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Abstra
t. We 
onsider a new extension of the Skolem 
lass for �rst-orderlogi
 and prove its de
idability by resolution te
hniques. We then extend this
lass in
luding the built-in equational theory of ex
lusive or. Again, we provethe de
idability of the 
lass by resolution te
hniques.Considering su
h fragments of �rst-order logi
 is motivated by the automati
veri�
ation of 
ryptographi
 proto
ols, for an arbitrary number of sessions;the �rst-order formalization is an approximation of the set of possible tra
es,for instan
e relaxing the non
e freshness assumption.As an appli
ation of the de
ision results for extensions of the Skolem 
lass,we get some new de
idability results for the veri�
ation of 
ryptographi
proto
ols without the perfe
t 
ryptography assumption: we may in
lude thealgebrai
 properties of ex
lusive or.The proof of our main result relies on 
lassi
al te
hniques: ordered strategies,narrowing modulo AC, semanti
 trees.
1 Introdu
tionThe veri�
ation of 
ryptographi
 proto
ols deserved a lot of attention in the pastfew years, be
ause of the huge appli
ation domain of se
ure 
ommuni
ations viapubli
 
hannels. In this 
ontext, the full automation of veri�
ation tools is importantbe
ause, in general, the same proto
ol appears in multiple 
ontexts in a slightlyaltered form; ea
h instan
e has to be veri�ed sin
e it is never 
lear whether a smallmodi�
ation has an impa
t on the se
urity property or not.Su
h veri�
ation problems are typi
ally relevant to model 
he
king: given a proto-
ol P and a se
urity property �, does P satisfy � ? And indeed, model-
he
king toolshave been used su

essfully to �nd some atta
ks (the most famous one is due to G.Lowe [18℄). However, proving the 
orre
tness of a proto
ol is mu
h harder for severalreasons. First of all, we must be very pre
ise on the semanti
s of proto
ols and se
u-rity properties; there is still today a debate on these aspe
ts. Next, whatever modelof the proto
ols is 
hosen, it is both in�nite in depth (tra
es have an unboundedlength, be
ause arbitrarily many instan
es of the proto
ol, also 
alled sessions 
anbe involved) and in�nitely bran
hing (depending on an atta
ker's input). Finallymost of the proto
ols use non
es, whi
h are supposed to be randomly generatednumbers. As demonstrated by several authors [8, 13, 1℄, this yields unde
idability ofmodel 
he
king, even in very restri
ted 
ases.?? Partially supported by INRIA proje
t SECSI and RNTL proje
t EVA.



There are two possible resear
h dire
tions, whi
h proved to be relevant: either
onsider a bounded number of sessions, whi
h is suÆ
ient to restore de
idability asshown e.g. in [23℄, or to 
onsider an abstra
tion of the model, whi
h may be suÆ
ientfor proving the proto
ol 
orre
t, but may also output \dummy" atta
ks. This lineof resear
h is followed by e.g. [25, 3, 5℄ and that is also what we will 
onsider in thispaper.A �rst abstra
tion 
onsists in repla
ing non
es (randomly generated numbers)with terms depending on the 
ontext. That is what is done in all abstra
tion te
h-niques we know. Then, proto
ols 
an be modeled within �rst-order logi
 [4, 25, 3℄and the satisfa
tion of most popular se
urity properties su
h as se
re
y and authen-ti
ation redu
es to satis�ability of a set of 
lauses (see e.g. [11℄).However, even for proto
ols without non
es (or 
onsidering the above abstra
-tion), the veri�
ation of simple properties remains unde
idable (e.g. [8℄). On theother hand, experiments using general purpose automati
 theorem provers su
h asSPASS, show that, most of the time, the proof sear
h terminates. Trying to ex-plain this phenomenon redu
es to �nding de
idable fragments of �rst-order logi
 inwhi
h most of the proto
ols 
an be expressed (with the above sket
hed abstra
tionfor non
es). For instan
e, we have shown in [7℄ that, for a signi�
ant 
lass of pro-to
ols, the 
on�dentiality problem 
an be redu
ed to the solvability of a 
lass ofset 
onstraints with equality, itself shown to be de
idable using tree automata withmemory.On a 
ompletely di�erent side, all automated veri�
ation results rely, so far, onthe perfe
t 
ryptography assumption, whi
h, roughly, says that the message algebrais a free term algebra. Su
h an hypothesis is too strong sin
e many proto
ols use
ryptographi
 primitives whi
h do have algebrai
 properties. A typi
al example isthe ex
lusive or. As an example, Bull's authenti
ation proto
ol was proved to bese
ure with the perfe
t 
ryptography assumption, while there is an atta
k when thealgebrai
 properties of xor are 
onsidered [21, 24℄. Up to our knowledge, there arevery few results on veri�
ation of 
ryptographi
 proto
ols with xor: the only otherresult is a proof of de
idability in 
ase of a bounded number of sessions [10℄.The work des
ribed in this paper has two motivations: on one hand to explain thereasons why �rst-order theorem provers often terminate on proto
ol veri�
ation, onthe other hand study the extensions 
onsidering the algebrai
 properties of ex
lusiveor and an unbounded number of sessions.We already realized in [7℄ that one reason for unde
idability, whi
h does not o

urin pra
ti
e, is the agents ability to 
opy and lo
ally modify two distin
t pie
es of amessage, hen
e enabling the simulation of two 
ounters ma
hines. That is why wewill 
onsider here proto
ols in whi
h an agent 
an 
opy \blindly" at most one pie
eof the message he re
eives. \Blindly" has the following (informal) meaning: proto
ols
onsist in messages ex
hange between (say) two agents. Upon re
eiving some messagem, agent A breaks m into pie
es, de
rypting what she 
an de
rypt. Ea
h pie
e shegets is either known to her (it 
an be a publi
 value su
h as an agent name or anon
e she generated earlier,...) or something she does not know (a 
yphertext thatshe 
annot de
rypt, a non
e generated by the other party). Su
h data are representedby variables: an intruder 
ould for instan
e repla
e them by arbitrary values. If themessage that A is supposed to send makes use of su
h variables, we say that she
opies \blindly" their 
ontent. 2



Su
h an hypothesis on the uniqueness of blind 
opies seems relevant sin
e most ofthe proto
ols of [6℄ falls into the 
lass. On the model side, this 
orresponds to �rst-order 
lauses involving at most one variable. We will give more details in se
tion4. This gives however a �rst idea on why we 
onsider here the fragment of �rst-order logi
 
onsisting in 
lauses whi
h 
ontain at most one variable. A
tually, wehave to 
onsider a larger fragment, be
ause we need to express for instan
e intruder
apabilities, whi
h do not fall in this 
ategory. More pre
isely, we 
onsider a 
lausalfragment in whi
h every 
lause C either 
ontains at most one variable or is su
h thatevery subterm t is either ground, a variable, or 
ontains all variables of the 
lause. Weprove that this fragment of �rst-order logi
 is de
idable in se
tion 2, using orderedresolution te
hniques. This fragment is a
tually similar to the extension S+ of theSkolem 
lass as de�ned in [15℄. Still, it is di�erent sin
e for instan
e, we will allowliterals P (x) in multiple variables 
lauses. We also allow arbitrary ground literals.Our main result is however the extension of this de
idable 
lass, 
onsidering thealgebrai
 properties of xor: we prove in se
tion 3 the de
idability of fragment of�rst-order logi
, whi
h 
ontains both the above 
lass and the equality axioms forxor. For, we design a set of dedu
tion rules and an ordered strategy, whi
h we prove
omplete and terminating.One diÆ
ulty here is that there is almost no ordering on terms with variables,whi
h is stable by substitution. Hen
e we use an ordering whi
h is stable by \non-
ollapsing" substitutions, restoring the 
ompleteness using a rule similar to narrow-ing. Another diÆ
ulty is to 
ontrol the number of variables o

urring in 
lauses(whi
h we need for termination). To this end, we impose stronger restri
tions on res-olution and fa
torization, restoring 
ompleteness by adding in parti
ular extensions.Termination relies on te
hni
al results on uni�
ation with asso
iativity, 
ommu-tativity, identity and nilpoten
e (ACUN) and free symbols (whi
h is known to be inNP [20℄), typi
ally 
on
erning the sizes of mgus. Finally, 
ompleteness is obtainedvia 
lassi
al semanti
 trees methods.In se
tion 4, we show how the previous results apply to the veri�
ation of 
ryp-tographi
 proto
ols, hen
e providing the �rst de
idability result for an unboundednumber of sessions, and 
onsidering the algebrai
 properties of xor. We illustratethe result, proving the 
orre
tness of a simple proto
ol. In [10℄, it is proved thatproto
ol se
urity is de
idable in presen
e of xor, for a bounded number of sessions.Let us emphasize that we do not assume here a bounded number of sessions, howeverassuming some other properties of the proto
ol. The two results are a
tually disjointand rely on 
ompletely di�erent te
hniques: �rst-order logi
 is not relevant for abounded number of sessions sin
e it would require to give a bound on the number oftimes a 
lause is used (e.g. using rigid variables). On the other hand, in [10℄, thereis no hypothesis on the number of blind 
opies and the result relies on 
onstraintsolving te
hniques and lo
ality properties in the spirit of [19℄.Due to spa
e limitations, many proofs are only given in appendix.
2 A simple de
idable fragment of �rst-order logi
2.1 De�nitionsLet F be a �nite set of fun
tion symbols, V a set of variables and P a �nite set ofpredi
ates. For every 
lause C, V (C) is the set of variables of C. If P is a positive3



literal, we write L = �P for L 2 fP;:Pg. If u and t are terms of T (F [V) and if xis a variable of u, u[t=x℄ is the term u where every o

urren
e of x has been repla
edby t.De�nition 1. A 
lause set S belongs to the 
lass C if for every 
lause C in S, eitherC 
ontains at most one variable or, for every literal L in C :1. either L = �P (xi) for some P 2 P;2. or L = �P (u[f(x1; : : : ; xn)=y℄) for some P 2 P and some f 2 F su
h thatfx1; : : : ; xng = V (C) and u is some term of T (F [ fyg).We may write that a 
lause C is in C instead of saying that the set fCg is in C toexpress that C is a 
lause of the form des
ribed above.This 
lass is in
omparable with the 
lass S+ as des
ribed in [15℄. We believe that,with some additional te
hni
al details, we 
an extend our result so that our 
lass
ontains S+. This is however not relevant for our appli
ation nor for the extensionof the next se
tion. As examples of sets of 
lauses that 
an be expressed in this 
lass,let us mention for instan
e two-way alternating tree automata (see e.g. [9℄, 
hapter7); sin
e the emptiness of the automaton 
an also be expressed as a 
lause in the
lass, the de
idability of C implies the emptiness de
idability for two-way alternatingautomata.If t 2 T (F [V), jtj is the depth of t (maximal size of its positions). For x 2 V , jtjxis the maximal depth of an o

urren
e of x in t. By 
onvention, it is 0 if x =2 V (t).j:j and j:jx are extended to literals by jP (t)j = jtj and jP (t)jx = jtjx.We will prove the de
ision result by ordered resolution, using the ordering derivedfrom the following de�nition.De�nition 2. Let A;B be two literals.A < B if jAj < jBj and if 8x 2 V (A) [ V (B) jAjx < jBjx:A � B if A < B or A = B.Note that when A � B, we have in parti
ular that V (A) � V (B).A suÆ
ient 
ondition for 
ompleteness of ordered resolution is to use a liftableordering [17, 15℄, also 
alled stable ordering in [16℄.De�nition 3 (liftability). An ordering �R is liftable if, for all atoms A;B andall substitutions �, A �R B implies A� �R B�.Proposition 1. � is a liftable ordering.2.2 De
idability resultTheorem 1 (de
idability of C). Let S be a �nite set of 
lauses su
h that S belongsto C. The satis�ability of S is de
idable.Proof sket
hWe use splitting (see e.g. [26℄), ordered fa
torization and ordered binary resolution(see e.g. [2℄), w.r.t. the partial ordering de�ned above, using a 
lassi
al redundan
y
riterion [2℄, also 
alled a posteriori 
riterion in e.g. [15℄; we apply resolution on two
lauses C1 and C2 only if no atom of the resolvent is greater than the resolved atom.Su
h an ordered strategy is 
omplete [2, 15℄. It only remains to show termination.4



First, after splitting, we only generate 
lauses in C. Then, de�ne kCk as themaximal depth of its literals and let N be the maximum of kCk for 
lauses in S.We show that, for every generated 
lause C 0 (after splitting), either kC 0k � N , orelse C 0 is ground and kC 0k � 2�N . This is a 
onsequen
e of simple lemmas on theuni�ers of terms 
ontaining at most one variable, for instan
e:Lemma 1. Let u; v be two terms su
h that V (u) = fxg and V (v) = fyg. If they areuni�able with mgu �, then either u� is ground and ju�j � 2 �max(juj; jvj) or elseju�j � max(juj; jvj).Then, thanks to the ordered strategy, whi
h only uni�es maximal literals, we get thebound on kCk for the generated 
lauses C.The termination follows from the fa
t that there are only �nitely many 
lausesin C whose size is bounded and to whi
h splitting does not apply.3 An extension in
luding the ex
lusive orWe are going to extend the result of the previous se
tion, in
luding algebrai
 prop-erties of a binary symbol. We will pro
eed as in the previous se
tion: we de�nean ordering and 
onsider an ordered dedu
tion strategy. There are however severaladditional problems:{ for termination purposes, we need to keep 
ontrol on the number of variablesin ea
h 
lause. For, we restri
t the appli
ability of e.g. resolution and restore
ompleteness, adding extension rules.{ it is a hard task to �nd an ordering whi
h is both liftable and 
ompatible withthe theory of xor. We use an ordering, whi
h is stable only by substitutionswhi
h do not introdu
e any redex. Considering substitutions whi
h introdu
eredexes is handled separately as a pre-pro
essing step{ for termination purposes, we need to 
ontrol the size of uni�ers, relying on theparti
ular equational theory we 
onsider. We will see the analogs of lemma 1 inse
tion 3.2.3.1 De�nition of the 
lass of 
lausesIn this part, we extend our 
lass of 
lauses C to a 
lass of 
lauses C� in
luding thealgebrai
 properties of � whi
h are des
ribed in �gure 1. The two last equations
x� (y � z) = (x� y)� x x� y = y � xx� 0 = x x� x = 0Fig. 1. Equational theory of the xor fun
tion symbol
an be oriented from left to right and we get a 
onvergent rewrite system moduloasso
iativity and 
ommutativity, provided we add the extended rule y � x� x! y(see e.g. [12℄ for de�nitions). For any term t in T (F [ f�g [ V), we write t # itsnormal form w.r.t. these rules.Formally, we 
onsider a �nite set F of fun
tion symbols 
ontaining the 
onstantsymbol 0, a set V of variables and a �nite set P of predi
ate symbols. C� is a 
lassof 
lauses extending C, des
ribed below. 5



De�nition 4. A 
lause set S belongs to C� if for every 
lause C in S, either C
ontains at most one variable or for every literal L in C :1. either L = �P (xi) for some P 2 P;2. or L = �P (u[f(x1; : : : ; xn)=y℄) for some P 2 P and f 2 F su
h that fx1; : : : ; xng =V (C) and u is some term of T (F [ f�g [ fyg);3. or C = :P (x1) _ :P (x2) _ P (x1 � x2) for some P 2 P .Remarks : Note that for the se
ond type of 
lauses (�P (u[f(x1; : : : ; xn)=y℄)), f isforbidden to be � but � may o

ur in u.We will see in se
tion 4 that the spe
ial 
lause C0def=:I(x)_:I(y)_ I(x� y) is usedto en
ode the ability of the intruder to 
ompute the xor of two terms.In the following, S0 denotes the set of 
lauses in S whi
h are of the third type inthe above de�nition.From now on, = denotes the equality between terms (or literals) modulo the(AC) properties of the xor while =� denotes the equality between terms (or literals)modulo the whole equational theory of the xor.Following the AC property of �, we assume terms written in 
atten form: � maybe 
onsidered as a variadi
 fun
tion symbol. Subterms are de�ned a

ordingly. Forinstan
e the subterms of f(a� b� g(x)) are f(a� b� g(x)); a� b� g(x); a; b; g(x); x.a� b and a� g(x) are not subterms.We extend j:j and j:jx on terms of T (F [ f�g [ V). Informally, sin
e � is nowa variadi
 symbol, it may in parti
ular have only one argument, in whi
h 
ase wedon't write it, hen
e don't 
ount it in the size of the terms; that is why the followingmeasure 
omputes the length of the longest path, not taking � into a

ount.De�nition 5. k:k is de�ned indu
tively by:1. kak = 1 if a 2 V or if a is a 
onstant symbol of F ;2. kf(t1; : : : ; tk)k = 1 +max1�i�k ktik for f 2 F ;3. kt1 � � � � � tnk = max1�i�n ktik if the head symbol of ea
h ti is not �.Then jtj is de�ned as kt # k. j:jx is de�ned in the same way ex
ept that kakx = 1 i�a = x. This is also extended to 
lauses by:jCj = maxL2C jLj and j � P (t)j = jtj:Then the de�nition of � (de�nition 2) is un
hanged. However, � is no longer aliftable ordering.Example 1. Let L1 = P (a � b), L2 = P (f(x � a) � f(b � a)) and x� = b. ThenL1 < L2 but L1� = P (a� b) 6< L2� = P (0).A
tually, there are few orderings whi
h are liftable and 
ompatible with therules of �gure 1. For instan
e there is no su
h ordering whi
h 
ontains the subtermordering: we would have x� f(a) > a, but then (a� f(a))� f(a) > a! That is whywe introdu
e the notion of narrow-liftable ordering and 
ollapse-free substitution.De�nition 6. A substitution � is normalized if, for every variable x, x� is in nor-mal form. A substitution � is 
ollapse-free w.r.t. a set of terms S if, for every t 2 S,t� #= t # �.We will write NS the set of normalized substitutions and CF (C1; : : : ; Cn) theset of 
ollapse-free substitutions w.r.t. the set of subterms o

urring in the 
lausesC1; : : : ; Cn, whi
h are supposed to be irredu
ible.6



De�nition 7. An ordering �R is narrow-liftable if, for every atoms A;B and everysubstitution �, whi
h is 
ollapse-free w.r.t. B, A <R B implies A� <R B�.Proposition 2. � is a narrow-liftable ordering on literals of 
lauses of C�.3.2 Some useful results on uni�
ationIt is well known that uni�ability modulo the theory of �gure 1 is NP-
omplete inthe presen
e of free fun
tion symbols and that uni�
ation is �nitary [20℄. We needhowever �ner results (the analogs of lemma 1) to 
ontrol the size of terms.Lemma 2. If u 6=� v and V ar(u; v) � fxg. Then either u and v are not uni�able(modulo the rules of �gure 1) or else any (normalized) uni�er � = fx 7! wg is su
hthat w is a ground term and either w is a subterm of u� v or else w = w1 � w2 isa normal form su
h that w1 and x � w2 are subterms of u or v. Moreover, jx�j �maxfjuj; jvjg.Note that ju�j may be stri
tly greater than juj and jvj.Example 2. Let us 
onsider u = h2(x)� h2(a)� x and v = h2(x). The most generaluni�er of u and v is �(x) = h2(a) and u� = h4(a).Lemma 3. If V ar(u)\V ar(v) = ; and V ar(u) � fxg; V ar(v) � fyg, u 6=� v, theneither u and v are not uni�able (modulo the rules of �gure 1) or else every mostgeneral uni�er � of u; v is, up to variable renaming, su
h that:{ either there are ground subterms w1; : : : ; wk of u; v su
h that x� = w1� : : :�wk(resp. y� = w1 � : : :� wk) and y� is ground (resp. x� is ground){ or x� = z � t1 � � � � � tk, y� = (u1 � � � � � un � w1 � � � � � wm)�, where theti's and the wi's are ground subterms of u; v, n � 1 and the ui's are non-groundsubterms of u or the 
onverse, ex
hanging the roles of x and y (resp.of u and v).Example 3. g(a� f(y� f(a)); fn(y)) = g(x; fn(x)) has a solution x = y = a� f(a).Instantiating the original terms, their measure is growing.A similar te
hnique allows us to 
on
lude when u or v is equal to u0[x !f(x1; : : : ; xn)℄. See the appendix for details.We design the ordering � in su
h a way that it is stable by 
ollapse-free substi-tutions. Therefore, we have to show how it is possible to 
onsider only su
h substitu-tions. A general result in [10℄ allows to fo
us on 
ollapse-free substitutions, roughlyguessing the shared parts and performing possible simpli�
ation beforehand. Thatis also what we (roughly) do here. However, we need also to 
ontrol the size of theresulting 
lauses, taking advantage of our additional assumptions.Lemma 4. For every 
lause C 2 C�, there is a �nite number of 
lauses C1; : : : ; Cnsu
h that :fC� # j V (C�) = ;; � 2 NSg = n[i=1fCi� j V (Ci�) = ;; � 2 CF (C1; : : : ; Cn)gMoreover, if C =2 S0, every Ci falls in one of the three following 
ases: Ci = C, orCi is ground and jCij � 2 � jCj, or V (C) = fxg and Ci = Cfx0 7! y � tig # forsome sum ti of ground subterms of C.
7



3.3 The de
idability resultThe goal of this se
tion is to prove the following (main) result:Theorem 2 (de
idability of C�). Let S be a �nite set of 
lauses su
h that Sbelongs to C�. The satis�ability of S is de
idable.Thanks to lemma 4 we 
an restri
t our attention to 
ollapse-free substitutions,provided that we apply the rule whi
h repla
es C with the set of 
lauses Ci 
on-stru
ted in lemma 4. This rule is 
alled narrowing rule.But restri
ting ourself to \
ollapse-free" ordered resolution is still not suÆ
ientto ensure termination. Indeed, only the repetitive resolution of renamings of C0 withthemselves yields an in�nite set of 
lauses. That is why we will disallow resolutionsteps between 
lauses in S0, restoring 
ompleteness using extensions. The situation issimilar to the transitivity rule for whi
h a spe
ial inferen
e rule is designed: ordered
haining [2℄. Extensions aim at inferring P (s � u) _ C _D from P (s � t) _ C andP (t� u) _D when t is maximal among s; t; u.Dedu
tion rules are displayed on �gure 2. As usual (see e.g. [15℄), repeatedlyapplying the dedu
tion rules of �gure 2 together with a splitting rule yields a set ofsets of 
lauses: S0 = fSg and Si+1 is obtained:{ either by repla
ing Sj 2 Si by Sj [fCg if C 
an be inferred from Si using a ruleof �gure 2,{ or by repla
ing some Sj [ fC _ C 0g 2 Si with two sets Sj [ fCg and Sj [ fC 0gif V ar(C) \ V ar(C 0) = ;.We also remove redundant 
lauses at ea
h step. For our purpose, it is suÆ
ientto remove 
lauses L _ L _ C when L _ C is in the set of 
lauses.Lemma 5 (Corre
tness). The narrowing rule and the dedu
tion rules of �gure 2are 
orre
t (the set of models of one of the 
lause sets in Si is the same as the setof models of one of the 
lause sets in Si+1) and, if every 
lause set in Si is in C�,then every 
lause set in Si+1 is in C�.Lemma 6 (Termination). The sequen
e Si is �nite when starting from S0 = fSgand S 2 C�.Proof. (sket
h) The sequen
e Si is �nite i� applying the rules of �gure 2 togetherwith the rule C _ C 0 ! C when V ar(C) \ V ar(C 0) = ; terminates when startingfrom S.We are going to give an upper bound on the size of a 
lause C in a set of Si. Let Tthe set of ground subterms of S and N def= maxL2C;C2S jLj. We show by indu
tion oni that, for every 
lause C of a set of Si, either C is ground and jCj � 2N , or C is notground and jCj � N , or C 
ontains exa
tly one variable x and jCfx 7! x� tgj � Nfor some t 2 T .To prove this, we investigate all possible 
ases (ea
h dedu
tion rule) and we relyon lemma 2 and 3 (detailed proof in appendix D.2).Then, we show that there are only �nitely many ground 
lauses su
h that jCj �2N (this relies on the nilpoten
e of �) and only �nitely many non-ground 
lauses inC� su
h that jCj � N or jCfx 7! x� tgj � N for some t 2 T .8



Binary Resolution:P (t) _ C P (u) _ C 0C� _ C 0� If � is 
ollapse-free w.r.t. literalsin C;C 0, � 2 mgu(t; u), P (t)� 6<(C _ C 0)�.Fa
torizationL1 _ L2 _ C(L1 _ C)� If � 2 mgu(L1; L2), � is 
ollapse-free w.r.t. literals in the 
lause, andL1� 6< C�.ExplosionP (t� u) _ C(P (t� u) _ C)� # If t is ground, u� is ground and u� < t.
Extension 1:P (t) _ C P (u1 � u2) _ C 0(C _ C 0 _ :P (t2 � u2))� If8>>>><>>>>:

P (x� y) _ :P (x) _ :P (y) 2 S0t = t1 � t2(or t = t1 and t2 = 0)V ar(t) = V ar(t1); � 2 mgu(t1; u1)� 
ollapse-free w.r.t. t; u1 � u2; t2 � u2(C _ C 0 _ :P (t2 � u2))� 6> t1�:Extension 2P (t) _ C P (u1 � u2) _ C 0(C _ C 0 _ P (t2 � u2))� If8>>>><>>>>:
:P (x) _ :P (y) _ P (x� y) 2 S0t = t1 � t2(or t = t1 and t2 = 0)V ar(t) = V ar(t1); � 2 mgu(t1; u1)� 
ollapse-free w.r.t. t; u1 � u2; t2 � u2(C _ C 0 _ :P (t2 � u2))� 6> t1�:All rules only apply to non-splittable 
lauses, not belonging to S0.Fig. 2. Dedu
tion rules.
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Thanks to lemma 6, the sequen
e Si is �nite. We let S�(S) be its limit, whenstarting from S0 = fSg, S 2 C�.Lemma 7 (Completeness). Let S 2 C�. S is unsatis�able if and only if for everyset S0 2 S�(S), ? 2 S0.Our dedu
tion system is 
orre
t, thus if ? 2 S� for S� 2 S�(S) then S is notsatis�able.Assume S is not satis�able and assume ? 62 S� 2 S�.We extend our partial ordering � on literals to a total ordering e� on groundliterals in the following way.Let � be any total ordering on the predi
ates P and on the fun
tion symbols F .We extend � on F [ f�g by � < f for all f 2 F . We let then m(t) be the triple(jtj; top(t); Sub(t)) where top(t) is the top symbol of t and Sub(t) are its immediate(stri
t) subterms. For two ground terms in normal form, we let te<t0 if m(t) < m(t0)where the triples are lexi
ographi
ally ordered, using the ordering on F for these
ond 
omponent, the lexi
ographi
 extension of e� on the subterms when the topsymbol is not � and the multiset extension of e� otherwise.Let L1; L2 be two ground positive literals : L1 = P1(t1) and L2 = P2(t2). ThenL1e<L2 if either t1e<t2; or t1 = t2 and P1 < P2.By de�nition, e< extends < and e� is a total ordering. The Herbrand base istotally ordered a

ordingly as well as partial interpretations. As usual in semanti
trees methods, sin
e S is unsatis�able, by 
orre
tness S� is unsatis�able, hen
e itssemanti
 tree is �nite (the set of partial interpretations whi
h do not falsify a 
lauseof S�).Then we 
onsider a partial interpretation I whose two extensions to P1(v) falsifya 
lause of S� and whi
h is minimal w.r.t. the lexi
ographi
 ordering on partialinterpretations. (This is a \leftmost" node whose two sons are failure nodes in thesemanti
 tree). The lexi
ographi
 ordering on partial interpretations is de�ned byI >lex J if, when P (u) is the maximal element of the Herbrand base su
h that Iand J 
oin
ide on literals stri
tly smaller than P (u), I(P (u)) = 1, J(P (u)) = 0.By fa
torization we may assume that the two 
lauses C1; C2 falsi�ed by the twoextensions of I are su
h that P1(v) _ C 01 = C1�1 and :P1(v) _ C 02 = C2�2 for someC1; C2 2 S� [ S0 su
h that C 01; C 02 < P1(v). By narrowing, we may assume that�1 is 
ollapse-free w.r.t. C1 and �2 is 
ollapse-free w.r.t. C2. We distinguish four
ases: either C1; C2 2 S0, or C1 2 S0 and C2 =2 S0, C1 =2 S0 and C2 2 S0 or elseC1; C2 =2 S0.These 
ases are des
ribed in more details in the appendix, we sket
h here thereasons why it works:Case C1; C2 2 S0 : We prove dire
tly that there is another smaller 
lause falsi�edby I, simply re
ombining the terms in the right order. This 
orresponds to theuselessness of extensions of extensions.Case C1 2 S0; C2 =2 S0 : Let C1�1 = :P0(x)�1 _:P0(y)�1 _P0(x� y)�1, x�1 = v1,y�1 = v2, and (x�1 � y�1) #= v. There exist v01; v02; v0 su
h that v = v01 � v02,v1 = v01 � v0 and v2 = v02 � v0 without any 
ollapse or v = v1 � v2 withoutany 
ollapse. We only 
onsider the �rst 
ase sin
e the se
ond one is similar.By hypothesis, v1e<v; v2e<v and therefore I(P0(v1)) = I(P0(v2)) = 1. Assumew.l.o.g that P0(v1)e�P0(v2). Now, by minimality of the interpretation I (w.r.t.10



lexi
ographi
 ordering), the partial interpretation J whi
h 
oin
ides with I onliterals stri
tly smaller than P0(v1) and su
h that J (P0(v1)) = 0 falsi�es a 
lauseC3 = P0(u)_C 0 of S�. We 
onsider again two 
ases, depending on whether this
lause is in S0 or not.Assume C3 =2 S0 and that no fa
torization 
an be applied. Also, by narrowing,C3�3 does not 
ontain any redex and v1 = u�3. Moreover, P0(v1) is maximalin C3�3. We are going to show that we 
an apply Extension 1 (possibly afterExplosion) to C2 and C3 yielding a 
lause falsi�ed by I. We let C2 = :P0(t)_C.We have v = t�2 and �2 is 
ollapse-free thus t = t1 � t2 su
h that t1�2 = v01 andt2�2 = v02. In the same way, u = u1 � u2 su
h that u1�3 = v01 and u2�3 = v0.This means in parti
ular that t1; u1 are uni�able. By Explosion, we may assumethat V (t) = V (t1) and, by lemma 3, that there is a � 2 mgu(t1; u1) su
h that�2 ℄ �3 = ��0. Moreover, let w be the maximal stri
t dire
t subterm of v. Sin
ev2 e<v1 e<v, w is a stri
t dire
t subterm of v01 thus v2 = v02� v0 e<v01. The inequalityv2 = v02 � v0e<v01 gives t2�2 � u2�3e<t1�2, hen
e (t2 � u2)��0e<t1�2. It followsthat (t2 � u2)� 6> t1. In addition, � is 
ollapse-free w.r.t. t, t1 � t2, t2 � u2 andthe 
lauses C and C 0. Then, we 
an apply Extension 1 and there is a 
lause(C _ C 0 _ :P0(t2 � u2))�, whi
h is already falsi�ed by I.The 
ase C3 2 S0 yields to the previous 
ase where C1; C2 2 S0.Case C1 =2 S0; C2 2 S0 : this 
ase is symmetri
 to the previous one, repla
ing Ex-plosion 1 with Explosion 2.Case C1; C2 =2 S0 . We simply use Resolution; there is a smaller 
lause whi
h isalready falsi�ed by I.
4 Appli
ation to 
ryptographi
 proto
olsWe assume the reader familiar with the notion of agent, non
e, intruder, . . . In thisparagraph, we show how se
urity properties for a 
lass of proto
ols 
an be expressedas the satis�ability of a set of 
lauses S 2 C�. We also propose a simple (new)
ryptographi
 proto
ol, whi
h we prove 
orre
t using our te
hnique.We have presented in [11℄ a 
lausal model of 
ryptographi
 proto
ols. This modelis a generalization of Paulson's model [22℄ and the strand spa
es model [14℄. Unfor-tunately, it is mu
h too expressive for de
idability results. That is why we presenthere an abstra
tion of this model where the freshness of non
es is no longer guaran-teed. This abstra
tion may indu
e false atta
k but is 
orre
t: if a proto
ol is proven
orre
t in this model then it is 
orre
t in the general model.Messages are terms 
onstru
ted over the alphabet F = f< ; >; f g ; hg and a�nite set of 
onstants C, depending on the proto
ol.{ < m1;m2 > represents the 
on
atenation of the two messages m1 and m2;{ fm1gm2 represents the term m1 en
rypted by m2;{ h(m) represents the hash of m;Note that we allow 
ompound keys for example. We also 
ould express asymmetri
en
ryption but for the sake of simpli
ity, we do not present this in this paper. As ex-plained in the introdu
tion, this representation impli
itly uses the perfe
t en
ryptionassumption : fmgk = fm0gk0 ) m = m0 & k = k0:11



To relax this assumption, we add the � symbol together with its equational theory(des
ribed Fig. 1) : m1�m2 represents the message m1 xored with the message m2.The xor fun
tion is widely used to en
rypt messages by blo
k [6℄. It 
an also beused to implement a 
omputationally 
heap en
ryption: if K is a private key, then,instead of en
rypting m with K, we may simply xor m and K. This is the 
ase inthe Bull proto
ol des
ribed in [21℄. We also propose the following proto
ol, whi
haims at sending a se
ret Sab, shared by agents a; b, without using expli
it en
ryption(hen
e using fewer time resour
es):A! B : Na �KabB ! A : Nb �NaA! B : Sab �NbAt the �rst step, the agent A sends a non
e Na xored with the shared key betweenA and B. The proto
ol is designed in su
h a way that every xored message 
ontainsa random datum, hen
e preventing statisti
al atta
ks.We 
onsider a predi
ate I whi
h represents the set of messages possibly knownto the intruder. Abstra
ting non
es by 
onstants, the �rst rule of our proto
ol 
anbe represented by the following 
lause:) I(n1ab �Kab); (1)where n1ab;Kab are new fun
tion symbols. At the se
ond step, the agent B 
anretrieve Na by xoring the message he re
eived by Kab. Then he generates an newnon
e Nb and sends the message Nb �Na. This 
an be represented by:I(z)) I(z � n2ba �Kab); (2)where n2ba is new fun
tion symbol. Eventually, when the agent A re
eives B's mes-sage, she 
an retrieve Nb and send a se
ret Sab by xoring it with Nb:I(z)) I(z � n1ab � Sab): (3)These three 
lauses belong to our 
lass C�. Applying the redu
tion result of [11℄, wemay assume that there are only two honest agents a; b and one dishonest agent
. We assume here that an honest agent is not allowed to speak with himselfsin
e we think this hypothesis is more realisti
. Then, all 
lauses 
orrespondingto the proto
ol rules are displayed �gure 3. We use a �nite set of 
onstants C =Si2fab;ba;a
;
a;
b;b
g fn1i ; n2i ; Sig [ fKab;Ka
;Kb
g.Su
h a representation 
an be generalized to arbitrary proto
ols, and we staywithin C� as soon as, at ea
h step, at most one part of the message is blindly
opied. Most of the proto
ols of [6℄ satisfy this property, like for example, the fa-mous Needham-S
hroeder publi
 key proto
ol (and also its 
orre
ted version due toG. Lowe [18℄).It remains to des
ribe the intruder 
apabilities: he sees every message sent throughthe network and may send new messages. He knows private keys of dishonest agents.In addition, he is able to 
ompose and de
ompose messages. Intruder 
apabilities
an be en
oded by 
lauses of C�. In parti
ular, the ability of the intruder to applythe xor fun
tion is des
ribed by the 
lause :I(x) _ :I(y) _ I(x � y). Some of the
lauses are des
ribed Fig. 4. A
tually, only the three �rst rules are relevant for ourexample sin
e we only use the � symbol.12



First rule: ) I(n1ab �Kab) ) I(n1ba �Kab) ) I(n1a
 �Ka
)) I(n1
a �Ka
) ) I(n1
b �Kb
) ) I(n1b
 �Kb
)Se
ond rule: I(z)) I(z � n2ab �Kab) I(z)) I(z � n2ba �Kab)I(z)) I(z � n2a
 �Ka
) I(z)) I(z � n2
a �Ka
)I(z)) I(z � n2b
 �Kb
) I(z)) I(z � n2
b �Kb
)Third rule: I(z)) I(z � n1ab � Sab) I(z)) I(z � n1ba � Sba)I(z)) I(z � n1a
 � Sa
) I(z)) I(z � n1
a � S
a)I(z)) I(z � n1b
 � Sb
) I(z)) I(z � n1
b � S
b)Fig. 3. Rules representing our proto
ol for three parti
ipants a; b and 
.)) I(Ka
)I(Kb
) The intruder knows all keys of 
ompro-mised agents.I(x); I(y) ) I(x� y) The intruder may apply the xor fun
tionto any messages.I(x); I(y) ) I(fxgy) The intruder 
an en
rypt a known messagewith a known key.I(fxgy); I(y) ) I(x) The intruder 
an retrieve the 
lear text ofa message en
rypted with a known key.Fig. 4. Some of the 
lauses de�ning I.Now, the se
urity property we want to ensure on this proto
ol is that the se
retSab ex
hanged between the two honest agents a and b remains se
ret to the intruder.Su
h a property may be expressed by the 
lause: �0 def= :I(Sab). Let CP be the 
lausesdes
ribed in Fig. 3 and Fig. 4. The proto
ol does not satisfy our se
urity propertyif and only if CP [ f�0g is not satis�able: we are ba
k to a satisfa
tion problem.Su
h a redu
tion to satis�ability a
tually holds for any purely negative se
urityproperty [11℄.As a 
onsequen
e, the se
re
y of our abstra
ted proto
ol 
an be de
ided by ourde
ision pro
edure. And the answer is yes: our proto
ol preserves se
re
y !Proposition 3. The set of 
lauses representing our proto
ol together with the se
u-rity property CP [ f�0g is satis�able.Proof. We split the set of 
onstants � into the set of (supposedly) se
ret data �1 andknown data �2: �1 = fn1ab; n1ba; n2ab; n2ba; Sab; Sba;Kabg and �2 = �n�1. We 
onsidera set of terms T (resp. T 0) su
h that an even (resp. odd) number of \se
rets" datais xored:T = fu1 � � � � � un � t1 � � � � � tk j n is even, ui 2 �1; tj 2 �2; ui; tj distin
tg:Then we 
onsider the following set of 
lauses:S� def= fI(m) j m 2 Tg [ f:I(z �m1) _ I(z �m2) j m1 �m2 2 Tg[f:I(m1) _ I(m2) j m1 �m2 2 Tg [ f:I(m) j m 2 T 0g:S� 
ontains CP [ f�0g, thus it is suÆ
ient to prove that S� is satis�able (a
tuallyS� is obtained from CP [f�0g by applying our dedu
tion rules thus S� is satis�able13



i� CP [ f�0g is satis�able). S� is saturated by our inferen
e rules (see appendix E).Applying theorem 2, sin
e ? =2 S�, it follows that CP [ f�0g is satis�able. �Sin
e the abstra
tion is an upper approximation, the above proposition showsthat the proto
ol is se
ure.Note: Instead of using the redu
tion result of [11℄, we 
ould have introdu
ed anarbitrary number of parti
ipants by adding new variables. For example, the se
ondrule of our proto
ol 
ould be represented by the 
lause:A(x); A(y); I(z)) I(z � n2(x; y)�K(x; y));where x nd y are variables representing agents. Su
h a 
lause does not belong to our
lass C� but we 
ould extend C� to 
lauses with basi
 variables (like in [7℄). Su
hbasi
 variables may only represent restri
ted data like agents or non
es. We believethat the resulting 
lass, whi
h extends C�, is still de
idable.5 Con
lusion and perspe
tivesWe have proved the de
idability of a new �rst-order logi
 fragment, in
luding some al-gebrai
 properties. This result applies to the automati
 veri�
ation of 
ryptographi
proto
ols.There are few extensions to be 
onsidered: �rst, adding basi
 variables, as ex-plained in the above note would be useful for the appli
ation. On the theoreti
al side,there is no reason to restri
t the set S0 in the de�nition of C� to a single predi
atesymbol: it should be possible to allow 
lauses su
h as :P1(x) _ :P2(y) _ P3(x� y)where P1; P2; P3 are distin
t. We didn't 
onsider this extension here for sake of sim-pli
ity and be
ause we do not need it in the appli
ation.Finally, the 
omplexity of the de
ision result looks prohibitive. Before imple-menting the de
ision pro
edure, we need some re�nements. First, we a
tually use are�nement of the ordering used in se
tion 3: we established a general terminationresult, however, 
ompleteness holds for any ordering whi
h is narrow liftable andwhi
h is 
ompatible with the ordering used in the 
ompleteness proof on the groundlevel. In parti
ular, we 
an use e� on the ground level.A last question is of 
ourse to get similar results for other equational theories. Inthis paper, however, we heavily rely on the parti
ular theory of xor.Referen
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A Proofs of results in se
tion 2Proposition 1. � is a liftable ordering.Proof. Indeed, assume A < B. Let � be any substitution. We havejA�j = max(jAj; maxx2V (A) (jAjx + j�(x)j)):Sin
e jAj < jBj < jB�j and jAjx < jBjx, we get jA�j < jB�j. Assume now that x isa variable of A�. ThenjA�jx = max(jAjx; maxy 2 V (A)x 2 V (�(y)) jAjy + j�(y)jx);
thus jA�jx < jB�jx. �Before proving lemma 1, we start with two additional lemmas.Lemma 8. If u; v are terms in T (F [ fxg) and u 6= v, then either u; v are notuni�able or they have a most general uni�er � = fx 7! tg where t is a groundsubterm of either u or v. Moreover ju�j � max(juj; jvj).Proof. (sket
h) If u; v are distin
t, there is a position p at whi
h ujp 6= vjp. If for allsu
h positions neither ujp nor vjp is a variable, then the two terms are not uni�able.Otherwise, ujp = x (resp. vjp = x) and the mgu must be fx 7! vjpg (resp. fx 7! ujpg).Lemma 9. Let u and v be two distin
t terms with V (u) � fxg and V (v) � fyg. Ifu and v are uni�able, then they have a mgu whi
h falls in one of the following 
ases:1. x� = y� 2 fx; yg2. x� = v0, y� = y and v0 is a subterm of v3. y� = u0, x� = x and u0 is a subterm of u4. x� and y� are ground and one of them is a subterm of u or v. Moreover, ju�j �2�max(juj; jvj) in this 
aseProof. (sket
h) Let us prove the lemma by indu
tion on the sum of the sizes of u; v.In the base 
ase, u or v is a variable and we fall into one of the 
ases 1,2,3. Remainsthe 
ase where neither u nor v is a variable. If they are uni�able, they must havethe same top symbol f : u = f(u1; : : : ; un) and v = f(v1; : : : ; vn). Then a mgu ofu; v is also a mgu of u1 = v1 ^ : : : ^ un = vn. Remove trivial equations from this
onjun
tion (and let us keep the same notations). It remains at least one equationsin
e u 6= v. Pi
k any of them ui = vi. By indu
tion hypothesis, the mgu �i of ui; vihas one of the above four forms. Let us investigate these four 
ases:
ase 1: In this 
ase, applying the repla
ement fx 7! yg to the remaining equations,we 
an apply lemma 8 to the remaining equations (if any). Then we fall into
ase 1 or 
ase 4. 16




ase 2: either �i = fx 7! v0ig is also a solution of the remaining equations and wefall into 
ase 2 or else 
onsider any other equation uj = vj su
h that vj� 6= uj�i.Applying the indu
tion hypothesis to uj = vj , we 
annot fall into 
ases 1,3 whi
hwould yield to a positive o

ur-
he
k. If we are in 
ase 4, swit
h i and j: thenthe 
ase is 
onsidered below. Remains 
ase 2: the mgu of uj = vj is fx 7! v0jgwhere v0j is a subterm of vj . Now, any uni�er of u; v is also a uni�er of v0i = v0j .Then we apply lemma 8: the mgu of u; v is ground, y� is a subterm of v0i or v0jand jx�j = jv0i�j � jvij. It follows thatju�j � juj+ jx�j � juj+ jvij � juj+ jvj � 1 < 2�max(juj; jvj)hen
e we fall into 
ase 4.
ase 3: it is similar to the previous one
ase 4: �i must be a mgu of u; v sin
e it is ground. The result follows from juij < jujand jvij < juj.lemma 1. Let u; v be two terms su
h that V (u) = fxg and V (v) = fyg. If they areuni�able with mgu �, then either u� is ground and ju�j � 2 �max(juj; jvj) or elseju�j � max(juj; jvj).Proof. u; v are distin
t sin
e their variable sets are distin
t. Then we use lemma 9:ju�j = jv�j � min(juj+ jx�j; jvj+ jy�j)and we get ju�j � max(juj; jvj) in the �rst three 
ases and ju�j � 2 �max(juj; jvj)in the last 
ase.Lemma 9 
an be reformulated in the 
ases where the two variables are (uniformly)repla
ed with terms f(x1; : : : ; xn):Lemma 10. Let t1 = u[f(x1; : : : ; xk)=x℄ (resp. V (t1) = x) and t2 = v[g(y1; : : : ; yl)=y℄be two distin
t uni�able terms. Then, their mgu falls into one of the following 
ases:1. either k = l and for all 1 � i � k, we have �(xi) = �(yi) = zi;2. or for all 1 � i � k, xi� = vi[g(y1; : : : ; yl)=y℄ (resp. x� = vi[g(y1; : : : ; yl)=y℄)and vi is a subterm of v;3. or for all 1 � j � l, yj� = ui[f(x1; : : : ; xk)℄ (resp. yj� = ui) and ui is a subtermof u;4. or � is ground and either the xi� (resp. x�) are subterms of u or v or the yj�are subterms of u or v.In addition, in �rst three 
ases, jt1�j = max(jt1j; jt2j) and in the last 
ase, jt1�j =2max(jt1j; jt2j).The size of the uni�ed term may e�e
tively in
rease.Example 4. Consider t1 = f(f(x1; x2); hn(f(x1; x2))) andt2 = f(f(hn(a); hn(a)); hn(f(y1; y2))):The substitution � = mgu(t1; t2) veri�es �(x1) = �(y1) = hn(a) and �(x2) =�(y2) = hn(a). Thus jt1j = jt2j = n+ 3 and jt1�j = 2n+ 3.17



Theorem 1. Let S be a �nite set of 
lauses su
h that S belongs to C. The satis�abilityof S is de
idable.Proof. We use splitting (see e.g. [26℄), ordered fa
torization and ordered binary reso-lution (see e.g. [2℄), w.r.t. the partial ordering de�ned above, using a 
lassi
al redun-dan
y 
riterion [2℄, also 
alled a posteriori 
riterion in e.g. [15℄; we apply resolutionon two 
lauses C1 and C2 only if no atom of the resolvent is greater than the resolvedatom. Su
h an ordered strategy is 
omplete [2, 15℄.Then, de�ne kCk as the maximal depth of its literals. We prove �rst the followinglemmaLemma 11. Let C1; C2 2 C and C be a 
lause obtained by ordered binary resolutionon C1; C2. Then, for every 
lause C 0 obtained from C after splitting,{ C 0 2 C{ If C 0 is not ground, then kC 0k � max(kC1k; kC2k){ If C 0 is ground, then kC 0k � 2�max(kC1k; kC2k)Proof. (sket
h) Let C1 = C 01 _ L1, C2 = C 02 _ :L2, L1 = �P (u), L2 = �P (v) andC = (C 01 _ C 02)� where � is a mgu of L1; L2.We rely on lemmas 9 and 10: 
onsider for instan
e the 
ase in whi
h V (C1) = fxgand V (C2) = fyg. If � is the identity (i.e. u = v and the terms are ground), theresult is straightforward (after splitting the resulting 
lause!) Otherwise, a

ordingto lemma 9, there are four 
ases:In 
ase 1 we simply get C = C 01 _ C 02fy 7! xg. C 
ontains a single variable x ,hen
e is in C and kCk � max(kC1k; kC2k)In 
ase 2 � = fx 7! v0g and v0 is a subterm of v. Then C 
ontains the single variabley, hen
e belongs to C. Moreover, C = C 01� _ C 02. To prove the inequalities onsizes, it is suÆ
ient to 
onsider the non-ground literals in C 01. Let L = �Q(t) besu
h a literal and suppose jL�j > jL1�j. Consider a maximal length position pof x in t. Sin
e L1� is maximal, jpj � jqj for some maximal length position q ofx in u. Now, by lemma 1, ju�j � max(juj; jvj), hen
e jqj + jx�j � max(juj; jvj).It follows that jt�j � max(jtj; juj; jvj), hen
e kC 01�k � max(kC1k; kC2k).Case 3 is similar to 
ase 2In 
ase 4 , as in 
ase 2, by maximality of L1, for any position p of x in some literal�Q(t) of C 01 (resp. C 02), either jQ(t)�j � jL1�j or there is a position q of x in u(resp. a position q of y in v) su
h that jpj � jqj. Thenjt�j � max(jtj; jtjx + jx�j)� max(jtj; jqj+ jx�j)� max(jtj; ju�j)� max(jtj; 2�max(juj; jvj))� 2�max(kC1k; kC2k)In the 
ases where C1; C2 
ontain more than one variable, the proofs are essen-tially the same as above, repla
ing the referen
e to lemma 9 with the referen
e tolemma 10: 18



Case 1 L1 = �P (x1) and L2 = �P (x2). Then, by maximality of L1�, all literalsof C 01 is of the form �Pi(x1) and all literals of C 02 is of the form �Pi(x2). Thus�(x1) = �(x2) = x and all literals of C is of the form �Pj(x), thus kCk =kC1k = kC2k = 1.Case 2 L1 = �P (x1) and L2 = �P (u[f(y1; : : : ; yk)℄) (resp. L2 = �P (u(y))). Bymaximality of L1�, all literals of C 01 is of the form �Pi(x1). Thus �(x1) =u[f(y1; : : : ; yk)℄ (resp. �(x1) = u(y)) whi
h implies C 02� = C 02 and for all literalsL of C 01, L� is of the form �Pi(u[f(y1; : : : ; yk)℄) (resp. �Pi(u(y))). Thus C 0 is inC0 and kCk � kC2k.Case 3 L1 = �P (u[f(x1; : : : ; xk)=z℄) and L2 = �P (v[g(y1; : : : ; yl)=z℄). Then, bylemma 10, there are three 
ases :{ either k = l and for all 1 � i � k, we have �(xi) = �(yi) = zi;{ or for all 1 � i � k, �(xi) = vi[g(y1; : : : ; yl)℄;{ or for all 1 � j � l, �(yj) = ui[f(x1; : : : ; xk)℄.In the �rst 
ase, we get C 2 C0 and kCk = max(kC1k; kC2k). The se
ond andthird 
ases are equivalent, thus let us 
onsider only the se
ond 
ase. C 02� = C 02and every literal of C 01� is of the form �P (w[g(y1; : : : ; yl)℄) thus C is still in C0.For every literal L of C 02, jL�j = jLj � kC2k. Let L be a literal of C 01.{ Either jL�j � jL1�j. Then, by lemma 10, jL1�j � max(jL1j; jL2j) � max(kC1k; kC2k)thus jL�j � max(kC1k; kC2k).{ Or jL�j > jL1�j. Then, by maximality of L1� in C 01�, there exists a vari-able y of L1� su
h that jL�jy � jL1�jy. Sin
e the only variables of L1�are the yi, we get for all 1 � j � l, jL�jyj � jL1�jyj whi
h implies L =�Pi(u0[f(x1; : : : ; xk)=z℄) with ju0jz � jujz .Now, jL�j = ju0[f(x1; : : : ; xk)=z℄�j = max(ju0j; ju0jz + 1+max1�i�k j�(xi)j).Sin
e ju0j � jLj � kC1k and ju0jz + 1 + max1�i�k j�(xi)j � jL1�j, we getjL�j � max(kC1k; kC2k).The other 
ases: L1 = �P (u[f(x1; : : : ; xk)=z℄) and L2 = �P (v(y)) or L1 = �P (u(x))and L2 = �P (v(y)) are similar to 
ase 3. �Proof of theorem 1 (
ontinued): Now, let N be the maximum of kCk for 
lausesin S. As a 
onsequen
e of the above lemma, for every generated 
lause C 0 (aftersplitting), either kC 0k � N , or else C 0 is ground and kC 0k � 2�N .On the other hand, there are only �nitely many terms t in T (F [fxg) su
h thatjtj � N . This implies that there are �nitely many terms of the form t[f(x1; : : : ; xn)=y℄with t 2 T (F [ fyg) sin
e F is �nite. On the other hand, the number of variablesin ea
h 
lause of C is bounded (by de�nition). Hen
e, if we assume that no 
lause
ontains twi
e the same literal (we may assume w.l.o.g. that su
h 
lauses are eagerlyrepla
ed with 
lauses 
ontaining ea
h literal only on
e), then there are only �nitelymany possible generated 
lauses.
B Narrow-liftability of the orderingProposition 2 � is a narrow-liftable ordering on literals of 
lauses of C�.Proof. jB�j = kB� # k = kB # �k and kA� # k � kA # �k, hen
e we may assumethat A;B are in normal form. Then we prove, by indu
tion on the depth of B that19



jB�j > jA�j and, for every x 2 V ar(B); z 2 V ar(x�), jB�jz > jA�jz. In the base
ase, B is a 
onstant or a variable x and we 
annot have jBj > jAj. If jAj < jBjand, for every variable x 2 V ar(A;B), jAjx < jBjx, then let A = f(t1; : : : ; tk),B = g(u1; : : : ; um) (f; g are possibly �). By de�nition, max1�i�k jtij < max1�i�m uiand max1�i�k jtijx < max1�i�m juij. There are indi
es j0 and jx su
h that, for everyi, jtij < juj0 j and, for every x, jtijx < jujx jx. Then we apply the indu
tion hypothesis:for instan
e, for every i, jti�jz < jujx�jz for every variable z 2 V ar(x�). It followsthat jA�jz = kA� # kz � kA�kz < kB�kz = jB�jz sin
e B� is in normal form. Weprove in the same way that jA�j < jB�j. �
C Useful results on uni�
ationLemma 2 If u 6=� v and V ar(u; v) � fxg. Then either u and v are not uni�ableor else any (normalized) uni�er � = fx 7! wg is su
h that w is a ground term andeither w is a subterm of u � v or else w = w1 � w2 is a normal form su
h that w1and x� w2 are subterms of u or v. Moreover, jx�j � maxfjuj; jvjg.Proof. (sket
h) We let s(u) be the size of u, i.e. the number of fun
tion symbolso

urring in u (if a fun
tion symbol o

urs n times, we 
ount it n times). We proveby indu
tion on s(u) + s(v) that if u 6=� v and � is a normalized unifer of u; v, theneither x� is a subterm of (u or v) or else x� = w1 � w2 (in normal form) su
h thatw1 and x� w2 are subterms of u or v.If u and v are the variable x or 
onstants, then the result holds.Otherwise, u = u1�: : :�un, v = v1�� � ��vk, where u1; : : : ; un; v1; : : : ; vk are notheaded with �. There are three 
ases. Either there exist i; j su
h that ui = vj thenthe solutions of the equation u = v are the solutions of the equation u1 � : : : ui�1 �ui+1�: : :�un = v1�: : : vj�1�vj+1�: : :�vk, thus we apply the indu
tion hypothesis(these two terms must be distin
t sin
e u; v are distin
t).Or none of the ui, vj is a variable. Then there exist i; j su
h that ui� #= uj� #or ui� #= vj� # or vi� #= vj� #. Then we may apply the indu
tion hypothesis toui; uj (resp. ui; vj , resp. vi; vj) ex
ept if u = u1 = f(u01; : : : ; u0m) and v = v1 =f(v01; : : : ; v0m). Then for every 1 � i � m, u0i� #= v0i� #. Sin
e u 6=� v, there is atleast one index i su
h that u0i 6=� v0i. It suÆ
es to apply the indu
tion hypothesis tou0i; v0i.Or there exists i su
h that ui = x but none of the vj is a variable. Then x� =(u01� � � � �u0m�) # where u0i = uj or vj for some j. If there exists i; j su
h thatu0i� #= u0j� # then we simply apply the indu
tion hypothesis to u0i; u0j whi
h aredistin
t. If all u0i's are ground, then there is a single solution x = u01 � : : : � u0m,whi
h satis�es the desired properties.Otherwise, assume u01 is not a ground term, and let x�t1 : : :�tk be an outermosto

urren
e of x in u01. Let x� = w1 � : : : � wm where the wi's are distin
t and notheaded with �. From w1 � : : : � wm = u01� # �u02� # : : : � u0n� #, there must besome index j su
h that wj = u01� #. wj 
annot o

ur in u01� #. Hen
e wj = ti� # forsome i. This means that � is a solution of ti = u01 and we may apply the indu
tionhypothesis: x� is either a subterm of ti or a subterm of u01, or else x� = w01 � w02where w01 and x � w02 are subterms of ti or u01. The result follows sin
e both ti andu01 are subterms of u or v.The last part of the lemma is a straightfoward 
onsequen
e of the �rst part.20



Lemma 3. If V ar(u)\ V ar(v) = ; and V ar(u) � fxg; V ar(v) � fyg, u 6=� v, theneither u and v are not uni�able (modulo the rules of �gure 1) or else every mostgeneral uni�er � of u; v is, up to variable renaming, su
h that:{ either there are ground subterms w1; : : : ; wk of u; v su
h that x� = w1� : : :�wk(resp. y� = w1 � : : :� wk) and y� is ground (resp. x� is ground){ or x� = z � t1 � � � � � tk, y� = (u1 � � � � � un � w1 � � � � � wm)�, where theti's and the wi's are ground subterms of u; v, n � 1 and the ui's are non-groundsubterms of u or the 
onverse, ex
hanging the roles of x and y (resp.of u and v).Proof. (sket
h) Le � be a most general uni�er of u; v. We prove again the lemma byindu
tion on s(u) + s(v). First, if u or v is ground, the result follows from lemma 2:x� (resp. y�) is either a ground subterm of u; v or the sum w1 � w2 where w1 is aground subterm of u; v and w2 is a sum of ground subterms of u; v.If u and v are the variable x or 
onstants, then the result holds.Otherwise, u = u1 � : : :� un, v = v1 � � � � � vk, where u1; : : : ; un; v1; : : : ; vk arenot headed with �. There are again four 
ases.Case 1: n = k = 1 . u = u1 = f(u01; : : : ; u0m) and v = v1 = f(v01; : : : ; v0m). Thenwe must have, for every i, u0i� #= v0i� #. Dis
ard the indi
es i su
h that u0i = v0i.It remains at least one index j. We apply the indu
tion hypothesis to u0j = v0j ,
onsidering a mgu � of u0j = v0j su
h that � = ��0 for some �0. If � is ground,then we must have � = �, hen
e the desired results sin
e ground subterms of u0i; v0jare also ground subterms of u; v. Otherwise, by symmetry, we may assume thatx� = z�t1�: : :�tq and y� = (s1�: : :�sp�w1�: : :�wr)� # where p � 1, s1; : : : ; spare non-ground subterms of u0j and t1; : : : ; tk; w1; : : : ; wr are ground subterms ofu0j ; v0j . If u� #= v� #, then the result is proved. Otherwise, �0 is a mgu of u�; v�.Then, we apply lemma 2: �0 = fz 7! wg where either w is a ground subterm ofu�; v�, or else w = w01 � w02 where w01 is a ground subterm of u�; v�, w02 is groundand z�w02 is a subterm of u�; v�. Note however that ground subterms of u�; v� arene
essary ground subterms of u; v sin
e x� and y� are not ground and their groundsubterms are also subterms of u; v. This implies that x� = w� t1 � : : :� tq is a sumof ground subterms of u; v (and y� is ground) or else x� = w01�w02� t1� : : :� tq andw01 is a ground subterm of u; v and w02 is ground and z � w02 is a subterm of u�; v�.This last property implies that w02 itself is a sum of ground subterms of u; v, hen
ex� is also a sum of ground subterms of u; v.Case 2: none of the ui,vj is a variable and n + k > 2. Then there exist i; j su
hthat ui� #= uj� # or ui� #= vj� # or vi� #= vj� #. We remove ui; uj (resp. ui; vj ,resp. vi; vj) from the sums u1 � : : :� un and v1 � : : :� vk, getting two terms u0; v0su
h that u0� #= v0� # and s(u0) + s(v0) < s(u)+ s(v). Either u0 = v0 and we simplyapply the indu
tion hypothesis on the remaining pair (ui; uj or ui; vj or vi; vj) orelse we 
an apply the indu
tion hypothesis to u0; v0 and a most general uni�er � ofu0; v0 su
h that � = ��0. Then, we pro
eed as in 
ase 1.Case 3: ui = x for some i and v1; : : : ; vk are not variables . If there exists l; j su
hthat ul� #= uj� # or ul� #= vj� # or vl� = vj�, then, as in the previous 
ases, we21




an apply the indu
tion hypothesis, yielding the desired result. This situation is nowdis
arded. We rename the ui's :x� � u1� # � � � � � un� #= v1� # � � � � � vk� # :There must be at least one vj whi
h is not ground sin
e v is not ground. If all ui's areground, then there is a single (up to renaming) most general solution x = u1� : : :�un � v1 � � � � � vk and the result follows: y� = z, x� = (u1 � : : :� un � v1 : : :� vk)�whi
h satis�es the property of the lemma.Otherwise, assume u1 is not a ground term, and let x�t1 : : :�tk be an outermosto

urren
e of x in u1. Let x� = w1 � : : : � wm where the wi's are distin
t and notheaded with �. Fromw1 � : : :� wm = u1� # �u2� # : : :� un� # �v1� # � : : :� vk� #;there must be some index j su
h that wj = u1� #. wj 
annot o

ur in u1� #. Hen
ewj = ti� # for some i. This means that � is a solution of ti = u1 and ti is a stri
tsubterm of u1, hen
e distin
t from u1. Applying lemma 2, x� is a sum of groundsubterms of u; v and, repla
ing x with x� in u = v, the new equation is non-trivial(y o

urs in v), hen
e has only ground solutions. Then we meet the 
on
lusions ofthe lemma.Case 4: ui = x for some i, vj = y for some j. As before, if for some i; j ui� #= vj� #(or ui� #= uj� # or vi� #= vj� #), we 
on
lude using the indu
tion hypothesis. Weassume that this does not o

ur.We may rename the ui's and the vj 's and we getx� � u1� # � � � � � un� #= y� � v1� # � � � � � vk� # :If all ui's are ground, there is a single uni�er (up to renaming): x� = u1� : : :�un�y� v1� � � �� vk , whi
h meets the 
onditions of the lemma (with the identity on y).The same result holds if the vj 's are all ground.Thus we may assume that u1 and v1 are not ground. Let x� = w1 � � � � � wl �s1 � � � � � sm, y� = w01 � � � � �w0l0 � s1 � � � � � sm su
h that wiw0i; si are not headedwith �, l+ l0 = n+ k and for ea
h wi, wi = uj� # or wi = vj� # f or some j (and thesame property for the terms w0i). Let x� t1 : : :� tk be an outermost o

urren
e of xin u1 and y � t01 � � � � � t0k0 be an outermost o

urren
e of y in v1. If at least one ofthe wi's is equal to some tj� #, then tj� #= us� # or vs� # for some s, then we mayapply the indu
tion hypothesis to tj ; us (resp. tj ; vs) and their uni�er � su
h that� = ��0 for some �0. In 
ase x is mapped to a sum of ground subterms of u; v and yis mapped to a ground term (or the 
onverse),we get immediately the desired resultsin
e � = �. Otherwise, either u� #= v� # and we get again the 
on
lusion or else �0is a mgu of u� #; v� # and, using a reasoning similar to that in 
ase 1, we 
on
ludethat z�0 is a sum of ground subterms of u; v and either x� or y� is also a sum ofground subterms of u; v.The same reasoning applies if at least one of the w0i is equal to some t0j� #: thent0j� #= us� # or vs� # and we use the indu
tion hypothesis.We are left to the 
ase where the wi and tj� #'s are all distin
t and the w0i's andt0j� #'s are all distin
t. Thus the wi's are stri
t subterms of u1� # (sin
e we have22




onsidered the outermost o

urren
e of x), whi
h implies that u1� # is distin
t fromthe wi's, thus u1� #= w0j for some j. Symmetri
ally, the w0i's are stri
t subterms ofv1� # and v1� #= wm for some m. Thus we have:wm < u1� #= w0j < v1� #= wm;whi
h is a 
ontradi
tion: the 
ase 
an not happen, whi
h 
ompletes the proof of thelemma.Lemma 12. If V ar(u) \ V ar(v) = ; and u = u0[x ! f(x1; : : : ; xn)℄, V ar(u0) �fxg; V ar(v) � fyg, then either u and v are not uni�able (modulo the rules of �gure1) or else any most general uni�er � of u and v falls (up to renaming) in one of thefollowing 
ases:{ for every i, xi� is a ground subterm of u; v and y� is ground{ y� is a sum of ground subterms of u; v and every xi� is ground{ xi� = xi for every i and y� = u1 � � � � � un �w1 � : : :�wm where every ui is anon-variable, non ground subterm of u, n � 1, w1; : : : ; wm are ground subtermsof u; v.{ y� = z � t1 � � � � � tk, for every i, xi� = vi� and t1; : : : ; tk are ground subtermsof u; v, f(v1; : : : ; vn) is a subterm of v.If V ar(u) \ V ar(v) = ; and u = u0[x ! f(x1; : : : ; xn)℄, v = v0[y ! g(y1; : : : ; yk)℄,V ar(u0) � fxg; V ar(v0) � fyg, then either u and v are not uni�able (modulo therules of �gure 1) or else any most general uni�er � of u and v falls (up to renaming)in one of the following 
ases:{ for every i; j, xi� and yj� are ground subterms of u; v,{ xi� = xi for every i and yj� = uj for every j, su
h that g(u1; : : : ; uk) is asubterm of u{ yi� = yi for every i and xj� = vj for every j, su
h that f(v1; : : : ; vn) is a subtermof v.Proof. (sket
h) Con
erning the �rst part, the equation u = v is equivalent to u0 =v ^ x = f(x1; : : : ; xn). Then we apply lemma 3 to u0; v and simplify the 
on
lusionsto meet the 
onstraint that x� is headed with f .Con
erning the se
ond part of the lemma, u = v is equivalent to u = v0 ^ y =g(y1; : : : ; yk). Then we apply the �rst part of the lemma to u; v0 and simplify the
on
lusions taking into a

ount that y� must be headed with g.Lemma 4 For every 
lause C 2 C�, there is a �nite number of 
lauses C1; : : : ; Cnsu
h that :fC� # j V (C�) = ;; � 2 NSg = n[i=1fCi� j V (Ci�) = ;; � 2 CF (C1; : : : ; Cn)g
Moreover, if C =2 S0, every Ci falls in one of the following 
ases:{ Ci = C{ Ci is ground and jCij � 2� jCj 23



{ V (C) = fxg and Ci = Cfx0 7! y � tig # for some sum ti of ground subterms ofC.Proof. If C 2 S0, C = :P (x)_ :P (y)_ P (x� y), the 
lauses there are four 
lausesCi: C1 = C itself, C2def=:P (x � y) _ :P (y) _ P (x), C3def=:P (x) _ :P (x � y) _ P (y)and C4def=:P (x� z) _ :P (y � z) _ P (x� y):Indeed, if we 
onsider a normalized substitution � su
h that C� # is ground, letx� #= t1 � : : : � tk, y� #= u1 � : : : � um. If ft1; : : : ; tkg � fu1; : : : ; umg we geta 
ollapse-free instan
e of C3, if fu1; : : : ; umg � ft1; : : : ; tkg, we get a 
ollapse-freeinstan
e of C2, if the two sets are disjoint, we get a 
ollapse-free instan
e of C1 and,in the general 
ase, if ft1; : : : ; tkg \ fu1; : : : ; umg = fv1; : : : ; vng is non-empty anddistin
t from the two previous sets, we get a 
ollapse-free instan
e of C4 (for instan
ez is assigned v1 � : : :� vn).Consider now a 
lause C with only one variable x. Let T be the set of its groundsubterms and �1; : : : ; �n be the substitutions fx 7! x0 � t1 � : : : � tmg and fx 7!t1�: : :�tmg where ft1; : : : ; tmg � T . We let then Cidef=C�i #. Let � be any normalizedsubstitution. We pro
eed by indu
tion on the number of redu
tion steps of C� to itsnormal form. If C� does not 
ontain any redex, then it is a 
ollapse-free instan
e ofCfx 7! x0g (with m = 0). Otherwise, 
onsider an innermost redex: u1� � : : :� un�in whi
h u1� = v1 � v2 and u2� = v1 � v3 (v2 and v3 are possibly empty) andu1; : : : ; un are not headed with �. If v2 and v3 are empty, sin
e C is in normal form,� must be a uni�er of u1 and u2, hen
e, thanks to lemma 2, � maps x to a sum ofground subterms of C, and C� # is equal to some Ci. Otherwise, sin
e u1; u2 arenot headed with �, one of them must be a variable and, sin
e C only 
ontains onevariable and is irredu
ible, we must have, e.g. v3 empty and u1 = x (the other 
aseis symmetri
). Sin
e we 
hose an innermost redex, u2 must be a ground term (it
annot 
ontain u2� � v2). Then we 
onsider the substitution �0 = fx 7! u2 � x0g.C� #= (C�0) # fx0 7! v2g # and C�0 # fx0 7! v2g 
ontains stri
tly less redexesthan C�. We apply the indu
tion hypothesis, repla
ing C with C�0 and � withfx0 7! v2g: there is a 
lause C 0i = C�0 # �i # and a 
ollapse-free substitution �i su
hthat C 0i�i = C�0 # fx0 7! v2g #= C� #, where �i is a substitution fx0 7! y � tg or asubstitution fx0 7! tg with t a sum of ground subterms of C�0 #. Now, any groundsubterm of C�0 # is also a ground subterm of C, hen
e t 2 T and �0�i is one of thesubstitutions �j . It follows that C 0i = C�j #= Cj and Cj�i = C� #, whi
h 
ompletesthe proof.Consider �nally the 
ase where C 
ontains more than one variable and doesnot belong to S0: every literal is either �P (xi) or Lfx 7! f(x1; : : : ; xn)g whereV (L) � fxg. We let Ci be the set of 
lauses 
ontaining C and the 
lauses obtainedby unifying any two subterms u; v su
h that u�v o

urs in C, and then normalizing.By lemma 2, the 
lauses Ci are ground 
lauses. Moreover, any redex in C� must beof the form u�� v� where u� v o

urs in C. It follows that either C� is irredu
ible,or it is one of the 
lauses Ci.It only remains to prove the size inequality for ground 
lauses Ci. When V (C)
ontains only one variable, Ci is ground i� Ci = Cfx 7! tg # where t is a sumof ground subterms of C. Then jCij � jCjx + jtj � 2 � jCj. When C 
ontains onevariable, we simply 
onsider literals others than �P (xi), abstra
t out f(x1; : : : ; xn)24



with x and apply the same reasoning. The literal �P (xi)�i is smaller than otherliterals in the same 
lause.
D Proof of theorem 2D.1 Corre
tnessLemma 5 The narrowing rule and the dedu
tion rules of �gure 2 are 
orre
t (theset of models of one of the 
lause sets in Si is the same as the set of models of oneof the 
lause sets in Si+1) and, if every 
lause set in Si is in C�, then every 
lauseset in Si+1 is in C�.Proof. The 
orre
tness of the rules of �gure 2 is straightforward. For the narrowingrule, one 
an noti
e that, by 
onstru
tion, for every 
lause C 0 2 NC , then C 0 = C� #for some �. Let us fo
us on the C� membership: we pro
eed by indu
tion on i.This true for S0 by de�nition and we show the invarian
e of this property by anydedu
tion rule. A

ording to the de�nition of C�, we assume that every 
lause C isof one of the following four forms1. C 
ontains at most one variable;2. C only 
ontains literals �Pi(xi) where xi are variables;3. all maximal literals of C are of the form �Pi(u)fx 7! f(x1; : : : ; xn)g wherefx1; : : : ; xng = V ar(C);4. C 2 S0 but we do not apply resolution on these 
lauses.In the se
ond 
ase, C is splittable or C falls into the �rst 
ategory.Binary resolution: If the two 
lauses C1 = :P (t)_C and C2 = P (u)_C 0 
ontainat most one variable, then lemma 3 ensures that the resulting 
lause 
ontains atmost one variable.If one of the two 
lauses 
ontains more than one variable, then lemma 12 ensuresthat the resulting 
lause either 
ontains at most 
ontains one variable or is of theform Cfx 7! f(x1; : : : ; xn)g where C 
ontains one variable x, thus the resulting
lause is in C�.Fa
torization and Explosion: These two rules leads to ground 
lauses whi
h ob-viously in C�.Narrowing If C is a 
lause whi
h 
ontains at most one variable then the 
lausesobtained by narrowing also 
ontain at most one variable thus are in C�. If C is a
lause of the form Cfx 7! f(x1; : : : ; xn)g then the 
lauses obtained by narrowingare ground thus are in C�.Extensions As for binary resolution, the lemmas 3 and 12 allow us to 
on
ludethat the resulting 
lauses remain in C�.
D.2 TerminationLemma 6 The sequen
e Si must be �nite when starting from S0 = fSg and S 2 C�.25



Proof. (sket
h)The sequen
e Si is �nite i� applying the rules of �gure 2 together with the ruleC _ C 0 ! C when V ar(C) \ V ar(C 0) = ; terminates when starting from S. Weare going to give an upper bound on the size of a 
lause C in a set of Si. LetNdef=maxL2C;C2S jLj and let T be the set of sums of ground subterms of 
lauses ofS. We show by indu
tion on i that, for every 
lause C of a set of Si, either C isground and jCj � 2N or C is not ground and jCj � N or (last 
ase) C is not ground,V (C) = fxg and there exists t 2 T su
h that jCfx 7! x0 � tg # j � N .If C 0 is obtained by narrowing from a 
lause C then the result follows fromlemma 4.If C 0 is obtained by fa
torization or explosion from a 
lause C, then C 0 isground, C 0 = C� where � is the most general uni�er of two subterms of C. Applyinglemma 2, j�j � N . In addition, by indu
tion there exists t 2 T su
h that jC 00j � Nand C 00 = Cfx 7! x0 � tg # thus jC 0j = jC 00fx 7! x0� � tg # j � max(jC 00j; jC 00j +max(jtj; j�j)) � 2N .If C 0 is obtained by binary resolution::P (t) _ C P (u) _ C 00C� _ C 00� ;
C 0 = C� _ C 00� and � 2 mgu(t; u). The 
lauses :P (t) _ C and P (u) _ C 00 may beground, have a single variable or be on the form C1[x ! f(x1; : : : ; xn)℄. All these
ases are similar to 
ase where V ar(t) = fxg and V ar(u) = fyg, thus we only dealwith that 
ase. If � is ground, then by lemma 2, j�j � N and we show similarly thatjC 0j � 2N . Otherwise � is not ground and, by lemma 3, we may assume w.l.o.g. thaty� = z � t1 � � � � � tk and x� = (u1 � � � � � um)� � t01 � � � � � t0k, where the ti's andthe t0i's are ground subterms of u or t and m � 1 and the ui's are subterms of u. Inaddition, there exist t1; t2 2 T (possibly 0) su
h that P (t)_C = C1fx0 7! x� t1g #,P (u) _ C 0 = C2fy0 7! y � t2g # and jC1j � N , jC2j � N .We �rst prove the following lemma.Lemma 13. Let L1, L2 be two literals su
h that V ar(L1) = V ar(L2) = fxg andL1 and L2 both belong to a 
lause C su
h that there exists t in T su
h that jCfx 7!x0 � tg # j � N . Let � be a 
ollapse-free substitution (w.r.t. L1 and L2) su
h thatL1� 6> L2� and V ar(x�) = fyg. Then jL1�j � max(N; jL2�j).In addition, let � = fy 7! x � tg be a substitution su
h that for ea
h maximallength o

urren
e of y in L1� and L2�, the variable y is xored by t. Then jL1�� #j � max(N; jL2�� # j).Proof. Suppose jL1�j > jL2�j, then by maximality of L2�, we must have jL1�jy �jL2�jy thus jL1jx � jL2jx. Then jL1�j = jL1j sin
e for every position p of some x�uin L1 (with u possibly equal to 0), jpj + jx�j � jL2jx + jx�j � jL2�j. Suppose alsothat jL1�j > N . It must be the 
ase that there is a position p su
h that L1jp = x�uand jL1�j = jL1j = jpj + juj > N sin
e jL1fx 7! x0 � tg # j � N . Let p0 be amaximal position of the variable x in L2: L2jp0 = x � v. Either jvj � juj in whi
h
ase jL1�j � jL2�j, or jvj < juj. Then sin
e jL1fx 7! x0 � tg # j � N , we musthave jtj = juj thus jL2fx 7! x0 � tg # j � jL2jx + jtj > N (be
ause jvj < jtj implies26



j(v � t) # j = jtj), 
ontradi
tion. We 
on
lude that jL1�j � N , thus in any 
ase,jL1�j � max(N; jL2�j).Let us prove the se
ond part of the lemma. We have jL1�� # j � jL1�j andjL2�� # j � jL2�j. Assume jL1�j > N and jL1�� # j > N (if jL1�j � N orjL1�� # j � N , we are done). If jL2�� # j = jL2�j then we 
an 
on
lude usingthe �rst part of the lemma. Thus 
onsider the 
ase where jL2�� # j < jL2�j. Thismeans that jL2�j = jL2�jy+ jtj. Suppose jL1�jy > jL2�jy then jL1�j � jL1�jy+ jtj >jL2�jy+jtj = jL2�j, whi
h 
ontradi
ts the maximality of L2�. Thus jL1�jy � jL2�jy.Let p be a path su
h that L2�jp = y�u and jpj = jL2�jy. Now two 
ases are possible:{ Either jL1�� # j is rea
hed for some path extending a position of x in L1, thenwe 
on
lude using jL1�jy � jL2�jy that jL1�� # j � jL2�� # j.{ Or jL1�� # j is rea
hed for some path p0 su
h that L1�jp0 = y�v and jp0j+ jvj >N . We may assume that p0 does not extend a position x in L1 otherwise we areba
k to the previous 
ase. Thus L1jp0 = x�v0, i.e. L1�jp0 = x��v0 = y�v1�v0with v = v1� v0 and x� = y� v1. If jv1j � jv0j, we are ba
k to the previous 
ase.Otherwise jv1j < jv0j. Sin
e jL2fx 7! x0 � tg # j � N , we must have juj = jv0j,thus jL1�� # j = jp0j+ jvj � jpj+ juj � jL2j � L2�� #. �From this lemma and the fa
t that L� 6> P (t)� and L0� 6> P (u)�, we dedu
ethat jL�j � max(N; jP (t)�j) for every literal L of C and jL0�j � max(N; jP (u)�j)for every literal L0 of C 00. Now P (t)� = P (u)� = P (u)fy 7! z � t1 � � � � � tkg andsin
e the 
lauses are in normal form, the ti's o

ur at ea
h maximal o

urren
e ofthe variable z in C� _ C 00�. Let z� = y � t1 � � � � � tk. We dedu
e from lemma 13that jL�� # j � max(N; jP (t)�� # j) for every literal L of C and jL0�� # j �max(N; jP (u)�� # j) for every literal L0 of C 00. Note that a
tually, P (u)�� #= P (u).Suppose jP (u)j > N . Sin
e P (u) _ C 0 = C2fx 7! x � t2g # with jC2j � N , thismeans that there exists a term t02 su
h that t02 o

urs at ea
h maximal o

urren
eof the variable y in C 00 thus also o

urs at ea
h maximal o

urren
e of the variabley in C�� # and su
h that P (u) _ C 0 = C 02fx 7! x � t02g # with jC 02j � N . Lety� = y � t02. Applying again lemma 13, we get jL���0 # j � max(N; jP (t)���0 # j)for every literal L of C and jL0���0 # j � max(N; jP (u)���0 # j) for every literalL0 of C 00. Sin
e jP (u)���0 # j � N and P (t)���0 #= P (u)���0 #, we have thatC 0 = C� _ C 00� = C3��0 with jC3j � N , hen
e the result.If C 0 is obtained by one of the Extension rules, the proof is similar to the binaryresolution.Now, for ea
h non ground 
lause C, there is a term t 2 T (possibly 0) su
h thatjCfx 7! x0 � tg # j � N thus jCj � 2N . Thus for every 
lause C (ground or not) inSi, we have jCj � 2N . Moreover, there are only �nitely many 
lauses C, whi
h donot 
ontain repeated literals and su
h that jCj � 2N . Indeed, there are �nitely manyliterals L in normal form su
h that jLj � 2N and 
ontaining at most one variable.D.3 CompletenessLemma 14 (Case C1; C2 2 S0). If C1; C2 2 S0, then I falsi�es already a groundinstan
e of S� [ S0.Notation : If t = t1 � � � � � tk where the head symbol of ea
h ti is not the xorsymbol, then et def= ft1; : : : ; tkg. If t = f(t1; : : : ; tn), then et def= ftg.27



Proposition 4. Let t; t1; t2 be three ground terms in normal form su
h that t =t1 � t2 and t1; t2e<t. Let u be the maximal term of et. Then u =2 et1 or u =2 et2.Proof. Assume u 2 et1 and u 2 et2, then u =2 t̂1 � t2 = et, 
ontradi
tion. �Proof (of lemma 14). C1�1 = P (v) _ :P (v1) _ :P (v2), v1; v2 e<v C2�2 = :P (v) _P (v3) _ :P (v4), v3; v4e<v and :P (v1) _ :P (v2) and P (v3) _ :P (v4) are alreadyfalsi�ed.Let u be the maximal term of ev, using proposition 4, u =2 ev1 or u =2 ev2 and u =2 ev3 oru =2 ev4. v1 and v2 play symmetri
 roles, thus we may assume w.l.o.g that u =2 ev2.{ Assume u =2 ev3. Then v2 � v3e<ue<v, thus P (v2 � v3) is already interpreted.� Either P (v2 � v3) 2 I, then the 
lause C = P (v3)_:P (v2)_:P (v2 � v3) isan instan
e of of a 
lause of S0, falsi�ed by I.� Or :P (v2 � v3) 2 I. v2 � v3 = v � v1 � v � v4 = v1 � v4. Thus the 
lauseC = :P (v1)_:P (v4)_P (v2� v3) (instan
e of a 
lause of S0) is falsi�ed byI.{ Assume u =2 ev4. Then v2 � v4e<ue<v, thus P (v2 � v4) is already interpreted. Wepro
eed similarly.� Either :P (v2 � v4) 2 I, then the 
lause C = :P (v2) _ :P (v4) _ P (v2 � v4)is an instan
e of C0, falsi�ed by I.� Or P (v2 � v4) 2 I. v2 � v4 = v � v1 � v � v3 = v1 � v3. Thus the 
lauseC = :P (v1)_P (v3)_:P (v2� v4) (instan
e of a 
lause of S0) is falsi�ed byI. �Lemma 15 (Case C1 2 S0, C2 =2 S0). If C1 2 S0, C2 =2 S0, then I falsi�es alreadya ground instan
e of some 
lause in S� [ S0.Proof. Let C1�1 = :P (x)�1 _ :P (y)�1 _ P (x � y)�1, x�1 = v1, y�1 = v2, and(x�1 � y�1) #= v. There exist v01; v02; v0 su
h that v = v01 � v02, v1 = v01 � v0 andv2 = v02 � v0 without any 
ollapse or v = v1 � v2 without any 
ollapse. We only
onsider the �rst 
ase sin
e the se
ond one is similar. By hypothesis, v1 e<v; v2 e<vand therefore I(P (v1)) = I(P (v2)) = 1. Assume w.l.o.g that P (v1)e�P (v2). Now,by minimality of the interpretation I (w.r.t. lexi
ographi
 ordering), the partialinterpretation J whi
h 
oin
ides with I on literals stri
tly smaller than P (v1) andsu
h that J (P (v1)) = 0 falsi�es a 
lause C3 = P (u) _ C 0 of S�. We 
onsider againtwo 
ases, depending on whether this 
lause is in S0 or not.Assume C3 =2 S0 and that no fa
torization 
an be applied. Also, by narrowing,C3�3 does not 
ontain any redex and v1 = u�3. Moreover, P (v1) is maximal in C3�3.We are going to show that we 
an apply Extension 1 (possibly after Explosion) toC2 and C3 yielding a 
lause falsi�ed by I. We let C2 = :P (t)_C. We have v = t�2and �2 is 
ollapse-free thus t = t1 � t2 su
h that t1�2 = v01 and t2�2 = v02. In thesame way, u = u1�u2 su
h that u1�3 = v01 and u2�3 = v0. This means in parti
ularthat t1; u1 are uni�able. By Explosion, we may assume that V (t) = V (t1) and, bylemma 3, that there is a � 2 mgu(t1; u1) su
h that �2 ℄ �3 = ��0. Moreover, let wbe the maximal term of ev. Sin
e v2 e<v1 e<v, w is a term of ev01 thus v2 = v02 � v0e<v01.The inequality v2 = v02 � v0 e<v01 gives t2�2 � u2�3e<t1�2, hen
e (t2 � u2)��0e<t1�2. Itfollows that (t2 � u2)� 6> t1. In addition, � is 
ollapse-free w.r.t. t, t1 � t2, t2 � u2and the 
lauses C and C 0. Then, we 
an apply Extension 1 and there is a 
lause(C _ C 0 _ :P (t2 � u2))�, whi
h is already falsi�ed by I.28



Now, if C3 2 S0. Then C3 = P (x0�y)_:P (x0)_:P (y0) Let x0�3 = w1, y0�3 = w2,and (x0�3 � y0�3) #= v1. We have w1e<v1 and w2e<v1. We may assume w2e<w1. Inaddition, I(P (w1)) = 1 and I(P (w2)) = 1. Let us 
onsider the term w2 � v2. Wehave w2�t2e<t sin
e the maximal term of et is neither in fw2 nor in et2. We dedu
e thatthe literal P (w2 � t2) is already interpreted in I and I(P (w2 � t2)) = 1 otherwisethe 
lause C1 would be falsi�ed by :P (w2) _ :P (t2) _ P (w2 � t2)). Let us 
onsiderC1�01 = :P (w2 � t2) _ :P (w1) _ P (t): we are ba
k to the previous 
ase where C1and C2 are both in S0. We 
on
lude applying lemma 14.Lemma 16 (Case C1 =2 S0, C2 2 S0). If C1 =2 S0, C2 2 S0, then I falsi�es alreadya ground instan
e of some 
lause in S� [ S0.Proof. C2�2 = :P (x)�2 _ :P (y)�2 _ P (x � y)�2 and x�2 = v. We may assumethat (x � y)�2 # e<y�2 sin
e when it is not the 
ase, we may repla
e C2 by C 02 =:P (x0)_:P (y0)_P (x0�y0) and �2 by �02 su
h that x0�02 = x�2 = v, y0�02 = (x�y)�2and (x0 � y0)�02 = y�2. With this transformation, this 
ase is similar to the previousone (applying the rule Extension 2).Lemma 17 (Case C1; C2 =2 S0). If C1; C2 =2 S0, then I falsi�es already a groundinstan
e of some 
lause of S� [ S0.Proof. The binary resolution allows us to 
on
lude.
E Se
re
y of our proto
olProposition 3. The set of 
lauses representing our proto
ol together with the se
u-rity property CP [ f�0g is satis�able.Proof. We split the set of 
onstants � into the set of (supposedly) se
ret data �1 andknown data �2: �1 = fn1ab; n1ba; n2ab; n2ba; Sab; Sba;Kabg and �2 = �n�1. We 
onsidera set of terms T (resp. T 0) su
h that an even (resp. odd) number of \se
rets" datais xored:T = fu1 � � � � � un � t1 � � � � � tk j n is even, ui 2 �1; tj 2 �2; ui; tj distin
tg:Then we 
onsider the following set of 
lauses:S� def= fI(m) j m 2 Tg [ f:I(z �m1) _ I(z �m2) j m1 �m2 2 Tg[f:I(m1) _ I(m2) j m1 �m2 2 Tg [ f:I(m) j m 2 T 0gS� 
ontains CP [ f�0g, thus it is suÆ
ient to prove that S� is satis�able (a
tuallyS� is obtained from CP [f�0g by applying our dedu
tion rules thus S� is satis�ablei� CP [ f�0g is satis�able).Let us show that S� is already saturated by our dedu
tion rules together withthe redundan
y 
riterion.The Fa
torization rule 
an not be applied to S�. The Narrowing rule 
learlypreserves membership to S�. The Explosion rule does not modify the sum m1�m2thus preserves membership to S�.Let us 
onsider a binary resolution between two 
lauses C1 and C2 of S� withvariables. C1 = :I(z �m1) _ I(z �m2) and C2 = I(z0 �m3) _ :I(z0 �m4), with29



m1�m2;m3�m4 #2 T . Let � 2 mgu(z�m1; z0�m3). z� = z00�m5, z0� = z00�m6,su
h that (m5 �m6) #= (m1 � m3) #. The resulting 
lause is C = :I(z00 � m6 �m4) _ I(z00 �m5 �m2). Sin
e (m6 �m4 �m5 �m2) #= (m1 �m3 �m2 �m4) # isin T , it follows that C in S�. The 
ase where one of the 
lause is ground is similar.Let us 
onsider the rule Extension 1 (the rule Extension 2 is similar). LetC1 = :I(z � m1) _ I(z � m2) and C2 = I(z0 � m3) _ :I(z0 � m4), with (m1 �m2) #; (m3 � m4) #2 T . We have t = z � m1 = z � m01 � m001 and t1 = z � m01sin
e V (t) = V (t1). u1 = z0 � m03 and u2 = m003 su
h that m03 � m003 = m3 oru2 = z0 � m03 and u1 = m003 . We only 
onsider the �rst 
ase sin
e the se
ond oneis similar. Let � 2 mgu(z �m01; z0 �m03). z� = z00 �m5, z0� = z00 �m6, su
h that(m5 �m6) #= (m01 �m03) #. The resulting 
lause isC = I(z00 �m5 �m2) _ :I(z00 �m6 �m4) _ :I(m001 �m003):There are two 
ases:{ either m001 �m003 2 T , in whi
h 
ase (m01�m03�m2�m4) #2 T sin
e (m1�m2�m3�m4) #2 T . In this 
ase, m5�m2�m6�m4 2 T sin
e m5�m6 = m01�m03.Itfollows that I(x�m5�m2)_ I(x�m6�m4) 2 S�, a 
lause whi
h subsumes C.{ or else m001 �m003 =2 T , in whi
h 
ase m001 �m003 2 T 0 and therefore :I(m001 �m003) 2S�, a 
lause whi
h, again, subsumes C.If C2 is a ground 
lause, we get exa
tly the same inferen
e as above, ex
ept thatz00 is absent. The same reasoning applies.S� is saturated by our inferen
e rules (see appendix E). Applying theorem 2,sin
e ? =2 S�, it follows that CP [ f�0g is satis�able. �We 
on
lude that S� is already saturated by our dedu
tion rules together withthe redundan
y 
riterion.Sin
e the abstra
tion is an upper approximation, the above proposition showsthat the proto
ol is se
ure.
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