we define
an ordering and consider an ordered deduction strategy. There are however several
additional problems:

— for termination purposes, we need to keep control on the number of variables
in each clause. For, we restrict the applicability of e.g. resolution and restore
completeness, adding extension rules.

— it is a hard task to find an ordering which is both liftable and compatible with
the theory of xor. We use an ordering, which is stable only by substitutions
which do not introduce any redex. Considering substitutions which introduce
redexes is handled separately as a pre-processing step

— for termination purposes, we need to control the size of unifiers, relying on the
particular equational theory we consider. We will see the analogs of lemma 1 in
section 3.2.

3.1 Definition of the class of clauses

In this part, we extend our class of clauses C to a class of clauses C® including the
algebraic properties of @& which are described in figure 1. The two last equations

rd(ydz)=(dy)dr rdy=ydx
rP0=x rPhx=0

Fig. 1. Equational theory of the xor function symbol

can be oriented from left to right and we get a convergent rewrite system modulo
associativity and commutativity, provided we add the extended rule y P x P x — y
(see e.g. [12] for definitions). For any term ¢ in T(F U {&} U V), we write ¢ | its
normal form w.r.t. these rules.

Formally, we consider a finite set F of function symbols containing the constant
symbol 0, a set V of variables and a finite set P of predicate symbols. C? is a class
of clauses extending C, described below.



Definition 4. A clause set S belongs to C® if for every clause C in S, either C
contains at most one variable or for every literal L in C :

1. either L = £P(x;) for some P € P;

2. orL =xP(u[f(z1,...,2n)/y]) for some P € P and f € F such that{z1,...,x,}
V(C) and u is some term of T(FU{D}U{y});

3. or C = —P(x1)V—P(x2)V P(x; ® x2) for some P € P .

Remarks : Note that for the second type of clauses (£ P(u[f(z1,...,2,)/y])), [ is
forbidden to be & but & may occur in u.

We will see in section 4 that the special clause Co=—1I(z)V =I(y)V I(x ®y) is used
to encode the ability of the intruder to compute the xor of two terms.

In the following, Sy denotes the set of clauses in S which are of the third type in
the above definition.

From now on, = denotes the equality between terms (or literals) modulo the
(AC) properties of the xor while =g denotes the equality between terms (or literals)
modulo the whole equational theory of the xor.

Following the AC property of @, we assume terms written in flatten form: @ may
be considered as a variadic function symbol. Subterms are defined accordingly. For
instance the subterms of f(a®b® g(z)) are f(aBbPg(x)),a Db g(x),a,b, g(x),x.
a®band a @ g(x) are not subterms.

We extend |.| and |.|, on terms of 7(F U {®} U V). Informally, since & is now
a variadic symbol, it may in particular have only one argument, in which case we
don’t write it, hence don’t count it in the size of the terms; that is why the following
measure computes the length of the longest path, not taking & into account.

Definition 5. ||.|| is defined inductively by:
1. |la||=1ifa €V orifa is a constant symbol of F;
3. [t1 & -+ & ty|| = maxi<i<p ||ti]| if the head symbol of each t; is not &.

Then |t| is defined as ||t ] ||. |.|. is defined in the same way except that ||all, =1 iff
a = x. This is also extended to clauses by:

C = max|Ll and |+ P()] =t
LeC

Then the definition of < (definition 2) is unchanged. However, < is no longer a
liftable ordering.

Ezxample 1. Let Ly = P(a ®b), Lo = P(f(x ®a) ® f(b® a)) and 20 = b. Then
Li < Ly but L0 = P((]@b) 7( Lo = P(O)

Actually, there are few orderings which are liftable and compatible with the
rules of figure 1. For instance there is no such ordering which contains the subterm
ordering: we would have z @ f(a) > a, but then (a ® f(a)) ® f(a) > a! That is why
we introduce the notion of narrow-liftable ordering and collapse-free substitution.

Definition 6. A substitution o is normalized if, for every variable x, xc is in nor-
mal form. A substitution o is collapse-free w.r.t. a set of terms S if, for everyt € S,
tol=t]o.

We will write NS the set of normalized substitutions and CF(CY,...,C,) the
set of collapse-free substitutions w.r.t. the set of subterms occurring in the clauses
C4,...,C,, which are supposed to be irreducible.



Definition 7. An ordering <x is narrow-liftable if, for every atoms A, B and every
substitution 0, which is collapse-free w.r.t. B, A <r B implies A0 <x BS.

Proposition 2. < is a narrow-liftable ordering on literals of clauses of C®.

3.2 Some useful results on unification

It is well known that unifiability modulo the theory of figure 1 is NP-complete in
the presence of free function symbols and that unification is finitary [20]. We need
however finer results (the analogs of lemma 1) to control the size of terms.

Lemma 2. If u #¢ v and Var(u,v) C {a}. Then either u and v are not unifiable
(modulo the rules of figure 1) or else any (normalized) unifier o = {x — w} is such
that w is a ground term and either w is a subterm of u ® v or else w = wy B wy is
a normal form such that wy and x @ we are subterms of u or v. Moreover, |zo| <
masc{Jul, [0/},

Note that |uc| may be strictly greater than |u| and |v].

Example 2. Let us consider u = h?(z) @ h%(a) ® x and v = h?(x). The most general
unifier of u and v is o(z) = h%(a) and uo = h*(a).

Lemma 3. If Var(u)NVar(v) =0 and Var(u) C {z}, Var(v) C {y}, u #& v, then
either u and v are not unifiable (modulo the rules of figure 1) or else every most
general unifier 6 of u,v is, up to variable renaming, such that:

— either there are ground subterms wy, ..., wy of u,v such that x0 = w; ®...D wy
(resp. y0 = wi & ... E wy) and yb is ground (resp. x6 is ground)

—oral =z2®tL D Ditg, yd = (1 B - D up Dwy B -+ D wy,)0, where the
t;’s and the w;’s are ground subterms of u,v, n > 1 and the u;’s are non-ground
subterms of u or the converse, exchanging the roles of x and y (resp.of u and v).

Ezample 3. g(a® f(y® f(a)), " (y)) = g(z, f™(x)) has a solution z = y = a & f(a).
Instantiating the original terms, their measure is growing.

A similar technique allows us to conclude when u or v is equal to u'[z —
f(z1,...,2,)]. See the appendix for details.

We design the ordering < in such a way that it is stable by collapse-free substi-
tutions. Therefore, we have to show how it is possible to consider only such substitu-
tions. A general result in [10] allows to focus on collapse-free substitutions, roughly
guessing the shared parts and performing possible simplification beforehand. That
is also what we (roughly) do here. However, we need also to control the size of the
resulting clauses, taking advantage of our additional assumptions.

Lemma 4. For every clause C € C®, there is a finite number of clauses C1, . ..,Ch,
such that :

{Co | |V(Co)=0,0€ NS} = | J{Cio | V(Cio) =0.0 € CF(Cy,....Cp)}
=1

Moreover, if C' ¢ Sy, every C; falls in one of the three following cases: C; = C, or
C; is ground and |C;| < 2 x |C|, or V(C) = {a} and C; = C{a' — y @ t;} | for

some sum t; of ground subterms of C.



3.3 The decidability result

The goal of this section is to prove the following (main) result:

Theorem 2 (decidability of C%). Let S be a finite set of clauses such that S
belongs to C®. The satisfiability of S is decidable.

Thanks to lemma 4 we can restrict our attention to collapse-free substitutions,
provided that we apply the rule which replaces C' with the set of clauses C; con-
structed in lemma 4. This rule is called narrowing rule.

But restricting ourself to “collapse-free” ordered resolution is still not sufficient
to ensure termination. Indeed, only the repetitive resolution of renamings of Cy with
themselves yields an infinite set of clauses. That is why we will disallow resolution
steps between clauses in Sy, restoring completeness using extensions. The situation is
similar to the transitivity rule for which a special inference rule is designed: ordered
chaining [2]. Extensions aim at inferring P(s @ u) V C'V D from P(s &t) V C and
P(t®wu)V D when t is maximal among s, ¢, u.

Deduction rules are displayed on figure 2. As usual (see e.g. [15]), repeatedly
applying the deduction rules of figure 2 together with a splitting rule yields a set of
sets of clauses: Sy = {S} and S, is obtained:

— either by replacing S; € S; by S; U{C} if C can be inferred from S; using a rule
of figure 2,

— or by replacing some S; U{C'V C'} € S; with two sets S; U{C} and S; U {C"}
if Var(C) N Var(C') = 0.

We also remove redundant clauses at each step. For our purpose, it is sufficient
to remove clauses L V LV C when LV C is in the set of clauses.

Lemma 5 (Correctness). The narrowing rule and the deduction rules of figure 2
are correct (the set of models of one of the clause sets in S; is the same as the set
of models of one of the clause sets in S;y1) and, if every clause set in S; is in C¥,
then every clause set in S;y1 is in C¥.

Lemma 6 (Termination). The sequence S; is finite when starting from Sy = {S}
and S € C¥.

Proof. (sketch) The sequence S; is finite iff applying the rules of figure 2 together
with the rule C'V C" — C when Var(C) N Var(C') = 0 terminates when starting
from S.

We are going to give an upper bound on the size of a clause C in a set of S;. Let T
the set of ground subterms of S and N = maxrec,ces |L|. We show by induction on
i that, for every clause C of a set of S;, either C' is ground and |C| < 2N, or C is not
ground and |C] < N, or C contains exactly one variable z and |C{z — 2 & t}| < N
for some t € T'.

To prove this, we investigate all possible cases (each deduction rule) and we rely
on lemma 2 and 3 (detailed proof in appendix D.2).

Then, we show that there are only finitely many ground clauses such that |C] <
2N (this relies on the nilpotence of @) and only finitely many non-ground clauses in
C® such that |C| < N or |C{x — @ t}| < N for some t € T.



Binary Resolution

-Pt)vC Pu)vC

CoVv(C'o
Factorization
LivILyvC

(L1 VvV C)o
Explosion
Pt®u)VvC
(P(tdu)vVC)o |
Extension 1

-Pt)VC P(ui ®u2)VC

(O \Y Cl Vv _|P(t2 [e) u2))6

Extension 2

P(t)\/C P(ulGBuz)\/C"

(CVC'VP(ta®u2))b

If o is collapse-free w.r.t. literals
in C,C", ¢ € mgu(t,u), P(t)o £
(CvCe.

If ¢ € mgu(L1, Ls), o is collapse-
free w.r.t. literals in the clause, and
Lioc £ Co.

If ¢ is ground, uo is ground and uo < t.

P(x @ y)V-P(z)V-P(y) € So
t =1t @tg(ortzh and t»o ZO)
If ¢ Var(t) = Var(t1),0 € mgu(ti,uy)

(C vC'v _‘P(tQ (&) UQ))G )‘ t10.
=P(z)V-P(y)V P(x®y) € So

t:tl @tg(ort:tl and tQ :0)
If ¢ Var(t) = Var(ty),0 € mgu(ti,uy)

(CVC'V=P(ts ®uz))f # t:6.

All rules only apply to non-splittable clauses, not belonging to Sp.

Fig. 2. Deduction rules.

0 collapse-free w.r.t. t,u1 & ua,ta P us

0 collapse-free w.r.t. t, u1 @ ua, ta P us



Thanks to lemma 6, the sequence S; is finite. We let S*(.S) be its limit, when
starting from So = {S}, S € C?.

Lemma 7 (Completeness). Let S € CP. S is unsatisfiable if and only if for every
set S € §*(9), L € 5.

Our deduction system is correct, thus if L € S* for S* € §*(S) then S is not
satisfiable.

Assume S is not satisfiable and assume L ¢ S* € §*.

We extend our partial ordering < on literals to a total ordering < on ground
literals in the following way.

Let < be any total ordering on the predicates P and on the function symbols F.
We extend < on FU{@®} by ® < f for all f € F. We let then m(t) be the triple
(|t], top(t), Sub(t)) where top(t) is the top symbol of ¢t and Sub(t) are its immediate
(strict) subterms. For two ground terms in normal form, we let t<t' if m(t) < m(#')
where the triples are lexicographically ordered, using the ordering on F for the
second component, the lexicographic extension of < on the subterms when the top
symbol is not & and the multiset extension of < otherwise.

Let Ly, Ly be two ground positive literals : Ly = Py(t;) and Ly = Pa(t2). Then
L]ZLQ if either tlztg; ort; =ty and P; < Ps.

By definition, < extends < and < is a total ordering. The Herbrand base is
totally ordered accordingly as well as partial interpretations. As usual in semantic
trees methods, since .S is unsatisfiable, by correctness S* is unsatisfiable, hence its
semantic tree is finite (the set of partial interpretations which do not falsify a clause
of ).

Then we consider a partial interpretation Z whose two extensions to P; (v) falsify
a clause of S* and which is minimal w.r.t. the lexicographic ordering on partial
interpretations. (This is a “leftmost” node whose two sons are failure nodes in the
semantic tree). The lexicographic ordering on partial interpretations is defined by
I >ep J if, when P(u) is the maximal element of the Herbrand base such that T
and J coincide on literals strictly smaller than P(u), I(P(u)) =1, J(P(u)) = 0.

By factorization we may assume that the two clauses Cy, (s falsified by the two
extensions of Z are such that Py(v) V Cf = Cyoq and =P (v) V Ch = Cy04 for some
C1,Cy € S* U Sy such that C7,Cy < Pi(v). By narrowing, we may assume that
o1 is collapse-free w.r.t. C; and o9 is collapse-free w.r.t. Cy. We distinguish four
cases: either C1,Cy € Sy, or C; € Sy and Cy ¢ Sy, C; ¢ Sy and Cy € S or else
Cy,Cy ¢ So.

These cases are described in more details in the appendix, we sketch here the
reasons why it works:

Case ('1,Cy € Sy : We prove directly that there is another smaller clause falsified
by Z, simply recombining the terms in the right order. This corresponds to the
uselessness of extensions of extensions.

Case (4 € Sp,C2 ¢ Sy : Let Croy = =Py(x)o1 V—Py(y)o1 V Py(xz B y)or, xo1 = vy,
yo1 = v, and (zoq @ yo1) = v. There exist v{, v}, v’ such that v = v} ¢ v},
vy = v} @ v and vy = v @ v without any collapse or v = vy @ vo without
any collapse. We only consider the first case since the second one is similar.
By hypothesis, v;<v,v2<v and therefore Z(Py(v1)) = Z(Po(v2)) = 1. Assume
w.l.o.g that Po(vl)gPo(vg). Now, by minimality of the interpretation Z (w.r.t.
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lexicographic ordering), the partial interpretation J which coincides with Z on
literals strictly smaller than Py(vq) and such that J(Py(vy)) = 0 falsifies a clause
C3 = Py(u) v C' of S*. We consider again two cases, depending on whether this
clause is in Sy or not.
Assume C5 ¢ Sy and that no factorization can be applied. Also, by narrowing,
C303 does not contain any redex and vy = uos. Moreover, Py(vy) is maximal
in C303. We are going to show that we can apply Extension 1 (possibly after
Explosion) to Cy and Cj3 yielding a clause falsified by Z. We let Co = =Py (t)VC.
We have v = toy and o4 is collapse-free thus t = t; @ t5 such that t109 = v] and
tooy = vh. In the same way, u = uj @ uy such that uyo3 = v} and ugosz = v'.
This means in particular that ¢1, u; are unifiable. By Explosion, we may assume
that V(¢) = V(1) and, by lemma 3, that there is a § € mgu(t1,uy) such that
o2 W o3 = 00'. Moreover, let w be the maximal strict direct subterm of v. Since
va<v1<v, w is a strict direct subterm of v} thus vy = v} & v'<v}. The inequality
vy = vh @ V'V gives tyoy B ug03<ti09, hence (ty B uy)00'<t104. Tt follows
that (to @ uz)@ % t1. In addition, 6 is collapse-free w.r.t. t, t; & tq, t2 B us and
the clauses C' and C”’. Then, we can apply Extension 1 and there is a clause
(C'V C'"V =Py(ta ® uz))f, which is already falsified by Z.
The case C3 € Sy yields to the previous case where C7,Cy € Sy.

Case (4 ¢ Sp,C2 € Sy : this case is symmetric to the previous one, replacing Ex-
plosion 1 with Explosion 2.

Case (,C5 ¢ Sy . We simply use Resolution; there is a smaller clause which is
already falsified by Z.

4 Application to cryptographic protocols

We assume the reader familiar with the notion of agent, nonce, intruder, ...In this
paragraph, we show how security properties for a class of protocols can be expressed
as the satisfiability of a set of clauses S € C%. We also propose a simple (new)
cryptographic protocol, which we prove correct using our technique.

We have presented in [11] a clausal model of cryptographic protocols. This model
is a generalization of Paulson’s model [22] and the strand spaces model [14]. Unfor-
tunately, it is much too expressive for decidability results. That is why we present
here an abstraction of this model where the freshness of nonces is no longer guaran-
teed. This abstraction may induce false attack but is correct: if a protocol is proven
correct in this model then it is correct in the general model.

Messages are terms constructed over the alphabet F = {< _,_>.{_}_,h} and a
finite set of constants C, depending on the protocol.

— < mq,mgy > represents the concatenation of the two messages m; and mso;
— {m }m, represents the term my encrypted by ma;
— h(m) represents the hash of m;

Note that we allow compound keys for example. We also could express asymmetric
encryption but for the sake of simplicity, we do not present this in this paper. As ex-
plained in the introduction, this representation implicitly uses the perfect encryption

assumption : , , ,
{mlp={m'}p = m=m'&k=F.
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To relax this assumption, we add the & symbol together with its equational theory
(described Fig. 1) : mq @ ms represents the message m; xored with the message meo.
The xor function is widely used to encrypt messages by block [6]. It can also be
used to implement a computationally cheap encryption: if K is a private key, then,
instead of encrypting m with K, we may simply xor m and K. This is the case in
the Bull protocol described in [21]. We also propose the following protocol, which
aims at sending a secret S, shared by agents a, b, without using explicit encryption
(hence using fewer time resources):

A= B:N, @ K
B A:N,a N,
A—)BZSab@Nb

At the first step, the agent A sends a nonce N, xored with the shared key between
A and B. The protocol is designed in such a way that every xored message contains
a random datum, hence preventing statistical attacks.

We consider a predicate I which represents the set of messages possibly known
to the intruder. Abstracting nonces by constants, the first rule of our protocol can
be represented by the following clause:

:](nib@Kab)a (1)

where n}lb,Kab are new function symbols. At the second step, the agent B can
retrieve N, by xoring the message he received by K,;. Then he generates an new
nonce N, and sends the message N, & N,. This can be represented by:

I(z) = I(z@®n, ® Ka). (2)

where n?, is new function symbol. Eventually, when the agent A receives B’s mes-
sage, she can retrieve N and send a secret S, by xoring it with Np:

I(z) = I(z & nly ® Sap)- (3)

These three clauses belong to our class C®. Applying the reduction result of [11], we
may assume that there are only two honest agents a,b and one dishonest agent
c. We assume here that an honest agent is not allowed to speak with himself
since we think this hypothesis is more realistic. Then, all clauses corresponding
to the protocol rules are displayed figure 3. We use a finite set of constants C' =
Ui€{ab,ba,ac,ca,cb,bc} {n717 n?’ Sl} U {Kab7 KaC7 KbC}'

Such a representation can be generalized to arbitrary protocols, and we stay
within C® as soon as, at each step, at most one part of the message is blindly
copied. Most of the protocols of [6] satisfy this property, like for example, the fa-
mous Needham-Schroeder public key protocol (and also its corrected version due to
G. Lowe [18]).

It remains to describe the intruder capabilities: he sees every message sent through
the network and may send new messages. He knows private keys of dishonest agents.
In addition, he is able to compose and decompose messages. Intruder capabilities
can be encoded by clauses of C®. In particular, the ability of the intruder to apply
the xor function is described by the clause —I(z) V =I(y) V I(z @ y). Some of the
clauses are described Fig. 4. Actually, only the three first rules are relevant for our
example since we only use the & symbol.
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First rule:
= I(nt, & Kab) = I(ni, © Kab) = I(nk. @ Kae)
= I(nt, @ Kae) = I(nk, © K.) = I(np, ® Kpe)

S d le:
econG riie 1) = Iz @ nd, @ Ka) 1(2) = I(z ®nk, @ Kuy)

I(z) = I1(z @ nge © Kac) 1(2) = I(z ®nzq © Kac)
I(z):](z@ngc@l(bc) I(z):](z@nfb@l(bc)

0
8

Third rule: (2) = I(z®&nky @ Sap) (2) = I(2 ® Nty © Sba)

I(z I(z
I(2) = I(2 ® nl. ® Sac) I(2) = I(z®nly ® Sca)
I(2) = I(2 @ n}. ® She) I(2) = I(z@®nk ® Se)

Fig. 3. Rules representing our protocol for three participants a, b and c.

= I(Kq) The intruder knows all keys of compro-
= I(Kp.) mised agents.

The intruder may apply the xor function

H2). I(y) = I{z &) to any messages.

The intruder can encrypt a known message

I(@). I(y) = I({z}y) with a known key.

The intruder can retrieve the clear text of

I({a}y). 1(y) = I(z) a message encrypted with a known key.

Fig. 4. Some of the clauses defining I.

Now, the security property we want to ensure on this protocol is that the secret
Sap exchanged between the two honest agents a and b remains secret to the intruder.
Such a property may be expressed by the clause: ¢g = —I(Sap). Let Cp be the clauses
described in Fig. 3 and Fig. 4. The protocol does not satisfy our security property
if and only if Cp U {¢p} is not satisfiable: we are back to a satisfaction problem.
Such a reduction to satisfiability actually holds for any purely negative security
property [11].

As a consequence, the secrecy of our abstracted protocol can be decided by our
decision procedure. And the answer is yes: our protocol preserves secrecy !

Proposition 3. The set of clauses representing our protocol together with the secu-
rity property Cp U {do} is satisfiable.

Proof. We split the set of constants I into the set of (supposedly) secret data I'y and
known data I'y: I = {n},,ni,,n%,.n2,, Sup, Sea, Kap} and Iy = I'\I'1. We consider
a set of terms T (resp. T") such that an even (resp. odd) number of “secrets” data
is xored:

T={u1® - Du, Dt1 B --- Bty | niseven, u; € I', t; € I'y,u;,t; distinct}.

Then we consider the following set of clauses:
S* = {I(m) |meTyU{=I(z@&m)VI(z®my)|m GmyeT}
U{=I(m1) V I(ms3) | my ®mg € TYU{=I(m)|meT'}.

S* contains Cp U {¢o}, thus it is sufficient to prove that S* is satisfiable (actually
S* is obtained from Cp U {¢g} by applying our deduction rules thus S* is satisfiable
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iff Cp U {dp} is satisfiable). S* is saturated by our inference rules (see appendix E).
Applying theorem 2, since L ¢ S* it follows that Cp U {¢q} is satisfiable. O

Since the abstraction is an upper approximation, the above proposition shows
that the protocol is secure.
Note: Instead of using the reduction result of [11], we could have introduced an
arbitrary number of participants by adding new variables. For example, the second
rule of our protocol could be represented by the clause:

Ax), A(y). 1(2) = 1(z & na(x,y) & K(z,y)),

where x nd y are variables representing agents. Such a clause does not belong to our
class C® but we could extend C® to clauses with basic variables (like in [7]). Such
basic variables may only represent restricted data like agents or nonces. We believe
that the resulting class, which extends C®, is still decidable.

5 Conclusion and perspectives

We have proved the decidability of a new first-order logic fragment, including some al-
gebraic properties. This result applies to the automatic verification of cryptographic
protocols.

There are few extensions to be considered: first, adding basic variables, as ex-
plained in the above note would be useful for the application. On the theoretical side,
there is no reason to restrict the set Sy in the definition of C® to a single predicate
symbol: it should be possible to allow clauses such as =Py (z) V =Py (y) V P3(x @ y)
where Py, P>, P3 are distinct. We didn’t consider this extension here for sake of sim-
plicity and because we do not need it in the application.

Finally, the complexity of the decision result looks prohibitive. Before imple-
menting the decision procedure, we need some refinements. First, we actually use a
refinement of the ordering used in section 3: we established a general termination
result, however, completeness holds for any ordering which is narrow liftable and
which is compatible with the ordering used in the completeness proof on the ground
level. In particular, we can use < on the ground level.

A last question is of course to get similar results for other equational theories. In
this paper, however, we heavily rely on the particular theory of xor.
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A Proofs of results in section 2

Proposition 1. > is a liftable ordering.
Proof. Indeed, assume A < B. Let 0 be any substitution. We have

Af| = Al Al, + 16 .
|A0] = max(| \,mglva(ﬁ)(l 2 +10(2)]))

Since |A| < |B| < |Bf| and |A|, < |B|s, we get |A0] < |Bf|. Assume now that x is
a variable of Af. Then

|Af|, = max(|Al,, max  |A|l, +[0(y)].),
y € V(A)
e V(0(y))

thus |A6|, < |B|,. O
Before proving lemma 1, we start with two additional lemmas.

Lemma 8. If u,v are terms in T(F U {x}) and u # v, then either u,v are not
unifiable or they have a most general unifier o = {x — t} where t is a ground
subterm of either u or v. Moreover |uo| < max(|ul|, |v]).

Proof. (sketch) If u, v are distinct, there is a position p at which u|, # v|,. If for all
such positions neither u|, nor v|, is a variable, then the two terms are not unifiable.
Otherwise, u|, = x (resp. v|, = x) and the mgu must be {z — v|,} (resp. {z — ul,}).

Lemma 9. Let u and v be two distinct terms with V(u) C {x} and V(v) C {y}. If
u and v are unifiable, then they have a mgu which falls in one of the following cases:

1. zo = yo € {z,y}

2. zo ="', yo =y and v' is a subterm of v

3. yo=u', vo =x and v’ is a subterm of u

4. xo and yo are ground and one of them is a subterm of u or v. Moreover, |uc| <
2 x max(|u|, |v|) in this case

Proof. (sketch) Let us prove the lemma by induction on the sum of the sizes of u, v.
In the base case, u or v is a variable and we fall into one of the cases 1,2,3. Remains
the case where neither u nor v is a variable. If they are unifiable, they must have
the same top symbol f: u = f(u1,...,u,) and v = f(vy,...,v,). Then a mgu of
u,v is also a mgu of u; = vy A ... Au, = v,. Remove trivial equations from this
conjunction (and let us keep the same notations). Tt remains at least one equation
since u # v. Pick any of them u; = v;. By induction hypothesis, the mgu o; of u;, v;
has one of the above four forms. Let us investigate these four cases:

case 1: In this case, applying the replacement {x + y} to the remaining equations,

we can apply lemma 8 to the remaining equations (if any). Then we fall into
case 1 or case 4.
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case 2: either o; = {x — v]} is also a solution of the remaining equations and we
fall into case 2 or else consider any other equation u; = v; such that v;o # u;o;.
Applying the induction hypothesis to u; = v;, we cannot fall into cases 1,3 which
would yield to a positive occur-check. If we are in case 4, switch i and j: then
the case is considered below. Remains case 2: the mgu of u; = v; is {z + v}
where v/ is a subterm of v;. Now, any unifier of u, v is also a unifier of v; = v;-.
Then we apply lemma 8: the mgu of u, v is ground, yo is a subterm of v} or v;
and |zo| = |vio| < |v;|. It follows that

luo| < |ul + [zo| < |uf + [oi] < Juf + o] =1 <2 x max(ful, |v])

hence we fall into case 4.

case 3: it is similar to the previous one

case 4: o; must be a mgu of u, v since it is ground. The result follows from |u;| < |u]
and |v;| < |ul.

lemma 1. Let u,v be two terms such that V(u) = {x} and V(v) = {y}. If they are
unifiable with mgu o, then either uo is ground and |uc| < 2 X max(|ul, |v]) or else
luo| < max(|ul, |v]).

Proof. u,v are distinct since their variable sets are distinct. Then we use lemma 9:
luo| = |ve| < min(fu] + [zo], [v] + |yo])

and we get |uo| < max(|ul, |v|) in the first three cases and |uo| < 2 X max(|ul, |v]|)
in the last case.

Lemma 9 can be reformulated in the cases where the two variables are (uniformly)
replaced with terms f(zq,...,z,):

Lemma 10. Letty = u[f(xy1,...,xx)/x] (resp. V(t1) = x) and ta = v[g(y1,...,u)/Y]
be two distinct unifiable terms. Then, their mgu falls into one of the following cases:

1. either k =1 and for all 1 <1i < k, we have o(x;) = o(y;) = 2i;

2. or for all 1 < i < k, xijo0 = vi[g(y1,-.-.w)/y] (resp. xo = vi[g(y1,- .- u)/y])
and v; is a subterm of v;

3. orforalll < j <, yjo =w[f(x1,...,zx)] (resp. yjo = u;) and u; is a subterm
of u;

4. or o is ground and either the x;0 (resp. xo) are subterms of u or v or the y;o
are subterms of u or v.

In addition, in first three cases, |tio| = max(|t1], [t2]) and in the last case, |t10| =
2max(|t1], [t2])-

The size of the unified term may effectively increase.

Ezample 4. Consider t1 = f(f(z1,z2), A" (f(x1,22))) and

ta = f(f(P"(a), h"(a)), A" (f(y1,92)))-

The substitution ¢ = mgu(ty,t2) verifies o(x1) = o(y1) = h™(a) and o(z2) =
o(y2) = h™(a). Thus |t1] = |t2| = n+ 3 and |t;0| = 2n + 3.
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Theorem 1. Let S be a finite set of clauses such that S belongs to C. The satisfiability
of S is decidable.

Proof. We use splitting (see e.g. [26]), ordered factorization and ordered binary reso-
lution (see e.g. [2]), w.r.t. the partial ordering defined above, using a classical redun-
dancy criterion [2], also called a posteriori criterion in e.g. [15]; we apply resolution
on two clauses C'; and C5 only if no atom of the resolvent is greater than the resolved
atom. Such an ordered strategy is complete [2, 15].

Then, define ||C|| as the maximal depth of its literals. We prove first the following
lemma

Lemma 11. Let C1,C5 € C and C' be a clause obtained by ordered binary resolution
on C1,Cy. Then, for every clause C' obtained from C' after splitting,

-C'ecC
— If C" is not ground, then ||C'|| < max(||C1]|, ||C2]|)
— If C" is ground, then ||C"|| < 2 x max(||C4]],]C2]])

Proof. (sketch) Let C; = C|{V Ly, Co = C4V =Ly, Ly = +P(u), Ly = FP(v) and
C = (C} v CY)o where o is a mgu of Ly, L.

We rely on lemmas 9 and 10: consider for instance the case in which V(C4) = {z}
and V(Cq) = {y}. If o is the identity (i.e. w = v and the terms are ground), the
result is straightforward (after splitting the resulting clause!) Otherwise, according
to lemma 9, there are four cases:

In case 1 we simply get C' = Cf V C4{y — z}. C contains a single variable z ,
hence is in C and ||C]| < max(||C1]l, [|C2||)

In case 2 o = {z — v’} and v’ is a subterm of v. Then C contains the single variable
y, hence belongs to C. Moreover, C' = C}o V C}. To prove the inequalities on
sizes, it is sufficient to consider the non-ground literals in C7. Let L = +Q(¢) be
such a literal and suppose |Lo| > |Lio|. Consider a maximal length position p
of z in t. Since Lio is maximal, |p| < |g| for some maximal length position g of
z in u. Now, by lemma 1, |uo| < max(|ul, |v|), hence |q| + |zo| < max(|ul, |v]).
It follows that |to| < max(|t], |ul, |v]), hence ||Cia|| < max(||Cy]], [|Cal|).

Case 3 is similar to case 2

In case 4 , as in case 2, by maximality of L, for any position p of x in some literal
+Q(t) of C (resp. C3), either |Q(t)o| < |Lio| or there is a position g of = in u
(resp. a position ¢ of y in v) such that |p| < |g|. Then

o] < max (] ¢l + o)
< max(|t], || + [zo])
< max(Jt], |uc])
< max(|t], 2 x max(|u|, |v]))
< 2 x max(|[C4]], [|C2])

In the cases where C1, Cy contain more than one variable, the proofs are essen-

tially the same as above, replacing the reference to lemma 9 with the reference to
lemma 10:
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Case 1 Ly = £P(z1) and Ly = FP(x3). Then, by maximality of Lyo, all literals
of C] is of the form £P;(x1) and all literals of CY is of the form £P;(x2). Thus
o(z1) = o(xz2) = = and all literals of C' is of the form +P;(z), thus |C| =
[C1ll = ICaf| = 1.

Case 2 Ly = +P(x1) and Ly = FP(u[f(y1,.--,yx)]) (resp. Lo = FP(u(y))). By
maximality of L;o, all literals of C] is of the form +P;(z;). Thus o(z;) =
u[f(y1,- -, yr)] (vesp. o(x1) = u(y)) which implies Cho = C% and for all literals
L of C}, Lo is of the form +P;(u[f(y1,...,yx)]) (resp. £P;(u(y))). Thus C’ is in
C"and [[C] < || Co.

Case 3 Ly = +P(u[f(z1,...,2)/2]) and Ly = FP(v[g(y1,-.-,y)/2]). Then, by
lemma 10, there are three cases :

— either k =1 and for all 1 <i < k, we have o(x;) = o(y;) = 2;

—orforall 1 <i<k,o(x;)=wvlglyr,. -, u)l;

—orforall 1 <j<lI o(y;)=wlf(z1,...,2x)]

In the first case, we get C' € C' and ||C|| = max(||C1|],||C2||). The second and
third cases are equivalent, thus let us consider only the second case. Cho = C}
and every literal of Co is of the form £P(wlg(y1,...,y)]) thus C is still in C'.
For every literal L of C%, |Lo| = |L| < ||Cs||. Let L be a literal of Cf.

— Either |Lo| < |Lio|. Then, by lemma 10, |Ly0] < max(|L1], |L2|) < max(||C1]l, [|C2||)
thus | Lo| < max(||C4], ICa ).

— Or |Lo| > |Lyo|. Then, by maximality of Lio in (o, there exists a vari-
able y of Lyo such that |Lo|, < |Liol,. Since the only variables of Lo
are the y;, we get for all 1 < j < I, [Lo|,, < |Liol,;, which implies L =
+P(u'[f(z1, ... 2)/2]) with [u/]. < |ul.. '

Now, |Lo| = [W/[f(z1, .., 24)/2]o] = max(|a’|,|u/|. + 1+ maxi<ics o (2:)]).
Since [u/| < |L| < ||C1]| and |v|, + 1 4+ maxi<;<i |o(2;)| < |Lio|, we get
Lo| < max(|Cr], ICal).

The other cases: Ly = £P(u[f(x1,...,2%)/z]) and Ly = FP(v(y)) or Ly = £P(u(x))
and Ly = FP(v(y)) are similar to case 3. O

Proof of theorem 1 (continued): Now, let N be the maximum of |C]| for clauses
in S. As a consequence of the above lemma, for every generated clause C’ (after
splitting), either |C’|| < N, or else C’ is ground and ||C’]| < 2 x N.

On the other hand, there are only finitely many terms ¢ in T'(F U {z}) such that
|t| < N. This implies that there are finitely many terms of the form ¢[f(x1,...,2,)/y]
with ¢ € T(F U {y}) since F is finite. On the other hand, the number of variables
in each clause of C is bounded (by definition). Hence, if we assume that no clause
contains twice the same literal (we may assume w.l.0.g. that such clauses are eagerly
replaced with clauses containing each literal only once), then there are ounly finitely
many possible generated clauses.

B Narrow-liftability of the ordering

Proposition 2 < is a narrow-liftable ordering on literals of clauses of C®.

Proof. |BO| = ||BO | || = ||B | 0] and |40 | || < ||A | 6], hence we may assume
that A, B are in normal form. Then we prove, by induction on the depth of B that
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|BO| > |Af| and, for every x € Var(B),z € Var(z0), |Bf|, > |Af|.. In the base
case, B is a constant or a variable  and we cannot have |B| > |A|. If |A| < |B|
and, for every variable x € Var(A4, B), |A|y < |B|s, then let A = f(t1,...,tx),
B =g(u1,...,um) (f,g are possibly @). By definition, max;<;< [t;| < maxi<j<m u;
and maxi<i<k |t;|> < maxi<;<m |u;|. There are indices jo and j, such that, for every
i, |t;| < |uj,| and, for every . |t;|, < |u;, |, Then we apply the induction hypothesis:
for instance, for every i, |t;0], < |u;, 0|, for every variable z € Var(z0). It follows
that |A0], = |40 | ||. < ||A0]|. < ||BO||. = |B0)|. since BO is in normal form. We
prove in the same way that |A6| < |B#). O

C Useful results on unification

Lemma 2 If u #g v and Var(u,v) C {x}. Then either u and v are not unifiable
or else any (normalized) unifier o = {x — w} is such that w is a ground term and
either w is a subterm of u @ v or else w = wy & wy is a normal form such that w,
and x ® wo are subterms of u or v. Moreover, |xo| < max{|ul,|v|}.

Proof. (sketch) We let s(u) be the size of u, i.e. the number of function symbols
occurring in u (if a function symbol occurs n times, we count it n times). We prove
by induction on s(u) + s(v) that if u #g v and 6 is a normalized unifer of u, v, then
either 26 is a subterm of (u or v) or else 26 = w; ® wsy (in normal form) such that
w; and x P wy are subterms of u or v.

If u and v are the variable = or constants, then the result holds.

Otherwise, u = u1®...PuUp, v =v1B- - -Dovg, where uy, ..., Uy, V1,...,V are not
headed with @. There are three cases. Either there exist ¢, 7 such that u; = v; then
the solutions of the equation u = v are the solutions of the equation uy; @ ...u;_1 P
Uit1 Do . . DUy = 1D... 01DV 41P...Pvg, thus we apply the induction hypothesis
(these two terms must be distinct since u,v are distinct).

Or none of the u;, v; is a variable. Then there exist ¢, j such that u;0 |= u;0 |
or u;0 = v;0 | or v;6 |= v;0 |. Then we may apply the induction hypothesis to
u;, uj (resp. u;,vj, resp. v;,v;) except if u = uy = f(u},...,u),) and v = v =
f(vi,...,v0,). Then for every 1 < i < m, u.0 |= v}f |. Since u #g v, there is at
least one index 4 such that u} #g v}. It suffices to apply the induction hypothesis to
ug, vj.

Or there exists ¢ such that u; = x but none of the v; is a variable. Then xf =
(w8 @ ---u,,0) | where u, = u; or v; for some j. If there exists ¢,j such that
u;f |= u0 | then we simply apply the induction hypothesis to u;,u’; which are
distinct. If all u}’s are ground, then there is a single solution x = u} @& ... ® ul,,
which satisfies the desired properties.

Otherwise, assume u is not a ground term, and let x&t; ...®H1t; be an outermost
occurrence of z in u}. Let 260 = wy @ ... ® w,, where the w;’s are distinct and not
headed with @. From w; @ ... ® w,, = uj0 | Gubd | ... ® ul0 |, there must be
some index j such that w; = u{6 |. w; cannot occur in u}6 |. Hence w; = ¢;0 | for
some 4. This means that € is a solution of ¢; = w} and we may apply the induction
hypothesis: 26 is either a subterm of ¢; or a subterm of u}, or else z0 = w| & w)
where w] and © @ w), are subterms of ¢; or u}. The result follows since both ¢; and
u) are subterms of u or v.

The last part of the lemma is a straightfoward consequence of the first part.
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Lemma 3. If Var(u)NVar(v) =0 and Var(u) C {z}, Var(v) C {y}, u #a v, then
either u and v are not unifiable (modulo the rules of figure 1) or else every most
general unifier 6 of u,v is, up to variable renaming, such that:

— either there are ground subterms wy, ..., wy of u,v such that x0 = w; ®... D wy
(resp. y0 = wy @ ... B wy) and yb is ground (resp. x0 is ground)

—oral =28 B Dy, yd = (1 B Du, Dwy B+ D w,y,)0, where the
ti’s and the w;’s are ground subterms of u,v, n > 1 and the u;’s are non-ground
subterms of u or the converse, exchanging the roles of © and y (resp.of u and v).

Proof. (sketch) Le 6 be a most general unifier of u,v. We prove again the lemma by
induction on s(u) + s(v). First, if u or v is ground, the result follows from lemma 2:
20 (resp. y0) is either a ground subterm of u,v or the sum wy & wy where wy is a
ground subterm of u, v and ws is a sum of ground subterms of u, v.

If u and v are the variable = or constants, then the result holds.

Otherwise, u = u1 ® ... B up, v =v1 B --- D vg, where uy, ..., U,,V1,...,0V are
not headed with . There are again four cases.

Case I:n=k=1.u=wuw = f(uj,...,u,) and v = v1 = f(vf,...,v],). Then
we must have, for every i, uif |= v}0 |. Discard the indices 7 such that u} = v].
It remains at least one index j. We apply the induction hypothesis to v} = vj,
considering a mgu o of uj = v} such that § = oo’ for some o'. If o is ground,
then we must have o = 6, hence the desired results since ground subterms of w}, v;
are also ground subterms of u,v. Otherwise, by symmetry, we may assume that
ro=zBt1 ... Bty and yo = (s1B...Bs,Bwi1B...Bw,)o | wherep > 1, s1,...,5,
are non-ground subterms of u;- and t1,...,t, wy,...,w, are ground subterms of
u, v, If uo |= vo |, then the result is proved. Otherwise, o’ is a mgu of uo,vo.
Then, we apply lemma 2: ¢/ = {z — w} where either w is a ground subterm of
uo,vo, or else w = w @ wh where w} is a ground subterm of uo, vo, wh is ground
and z @ w) is a subterm of uo, vo. Note however that ground subterms of uc, vo are
necessary ground subterms of u, v since xo and yo are not ground and their ground
subterms are also subterms of u,v. This implies that 20 = w®t; ©... Bt is a sum
of ground subterms of u, v (and y6 is ground) or else 20 = W) Gwy Gt B ..., and
w) is a ground subterm of u, v and w), is ground and z ¢ w), is a subterm of uc, vo.
This last property implies that w} itself is a sum of ground subterms of u, v, hence
z# is also a sum of ground subterms of w,v.

Case 2: none of the u;,v; is a variable and n + k > 2. Then there exist ¢, j such
that w;0 {= u;0 | or w;0 = v;0 | or v;0 |= v,;0 |. We remove u;,u; (resp. u;,v;,
resp. v;,v;) from the sums uq @ ... ® u,, and v1 & ... G v, getting two terms u', v’
such that v'0 |=v'0 | and s(u') + s(v') < s(u) + s(v). Either v’ = v' and we simply
apply the induction hypothesis on the remaining pair (u;, u; or u;,v; or v;,v;) or
else we can apply the induction hypothesis to u’, v’ and a most general unifier o of
u',v" such that § = o¢’. Then, we proceed as in case 1.

Case 3: u; = x for some i and vy, ...,v; are not variables . If there exists [, j such
that w8 |= u;0 | or w0 |= v;0 | or vy;# = v;0, then, as in the previous cases, we
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can apply the induction hypothesis, yielding the desired result. This situation is now
discarded. We rename the u;’s :

0wl P - Bu,l=v10]lF---Dugh |.

There must be at least one v; which is not ground since v is not ground. If all u;’s are
ground, then there is a single (up to renaming) most general solution z = u; & ... P
Up vy B - D vg, and the result follows: yd = z, 20 = (u1 B ... B up, By ... Do)l
which satisfies the property of the lemma.

Otherwise, assume wu; is not a ground term, and let @ty ... Htx be an outermost
occurrence of x in wy. Let 260 = w1 & ... ® w,, where the w;’s are distinct and not
headed with ¢&. From

Wi B ...Ewy, =u10]l Buf | ... 0uf0l 0l Dd...Pv0,

there must be some index j such that w; = u;0 |. w; cannot occur in u;60 |. Hence
w; = t;60 | for some 7. This means that 6 is a solution of ¢; = u; and ¢; is a strict
subterm of uq, hence distinct from wu;. Applying lemma 2, 260 is a sum of ground
subterms of u,v and, replacing x with xf in u = v, the new equation is non-trivial
(y occurs in v), hence has only ground solutions. Then we meet the conclusions of
the lemma.

Case 4: u; = x for some i, v; =y for some j. As before, if for some 7, j u;0 |=v;0 |
(or u;0 |=u;0 | or v;l |=v;0 |), we conclude using the induction hypothesis. We
assume that this does not occur.

We may rename the u;’s and the v;’s and we get

20 Duf]l P - Pu, @ l=yd vl DB---Du|.

If all u;’s are ground, there is a single unifier (up to renaming): 26 = u; @ ... Bu, B
Yy Do @ Doy , which meets the conditions of the lemma (with the identity on y).
The same result holds if the v;’s are all ground.

Thus we may assume that u; and vy are not ground. Let 6 = w; & -+ B w; P
1B DS, Y =w @ - Bw), Hs1®- D Sy, such that w;w!, s, are not headed
with @, { +1' = n+k and for each w;, w; = u;0 | or w; = v;0 | f or some j (and the
same property for the terms w;) Let @ty ... Bt be an outermost occurrence of x
inu; and y & ¢} & --- B ¢}, be an outermost occurrence of y in vy. If at least one of
the w;’s is equal to some ¢;6 |, then ¢;0 |= us6 | or vs0 | for some s, then we may
apply the induction hypothesis to ¢;,u, (resp. tj,vs) and their unifier o such that
0 = oo’ for some o’. In case z is mapped to a sum of ground subterms of u,v and y
is mapped to a ground term (or the converse),we get immediately the desired result
since § = o. Otherwise, either uo |= vo | and we get again the conclusion or else o’
is a mgu of uo |,vo | and, using a reasoning similar to that in case 1, we conclude
that zo’ is a sum of ground subterms of u,v and either xo or yo is also a sum of
ground subterms of u, v.

The same reasoning applies if at least one of the w! is equal to some t;ﬂ J: then
t;ﬂ d=us0 | or v,0 | and we use the induction hypothesis.

We are left to the case where the w; and ¢;0 |’s are all distinct and the w}’s and
t;@ s are all distinct. Thus the w;’s are strict subterms of w16 | (since we have
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considered the outermost occurrence of x), which implies that w16 | is distinct from
the w;’s, thus w16 |= w; for some j. Symmetrically, the w/’s are strict subterms of
v16 | and v10 |= w,, for some m. Thus we have:

Wy, < urf = w; <010 = wp,,

which is a contradiction: the case can not happen, which completes the proof of the
lemma.

Lemma 12. If Var(u) N Var(v) = 0 and v = v'[v — f(z1,...,2,)], Var(d') C
{z},Var(v) C {y}, then either u and v are not unifiable (modulo the rules of figure
1) or else any most general unifier 0 of u and v falls (up to renaming) in one of the
following cases:

— for every i, x;0 is a ground subterm of u,v and y0 is ground
— yB is a sum of ground subterms of u,v and every x;0 is ground
— x;0 = x; for everyi and yd = u; B - B u, Gwy B...Dw, where every u; is a

non-variable, non ground subterm of u, n > 1, wy, ..., w,, are ground subterms
of u,v.

— Yy =zt B - Dy, for every i, x;0 = v;0 and t,...,t are ground subterms
of u,v, f(v1,...,0,) is a subterm of v.

If Var(u)NVar(v) =0 and v = [z — f(z1,...,20)], v ="y = 9(y1,- -, )],
Var(vw') C {a},Var(v') C {y}, then either u and v are not unifiable (modulo the
rules of figure 1) or else any most general unifier @ of u and v falls (up to renaming)
in one of the following cases:

— for every i, j, x;0 and y;0 are ground subterms of u,v,

— ;6 = x; for every i and y;0 = u; for every j, such that g(uq,...,ux) is a
subterm of u

— y;0 = y; for everyi and x;0 = v; for every j, such that f(v1,...,vy,) is a subterm

of v.

Proof. (sketch) Concerning the first part, the equation u = v is equivalent to u’ =
vAx= f(x1,...,2,). Then we apply lemma 3 to u’,v and simplify the conclusions
to meet the constraint that z6 is headed with f.

Concerning the second part of the lemma, u = v is equivalent to u = v/ Ay =
9(y1,-..,yk). Then we apply the first part of the lemma to u,v’ and simplify the
conclusions taking into account that yf must be headed with g.

Lemma 4 For every clause C' € C?, there is a finite number of clauses Cy,...,C,
such that :

n

{Co | |V(Co)=0,0€ NS} = | J{Cio | V(Cio) =0,0 € CF(Cy,...,Cp)}

i=1
Moreover, if C ¢ Sy, every C; falls in one of the following cases:
-C;=C
— C; is ground and |C;| < 2 x |C
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- V(C)=A{a} and C; = C{a' = y ® t;} | for some sum t; of ground subterms of
C.

Proof. It C' € Sy, C = =P(x) vV —-P(y) V P(x @& y), the clauses there are four clauses
C;: C) = C itself, Ca==P(x ®y) V =P(y) V P(x), Cs==P(z) V-P(z & y) V P(y)
and

ChE-P(x @ 2)V-Ply® 2) V Pz & y).

Indeed, if we consider a normalized substitution o such that Co | is ground, let
xo =t B ... BDig, yo l= u1 & ... & up. U {t1,... te} C {ur,...,um} we get

a collapse-free instance of C3, if {uy,...,um} C {t1,...,tx}, we get a collapse-free
instance of Cj, if the two sets are disjoint, we get a collapse-free instance of C; and,
in the general case, if {t1,...,t} N {u1,.. ., um} = {v1,...,0,} is non-empty and

distinct from the two previous sets, we get a collapse-free instance of Cy (for instance
z is assigned v1 @ ... B vy,).

Consider now a clause C' with only one variable x. Let T" be the set of its ground
subterms and o4, ...,0, be the substitutions {z — 2’ ®t1 ® ... Dt} and {z —
t1...®ty } where {t1,...,t,} € T. We let then C;=Co; |. Let o be any normalized
substitution. We proceed by induction on the number of reduction steps of C'o to its
normal form. If C'o does not contain any redex, then it is a collapse-free instance of
C{z — 2’} (with m = 0). Otherwise, consider an innermost redex: u10 @ ... ® upo
in which w10 = vy ® v9 and ugo = vy ® vs (v and vz are possibly empty) and
Uy, ..., u, are not headed with &. If vy and v3 are empty, since C is in normal form,
o must be a unifier of u; and us, hence, thanks to lemma 2, 0 maps x to a sum of
ground subterms of C, and Co | is equal to some C;. Otherwise, since uy,uy are
not headed with @, one of them must be a variable and, since C' only contains one
variable and is irreducible, we must have, e.g. v3 empty and uy = x (the other case
is symmetric). Since we chose an innermost redex, us must be a ground term (it
cannot contain uso @ v2). Then we consider the substitution oq = {z — us ® a'}.
Co |= (Cop) | {2’ = vy} | and Coqg | {o' — vy} contains strictly less redexes
than Co. We apply the induction hypothesis, replacing C' with C'oy and o with
{2’ — va}: there is a clause C} = C'og | 0; | and a collapse-free substitution 7; such
that Clm; = Cog | {2’ — va} = Co |, where 6; is a substitution {2’ — y @t} or a
substitution {z’ — ¢} with ¢ a sum of ground subterms of Coq J. Now, any ground
subterm of C'oq | is also a ground subterm of C, hence ¢t € T and o6; is one of the
substitutions o;. It follows that C] = Co; |= C; and C;0; = Co |, which completes
the proof.

Consider finally the case where C' contains more than one variable and does
not belong to Sy: every literal is either +P(x;) or L{x — f(x1,...,2,)} where
V(L) C {x}. We let C; be the set of clauses containing C' and the clauses obtained
by unifying any two subterms u, v such that u & v occurs in C', and then normalizing.
By lemma 2, the clauses C; are ground clauses. Moreover, any redex in C'c must be
of the form uo @ vo where u @ v occurs in C'. It follows that either Co is irreducible,
or it is one of the clauses C;.

It only remains to prove the size inequality for ground clauses C;. When V(C)
contains only one variable, C; is ground iff C; = C'{z — ¢} | where ¢ is a sum
of ground subterms of C. Then |C;| < |C|, + |[t|] < 2 x |C]. When C' contains one
variable, we simply consider literals others than +P(x;), abstract out f(x1,...,2,)
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with 2 and apply the same reasoning. The literal +P(z;)o; is smaller than other
literals in the same clause.

D Proof of theorem 2

D.1 Correctness

Lemma 5 The narrowing rule and the deduction rules of figure 2 are correct (the
set of models of one of the clause sets in S; is the same as the set of models of one
of the clause sets in S;11) and, if every clause set in S; is in CP, then every clause
set in S;yq is in C¥.

Proof. The correctness of the rules of figure 2 is straightforward. For the narrowing
rule, one can notice that, by construction, for every clause C' € N¢, then ¢!/ = Co |
for some o. Let us focus on the C® membership: we proceed by induction on 4.
This true for Sy by definition and we show the invariance of this property by any
deduction rule. According to the definition of C®, we assume that every clause C is
of one of the following four forms

1. C contains at most one variable;

2. C only contains literals £ P;(x;) where x; are variables;

3. all maximal literals of C' are of the form +P;(u){x — f(x1,...,2n)} where
{z1,...,2,} = Var(C);

4. C € Sy but we do not apply resolution on these clauses.

In the second case, C' is splittable or C falls into the first category.

Binary resolution: If the two clauses C1y = —~P(t) VC and Cy = P(u)V C’ contain

at most one variable, then lemma 3 ensures that the resulting clause contains at
most one variable.
If one of the two clauses contains more than one variable, then lemma 12 ensures
that the resulting clause either contains at most contains one variable or is of the
form C{x — f(x1,...,2,)} where C contains one variable z, thus the resulting
clause is in C®.

Factorization and Explosion: These two rules leads to ground clauses which ob-
viously in C®.

Narrowing If C' is a clause which contains at most one variable then the clauses
obtained by narrowing also contain at most one variable thus are in C®. If C'is a
clause of the form C{x — f(x1,...,2,)} then the clauses obtained by narrowing
are ground thus are in C®.

Extensions As for binary resolution, the lemmas 3 and 12 allow us to conclude
that the resulting clauses remain in C®.

D.2 Termination

Lemma 6 The sequence S; must be finite when starting from So = {S} and S € C®.
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Proof. (sketch)

The sequence S; is finite iff applying the rules of figure 2 together with the rule
C Vv " — C when Var(C) N Var(C') = () terminates when starting from S. We
are going to give an upper bound on the size of a clause C' in a set of S;. Let
NZ maxrec,ces |L| and let T be the set of sums of ground subterms of clauses of
S.

We show by induction on 7 that, for every clause C' of a set of S;, either C' is
ground and |C] < 2N or C'is not ground and |C| < N or (last case) C' is not ground,
V(C) = {«} and there exists t € T such that |C{z— 2’ &t} || < N.

If C" is obtained by narrowing from a clause C then the result follows from
lemma 4.

If C" is obtained by factorization or explosion from a clause C, then C’ is
ground, ¢ = C'o where o is the most general unifier of two subterms of C'. Applying
lemma 2, |o| < N. In addition, by induction there exists ¢t € T such that |C"| < N
and C" = C{z — 2’ @t} | thus |C'| = |C"{z — 2o ®t} | | < max(|]C"|,|C"| +
max([t],|o])) < 2N.

If C’ is obtained by binary resolution:

-P(t)vC P(u)vC”

CoVv(C'o

C'" =Co Vv (C"c and o € mgu(t,u). The clauses =P(t) V C and P(u) vV C" may be
ground, have a single variable or be on the form Cy[x — f(xy,...,2,)]. All these
cases are similar to case where Var(t) = {z} and Var(u) = {y}, thus we only deal
with that case. If o is ground, then by lemma 2, |o| < N and we show similarly that
|C’] < 2N. Otherwise o is not ground and, by lemma 3, we may assume w.l.o.g. that
yo=z@t1® - @ty and xo = (u1 B - D U)o Bty & --- Bt where the ¢;’s and
the t}’s are ground subterms of w or ¢ and m < 1 and the u;’s are subterms of . In
addition, there exist ¢1,t9 € T' (possibly 0) such that P(¢)VC = Ci{z' » 2 &1} |,
Pu)vVC' =Col{y' = y@ta} ] and |Cy] < N, |Co| < N.
We first prove the following lemma.

Lemma 13. Let Ly, Ly be two literals such that Var(Ly) = Var(La) = {z} and
Ly and Lz both belong to a clause C' such that there exists t in T such that |C{x —
' @t} ]| < N. Let o be a collapse-free substitution (w.r.t. Ly and Ls) such that
Lio # Lyo and Var(xzo) = {y}. Then |Lio] < max(N,|Lqal).

In addition, let 0 = {y — x @t} be a substitution such that for each mazimal
length occurrence of y in Lio and Lao, the variable y is zored by t. Then |Lio0 |
| < max(N,|Lyc6 ] |).

Proof. Suppose |Lio| > |Lao|, then by maximality of Lyo, we must have |Lio|, <
|Loo|, thus |L1|, < |La|,. Then |Lio| = | L] since for every position p of some z @& u
in L; (with u possibly equal to 0), |p| + |zo| < |La|, + |zo] < |Lao]|. Suppose also
that |[Lyo| > N. It must be the case that there is a position p such that L], = 2 @& u
and |Lyo| = |L1] = |p| + |u| > N since |Li{z — 2’ &t} L | < N. Let p' be a
maximal position of the variable z in Ly: Lo|,, = x @ v. Either |v| > |u| in which
case |Lio| < |Laol, or |v] < |u|. Then since |[Li{zx — o’ &t} | | < N, we must
have [t| = |u| thus |Lo{z — o' @t} | | > |L2|. + |t| > N (because |v| < |¢| implies
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[(v@t) | | = [t]), contradiction. We conclude that |Lio] < N, thus in any case,
|Lyo| < max(N,|Lao]).

Let us prove the second part of the lemma. We have |Lio0 | | < |Lio| and
|Locf | | < |Lgo|. Assume |Lyo| > N and |Lyof | | > N (if |[Lyo| < N or
|Lio6 | | < N, we are done). If |Lyof | | = |Lao| then we can conclude using
the first part of the lemma. Thus consider the case where |Loof | | < |Loo]|. This
means that |Lyo| = |Lao|, +|t|. Suppose |Lio|, > |Lso|, then |Lio| > |Lio|,+|t] >
|Loo|y+t| = |Loo|, which contradicts the maximality of Loo. Thus |Lio|y < |Loo|y.
Let p be a path such that Lyo|, = y®u and |p| = |Lao|,. Now two cases are possible:

— Either |L106 | | is reached for some path extending a position of  in Lj, then
we conclude using |Lio|, < |Loo|, that |[L106 | | < |L2o6 | |.

— Or |Ly06 | | is reached for some path p’ such that Lio|, = y® v and |p'|+ |v| >
N. We may assume that p’ does not extend a position z in L; otherwise we are
back to the previous case. Thus Li|, = x ® V', i.e. Lio|y = zo®v = ydvi &'
with v = v; ®v" and xo = y D vy. If |vg| > |v'|, we are back to the previous case.
Otherwise |v1| < |v']. Since |Lo{z — 2/ &t} | | < N, we must have |u| = [v/],
thus | Ly | | = [p'] + o] < [p| + lul < [La| < Lot |.

From this lemma and the fact that Lo ¥ P(t)o and L'c % P(u)o, we deduce
that |Lo| < max(N, |P(t)o]) for every literal L of C' and |L'c| < max(N, |P(u)o|)
for every literal L' of C". Now P(t)o = P(u)oc = P(u){y — 2®t; ®--- @&t} and
since the clauses are in normal form, the t;’s occur at each maximal occurrence of
the variable z in Co V C"0. Let 20 = y®t; & -+ ® t},. We deduce from lemma 13
that |[Lof | | < max(N,|P(t)of | |) for every literal L of C' and |L'of | | <
max(N, |[P(u)of | |) for every literal L' of C". Note that actually, P(u)of |= P(u).
Suppose |P(u)| > N. Since P(u) vV C' = Cof{x — = & to} | with |Cy] < N, this
means that there exists a term ¢}, such that ¢, occurs at each maximal occurrence
of the variable y in C" thus also occurs at each maximal occurrence of the variable
y in Cof | and such that P(u) vV C' = Ci{x — = & th} | with [C) < N. Let
y0 = y @ t,. Applying again lemma 13, we get |Lo00' | | < max(N,|P(t)c06’ | |)
for every literal L of C' and |L'c66' | | < max(N,|P(u)o8f’ | |) for every literal
L’ of C". Since |P(u)of0’ | | < N and P(t)o06’ |= P(u)o08' |, we have that
C'=CoV C"0 = (300 with |C3] < N, hence the result.

If C' is obtained by one of the Extension rules, the proof is similar to the binary
resolution.

Now, for each non ground clause C, there is a term ¢ € T' (possibly 0) such that
|C{z— 2’ &t} ]| < N thus |C| < 2N. Thus for every clause C' (ground or not) in
S;i, we have |C| < 2N. Moreover, there are only finitely many clauses C, which do
not contain repeated literals and such that |C| < 2N. Indeed, there are finitely many
literals L in normal form such that |L| < 2N and containing at most one variable.

D.3 Completeness

Lemma 14 (Case C1,Cy € Sp). If Cy,Co € Sy, then T falsifies already a ground
instance of S* U Sy.

Notation : If t = t; & --- @ tr where the head symbol of each t; is not the xor
symbol, then ¢ = {t;,... tx}. If t = f(t1,...,t,), then t = {t}.
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Proposition 4. Let t,ty,t> be three ground terms~ mn normal iorm such~ that t =
t1 Dty and ty,to<t. Let u be the maximal term of t. Then u & t; or u ¢ t.

Proof. Assume u € ﬂ and u € 5 then u ¢ tjé_?g = f~, contradiction. O

Proof (of lemma 14). Cro1 = P(v) V =P(v1) V =P (v2), v1,v2<v Caoy = =P(v) V
P(v3) V =P(v4), v3,v4<v and =P(v1) V =P(v3) and P(v3) V =P (v4) are already
falsified.

Let u be the maximal term of ¥, using proposition 4, u ¢ 07 or u ¢ 03 and u ¢ U3 or
u ¢ U3. vy and vy play symmetric roles, thus we may assume w.l.o.g that u ¢ vs.

— Assume u ¢ 03. Then vy @ v3<u<wv, thus P(vy @ v3) is already interpreted.
e Either P(ve @ v3) € Z, then the clause C = P(v3) V =P(vy) V —P(vy G vg) is
an instance of of a clause of Sy, falsified by Z.
e Or =Py Duz) €Z. vagBvs =vD v Gvdvg =v; @ vy Thus the clause
C' = =P(v1)V-P(v4) V P(va ®vs) (instance of a clause of Sp) is falsified by
7.
— Assume u ¢ 0;. Then vy & vg<u<v, thus P(vg @ vyg) is already interpreted. We
proceed similarly.
e Either =P (vy @ v4) € Z, then the clause C' = = P(va) V =P (v4) V P(v2 ® v4)
is an instance of (), falsified by Z.
¢ Or PlugDug) €EZ. va®Duvg =v®v; EvP vy = vp d vz Thus the clause
C = —P(v1)V P(v3) V—P(v2 ®v4) (instance of a clause of Sy) is falsified by
7. |

Lemma 15 (Case C; € Sy, Cy ¢ Sp). If Cy € Sy, C2 ¢ Sy, then T falsifies already

a ground instance of some clause in S* U Sy.

Proof. Let Cioy = —=P(x)oy V —=P(y)oy V P(x @ y)oy, xoy = v1, yo; = vz, and
(zo1 @ yo1) 4= v. There exist v}, v), v’ such that v = v] & vh, v1 = v] & v’ and
vy = vh @ v’ without any collapse or v = v; @ vy without any collapse. We only
consider the first case since the second one is similar. By hypothesis, v;<v, va<v
and therefore Z(P(v1)) = Z(P(v2)) = 1. Assume w.lo.g that P(vy)<P(vs). Now,
by minimality of the interpretation Z (w.r.t. lexicographic ordering), the partial
interpretation J which coincides with Z on literals strictly smaller than P(v;) and
such that J(P(v1)) = 0 falsifies a clause C3 = P(u) V C’ of S*. We consider again
two cases, depending on whether this clause is in Sy or not.

Assume C3 ¢ Sy and that no factorization can be applied. Also, by narrowing,
(303 does not contain any redex and v; = uoz. Moreover, P(v1) is maximal in C303.
We are going to show that we can apply Extension 1 (possibly after Explosion) to
Cy and Cj yielding a clause falsified by Z. We let Cy = =P(t) V C. We have v = toy
and o9 is collapse-free thus ¢ = t; @ t5 such that ty09 = v} and te09 = v)}. In the
same way, u = w1 ® ug such that ujo3 = v} and usos = v’. This means in particular
that ¢1,uy are unifiable. By Explosion, we may assume that V(¢) = V(¢;) and, by
lemma 3, that there is a 6 € mgu(t1,u;) such that oo W o3 = 66’. Moreover, let w
be the maximal term of 7. Since va<v;<v, w is a term of v] thus vy = vh & v'<v].
The inequality vy = vh & v'<v| gives taoy B uso3<t109, hence (to ® uz)00' <t 09 It
follows that (2 @ u2)@ % t1. In addition, 6 is collapse-free w.r.t. ¢, t; @ ta, to ® uy
and the clauses C' and C’. Then, we can apply Extension 1 and there is a clause
(C'V C'"V =P(ta ® uz))d, which is already falsified by Z.
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Now, if C3 € Sy. Then C5 = P(2'®y)V—-P(a')V-P(y') Let 2’03 = w1, y' o3 = wa,
and (2'03 @ y'o3) = v1. We have w;<v; and wa<v;. We may assume wy<w;. In
addition, Z(P(w1)) = 1 and Z(P(wz)) = 1. Let us consider the term wy @ vy. We
have ws @& 5 <t since the maximal term of ¢ is neither in w5 nor in f5. We deduce that
the literal P(ws @ to) is already interpreted in Z and Z(P(ws @ t3)) = 1 otherwise
the clause Cy would be falsified by =P (w2) V =P(t2) V P(wa @ t2)). Let us consider
Ciof = = P(wa @ t2) V ~P(wy) V P(t): we are back to the previous case where Cy
and C5 are both in Sy. We conclude applying lemma 14.

Lemma 16 (Case C; ¢ Sy, Cy € Sp). If Cy ¢ So, Co € Sy, then T falsifies already

a ground instance of some clause in S* U Sy.

Proof. Cyo9 = —P(x)oz V = P(y)os V P(x @ y)oz and zoy = v. We may assume
that (z @ y)oo | <yo, since when it is not the case, we may replace Cy by C} =
—P(2")V=P(y')VP(2'®y') and o2 by o4 such that 2'cl, = zoy = v, y'c) = (xDy)os
and (2’ ®y')oh = yoo. With this transformation, this case is similar to the previous
one (applying the rule Extension 2).

Lemma 17 (Case C1,Cy ¢ Sp). If Cy,Co ¢ Sy, then T falsifies already a ground

instance of some clause of S* U Sy.

Proof. The binary resolution allows us to conclude.

E Secrecy of our protocol

Proposition 3. The set of clauses representing our protocol together with the secu-
rity property Cp U {do} is satisfiable.

Proof. We split the set of constants I" into the set of (supposedly) secret data Iy and
known data I'y: It = {n!, n}, ., n%.n2  Su, Sea, Kap} and Iy = I'\I';. We consider
a set of terms T (resp. T") such that an even (resp. odd) number of “secrets” data
is xored:

T={u1® - Du, Dt1 B --- Dty | niseven, u; € I', t; € I'y,u;,t; distinct}.
Then we consider the following set of clauses:

S* = {I(m) |meTyU{=I(z®m)VI(z®my)|m ®myeT}
U{=I(my) VI(ma) | mi dmeeTtU{~I(m)|meT'}

S* contains Cp U {¢o}, thus it is sufficient to prove that S* is satisfiable (actually
S* is obtained from Cp U {¢q} by applying our deduction rules thus S* is satisfiable
iff Cp U {0} is satisfiable).

Let us show that S* is already saturated by our deduction rules together with
the redundancy criterion.

The Factorization rule can not be applied to S*. The Narrowing rule clearly
preserves membership to S*. The Explosion rule does not modify the sum m; & mq
thus preserves membership to S*.

Let us consider a binary resolution between two clauses C'; and Cy of S* with
variables. Cy = =I(z @ my) V I(z @ ma) and Cy = I(2' & m3) V —I(z' ® my), with
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my @& ma,m3Bmy LET. Let 0 € mgu(zEmy, 2’ ®mg). 20 = 2" Dms, 2’0 = 2"’ Bme,
such that (ms ® mg) I= (m1 @ m3) |. The resulting clause is C = =I(z" & mg B
ma) V I(2" & ms @ ma). Since (mg S mg ® ms D ma) L= (my & mg B ma D my) | is
in T, it follows that C in S*. The case where one of the clause is ground is similar.

Let us consider the rule Extension 1 (the rule Extension 2 is similar). Let
Cy = -I(z®mq)VI(zEme) and Cy = I(2' @ m3) V —I(z' @ my), with (my ®
ma) J,(mg ®my) € T. We have t = 2@ my = z®&m)| ®@mf and t; = z & m}
since V(t) = V(t1). vg = 2/ & m} and up = mf such that m§ & m§ = mg or
ug = z' @ m4 and uy = m¥. We only consider the first case since the second one
is similar. Let 6 € mgu(z & mi, 2’ @ m}). 20 = 2" & ms, 2’60 = 2" & mg, such that
(ms @ mg) = (m} ® mj) |. The resulting clause is

C=1z"®ms®my) VI ®&meDdmyg)V-I(m] &my).
There are two cases:

— either mY{ @mf € T, in which case (m} @ m5dma B my) L€ T since (my Hma®
ms®my) L€ T. In this case, ms ®mo®meBmy € T since mz Hmeg = m) Gmy.It
follows that I(xz & ms ®ms) V I(z®ms®my) € S*, a clause which subsumes C.

— orelse m{ ®mj ¢ T, in which case m{ ®@m¥ € T" and therefore =I(m} &mY) €
S*, a clause which, again, subsumes C.

If C5 is a ground clause, we get exactly the same inference as above, except that
2" is absent. The same reasoning applies.
S* is saturated by our inference rules (see appendix E). Applying theorem 2,
since L ¢ S*, it follows that Cp U {¢o} is satisfiable. O
We conclude that S* is already saturated by our deduction rules together with
the redundancy criterion.

Since the abstraction is an upper approximation, the above proposition shows
that the protocol is secure.
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