
Election Eligibility with OpenID:
Turning Authentication into Transferable Proof of Eligibility

Véronique Cortier Alexandre Debant Anselme Goetschmann Lucca Hirschi

Université de Lorraine, CNRS, Inria, LORIA, France

Abstract
Eligibility checks are often abstracted away or omitted in
voting protocols, leading to situations where the voting server
can easily stuff the ballot box. One reason for this is the
difficulty of bootstraping the authentication material for voters
without relying on trusting the voting server.

In this paper, we propose a new protocol that solves this
problem by building on OpenID, a widely deployed authenti-
cation protocol. Instead of using it as a standard authentication
means, we turn it into a mechanism that delivers transferable
proofs of eligibility. Using zk-SNARK proofs, we show that
this can be done without revealing any compromising in-
formation, in particular, protecting everlasting privacy. Our
approach remains efficient and can easily be integrated into
existing protocols, as we have done for the Belenios voting
protocol. We provide a full-fledged proof of concept along
with benchmarks showing our protocol could be realistically
used in large-scale elections.

1 Introduction

Internet voting is used in politically-binding elections in sev-
eral countries, including Estonia, Australia, Canada, France,
and Switzerland, either for local or national elections. It is
more widely used in other types of elections, such as profes-
sional elections. Internet voting should aim to achieve the
same level of security as traditional paper-based elections.
This includes two main key properties. The first one is vote
secrecy [12]: no one should know how a voter has voted. Inter-
net voting heavily relies on cryptographic techniques, which
poses an additional challenge: votes should remain secret
even if the cryptography in use is eventually broken. This is
called everlasting privacy [33].

This work benefited from funding managed by the French National
Research Agency under the France 2030 programme with the reference ANR-
22-PECY-0006. It was also partly supported by the ANR Chair IA ASAP
(ANR-20-CHIA-0024) with support from the region Grand Est, France.

The second main security property is verifiability [24]:
everyone should be able to check that the result reflects the
intention of the voters. This property is usually broken down
into three sub-properties.

• Individual verifiability: a voter should be able to check
that their ballot is in the ballot box and that their ballot
contains their intended vote (cast-as-intended).

• Universal verifiability: everyone should be able to check
that the result matches the content of the ballot box. Such
checks are often outsourced to external auditors.

• Eligibility verifiability: everyone should be able to check
that the ballots have been cast by legitimate voters.

Universal verifiability is relatively easy to achieve, either by
using mixnets that shuffle and re-randomize ballots or by us-
ing homomorphic encryption. Then a Zero-Knowledge Proof
(ZKP) of correct decryption (and possibly correct shuffling)
allows external observers to verify the correctness of the result.
Both of these techniques have been successively deployed
e.g., in Helios [6]. Individual verifiability is more difficult
to achieve as it requires the voter to be in the loop. Various
techniques have been proposed. For example, Helios [6] pro-
poses the Benaloh’s challenge (for the cast-as-intended part)
and a public bulletin board containing the ballot box. Esto-
nia [34] is based on a two-device approach, where the voter
casts a vote with their computer and checks their vote with
their mobile phone. Switzerland [52] is developing a system
based on return codes, which are checked by the voter against
a sheet received by mail. Surprisingly, eligibility verifiability
has received less attention even though a lack of eligibility
verifiability enables voting servers to do ballot stuffing.

Related Work on Eligibility. Many systems (e.g., He-
lios [6], Select [42], FLEP [28]) simply assume an authen-
ticated channel between the voter and the voting server. In
practice, this means that voters are given a login and a pass-
word to authenticate themselves during the voting phase. This
provides weak guarantees: the voting server cannot prove that
the voter has been successfully authenticated. Instead, it has
full power to add ballots, e.g., in the name of absentee voters.

Furthermore, the login and password can be stolen, for ex-
ample when voter’s email gets compromised. Worse, it may
even be extremely difficult in practice to reliably and securely
deliver such login and password information to all eligible
voters. For example, the 2022 French Legislative election,
one of the largest e-voting elections with 1.5 million eligible
voters, was organized online using the FLEP protocol [28].
However, in 2 out of 11 constituencies, less than 40% of voters
received their material (delivered by SMS and email), leading
to a re-run of the elections in 2023 [4].

In order to guarantee some form of eligibility verifiability,
several systems such as SwissPost [52], VoteAgain [43], Civ-
itas [23], or Belenios [25] assume an external entity during
setup, often called Registrar, that sends credentials to voters.
During the voting phase, the credentials are linked to the cast
ballots in a verifiable way (the exact technique varies widely
depending on the protocol). However, this comes at the cost
of adding an additional, ad hoc, entity, whose trustworthi-
ness is required for having eligibility verifiability. In addition,
the credentials still need to be sent to voters, with the risk
of interception or simply non-delivery. Moreover, this new
entity, must have communication channels with all eligible
voters, and those must not be bootstrapped with the help of
the possibly malicious voting server. This approach thus re-
quires strong system and trust assumptions, which are often
unrealistic in practice.

Finally, a third and simple approach [34, 49] consists in
assuming a Public Key Infrastructure (PKI) for voters. In this
case, voters simply sign their ballot with their private signing
key. The main issue here is that in practice voters do not have
a PKI. A noteworthy nationwide exception is Estonia, where
voters have an electronic identity card that is used for various
administrative procedures. So, naturally, the Estonian voting
system [34] relies on this PKI for e-voting and provides some
form of eligibility verifiability. However, ballot signature, as
done in Estonia, compromises everlasting privacy: anyone
with access to the ballot box knows the link between ballots
and voters, hence, if encryption is broken in the future, vote
secrecy will be lost as well. This is mitigated in Estonia by the
fact that the ballot box is not public, which in turn does not
offer universal eligibility verifiability. Such a PKI is anyway
not available in most of the other election contexts, where this
approach is not feasible.

OpenID Connect. In this paper, we propose a novel eligi-
bility mechanism, based on OpenID Connect [50]. OpenID is
a widely deployed authentication protocol that allows users
to authenticate to multiple websites using their credentials
associated with a single entity: the OpenID Provider (idP).
For example, many websites offer users to authenticate us-
ing their Google, Microsoft, Apple, or Amazon account. This
greatly simplifies account management for websites and users
no longer have to manage multiple passwords. When a user
wants to connect to a website or a service, called Relying

Party (RP), they are redirected to the idP, who (i) informs the
user of what information will be transfered to the RP and (ii)
authenticates the user. If the authentication is successful, the
idP issues a token that allows the RP to obtain a signature
from the idP, certifying that the user has authenticated, along
with additional information (e.g., date of birth), as agreed
by the user. A RP can decide from which idP it accepts the
authentication. Well-known idPs are typically owned by big
technology companies, but there are also several nationwide
idPs, run by countries such as Canada, Netherlands, France,
or Switzerland, as suggested by the iGOV working group [2].

Contributions. We show that it is possible to use OpenID
Connect to produce privacy-protecting transferable proof of
eligibility. Such proofs may also be of interest in other con-
texts outside e-voting, where a user needs to prove that they
possess some required attribute, e.g., their age or nationality
to be eligible to some service.

The OIDEli protocols. Our first main contribution is the
OpenID-Eligibility (OIDEli) protocol, which provides eligi-
bility verifiability based on OpenID Connect. More specifi-
cally, we show that the existing structure of OpenID can be
used to obtain a transferable signature from the idP that an
authenticated and eligible voter has submitted a ballot b. It
is then sufficient to add this signature to the bulletin board
in order to obtain eligibility verifiability. The challenge is to
use the idP as a signature oracle while ensuring that what
is signed remains under the control of the voter, even for a
malicious voting server. Importantly, we strictly adhere to
the OpenID specification, so that our protocol can readily be
used with existing implementations and idPs. Moreover, our
approach is modular and can be applied to most voting proto-
cols, provided that, at some point, a voter submits a ballot that
is then published onto a bulletin board. Note that some voting
systems, such as Helios [6] or Belenios [25], already offer
the use of OpenID as a means of authentication. However,
they use OpenID as a pure authentication layer, which does
not bring any eligibility verifiability: the voting server cannot
prove that a user has been authenticated. In fact, a malicious
voting server can simply bypass the authentication and add
ballots without being detected. For such cases, our protocol
allows to weaken trust assumptions: instead of having to trust
a single entity (here the voting server), OIDEli distributes the
trust as it guarantees eligibility verifiability as long as either
the idP or the voting server is honest.

As for protocols that rely on a PKI, this first protocol may
compromise everlasting privacy. Indeed, the signature pub-
licly links a ballot and its voter, which additionally leaks
who voted and when, since the idP produces timestamped
signatures. We address this problem with our second main
contribution, the OpenID-Eligibility-ZK-ID (OIDEli-zk) pro-
tocol, where the voting server now proves, in zero-knowledge,
that for each ballot, it has received a valid signature from the
idP for a legitimate voter, but without revealing the identity

of the voter. There is no theoretical difficulty here since this
remains a polynomial statement. However, it is difficult in
practice since the usage in OpenID of standard cryptography
(specifically SHA2) is not well suited to ZKP. In particular,
we show that a naive ZKP arithmetic circuit for this statement
would yield unreasonable proving time.

Optimized SNARK proof and Proof of Concept. We propose
an optimized circuit design and an implementation thereof in
the zero-knowledge Succinct Non-interactive Argument of
Knowledge (zk-SNARK) implementation Plonky2 [53]. In
particular, we show how to comply with the encoding and
formatting used by OpenID (that uses JSON and Base64) and
how to avoid leaking the length of identity-related information.
We implement our ZKP circuit in Plonky2, although another
framework could be used as well, and show that it is efficient
enough to run the largest politically-binding online election to
date, which is the 2022 French legislative elections to the best
of our knowledge [28]. Importantly, this is done at no cost
to the voter, since the ZKPs are only computed by the voting
server, once it has received a valid signature from the idP.
We have also integrated our OIDEli-zk protocol into Belenios
with Google as idP, showing that it is indeed modular and
readily usable with existing implementations of OpenID.

Security Analysis. Finally, we discuss the security prop-
erties met by the OIDEli protocols and conduct a formal
security analysis using the verification tool ProVerif [17, 18].
We formally prove that both OIDEli and OIDEli-zk guarantee
eligibility verifiability only assuming an honest idP. As previ-
ously explained, OIDEli-zk cannot provide everlasting privacy
if the underlying protocol does not protect it. So instead, we
show that OIDEli-zk always guarantees identity-hiding: an
attacker never learns who takes part to the protocol when the
voting server and the idP are honest. Other properties such
as everlasting privacy may depend on the underlying voting
protocol and cannot be formally proven for our protocols in
isolation; we still prove them for a Helios-like voting protocol
under standard trust assumptions. Moreover, we informally
explain why our protocols are expected to preserve individual
verifiability, universal verifiability, and vote privacy, should
they hold for the underlying voting protocol.

In brief, our contributions can be summarized as follows:
• OIDEli protocol, that turns the OpenID authentication

mechanism into a transferable proof of eligibility;
• OIDEli-zk additionally provides a zero-knowledge ver-

sion of the transferable proof, using zk-SNARKs, to pro-
tect voter’s privacy and in particular everlasting privacy;

• A PoC implementation of OIDEli-zk, integrated into Be-
lenios, shows the practicability of our proposal;

• A formal security analysis performed with ProVerif.

Limitations. Note that our approach may not always
be compatible with voting protocols that aim to achieve
coercion resistance or receipt-freeness. A protocol is said
to be receipt-free if an attacker cannot learn the voter’s vote

even if the voter is asked to provide all the material produced
during the voting phase. A stronger property is coercion
resistance: it guarantees that a voter can vote freely even if
they are asked to provide all their voting material, including
the authentication material. Such properties are achieved
by providing voters with credentials (for authentication)
but in such a way that voters can either lie about it (as in
Civitas [23]) or secretly revote using the same credentials and
without the adversary noticing (as in VoteAgain [43]). Our
approach is not directly applicable to such fine-grained han-
dling of authentication credentials and would require careful,
dedicated modifications, which are left as future work.

We stress that eligibility verifiability always relies on trust
assumptions. For example, if it relies on a PKI, then this PKI
must be trusted. In our case, we assume a trusted idP. Trusting
Google or Amazon for national politically-binding elections
may not be acceptable but could be perfectly suitable for other
types of elections. For politically-binding elections, national
identity providers might be preferred. This choice should, as
always, be left to the electoral authorities and citizens’ repre-
sentatives. One advantage of our approach is that it is based on
a widely deployed protocol, allowing voters to reuse authenti-
cation means that they know and trust, and to distribute the
trust to avoid a single-point-of-trust when the voting server
also checks eligibility.

Related Work on OpenID. Using OpenID as a signature
oracle has been explored in the past [35, 47] but most of
these approaches do not protect user’s privacy, which would
break everlasting privacy in our case. In order to preserve
privacy, CanDID [44] proposes a decentralized identity man-
agement service, that allows to gather identities from several
services. Because OpenID is not privacy-friendly by default
(we nonetheless make it so by the means of ZKPs), CanDID
relies on oracle systems that require stronger system and trust
assumptions: either MPCs with distributed verifiers or TEEs
at clients. On the other hand, CanDID addresses a different
problem and, in particular, does not address the challenges
of e-voting eligibility. For example, it neither allows to link
ballots to voters’ identities nor prevents cheating voters from
re-using old credentials without having to re-authenticate. A
very recent and independent work [9], zkLogin, shows how to
to use OpenID in order to bootstrap a fresh signature key-pair,
authenticated by the OpenID identity provider. Like in our ap-
proach, zk-SNARK protect privacy and several optimizations
are proposed for parsing JSON and for off-loading ZKPs com-
putations. However, it relies on stronger trust and system as-
sumptions that are typically unsuitable for e-voting (e.g., com-
plex setup ceremony, dedicated app embedding a RP, Trusted
Execution Environment (TEE)). Moreover, it does not address
eligibility proof and does not solve its related challenges that
we further detail in Section 3.1 such as the signature oracle is-
sue, enforcing cheating voters to (freshly) authenticate, or hid-
ing the length of the voters’ identity to protect voters’ privacy.

2 Context

Notations. We assume several cryptographic primitives.
Namely, hash(·) is a hash function, while sha2(.) specifically
denotes the SHA2 hash function. We use ·∥· as a bitstring
delimiter. We denote sign·(·) a signature primitive (e.g., RSA)
and checkSign(·, ·) the associated verification function.

2.1 E-Voting Protocols
We provide eligibility verifiability in a modular way. We make
only a few assumptions about the underlying voting protocol.

Voter list. We assume that the voter list IDel is public and
known in advance. The correctness of the voter list is out of
scope of the voting protocol. We also assume that voters in
IDel can be represented by identifiers known to the identity
providers used in OpenID, for example using their registered
email address or last names and first names.

Voter. Voters use a voting device to cast their vote. They
will need this voting device to authenticate using the OpenID
protocol. They may use other devices to build their ballot
and/or to perform checks. The only assumption that we make
here is that they send a ballot b to the voting server and
that it will appear on the bulletin board. This ballot should
be sufficient to guarantee that the vote is properly recorded
and tallied, for instance through the use of so-called ballot
tracker and verifiable homomorphic encryption as in [25].
This ballot may be purely computed by the voter’s device or
in interaction with other devices or with the voting server, that
may e.g., re-randomize the initial ballot to produce b.

Bulletin Board (BB). We assume that the protocol has a
notion of BB, on which the ballots are published. This board
may be fully public or only available to some entities, and in
particular to auditors, in charge of checking the eligibility.

Voting server. We also assume a voting server that cen-
tralizes the ballots from voters. It may authenticate voters,
verify their right to vote or revote, and perform some checks.
The voting server will not be trusted for eligibility. We solely
assume that it publishes the voters’ ballots on the BB.

Auditors. External auditors (or verifiers) access the BB
and check the correctness of the cryptographic material such
as signatures or zero-knowledge proofs.

Those assumptions capture a large class of protocols, that
notably includes Helios-like protocols [6, 21, 25], Select [42],
Selene and its variants [48, 49], Civitas [23], Polyas [45], and
protocols used in national elections in Estonia [34], Switzer-
land [52], and France [28]. On the other hand, we discard
decentralized protocols, such as self-tallying protocols [38].

Example 1. We present a Mini-Voting protocol inspired
from [14]. Before the election starts, decryption trustees com-
pute the public key pkE of the election in a distributed manner.
Each decryption trustee has a share of the decryption key.

• A voter id encrypts their choice v with randomness r,
yielding a ballot b = enc(v,r,pkE) with a homomorphic
encryption scheme enc.

• The voter then authenticates to the voting server with
identity id, that publishes b on the BB, possibly removing
the previous ballot from id if any.

• The voter checks that their ballot appears on the BB.
At the end of the election, the encryption of the final

result of the election can be obtained by homomorphically
combining the ballots. The decryption trustees collectively
decrypt this final ballot and publish onto the BB the result
and a ZKP of correct decryption. Auditors are in charge of
checking the correctness of all the ZKPs. They should also
check that no ballot disappears from the BB.

Helios [6] is an instance of the Mini-Voting protocol
where enc is the ElGamal encryption together with a ZKP
of well-formedness of the ballot.

2.2 OpenID Protocol
The OpenID protocol involves three main participants. The
End User (EU) wishes to connect to a website or a service,
called the RP. For this, they authenticate to an idP that issues
a token that grants the EU access to the RP. The RP is regis-
tered to the idP. In particular, they share a secret key, used to
authenticate their exchanges (with a MAC).

In a voting protocol setting, the EU is the voter and the RP
is the voting server, while the idP is a trusted third party such
as Google, Apple, or some national identity provider.

The detailed specification of OpenID Connect can be found
in [50]. It offers several possible authentication flows. We
provide here a high level description of the standard flow, that
is, the Authorization Code Flow (See Section 3.1 of [50]). We
depict this flow in black in Figure 1.

Consider an EU wishing to connect to a website, the RP,
that offers OpenID with idP as an authentication means. When
the EU clicks on the login button, the RP issues an Authenti-
cation Request AuthReq(N) where N is a nonce generated
by the RP. This request is sent to the EU, who is redirected
to the idP. The EU is then prompted to authenticate towards
the idP, e.g., in a pop-up page. If successful, the idP sends an
Authorization Code back to the EU, which is transmitted to
the RP. The RP can send a (MAC authenticated) request con-
taining this Authorization Code directly to the idP to obtain a
signed ID Token that attests that the EU successfully authen-
ticated themselves towards the idP. The ID token is a JSON
Web Token notably made of a JSON object tok and a signa-
ture σ := signidP(sha2(tok)) with the idP’s signature private
key idP.1 The JSON object tok = json(a1, . . . ,an) contains
several fields ai and in particular:

• (optionally) N, the nonce sent by the RP,

1The signature algorithm typically used is RSASSA-PKCS1-v1.5 using
sha2 [37], which essentially means the token is hashed with sha2 and then
signed with RSA.

• sub, the Subject Identifier, a locally unique and never
reassigned identifier within the EU and the RP. A EU
will always have the same, unique sub when connecting
to a given RP. But a different sub will be used when
connecting to another RP.

• the Audience Value aud, that is, a unique identifier of
the RP. This guarantees that the token cannot be used
for another RP.

• the token may contain several optional fields, such as the
EU’s name, email address, gender, birth date, etc.

Importantly, the ID token is sent only once the idP has ob-
tained from the login page the consent of the EU to communi-
cate such information to the website/RP. The consent of the
user is a key feature of OpenID Connect.

Once the RP receives a valid signed token, it can grant its
user (the EU) access to the requested service (e.g., a private
webpage).

2.3 Zero-Knowledge Proof Systems

ZKP [20, 29, 54] allows one to prove they know some
private data privZK satisfying some (public) statement S
depending on some public data pubZK. Such a proof leaks
nothing about privZK (zero-knowledge) and forging a
proof without knowing suitable privZK is computationally
infeasible (soundness). Usually, it is also required that
the proof computation always succeeds on data satisfying
S (completeness). We denote π := ZKS (privZK)(pubZK)
the ZKP of a statement S with private inputs privZK and
public inputs pubZK. The associated verification function is
checkZKS (π,pubZK). As an illustration, one can prove the
knowledge of a SHA2 preimage: privZK = x, pubZK = h,
and S = "I know x such that h = sha2(x)".

Numerous ZKP systems exist (see e.g., surveys [29, 54])
with different set of features and performance. For our use
case, we seek for a system that meets the following criteria:

1. transparent, i.e., no setup ceremony as it induces non-
trivial trust assumptions in the e-voting use case. We only
assume a Common Random String (CRS), made practi-
cal by efforts such as distributed randomness beacon [1].

2. non-interactive: verifiers should be able to verify
non-interactively.

3. we must be able to compute a proof of knowledge of
a SHA2 preimage with reasonable performance (matter
of minutes). This will be the costliest operation of our
proof (see below). Sadly, it is not possible to switch to a
more suitable hash function (such as poseidon discussed
below) as we inherit the choice made by OpenID.

4. the scheme should be perfect-zero knowledge, which
intuitively means that a computationally unbounded
attacker learns nothing about privZK, we will see that
everlasting privacy would otherwise be put at risk.

In particular, we are not particularly interested in minimizing
the verification cost, which can be distributed and spread over

time. Similarly, the proof size only needs to be reasonable (in
the range of MB) since the number thereof is upper-bounded
by the number of eligible voters.

Putting all those constraints together led us to look at recent
zk-SNARK implementations, and we selected Plonky2 [53]
(based on PLONK [30] and FRI [11]) for our Proof of Con-
cept (PoC) (see Section 6) by studying performance bench-
marks [31,46,51,55,56]. However, some other systems are cer-
tainly suitable as well and our protocol is presented in a mod-
ular way. In particular, we shall specify the ZKP statement for
our protocol in the more general framework of arithmetic cir-
cuits thus capturing a large class of other ZKP systems [54].

Arithmetic circuits [20, 29, 54] is a computational model
for polynomials and is the input format of the statement S
to prove for many ZKP systems [54]. The set of polynomials
K [X1, . . . ,Xn] is defined with respect to a given field K (e.g.,
Plonky2 uses a 64-bit field), and the variables Xi correspond
to the private values from privZK. The idea is to encode
the statement to prove S into an arithmetic circuit that
yields a polynomial P such that P[v1, . . . ,vn] = 0 if, and
only if, privZK := (v1, . . . ,vn) satisfies the statement S (for
simplicity, we assume pubZK is directly encoded into P).

Circuits have wires, carrying data to be processed, and
gates, processing data. For the sake of simplicity and mod-
ularity, we make few assumptions about the circuit language
and solely assume the following basic operations: (i) input
wires, i.e., those that are not outputs of gates, are associated
to variables Xi (i.e., private data) or constants (elements of
K), (ii) gates are associated to field (K) operations (e.g.,
addition, multiplication), (iii) equality constraints between
wires (which can be easily encoded as a subtraction). This
straightforwardly translates to a single constraint P = 0 for a
polynomial P ∈ K [X1, . . . ,Xn], where polynomial evaluation
is done by associating a field element from K to each wire.

We assume that if one can construct the statement S
as an arithmetic circuit, then one can use ZKS (·)(·) and
checkZKS (·). In practice, Plonky2 and possibly other sys-
tems provide such functionalities and meet all criteria listed
above (see Section 6).

Even though, in theory, any NP statement can be encoded,
one needs to strive to minimize the number of gates and con-
straints to obtain sufficiently efficient prover and verification
time. As we shall see in Section 4, one of the main challenges
with designing such circuits is that not all information and
computation thereon can be efficiently encoded as respec-
tively elements in K and K -operations. For instance, sha2 is
notoriously costly to encode [32, 54] because it mainly con-
sists of bitwise operations that require to encode each bit of
data as a wire, associated to a field element (of 64 bits for
Plonky2). When possible, "zk-friendly" hash functions such
as poseidon [32] are preferable as most internal computations
can directly be performed in the field.

3 OpenID-Eligibility (OIDEli) Protocol

While the OpenID protocol is primarily designed to offer an
authentication mechanism, we show in Section 3.1 how it can
be used to obtain a transferable proof which can convince
external observers that a legitimate voter has voted.

The core idea is to obtain a signature from the OpenID
provider of the fact that a voter with some identity id, in-
cluded in a list of eligible identities, cast some ballot b. Such
a signature (the signed ID Token) can be published on the
BB and verified by anyone. However, revealing the ID token
also reveals privacy-sensitive information, notably the voter’s
identity id and the exact timestamp of when the signature was
produced, and hence when the voter voted. Therefore, anyone
accessing the BB would be able to know who voted and when.
Worse, this may compromise everlasting privacy, as explained
in the introduction. Hence we show in Section 3.2 that this
signed token may be replaced by a ZKP of knowledge of a
(valid) signature, providing eligibility verifiability while still
hiding voter-related information and preserving everlasting
privacy.

Importantly, we do not require any modification of the
OpenID protocol, hence we can readily use existing imple-
mentations. Moreover, our design fits a large class of voting
protocols, as defined in Section 2.1.

3.1 OIDEli: Achieving Universal Eligibility
Verification with OpenID

In OpenID, the idP signs an ID token tok. This token may
contain several fields, notably the EU’s identity id and some
nonce N chosen by the RP, i.e., the service provider, here the
voting server. Since the idP signs an arbitrary nonce, our first
key idea is to use it as a signature oracle. In particular, if a
voter with identity id wants to cast a ballot b, we can obtain
a signature signidP(sha2(json(id,b, . . .))) by choosing N = b.
This basic idea comes however with several issues:

• format issue: N is a nonce and not an arbitrary bitstring.
This can be easily solved by hashing b first, that is, choosing
N = hash(b). Importantly, the hash function hash can be any
hash function of our choice. In particular, this hash function
can be chosen to be well suited for a specific ZKP system.

• cheating voters: the RP (the voting server) is not guaran-
teed that the EU (the voter) has recently authenticated them-
selves to the idP because the voter could replay an old Autho-
rization Code by reusing the same N = b.
• signature oracle issue: neither the idP nor the voter have

control on which ballot b is actually signed. This happens
“behind the scenes” for the voter and the OpenID provider
is not even aware that an election is running. In particular,
the voting server would be able to obtain a signed token for
a voter’s identity id and a ballot of its choice that can be
different from the ballot cast by voter id.
• control flow issue: the token tok with the signature of the

idP is sent to the RP (the voting server), not to the EU (the
voter). Hence the voter loses control on when a valid ballot is
produced in their name.

These potential threats guide the design of our protocol.
Hence we propose two key principles:

1. the voting client inspects the authentication request
AuthReq(N) to check that N is legitimate, e.g., that it
contains the ballot b the voter is willing to cast, thwarting
the RP maliciously choosing N.

2. to keep control on the moment where a valid signature
of the ballot is released to the voting server, the ballot b
is not sent directly to the idP. Instead, the voting client
commits to the ballot by sending hash(b,n0

V). The fresh
nonce n0

V is revealed only at the end, once the voting
client has controlled the validity of the ID token.

Protocol Description. With these design principles in mind,
we can now describe our OIDEli protocol, depicted in Fig-
ure 1. The protocol starts as soon as the voter with identifier id
is ready to cast a ballot b as prescribed by the voting protocol.
This ballot may be purely computed by the voting client or
after some interaction with the voting server (e.g., that may
re-randomize the ballot).

• The voting client (the EU) first generates a fresh nonce
n0

V and commits to the ballot, yielding nV = hash(b,n0
V)

that is sent to the voting server (the RP).
• The voting server generates a fresh nonce nS, as pre-

scribed by OpenID: the RP must defend against replay
of authentication requests. We will see in Section 3.2
that this nonce will also be used to protect privacy.

• This determines the nonce N = padid(hash(nS∥nV)),
used for the authentication request. As explained earlier,
we use a hash function to comply with the size constraint
of N and to hide nS that eventually must remain private
on the BB (see Section 3.2). We also add some padding
that depends on the length of id with padid (defined in
Section 4.1), in order to dramatically optimize the ZKP
(see Section 4).

• The authentication request AuthReq(N) is emitted by
the voting server and sent to the voting client together
with nS. The voting client inspects the authentication
request and checks that N = padid(hash(nS∥nV)) and
transmits the authentication request to the idP.

• The voter authenticates to the idP as done in OpenID.
• Upon successful authentication, the idP sends an ID

token tok,σ := signidP(H) where H = sha2(tok) to
the voting server, as specified by OpenID. The token
tok = json(id,sub,N,aud) is the JSON encoding of
different fields that include id, sub, N, and aud. It also
contains other fields that we omit for simplicity.

• The token and signature are sent back to the voting
client, which checks that everything is valid. If yes, the
voting client releases n0

V to the voting server.

Voting Server [RP] Voter [EU] OpenID Provider [idP]

Voting protocol until cast : voter’s identity is id

b

Pick fresh n0
V

nV := hash(b,n0
V)nV

Pick fresh nS
N := padid(hash(nS∥nV))

AuthReq(N),nS, id

Verify N ?
= padid(hash(nS∥nV))

AuthReq(N)

Authentication with login for id to the OpenID Provider

auth_codeauth_code

auth_code,MAC

tok := json(id,sub,N,aud), σ := signidP(H) (H := sha2(tok))

tok,σ

Verify: N, id, and aud in tok, checkSign(σ,H) is true,
where H = sha2(tok)

Display id and asks for confirmation

n0
V

e := (n0
V ,nS, tok,σ)

Π := eliProof(IDel,b,e)
Publish Π on the BB:

OIDEli

End of voting protocol

Π

b

Figure 1: OpenID-Eligibility (OIDEli) Protocol. Our protocol starts when the voter is ready to submit their ballot to the
voting server. We depict in blue the messages and actions of our protocol, in black the messages from the OpenID protocol
flow and in gray from the voting protocol. MAC is a MAC with a symmetric key shared by the Voting Server and the OpenID
Provider. padid(·) adds some padding depending on the length of id (see Section 4.1). The server produces an eligibility
proof Π = eliProof(IDel,b,e). Eligibility verifiers (auditors) can verify such a proof by running checkEliProof(IDel,b,Π). The
eligibility proof eliProof and verification checkEliProof algorithms are specified in Tables 1 and 2, depending on the protocol
version we consider.

• The voting server knows the ballot b and elements
e := n0

V ,nS, tok,σ obtained through our protocol. These
elements form a transferable proof of eligibility. Indeed,
the voting server can prove that it has received a valid
ballot from voter id. Thanks to the signature of the idP,
the voting server cannot forge such a proof. For now,
we assume e is published as-is on the BB.

• The voting protocol then continues as expected. For ex-
ample, voters may perform extra checks, for verifiability
purposes.

We denote eliProof(IDel,b,e) the eligibility proof ob-
tained from b,e. For this first version, we consider the
simple case where all the elements are published, hence

eliProofplain(IDel,b,e) = e. This proof contains, in particular,
the signature of the OpenID provider, which can be verified
by external observers (including auditors). The precise checks
are defined by the algorithm checkEliProofplain(IDel,b,e) de-
scribed in Table 1. Eligibility observers must also check that
all ballots come from distinct voters (that is, voters id are
pairwise distinct).

Note that the publication of the ballot b on the BB of the
voting protocol can be independent of, and can be done ear-
lier than, the publication of the proof of eligibility Π. This
way, individual verifiability (e.g., checking b on the BB) is
not impacted. However, the voting server must check it can
produce Π first, i.e., all checks in eliProof(·, ·, ·) are satisfied.

eliProofplain(IDel,b,e) := e

checkEliProofplain(IDel,b,(n0
V ,nS,tok,σ)) is true if :

• tok= json(id,sub,N,aud) and id ∈ IDel
• checkSign(σ,H) is true with H = sha2(tok)
• N = padid(hash(nS∥hash(b,n0

V)))

Table 1: Eligibility proof for OIDEli-id. IDel is the static set of
the eligible identities publicly published on the BB. For this
version (plain-id), the full authentication token tok (hence
the id of the voter) and nS are provided in clear. Eligibility
verifiers (auditors) must also check that all id associated to
the ballots published on the BB are pairwise distinct.

Trust Assumptions. As we shall see, OIDEli-id guarantees
eligibility verification assuming an honest idP. In contrast, the
voting server (RP) can be dishonest, as well as arbitrary many
voters. We also assume other dishonest RPs. In particular, an
(honest) voter may be willing to authenticate to the idP to
access other services provided by a potentially malicious RP’.
On the other hand, we assume that, when an EU uses idP to
authenticate to some RP’, the user does check the displayed
consent screen that specifies the context of the authentication
(here with RP’). Otherwise, a malicious service RP’, colluding
with the voting server RP could trigger Alice to authenticate
to the idP and obtain a valid signature from the idP of some
ballot of its choice. Our protocol resists such threats thanks
to the signature containing aud, the identifier of the RP, and
the fact that the name of the RP is displayed to the EU on the
consent screen. Indeed, the idP is responsible for providing
such a clear consent screen to the EUs.

Security Claims. We formally prove in Section 5 that
OpenID-Eligibility-clear-ID (OIDEli-id), implemented with
eliProofplain (Table 1), provides eligibility verifiability for
an honest idP: if a ballot b appears on the BB with a valid
proof eliProofplain, then the ballot has indeed be emitted by
an eligible voter id ∈ IDel, which has successfully authenti-
cated to the OpenID provider. Furthermore, there is at most
one ballot per eligible voter. Section 5 gives more details.

However, this first version of our protocol, OIDEli-id, may
break everlasting privacy and reveal privacy sensitive vot-
ers’ information. Indeed, in many voting protocols, the bal-
lot b, published on the BB, contains the encryption of the
vote. Moreover, eliProofplain(IDel,b,e) (provably) reveals
the identity of the voter, as well as when the voter voted (tok
has a timestamped field). Such sensitive information thus leak
to anyone having access to the BB. If, additionally, encryption
is broken in the future, then any BB reader learns the votes
of all voters, hence breaking everlasting privacy. We show in
the next section how we can entirely hide on the BB both tok
and its privacy-sensitive fields with the use of ZKPs.

3.2 OIDEli-zk: Protecting Everlasting Privacy
with ZKPs

In order to protect voters’ sensitive information and to pre-
serve everlasting privacy, we describe the final version of
OIDEli where the voting server does not publish the ID token
tok in clear-text. Instead, the server computes a ZKP that it
has received a valid idP’s signature, for a legitimate voter.

The signature received from the OpenID provider is of the
form σ := signidP(H) where nV = hash(b,n0

V) and:
H = sha2(json(id,sub,padid(hash(nS∥nV)),aud))

In principle, the server could prove that it knows a valid signa-
ture σ and values id,sub,nS,n0

V such that id∈ IDel and b is the
ballot inside the signature. This would require to encode the
verification of a signature in a ZKP. Instead, we remark that
we can reveal H and leave the verification of the signature to
be made publicly. Similarly, we can leave public the check
that nV = hash(b,n0

V).
The voting server also needs to prove that it receives sig-

natures for distinct users. This may be costly to prove in
zero-knowledge. Instead, we notice that the OpenID protocol
guarantees that sub is unique for each voter (EU). Hence we
can reveal sub and let the eligibility verifiers verify that the
sub are pairwise distinct.

Since we aim to reveal H but not the token in clear on
the BB, we should be careful to not allow brute-force attacks
where an attacker tries to construct H for each possible id ∈
IDel until finding a matching H found on the BB. We remark
that it suffices to keep one fresh nonce included in N private to
thwart such attacks. So the voting server reveals pubToken=
(sub,nV ,H), keeps id and nS secret, and produces a ZKP π :=
ZKS (privZK)(pubZK) for privZK := (nS, id) and pubZK :=
(IDel,pubToken) that guarantees the following statement S
(aud is considered to be a constant):

"I know private nS and id such that :
• id ∈ IDel and (1)
•H = sha2(json(id,sub,padid(hash(nS∥nV),aud)))"

Hence, OIDEli-zk considers eliProof = eliProofZK as de-
fined in Table 2. Eligibility verifiers (auditors) check the ZKP
and the signatures of each ballot using checkEliProof :=
checkEliProofZK. They verify in addition that all sub are
pairwise distinct. We explain in Section 4 how to design an
efficient circuit that can prove the statement S .

As mentioned in Section 3.1, the ZKP π does not have
to be computed right away (e.g., before publishing b on
the BB), checking the statement S is enough. Indeed, by
completeness of the ZKP, the server is guaranteed it will be
able to effectively do it later.

Security Claims. The OIDEli-zk protocol (implemented
with eliProofZK from Table 2) ensures eligibility verifiability,
as OIDEli-id. In addition, it hides potentially privacy-sensitive

eliProofZK(IDel,b,(n0
V ,nS,tok,σ)) := (b,pubToken,n0

V ,π,σ) if :
• tok= json(id,sub,N,aud) and id ∈ IDel

• N = padid(hash(nS∥nV)) and nV = hash(b,n0
V)

• checkSign(σ,H) is true with H := sha2(tok)
• pubToken := (sub,nV ,H)
• π := ZKS (nS, id)(IDel,pubToken)

checkEliProofZK(IDel,b,(pubToken,n0
V ,π,σ)) is true if :

• pubToken is of the form (sub,nV ,H)
• nV = hash(b,n0

V)
• checkZKS (π,(IDel,pubToken)) is true
• checkSign(σ,H) is true

Table 2: Eligibility proof for OIDEli-zk. The voter’s identity
is protected by the ZKP proving the statement S specified in
Equation (1). The eligibility verifiers must also verify that all
the sub published on the BB are pairwise distinct.

voter’s information and in particular the link between the
ballot and the identity of the voter who interacted with the idP.
This guarantees voters remain anonymous when the voting
server and the idP are honest. We call this property identity-
hiding. Similarly, the newly added ZKP prevents breaking
everlasting privacy. We summarize the security claims in
Table 4 (first two lines) presented in Section 5, where the
claims are formally defined and proved.

Preservation of other properties. Our OIDEli protocols
may affect other security properties of the underlying voting
protocol. In particular, as discussed in Section 3.1, OIDEli-id
may endanger everlasting privacy, while OIDEli-zk preserves
it, thanks to the fact that by the zero-knowledge property
of ZKPs, it does not add any link, even implicit, between
the voter and their ballot. We note that OIDEli-zk still leaks
the subject identifier of the voter sub. This could allow an
attacker to identify that a voter has voted in several elections,
but without knowing which one. For high-stake elections, one
can assume that the RP registered to the idP would anyway
be renewed (e.g., with a new and clear webpage associated to
the election), hence fresh subs would be used.

Our OIDEli protocols do not compromise vote privacy. If
the underlying voting protocol guarantees vote privacy, it is
still the case when used with our protocol since the latter does
not use any private material of the voting protocol. Similarly,
other verifiability properties enjoyed by the underlying voting
protocol (e.g., cast-as-intended, individual, and universal
verifiability) are preserved when our protocol is used since
the latter does not interfere with the verifiability checks of
the underlying voting protocol.

These claims regarding security preservation are informal
and could be false for evilly crafted protocols. Formally prov-
ing a composition theorem is out of scope of this paper. In-
stead, we substantiate our claims in Section 5 by also analyz-
ing the security of OIDEli on top of the Helios-like protocol
from Example 1.

On the other hand, we would like to highlight the fact that
the treatment of receipt-freeness, vote-buying or coercion-
resistance requires more care. Voting protocols designed to
offer such advanced properties often make fine grain assump-
tions on the communication channels (e.g., anonymous chan-
nels). They may require to hide revoting (e.g., Civitas [23]
or VoteAgain [43]). Moreover, the exact security definition
of receipt-freeness or coercion-resistance typically depend
on the voting protocol. Hence, in general, OIDEli may break
receipt-freeness and coercion-resistance. Whether or not it is
possible to adapt it strongly depends on the voting protocol.

4 Zero-Knowledge Proof Design

In this section we provide a complete ZKP design for attesting
the knowledge of a valid ID token privately linking the voter to
their ballot, more precisely the statement S (Equation (1)). We
first refine S into a precise statement specification accounting
for all constraints we inherit from using the OpenID protocol,
which were abstracted away in Equation (1). We then provide
a complete arithmetic circuit specification, implementing this
statement with a best effort at minimizing the number of gates
and constraints. Such circuits are re-usable for many ZKP sys-
tems, as discussed in Section 2.3. For our Proof-of-concept,
we implemented this circuit in Plonky2 (see Section 6).

4.1 Statement Specification
Figure 2 depicts the statement S to prove, which is structured
in four main parts that we define next.

Hash H computation. As mentioned in Section 3.1, we have
no other choice than to use sha2 to compute H, since this is
what the idP will use to compute the ID token, as specified
by [50] (see Section 2.3). Another constraint pertaining to the
nature of the ID token is the Base64 encoding of its content
before the signature, which results in the modified statement
H := sha2(base64(tok)). (Note that tok is a JSON Web token,
which is simply serialized before the Base64 encoding.)

Token tok checks (lookupi). We must check that the serial-
ization of tok contains the expected (private) nonce N (field
"nonce") and id (field "email" for Google as idP) and the
public sub (field "sub") and aud (field "aud"). The serializa-
tion of tok is a sequence of ASCII characters (each encoded
as a byte) of the form:
tok={..,"sub":"<sub>",..,"email":"<id>",..,

"aud":"<aud>",...,"nonce":"<N>",..}.
A naive approach to check that tok contains id in the "email"
field would be to: (i) impose equality between each of
the bytes of id (say of 20 bytes) with the bytes of tok at
the right position, say starting at position 100, so checking
id = tok[100..120], and (ii) impose equality "email":" =
tok[91..100], and (iii) "= tok[101] (note that the quote char-
acter " cannot be used in the JSON values). However, this

idN′ns sub,audnv

P

base64

∨
i∈L lookupi

base64

sha2

tok

P

P

P

s1

s2

sk

===

MH

Nonce N′ computation Hash H computation

Token tok checks

Merkle tree membership

Figure 2: Abstract view of our ZKP circuit for statement S . Large
circular nodes represent private inputs while hexagonal ones denote
public inputs. P stands for poseidon, L is the set of admissible lengths
(in bytes) for id in IDel. Each arrow represents a group of wires and
its color indicates the type of data each wire encodes as a field
K element (from the least to the most compact/efficient encoding):
bit (B) in red, byte (B) in blue, and field element (K) in green. The
small circles denotes an encoding: e.g., n wires encoding bytes are
encoded into n×8 wires encoding bits.

statement and its encoding as a circuit would trivially leak the
positions of this value in tok (here 100) and the length of id
(here 20), which must remain private information.2 Indeed,
as is the case for emails, revealing |id| associated to a ballot
can drastically reduce the anonymity set of associated voters.

To remedy this leakage, we must specify a statement (and
later a circuit) that is independent of |id|. In particular, the
positions of the fields in tok (e.g., of N) must not depend on
id. We do so by letting lookup :=

∨
i∈L lookupi where lookupi

enforces all the checks on tok using (i), (ii), and (iii) above,
assuming the length of id is i and L is the set of all admissible
lengths in bytes for id ∈ IDel. For our PoC, IDel was made of
Gmail addresses and L := [11,50].

Another potential leak could be caused by the fact that
the computation of H leaks |tok|, which itself leaks |id|.
Therefore, we make sure |tok| is always independent of
|id|, and actually constant, by the means of padid in N, in-
cluded in tok. We let padid(·) be the function that adds
maxid′∈L|id′|− |id| times the character "." at the end, so that
the sum |id|+ |padid(hash(·, ·))| is constant and independent
of id. Since all other field lengths are constant (given specific
idP and RP), we thus obtain constant |tok| (426 bytes for our
PoC). This way, all the positions of the fields in tok are at
a constant position and a byte-to-byte check for the fields
nonce (N), aud (aud), email (id), and sub (sub), can be en-
forced as explained above with the constraints (i) to (iii). The
only exception is that we do not check the padding of N in

2Indeed, even though a ZKP does not reveal its private inputs, the state-
ment and the circuit itself is public and can reveal some information.

tok, we solely check N′, i.e., N without padding, is present in
tok with the checks (i) and (ii) above, excluding check (iii).3

Remark 1. Note that a simpler solution to the |id| leaking
problem would be to first build a naive statement Si (and
circuit) leaking the length i = |id| and then takes a global
statement S :=

∨
i∈L Si. However, this would force us to repli-

cate |L| times the sha2 gadget in the circuit. This would come
at an unreasonable high cost in terms of number of gates
in the circuit and in terms of proving time (see Section 6.2).
To reach reasonable proving time, we must limit ourselves
to one sha2 sub-circuit, we thus need padid(·) to make |tok|
constant and the ∨i∈Llookupi optimization to allow adaptive
tok parsing.

Nonce N′ computation. We previously defined N to be
padid(N′) with N′ := hash(nS,nV). We instantiate the func-
tion hash with poseidon [32] as it is optimized for ZKPs.
Indeed, it requires much fewer gates than, e.g., sha2 (see Sec-
tions 2.3 and 6.2). Any secure hash function would be suitable
though. Because N is then sent in an AuthReq and should
thus be ASCII characters [50], the output of poseidon(nS,nV)
needs to be encoded with Base64 (base64 gadget). We obtain
N′ := base64(poseidon(nS,nV)) of 44 bytes.

Merkle tree membership. The final part of the statement
is the membership check of id in IDel. As standard, we use
a Merkle tree with the elements of IDel as leaves. The path
from id to the root of the tree M is added to our circuit by
successively hashing nodes on the path with their siblings
s1,s2, ...,sk, where k is bound by the depth of the Merkle
tree. The root M becomes a public input while the path to
id with the associated siblings si are kept private, effectively
proving that id ∈ IDel by revealing M only. We used poseidon
as hashing algorithm to eventually optimize the circuit.

4.2 Arithmetic Circuit
To translate the statement specified in Section 4.1 into a proper
arithmetic circuit specification, we shall specify how the vari-
ous pieces of data are encoded as elements of the field K and
decompose the required gadgets into sub-circuits.

Encoding data in K and converters. Initially, most inputs
are given as sequences of bytes (B∗). A compact encoding
to project them onto K ∗ would be to encode as many bytes
as possible in a field element (e.g., 8 bytes in a 64-bit field
elements in the case of Plonky2). However, not all operations
on bytes (or even bits, B∗) can be easily encoded as operations
in K (gates) without a large number of gates. When intensive
bitwise operations are required, as for computing sha2, each
bit of information shall be encoded as a field element so
that bitwise operations can be easily encoded with a single

3This is w.l.o.g. since the statement already proves tok has the expected
length and thus so does N. The characters used for padding are irrelevant and
not to be checked since the quote character " is forbidden in N.

or a few gates, trading some data density for lower circuit
complexity. The same applies for operations on bytes.

In order to convert from K to B or from B to B, the value
is split into powers of 2 which are then grouped back.

Equality checks. Equalities in the circuit link two wires and
enforce identical values. (They can be encoded with subtrac-
tion gates.) Note that lookup contains equality checks, thus
the circuit has one output wire that should be checked to be 0.

base64 gadget. Encoding a sequence of bytes into Base64
implies splitting the sequence into a sequence of 6-bit chunks.
Each 6-bit chunk is mapped to a Base64 character which is
itself encoded over 8 bits (UTF8). Thus we decompose the
base64 gadget into parallel b64chunk gadgets as depicted in
Figure 3.

The b64chunk gadget must implement the conversion ta-
ble given in Table 3. A naive implementation thereof would
require 64 comparisons, one per entry in the conversion table.
But since this table is composed of 5 ranges of contiguous
output characters (e.g., 0-25 is mapped to A-Z), the corre-
sponding circuit can be simplified to 5 range checks as shown
in Figure 4. In order to efficiently perform those checks, the
6 boolean wires are first combined into an element of the
field f ∈ K . For each range, f is (i) compared to the start and
end of the range (resulting in either 0 or 1), and (ii) shifted
to match the output range. E.g., it is shifted by 65 for the
first range because the character ’A’, corresponding to input
’0’, is encoded by the number 65 in UTF8. The output of the
comparison (i) and of the shift (i) are then multiplied, and the
result of the 5 multiplications are summed. In short, the com-
parisons form a mask and only one of them can be non-zero
for a value of f . Lastly, the output of the sum is converted
back to a sequence of 8 bits.

lookupi gadget. The sub-circuit lookupi takes as input
the ID token tok and the values it should contain, assum-
ing |id|= i. We made our circuit modular and robust to fields
re-ordering since the specification [37] does not guarantee a
fixed ordering, even though we observed no such re-ordering
in practice with Google as idP. More precisely, our PoC adapts
the circuit computation to the ordering used in a given tok,
the ordering is not sensitive information so it can be leaked.
The byte positions of the fields for sub, id, aud, and N are
then computed based on the order of the fields and the as-
sumed length of id. Given those positions, equalities between
wires, encoding each one byte of information, can be added
to the circuit lookupi according to the checks (i), (ii), and (iii)
specified in Section 4.1.

5 Security Analysis

In order to prove the security of the OIDEli protocols we
conduct a security analysis using the ProVerif tool [17]. We

B ⇒ B8 B ⇒ B8 B ⇒ B8

b64chunkb64chunk b64chunk b64chunk

Figure 3: base64 circuit for Base64 encoding. Each arrow repre-
sents a single wire. Each b64chunk gadget has a 6-bit input and a
8-bit output, specified in Figure 4, following the conversion Table 3.

In (B6) Out (B8) UTF8 In (B6) Out (B8) UTF8

0 65 A 52 48 0
1 66 B 53 49 1

.
25 90 Z 61 57 9

26 97 a 62 45 -
27 98 b
. 63 95 _
51 122 z

Table 3: Base64 conversion table from In (6 bits) to Out (8 bits)
with the corresponding output UTF8 character. Colors highlight the
contiguous ranges of outputs used in our circuit (Figure 4).

B6 ⇒ K

< 26 +65 < 52 +71 < 62 −4 = 62 45 = 63 95

× × × × ×∧ ∧

¬ ¬

+

K ⇒ B8

Figure 4: b64chunk circuit. Each of the sub-circuits that are even-
tually summed correspond to one contiguous range from Table 3.

prove that the two protocols ensure eligibility verifiability and
OIDEli-zk additionally ensures identity-hiding. Finally, we
instantiate our two protocols in the context of a Helios-like
voting protocol and prove that OIDEli-zk ensures everlast-
ing privacy and preserves the main security properties we
expect from an e-voting protocol: vote secrecy, individual,
and universal verifiability.

5.1 ProVerif in a Nutshell
Two main approaches exist to formally prove the security of
cryptographic protocols: computational and symbolic proofs.
Computational proofs allow for more fine-grained models,
where the adversary is any polynomial probabilistic Turing
machine and the security of the protocol is reduced to the secu-
rity of some well-known security assumptions such as compu-
tational Diffie-Hellman. In contrast, symbolic proofs explore
more abstract models where the cryptographic primitives are
assumed to behave as expected. This approach typically al-

lows to analyze more complex protocols and is more amend-
able to automation [10]. ProVerif [18] is a state-of-the-art
automated prover in the symbolic setting. It has demonstrated
its usefulness to find attacks in, fix, and finally prove secure
widely deployed protocols such as TLS 1.3 [15], the Signal
messaging protocol [39], or e-voting protocols [13,22,26]. In
ProVerif, protocols are modeled in a variant of the applied pi-
calculus: messages are abstracted with terms to focus on their
functionality, e.g., a ciphertext is perfectly hiding its plain-
text as long as the attacker does not know the decryption key.
Protocol agents are described with processes that model the
exchanges of messages and checks thereon. Finally, the public
communication channels are fully controlled by a Dolev-Yao
attacker who can intercept, send, but also forge new messages.

Given some security goals, ProVerif automatically produce
security proofs thereof, attacks if there are any, or does not
terminate successfully (since the underlying problem is unde-
cidable). For all the properties we analyzed, we were able to
make ProVerif produce security proofs or find attacks.

5.2 Security Analysis of OIDEli and OIDEli-zk
We conduct a comprehensive security analysis of our two
protocols. The results are presented in Table 4 and backs up
the informal security claims stated in Section 3. More details
about ProVerif and our models are given in Appendix B.

Specifically, we verify two properties, eligibility verifiabil-
ity and id-hiding, in rich scenarios composed of an unbounded
number of voters who may cast as many ballots as they want.
We also consider an arbitrary number of (malicious) RP, one
of them being the voting server.

Eligibility verifiability. The first property, eligibility verifia-
bility, ensures that each ballot has been registered in the name
of a legitimate voter. Moreover, to prevent ballot stuffing, it
additionally ensures that at most one ballot can be accepted
per legitimate voter.

To formally define the property, we follow the approach
developed in e.g., [22]. We first define an uninterpreted pri-
vate symbol of function, is_eligible(id), that is used whenever
a legitimate voter id is registered. We then define three differ-
ent events: Corrupted(id) is executed each time a legitimate
but corrupted voter id is registered, PublishBallot(b,Π) is ex-
ecuted each time a ballot b and its corresponding proof Π

is published onto the BB, and Voted(id,b) is executed each
time a voter confirms their vote (i.e., reveals n0

V in Figure 1).
Intuitively, an event is merely an annotation in the trace, that
records some specific step of the protocol. Given a trace tr and
an event E, E ∈ tr means that the event is executed in the trace.

Definition 1. A process P ensures eligibility verifiability if,
for all execution trace tr,
PublishBallot(b,Π) ∈ tr ⇒ GetId(Π) = is_eligible(id)

∧(inj−Voted(id,b) ∈ tr∨ inj−Corrupted(id) ∈ tr)

where GetId(Π) returns the voter identity id occurring in Π.

The injectivity of the correspondence property (denoted by
inj−before events in the conclusion) prevents ballot stuffing
by ensuring that there is at most one matching Voted(·, ·) or
Corrupted(·) per published ballot (see [18] for a formal defi-
nition of injective queries). In our security analysis, we prove
that our protocols satisfies Definition 1 assuming everyone
but the idP can be dishonest.

Id-Hiding. The second property, id-hiding, ensures that the
protocol does not leak the identity of the voter even if all
the agents, but the voting server and the idP (as they directly
communicate with voters) are compromised. Intuitively, the
attacker should not be able to distinguish whether a ballot is
issued by Alice or a fresh unknown voter. This anonymity
property is modeled, as usual in symbolic models [7,36] by an
equivalence property called strong secrecy [16] (the hidden
value being the voter id).

To formally define id-hiding, given an e-voting protocol,
we note Voter(id) the process that describes the behaviour
of a given voter id. We note S the process that models the
parallel composition of all the remaining processes describing
the protocol under study (e.g., the idP process, the voting
server process, etc.). And we note ≈ the equivalence relation,
i.e., P ≈ Q holds when an attacker is not able to distinguish
whether the P or the process Q is executed. (The exact notion
of equivalence proved by ProVerif is defined in [18].)

Definition 2. An e-voting protcol (S,Voter(·)) ensures id-
hiding if the following equivalence property holds:

S | Voter(id)≈ S | Voter(id′)
where id is the id of a legitimate voter known by the attacker,
id′ is a different id unknown from the attacker.

To compare with e-voting literature, one may notice that
e-voting security analyses usually prefer the notion of vote
secrecy [40] to the notion of anonymity to express privacy.
Unfortunately, in our OIDEli protocols, the notion of vote
is abstracted; only a notion of ballot is kept for the sake
of generality. Therefore, Vote secrecy cannot be expressed
in such a modular way. For our security analysis, we thus
additionally verify id-hiding in our generic framework and
prove that our protocols, when instantiated with a concrete
e-voting protocol, preserve vote secrecy in Section 5.3. We
thus first prove that OIDEli-zk always guarantees id-hiding
assuming an honest voting server and idP (as they directly
communicate with voters), all other agents can be dishonest.
We then show that OIDEli-id violates id-hiding, for reasons
we already discussed in Section 3.1. Finally, we prove that,
when instantiated with an Helios-like e-voting protocol (see
next section), our OIDEli protocols preserve vote secrecy.

Voting with with
protocol only OIDEli-id OIDEli-zk

eligibility verifiability - ✓(<1s) ✓(1s)
id-hiding - ✗(<1s) ✓(<1s)

With the Helios-like e-voting protocol
individual verifiability ✓(<1s) ✓(<1s) ✓(<1s)
universal verifiability ✓(<1s) ✓(<1s) ✓(<1s)
vote secrecy ✓(<1s) ✓(10s) ✓(23s)
everlasting privacy ✓(<1s) ✗(11s) ✓(60s)

Table 4: Results of our security analysis (✓: proved, ✗: attack)
with proof times (in seconds) obtained running ProVerif v2.05 on a
Macbook Pro 14, M2 Pro, 32Go RAM. The ProVerif files used to
conduct this analysis are provided as supplementary material [27].

5.3 Instantiating with a Helios-like Protocol

We foresee that our protocols will preserve the main secu-
rity properties one may expect from an underlying e-voting
protocol. To demonstrate this on a concrete example, we de-
cided to prove the security of a Helios-like e-voting protocol
implementing our OIDEli and OIDEli-zk extensions.

Assuming that the BB is publicly audited (i.e., only valid
proofs and signatures can be published), we prove: individual
verifiability [41] when everyone but the considered voter can
be dishonest, universal verifiability when everyone can be dis-
honest, and vote secrecy [40] when everyone but a threshold
of the decryption trustees can be dishonest. The results are
summarized in Table 4.

We prove that OIDEli-zk furthermore preserves practical
everlasting privacy [8]. In this scenario, we assume that the
attacker is away during the voting phase but records publicly
available data to exploit it in the future when all the condi-
tionally secure cryptographic primitives can be broken.

6 Proof of Concept

This section demonstrates the practicality of OIDEli. We first
provide a full-fledged implementation for our ZKP design
(from Section 4), distributed as a standalone Rust library,
and an evaluation thereof showing proofs can be created and
verified efficiently enough to be used in the largest nation-
wide elections to date. We then provide a PoC implementation
for our protocol OIDEli-zk and its integration on top of the
state-of-the-art voting system Belenios [25].

6.1 ZKP Implementation

Our implementation to generate and verify eligibility proofs is
available as the open source Rust library oideli-zkp avail-
able at [27]. It represents 3.3K lines of code with a well
documented command line interface allowing direct access to
its functionalities. Each gadget of the circuit is implemented

in a separate module with dedicated and comprehensive unit
tests following software engineering best practices, making
the project accessible to anyone interested in inspecting and
understanding it.

The choice of Rust as a programming language comes
from the decision of using Plonky2 as ZKP system (explained
in Section 2.3). The interface of Plonky2 is very close to
the level of arithmetic circuits, with a CircuitBuilder to
add Targets (i.e., wires) and connect them to various gates,
allowing us to have low level control and implement specific
functions (e.g., the base64 encoding). We use the standard
Plonky2 configuration, notably with a 64-bit Goldilocks field,
which is claimed to provide 100-bit security [53]. Our ZKP
library is modular and can accommodate any idP, ID token
fields, and ordering thereof. When instantiated to Google
as idP, it yields the following message lengths (in bytes):
|tok| = 426, |N′| = 44, |H| = |nS| = |nV | = 32, |sub| = 21,
and L = [11,50].

6.2 ZKP Evaluation
We benchmark our ZKP implementation oideli-zkp to eval-
uate its practicality in the context of a large scale election. To
this end, we consider the 2022 legislative election for French
nationals living abroad, which had 1.5M eligible voters and
where 300K of them voted online over a period of 6 days [3]
for the first round [28] (out of two rounds). The other largest
elections have been held with comparable figures (310K bal-
lots cast in 7 days in Estonia [5]; 280K ballots cast in 12 days
in Australia [19]). We estimate the cost of organizing such an
election in terms of hardware necessary to generate the ZKPs,
which is the only significant additional cost induced by using
our OIDEli-zk protocols (see Section 6.3).

As already discussed, ballots of the underlying voting pro-
tocol can be published on the BB independently of their proof
of eligibility. The voting server is only required to finish the
computation of the ZKPs by the end the tally phase. In the
case of our target election, this implies that the voting server is
able to generate at least 300K ZKPs in 6 days, corresponding
to an average rate of 2.01K proofs per hour.

Methodology. To benchmark oideli-zkp, we generate as
many ZKPs as possible in a controlled environment for a
defined amount of time. Our experiments were run on a single
machine with two AMD EPYC 7F52 16-Core processors
running at a maximal frequency of 3.9 GHz with 512 GB
of RAM. We run the experiment on independent threads,
each locked on a single CPU core. This allows evaluating
the scalability of the computation and predict performances
on machines with more cores. Lastly, since the circuit solely
depends on the election settings, we build the circuit once-
for-all for an election. Our oideli-zkp library then takes
this circuit blueprint and private and public data as input to
compute each of the ZKPs. We use a Merkle tree of depth
21 containing up to 2M eligible voters’ identities. Google

was used as idP and GMail addresses as id, which yields ID
tokens of 1014 bytes whose tok is 426 bytes long.

Results. Table 5 shows the performances of oideli-zkp,
first running on a single core and then scaled up on 32 cores.
The proof rate scales almost proportionally to the number
of CPU cores. We also note that the verification time is, as
expected, very low. As suggested by another experiment on 4
cores of a mid-range laptop, an auditor can verify the 300K
eligibility proofs of our target election in under 20 minutes.
Aside from that, we measure a size of 200 KB per ZKP and a
maximum RAM consumption of 5GB per proof computation.

1 core 32 cores

Proof rate (scaling factor) 43.8h−1(1) 1347.2h−1 (30.8)
Mean proof time 82.1s 85.5s

Mean verification time 8.68ms 9.14ms

Table 5: Performances of oideli-zkp on 1 and 32 cores.

Cost estimation. According to Table 5, twice the perfor-
mance of the machine we used would be enough to process
all the ballots of our target election that requires a 2010h−1

proof rate. The machine we used costs ca. 14K e, which
yields a total first investment of 28K e, which is likely to be
marginal compared to the deployment cost for such a large
election. Renting CPUs for computing the ZKPs, e.g., on
AWS, is possible and much cheaper (ca. 500 e) but discour-
aged for such important, nation-wide elections since it could
put everlasting privacy at risk. Indeed, the machines in the
cloud would process data linking the ballot with their voters’
id, thus introducing a new trust assumption for everlasting
privacy, i.e., the cloud provider. However, it seems to be the
easiest solution for moderate-stake elections.

Larger elections. To evaluate the practicality of OIDEli
in a larger election, we estimate its cost for casting 160M
votes, such as in the US 2020 presidential primary elections4.
Assuming a timeframe of 30 days5, the required proof rate is
(160×106)÷(30 ·24) = 2.22×105 proof per hour. Using the
same price assumptions as above, the cost of purchasing hard-
ware necessary to reach this proof rate amounts to ca. 2.3M e,
which is reasonable when considering a $2B lower bound of
organizing such an election6. This cost could be amortized
by using the hardware for other purposes after the election,
or alternatively CPUs could be rented at a much lower cost
(ca. 44K e on AWS).

4https://history.house.gov/Institution/Election-
Statistics/Election-Statistics/

5Some states opened polling stations several months in advance
(https://www.ncsl.org/elections-and-campaigns/2020-state-
primary-election-dates)

6https://electionlab.mit.edu/sites/default/files/2022-05/
TheCostofConductingElections-2022.pdf

Sub-circuits evaluation. Since the generation of ZKPs is the
only non-negligible additional cost induced by using OIDEli,
we followed a best-effort approach to optimize the proving
time while keeping the hardware requirements reasonable, as
previously established. To identify which part of the circuit is
the most complex and needs the most computing power, we
compare the proving time for sha2 to the overall proving time.
The proof is for a pre-image of 671 bytes, which is the size
of the sha2 input in oideli-zkp, i.e., the size of the Base64
encoding of tok and its header. Using the exact same machine
and setup, the proving time of one core proving sha2 only is
78.7 s which represents 96% of the proving time for the full
ZKP computed by oideli-zkp.

In order to witness the need for the ∨i∈Llookupi gadget
optimization and the use of padid(·) (see Remark 1), we built
a circuit containing a disjunction of k sha2 computations.
Without the optimization, we would need to set k = |L|, that is
k = 39 for our PoC, yielding a proving time as long as 2784 s
for a single proof instead of 78 s. We provide in Appendix A
a more comprehensive comparison of the different circuits
costs in terms of gates.

6.3 Full-fledged Proof of Concept

To demonstrate the practicality and the usability of OIDEli,
we implemented it on top of the Belenios voting protocol
and we ran a few mock elections. The source code of our
PoC is publicly available [27] and made easily reproducible
via a docker container. In particular, it is possible to set up
(experimental) elections using our code.

The integration of OIDEli in the voting flow results in the
addition of two steps for the voter. The voter first builds a
ballot and sends it to the voting server, exactly as in the un-
derlying voting protocol. The voting client then automatically
performs the nonce construction with the voting server and
redirects the voter to the authentication page of the idP. Upon
successful authentication, the voting server queries the ID
token from the idP and forwards it to the voting client. Fi-
nally, the voter is asked to confirm that the id from the ID
token is correct (here the email), then revealing the nonce
commitment n0

V to the voting server and concluding the role
of the voter in the protocol. The voting server then proceeds
with the rest of the underlying voting protocol checks and
computations (here for Belenios, it notably publishes the cast
ballot on the BB). Additionally, it computes and publishes the
proof of eligibility at a later time.

The impact on usability thus seems marginal, since we only
require voters to log-in at the idP, an operation they are used
to perform in other contexts (e.g., login to some service using
their Google account). No costly computations are required
on the voting client-side. The only additional costly compu-
tation is on the server-side with all the ZKPs. We already
established in Section 6.2 that those can be computed contin-
uously throughout the election with affordable hardware.

https://history.house.gov/Institution/Election-Statistics/Election-Statistics/
https://history.house.gov/Institution/Election-Statistics/Election-Statistics/
https://www.ncsl.org/elections-and-campaigns/2020-state-primary-election-dates
https://www.ncsl.org/elections-and-campaigns/2020-state-primary-election-dates
https://electionlab.mit.edu/sites/default/files/2022-05/TheCostofConductingElections-2022.pdf
https://electionlab.mit.edu/sites/default/files/2022-05/TheCostofConductingElections-2022.pdf

Acknowledgments

We are grateful to Geoffroy Couteau who helped us with
useful insights about ZKPs and zk-SNARKs. We also thank
Benjamin Voisin for his preliminary implementation of a ZKP
with Plonky2 during his bachelor internship.

References

[1] Distributed randomness beacon. https:
//drand.love/.

[2] iGov working group. https://openid.net/wg/
igov/.

[3] Results of the first round of the 2022 legislative french
elections. https://www.diplomatie.gouv.fr/fr/
services-aux-francais/voter-a-l-etranger/
resultats-des-elections/article/elections-
legislatives-resultats-du-1er-tour-pour-
les-francais-de-l-etranger, 2022.

[4] Decision n° 2022-5813/5814 AN of the
constitutional council (in french). https:
//www.conseil-constitutionnel.fr/decision/
2023/20225813_5814AN.htm, 2023.

[5] Statistics about internet voting in estonia.
https://www.valimised.ee/en/archive/
statistics-about-internet-voting-estonia,
2023.

[6] Ben Adida. Helios: Web-based open-audit voting. In
USENIX Security Symposium, 2008.

[7] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark
Ryan. Analysing unlinkability and anonymity using the
applied pi calculus. In Computer Security Foundations
Symposium (CSF). IEEE, 2010.

[8] Myrto Arapinis, Véronique Cortier, Steve Kremer, and
Mark Ryan. Practical everlasting privacy. In Interna-
tional Conference on Principles of Security and Trust.
Springer, 2013.

[9] Foteini Baldimtsi, Konstantinos Kryptos Chalkias, Yan
Ji, Jonas Lindstrøm, Deepak Maram, Ben Riva, Arnab
Roy, Mahdi Sedaghat, and Joy Wang. zklogin: Privacy-
preserving blockchain authentication with existing cre-
dentials. arXiv preprint arXiv:2401.11735, 2024.

[10] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan,
Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan
Parno. Sok: Computer-aided cryptography. In Sympo-
sium on Security and Privacy (S&P). IEEE, 2021.

[11] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev. Fast reed-solomon interactive ora-
cle proofs of proximity. In International colloquium on
automata, languages, and programming (ICALP), 2018.

[12] David Bernhard, Véronique Cortier, David Galindo,
Olivier Pereira, and Bogdan Warinschi. SoK: A com-
prehensive analysis of game-based ballot privacy def-
initions. In Symposium on Security and Privacy (SP).
IEEE, 2015.

[13] David Bernhard, Véronique Cortier, Pierrick Gaudry,
Mathieu Turuani, and Bogdan Warinschi. Verifiability
analysis of CHVote. Cryptology ePrint Archive, 2018.

[14] David Bernhard, Véronique Cortier, Olivier Pereira, Ben
Smyth, and Bogdan Warinschi. Adapting helios for
provable ballot secrecy. In European Symposium on
Research in Computer Security (ESORICS), 2011.

[15] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim
Kobeissi. Verified models and reference implementa-
tions for the tls 1.3 standard candidate. In Symposium
on Security and Privacy (S&P). IEEE, 2017.

[16] Bruno Blanchet. Automatic proof of strong secrecy
for security protocols. In Symposium on Security and
Privacy (S&P). IEEE, 2004.

[17] Bruno Blanchet. Modeling and verifying security proto-
cols with the applied pi calculus and proverif. Founda-
tions and Trends in Privacy and Security, 1(1-2):1–135,
2016.

[18] Bruno Blanchet, Vincent Cheval, and Véronique Cortier.
Proverif with lemmas, induction, fast subsumption, and
much more. In Symposium on Security and Privacy
(S&P). IEEE, 2022.

[19] Ian Brightwell, Jordi Cucurull, David Galindo,
and Sandra Guasch. An overview of the iV-
ote 2015 voting system. New South Wales
Electoral Commission, Australia, 2015. https:
//elections.nsw.gov.au/getmedia/4279ab0e-
5db0-451e-9e3d-87d81ed82d9c/overview-of-
the-ivote-2015-voting-system.pdf.

[20] ZKProof. Ed. by Daniel Benarroch, Luís Brandão, Mary
Maller, and Eran Tromer. ZKProof community reference
(version 0.3), 2022. https://docs.zkproof.org/
reference.pdf.

[21] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer,
and David Galindo. BeleniosRF: A non-interactive
receipt-free electronic voting scheme. In Conference on
Computer and Communications Security (CCS). ACM,
2016.

https://drand.love/
https://drand.love/
https://openid.net/wg/igov/
https://openid.net/wg/igov/
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.diplomatie.gouv.fr/fr/services-aux-francais/voter-a-l-etranger/resultats-des-elections/article/elections-legislatives-resultats-du-1er-tour-pour-les-francais-de-l-etranger
https://www.conseil-constitutionnel.fr/decision/2023/20225813_5814AN.htm
https://www.conseil-constitutionnel.fr/decision/2023/20225813_5814AN.htm
https://www.conseil-constitutionnel.fr/decision/2023/20225813_5814AN.htm
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://elections.nsw.gov.au/getmedia/4279ab0e-5db0-451e-9e3d-87d81ed82d9c/overview-of-the-ivote-2015-voting-system.pdf
https://docs.zkproof.org/reference.pdf
https://docs.zkproof.org/reference.pdf

[22] Vincent Cheval, Véronique Cortier, and Alexandre De-
bant. Election verifiability with proverif. In Computer
Security Foundations Symposium (CSF). IEEE, 2023.

[23] Michael R Clarkson, Stephen Chong, and Andrew C
Myers. Civitas: Toward a secure voting system. In
Symposium on Security and Privacy (S&P). IEEE, 2008.

[24] Véronique Cortier, David Galindo, Ralf Küsters, Jo-
hannes Müller, and Tomasz Truderung. SoK: Verifi-
ability notions for e-voting protocols. In Symposium on
Security and Privacy (S&P). IEEE, 2016.

[25] Véronique Cortier, Pierrick Gaudry, and Stephane
Glondu. Belenios: a simple private and verifiable elec-
tronic voting system. In Foundations of Security, Proto-
cols, and Equational Reasoning. Springer, 2019.

[26] Véronique Cortier and Cyrille Wiedling. A formal anal-
ysis of the norwegian e-voting protocol. Journal of
Computer Security, 25(15777):21–57, 2017.

[27] Véronique Cortier, Alexandre Debant, Anselme
Goestchmann, and Lucca Hirschi. Supplementary
material, 2024. https://gitlab.inria.fr/oideli/
oideli-artifact.

[28] Alexandre Debant and Lucca Hirschi. Reversing, break-
ing, and fixing the french legislative election e-voting
protocol. In USENIX Security Symposium, 2023.

[29] Mirco Richter et al. The MoonMath Man-
ual to zk-SNARKs, 2022. https://github.com/
LeastAuthority/moonmath-manual.

[30] Ariel Gabizon, Zachary J Williamson, and Oana Ciob-
otaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, 2019.

[31] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi.
ZKBoo: Faster Zero-Knowledge for boolean circuits. In
USENIX Security Symposium, 2016.

[32] Lorenzo Grassi, Dmitry Khovratovich, Christian Rech-
berger, Arnab Roy, and Markus Schofnegger. Poseidon:
A new hash function for Zero-Knowledge proof systems.
In USENIX Security Symposium, 2021.

[33] Thomas Haines, Rafieh Mosaheb, Johannes Müller, and
Ivan Pryvalov. Sok: Secure e-voting with everlasting
privacy. Proc. Priv. Enhancing Technol., 2023(1):279–
293, 2023.

[34] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan
Willemson. Improving the verifiability of the estonian
internet voting scheme. In Electronic Voting (E-Vote-ID).
Springer, 2017.

[35] Ethan Heilman, Lucie Mugnier, Athanasios Filippidis,
Sharon Goldberg, Sebastien Lipman, Yuval Marcus,
Mike Milano, Sidhartha Premkumar, and Chad Unrein.
Openpubkey: Augmenting openid connect with user
held signing keys. Cryptology ePrint Archive, 2023.

[36] Lucca Hirschi, David Baelde, and Stéphanie Delaune.
A method for verifying privacy-type properties: the un-
bounded case. In Symposium on Security and Privacy
(S&P). IEEE, 2016.

[37] Michael B. Jones, John Bradley, and Nat Sakimura.
JSON Web Token (JWT). RFC 7519, May 2015.

[38] Aggelos Kiayias and Moti Yung. Self-tallying elections
and perfect ballot secrecy. In Public Key Cryptography
(PKC), 2002.

[39] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno
Blanchet. Automated verification for secure messaging
protocols and their implementations: A symbolic and
computational approach. In European symposium on
security and privacy (EuroS&P). IEEE, 2017.

[40] Steve Kremer and Mark Ryan. Analysis of an electronic
voting protocol in the applied pi calculus. In European
Symposium on Programming (ESOP). Springer, 2005.

[41] Steve Kremer, Mark Ryan, and Ben Smyth. Election
verifiability in electronic voting protocols. In Euro-
pean Symposium on Research in Computer Security
(ESORICS). Springer, 2010.

[42] Ralf Küsters, Johannes Müller, Enrico Scapin, and
Tomasz Truderung. sElect: A lightweight verifiable
remote voting system. In Computer Security Founda-
tions Symposium (CSF). IEEE, 2016.

[43] Wouter Lueks, Iñigo Querejeta-Azurmendi, and
Carmela Troncoso. Voteagain: A scalable coercion-
resistant voting system. In USENIX Security Symposium,
2020.

[44] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla
Jean-Louis, Alexander Frolov, Tyler Kell, Tyrone Lob-
ban, Christine Moy, Ari Juels, and Andrew Miller. Can-
did: Can-do decentralized identity with legacy compati-
bility, sybil-resistance, and accountability. In IEEE Sym-
posium on Security and Privacy (SP’21). IEEE, 2021.

[45] Johannes Mueller and Tomasz Truderung. Caised: A
protocol for cast-as-intended verifiability with a second
device. In EvoteID, 2023.

[46] Celer Network. The Pantheon of Zero Knowl-
edge Proof Development Frameworks, 2023.
https://blog.celer.network/2023/08/04/
the-pantheon-of-zero-knowledge-proof-
development-frameworks/.

https://gitlab.inria.fr/oideli/oideli-artifact
https://gitlab.inria.fr/oideli/oideli-artifact
https://github.com/LeastAuthority/moonmath-manual
https://github.com/LeastAuthority/moonmath-manual
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/
https://blog.celer.network/2023/08/04/the-pantheon-of-zero-knowledge-proof-development-frameworks/

[47] S. Palladino. Sign in with google to your identity con-
tract. https://forum.openzeppelin.com/t/sign-
in-with-google-to-your-identity-contract-
for-fun-and-profit/1631, 2019.

[48] Peter Ryan, Peter Roenne, and Simon Rastikian. Hy-
perion: An enhanced version of the Selene end-to-end
verifiable voting scheme. In EvoteID, 2021.

[49] Peter Ryan, Peter Rønne, and Vincenzo Iovino. Se-
lene: Voting with transparent verifiability and coercion-
mitigation. In VOTING, 2016.

[50] Natsuhiko Sakimura, John Bradley, Mike Jones,
Breno De Medeiros, and Chuck Mortimore. Openid
connect core 1.0. The OpenID Foundation, 2014.
https://openid.net/specs/openid-connect-
core-1_0.html.

[51] Sladuca. Sha256 prover comparison, 2022.
https://github.com/Sladuca/sha256-prover-
comparison.

[52] Swiss Post. e-voting system. https:
//gitlab.com/swisspost-evoting/e-voting/
e-voting-documentation.

[53] Polygon Zero Team. Plonky2: Fast recursive ar-
guments with PLONK and FRI, 2022. https:
//github.com/0xPolygonZero/plonky2/blob/
136cdd053f2175134cddc61abc587f1862e76921/
plonky2/plonky2.pdf.

[54] Justin Thaler et al. Proofs, arguments, and zero-
knowledge. Foundations and Trends® in Privacy and
Security, 4(2–4):117–660, 2022.

[55] Riad S Wahby, Ioanna Tzialla, Abhi Shelat, Justin
Thaler, and Michael Walfish. Doubly-efficient zksnarks
without trusted setup. In Symposium on Security and
Privacy (S&P). IEEE, 2018.

[56] Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalam-
pos Papamanthou, and Dawn Song. Libra: Succinct
zero-knowledge proofs with optimal prover computa-
tion. In Annual International Cryptology Conference
(CRYPTO). Springer, 2019.

A Appendix Sub-circuit Costs

We compare the cost of the different sub-circuits using the
gate count metric reported by Plonky2.7 Table 6 displays the
gate count per component of our final circuit. We can see that
sha2 is the costliest part of the circuit, but optimizing it is out

7Note that in this gate count, a gate can correspond to more than one
arithmetic operation: with our settings an ArithmeticGate is translated into
20 constraints and a PoseidonGate into 123 constraints.

of the scope of this work, and the rest of the circuit represents
less than 10% of the gates. Table 7 shows the infeasibility
of replicating the sha2 sub-circuit, which would be needed
without the lookupi optimization discussed in Section 4.

Gadget Gate count

sha2 64047
base64 (ID token) 3465
lookup (39× lookupi) 1929
base64 (N) 277
Merkle tree 29
poseidon (N) 8
conversions 457

Total 70212

Table 6: Number of gates in the Plonky2 circuit (before blind-
ing or padding). A Merkle tree of depth 21 was used.

Number of sha2 Number of gates Proof time
1 core 32 cores

1 64.1K 78.7s 86.2s
2 128.2K 165.5s 188.8s
4 256.5K 324.2s 397.9s

39 2.50M 2784.0s out of mem.

Table 7: Number of gates and average proof time (over 1 hour)
for disjunctions of sha2 equalities. Each sha2 is applied on 671
bytes, which is the size of the sha2 input in the benchmarked
circuit, i.e., the Base64 encoding of tok and its header. The
last line corresponds to the necessary disjunction for voter ids
up to 50 characters.

B How to Model in ProVerif?

ProVerif is an automatic protocol analyzer relying on a sym-
bolic model. In this section we provide a gentle introduction
to ProVerif in order to help non-familiar readers understand
the scope of our security analysis. A comprehensive descrip-
tion of ProVerif syntax and semantics is available in [18].

Messages. In symbolic models, messages are abstracted
with terms. This modeling choice allows to focus on the func-
tional semantics of the cryptographic primitives, and abstract
away the implementation details for instance.

For example, a randomized asymmetric encryption scheme
is modelled by a function symbol aenc(., ., .) and the term
aenc(pk,m,r) represents the encryption of message m, us-
ing the public key pk, and the randomness r. Similarly, we
can model the corresponding decryption algorithm using an-
other function symbol: adec(sk,c) is the application of the
decryption algorithm to the message c using the secret key

https://forum.openzeppelin.com/t/sign-in-with-google-to-your-identity-contract-for-fun-and-profit/1631
https://forum.openzeppelin.com/t/sign-in-with-google-to-your-identity-contract-for-fun-and-profit/1631
https://forum.openzeppelin.com/t/sign-in-with-google-to-your-identity-contract-for-fun-and-profit/1631
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://github.com/Sladuca/sha256-prover-comparison
https://github.com/Sladuca/sha256-prover-comparison
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://gitlab.com/swisspost-evoting/e-voting/e-voting-documentation
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf
https://github.com/0xPolygonZero/plonky2/blob/136cdd053f2175134cddc61abc587f1862e76921/plonky2/plonky2.pdf

sk. Finally, we can now model the two main functionalities
of an asymetric encryption scheme: (i) one can derive a
public key from a secret key, (ii) applying the decryption
algorithm to a valid ciphertext allows to get the plaintext.
To model (i), we define a new function symbol, pubKey(·),
that will be used to define the public key corresponding to
a private key. To model (ii) we finally define an equation:
adec(sk,aenc(pubKey(sk),m,r)) = m.

One can similarly model a digital signature scheme:
sign(sk,m) models the signature of message m with private
signing key sk. The public key can be derived from the
secret key with the function symbol pubSKey(sk), and fi-
nally the verification algorithm is modelled by an equation:
checkSign(pubSKey(sk),m,sign(sk,m)) = true.

Roles. ProVerif relies on a process algebra to model pro-
tocol roles. The goal here is not to provide the complete
grammar of processes. Instead, we will illustrate it through
an excerpt of our model of the OIDEli protocol.

Consider the role of the idP: it first receives an authentica-
tion request from the EU (the voter), authenticates the voter,
and confirms the authentication to the RP by sending an au-
thorization token that allows the RP to contact the idP and
obtain an ID token containing the EU information.

In the ProVerif model we again abstract the implementa-
tion and/or network details and focus on the flow of messages
between the different participants. For sake of simplicity, we
sometimes abstract some exchanges assuming that the ex-
change is correctly implemented so that an attacker would be
unable to tamper the communication (e.g., when using a TLS
channel, but it is out of the scope of this model). Specifically,
we decided to model the idP as follows:

ID_provider(login,pwd) =
in(cIdP(login,pwd),(=REQ,aud,x_N));
get idP_UserInfo_DB(=aud,=login,=pwd,xId,xSub) in (
let data = (x_N,x_sub,x_id,x_aud) in
new rIdT;
let sigma = sign(ssk(idP),sha256(data),rIdT) in
let idTokenJWT = (data, sha256(data), sigma) in
let auth_token = authorize(idToken) in
out(cIdP(login,pwd),(RESP, auth_token)).

We assume the idP, when called with some EU creden-
tials (login,pwd) is waiting an input message to open a
session with an EU authenticated with a login and a pass-
word. This communication must happen on a specific channel
cIdP(login, pwd) that depends on the two credentials and
the message must contain a tag REQ and a payload that will
contain the identifier of the RP (aud) the voter wants to authen-
ticate to and a value that will be the nonce N in our OIDEli
protocol. This first step is modeled by the input action:

in(cIdP(login, pwd),(=REQ,aud,xN)).

Once the first message is received, the idP can look for
the data associated to this user. This is modeled through

a look up in an internal table (intuitively a database table)
idP_UserIn f o_DB which allows to retrieve the identity xId
and the subject identifier xSub associated to the user for this
RP. It prepares the ID token and the authorization tokens, the
latter being sent back to the user. This final communication is
modeled with the output action

out(cIdP(login, pwd),(RESP,authtoken)).

In parallel of this process, we will define other processes
that model the roles of the other participants. For instance,
a process Server() will be defined to model the role of the
voting server and a process Voter(id) to model the role of
a voter. In the Voter(·) process, there are output and input
actions on the channel cIdP(login, pwd) that correspond to
the communication occurring in the idP role. All our models
with detailed explanations can be found in [27].

	Introduction
	Context
	E-Voting Protocols
	OpenID Protocol
	Zero-Knowledge Proof Systems

	OpenID-Eligibility (OIDEli) Protocol
	PROTO: Achieving Universal Eligibility Verification with OpenID
	PROTOZK: Protecting Everlasting Privacy with ZKPs

	Zero-Knowledge Proof Design
	Statement Specification
	Arithmetic Circuit

	Security Analysis
	ProVerif in a Nutshell
	Security Analysis of PROTO and PROTOZK
	Instantiating with a Helios-like Protocol

	Proof of Concept
	ZKP Implementation
	ZKP Evaluation
	Full-fledged Proof of Concept

	Appendix Sub-circuit Costs
	How to Model in ProVerif?

