
Models and Techniques for Symbolic Analysis of
Security Protocols

Véronique Cortier 1

July 2017

All documents (slides, useful links, etc) available here :
https://members.loria.fr/VCortier/school-2017/

Summer School : Models and Tools for
Cryptographic Proofs

1. LORIA, CNRS - INRIA Pesto project, Université de Lorraine
1/77

https://members.loria.fr/VCortier/school-2017/


Outline of the course

Part 1 Protocols

Part 2 Model : the applied-pi calculus
→ The ProVerif tool

Part 3 Analysis : protocols as Horn clauses

2/77



Part 1

Protocols

3/77



Context : cryptographic protocols

Cryptographic protocols are widely used in everyday life.

→ They aim at securing communications over public or insecure
networks.

4/77



Example : HTTPS

I TLS : Transport Security Layer,
depuis 1994

I various implementations :
OpenSSL, SecureTransport, JSSE,
. . .

I Lots of bugs and attacks, with fixes
every month

Memory overflow

Go to fail

Missing checks
(MACs, signatures, . . . )

5/77



FREAK attack - February 2015

Bhargavan et al.

6/77



Electronic voting

I The result corresponds to the votes.

I Each vote is confidential.

I No partial result is leaked before the end of the election

I Only voters can vote and at most once

I Coercion resistance

7/77



Security goals

Cryptographic protocols aim at

I preserving confidentiality of data
(e.g. pin code, medical files, ...)

I ensuring authenticity
(Are you really talking to your bank ? ?)

I ensuring anonymous communications
(for e-voting protocols, ...)

I protecting against repudiation
(I never sent this message ! !)

I ...

⇒ Cryptographic protocols vary depending on the application.

8/77



How does this work ?

Protocol : describes how each participant should behave in
order to get e.g. a common key.

Cryptography : makes uses of cryptographic primitives

I encryption

I signature

I hash

I . . .

9/77



How does this work ?

Protocol : describes how each participant should behave in
order to get e.g. a common key.

Cryptography : makes uses of cryptographic primitives

I encryption

I signature

I hash

I . . .

9/77



How to exchange a secret with commutative
encryption

First : a small challenge for your nephews / nieces / cousins /
children.

10/77



A completely fictitious town
Two types of inhabitants :

Sedentary inhabitants stay at their home

Post office workers deliver boxes between sedentary inhabitants

Axiom 1 Post office workers may steal any unlocked box
(Reminder : this scenario is entirely fictitious !)

Axiom 2 The content of locked boxes CANNOT be stolen.

Challenge

How Alice (sedentary) can send a gift to Bob (also sedentary) ?

11/77



A completely fictitious town
Two types of inhabitants :

Sedentary inhabitants stay at their home

Post office workers deliver boxes between sedentary inhabitants

Axiom 1 Post office workers may steal any unlocked box
(Reminder : this scenario is entirely fictitious !)

Axiom 2 The content of locked boxes CANNOT be stolen.

Challenge

How Alice (sedentary) can send a gift to Bob (also sedentary) ?

11/77



Commutative Symmetric encryption

Symmetric encryption, denoted by {m}k

Encryption Decryption

key k key k

Hello Obawbhe

denoted {Hello}k
Hello

The same key is used for encrypting and decrypting.

Commutative (symmetric) encryption

{{m}k1}k2 = {{m}k2}k1

12/77



Exchanging a secret with commutative encryption (RSA)

{pin : 3443}
kalice−−−−−−−−−−−→

{
{pin : 3443}

kalice

}
kbob←−−−−−−−−−−−−−−−

{pin : 3443}
kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kintruder←−−−−−−−−−−−−−−−−−

{pin : 3443}
kintruder−−−−−−−−−−−−→

13/77



Exchanging a secret with commutative encryption (RSA)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kbob←−−−−−−−−−−−−−−−

{pin : 3443}
kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kintruder←−−−−−−−−−−−−−−−−−

{pin : 3443}
kintruder−−−−−−−−−−−−→

13/77



Exchanging a secret with commutative encryption (RSA)
{pin : 3443}

kalice−−−−−−−−−−−→{
{pin : 3443}

kalice

}
kbob←−−−−−−−−−−−−−−−

{pin : 3443}
kbob−−−−−−−−−−−→

Since
{
{pin : 3443}kalice

}
kbob

=
{
{pin : 3443}kbob

}
kalice

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kintruder←−−−−−−−−−−−−−−−−−

{pin : 3443}
kintruder−−−−−−−−−−−−→

13/77



Exchanging a secret with commutative encryption (RSA)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kbob←−−−−−−−−−−−−−−−

{pin : 3443}
kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kintruder←−−−−−−−−−−−−−−−−−

{pin : 3443}
kintruder−−−−−−−−−−−−→

13/77



Exchanging a secret with commutative encryption (RSA)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kbob←−−−−−−−−−−−−−−−

{pin : 3443}
kbob−−−−−−−−−−−→

→ It does not work ! (Authentication problem)

{pin : 3443}
kalice−−−−−−−−−−−→{

{pin : 3443}
kalice

}
kintruder←−−−−−−−−−−−−−−−−−

{pin : 3443}
kintruder−−−−−−−−−−−−→

13/77



Another example

The “famous” Needham-Schroeder public key
protocol

(and its associated Man-In-The-Middle Attack)

14/77



Public key encryption

Public key : pk(A)
Encryption : {m}pk(A)

Encryption Decryption

public key private key

Hello Obawbhe Hello

Encryption with the public key and decryption with the private key.

Invented only in the late 70’s !

15/77



Needham-Schroeder public key protocol

Na Random number (called nonce) generated by A.
Nb Random number (called nonce) generated by B.

• A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Questions :

I Is Nb secret between A and B ?

I When B receives {Nb}pub(B), does this message really come
from A ?

→ An attack was discovered in 1996, 17 years after the publication
of the protocol !

16/77



Needham-Schroeder public key protocol

Na Random number (called nonce) generated by A.
Nb Random number (called nonce) generated by B.

A → B : {A,Na}pub(B)

• B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Questions :

I Is Nb secret between A and B ?

I When B receives {Nb}pub(B), does this message really come
from A ?

→ An attack was discovered in 1996, 17 years after the publication
of the protocol !

16/77



Needham-Schroeder public key protocol

Na Random number (called nonce) generated by A.
Nb Random number (called nonce) generated by B.

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
• A → B : {Nb}pub(B)

Questions :

I Is Nb secret between A and B ?

I When B receives {Nb}pub(B), does this message really come
from A ?

→ An attack was discovered in 1996, 17 years after the publication
of the protocol !

16/77



Needham-Schroeder public key protocol

Na Random number (called nonce) generated by A.
Nb Random number (called nonce) generated by B.

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Questions :

I Is Nb secret between A and B ?

I When B receives {Nb}pub(B), does this message really come
from A ?

→ An attack was discovered in 1996, 17 years after the publication
of the protocol !

16/77



Needham-Schroeder public key protocol

Na Random number (called nonce) generated by A.
Nb Random number (called nonce) generated by B.

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Questions :

I Is Nb secret between A and B ?

I When B receives {Nb}pub(B), does this message really come
from A ?

→ An attack was discovered in 1996, 17 years after the publication
of the protocol !

16/77



Man in the middle attack

{A,Na}pub(P)−−−−−−−→
{A,Na}pub(B)−−−−−−−→

{

B,

Na,Nb}pub(A)←−−−−−−−−−
{

B,

Na,Nb}pub(A)←−−−−−−−−−

{Nb}pub(P)−−−−−−→
{Nb}pub(B)−−−−−−→

Fixing the flaw : add the identity of B.

17/77



Man in the middle attack

{A,Na}pub(P)−−−−−−−→
{A,Na}pub(B)−−−−−−−→

{

B,

Na,Nb}pub(A)←−−−−−−−−−
{

B,

Na,Nb}pub(A)←−−−−−−−−−

{Nb}pub(P)−−−−−−→
{Nb}pub(B)−−−−−−→

Fixing the flaw : add the identity of B.

17/77



Man in the middle attack

{A,Na}pub(P)−−−−−−−→
{A,Na}pub(B)−−−−−−−→

{

B,

Na,Nb}pub(A)←−−−−−−−−−
{

B,

Na,Nb}pub(A)←−−−−−−−−−

{Nb}pub(P)−−−−−−→
{Nb}pub(B)−−−−−−→

Fixing the flaw : add the identity of B.

17/77



Man in the middle attack

{A,Na}pub(P)−−−−−−−→
{A,Na}pub(B)−−−−−−−→

{B,Na,Nb}pub(A)←−−−−−−−−−
{B,Na,Nb}pub(A)←−−−−−−−−−

{Nb}pub(P)−−−−−−→
{Nb}pub(B)−−−−−−→

Fixing the flaw : add the identity of B.

17/77



A symmetric key protocol

The Wide Mouthed Frog protocol (a variant)

Assumption : Each participant X shares a long term symmetric key
Kxs with a serveur S .

Protocol :
A → S : A, {B,Kab}Kas

S → B : B, {A,Kab}Kbs

Security Goal : A and B share a secret symmetric key Kab.

What if we consider another variant ?

A → S : A, {B}Kas , {Kab}Kas

S → B : B, {A}Kbs
, {Kab}Kbs

18/77



A symmetric key protocol

The Wide Mouthed Frog protocol (a variant)

Assumption : Each participant X shares a long term symmetric key
Kxs with a serveur S .

Protocol :
A → S : A, {B,Kab}Kas

S → B : B, {A,Kab}Kbs

Security Goal : A and B share a secret symmetric key Kab.

What if we consider another variant ?

A → S : A, {B}Kas , {Kab}Kas

S → B : B, {A}Kbs
, {Kab}Kbs

18/77



Part 2

Model : the applied-pi calculus

19/77



Messages

Messages are abstracted by terms.

Agents : a, b, . . . Nonces : n1, n2, . . .
Keys : k1, k2, . . .
Cyphertext : enc(m, k) Concatenation : pair(m1,m2)

Example : The message {A,Na}K is represented by :

enc(pair(A,Na),K )

enc

pair

a na

k

Intuition : only the structure of the message is kept.

20/77



Encryption-Decryption properties

dec(enc(x , y), y) = x

π1(〈x , y〉) = x

π2(〈x , y〉) = y

deca(enca(x , pub(y)), y) = x

21/77



Equational theory

More generally, the cryptographic primitives are modeled by an
equational theory.

Definition
An equational theory =E is a relation on terms that is closed under
substitutions of terms for variables and closed by context.

I u =E v implies uσ =E vσ (for any σ)

I u1 =E v1, . . . , un =E vn implies
f (u1, . . . , un) =E f (v1, . . . , vn) (for any f ∈ F)

22/77



Other examples of theories

EXclusive Or

x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z x ⊕ y = y ⊕ x
x ⊕ x = 0 x ⊕ 0 = x

Diffie-Hellmann

exp(exp(z , x), y) = exp(exp(z , y), x)

23/77



Public key encryption in ProVerif

fun pk(skey) : pkey.

fun aenc(bitstring, pkey) : bitstring.

reduc forall x : bitstring, y : skey ; adec(aenc(x,pk(y)),y) = x.

24/77



E-voting protocols

First phase :

V → A : sign(blind(vote, r),V )
A→ V : sign(blind(vote, r),A)

Voting phase :

V → C : sign(vote,A)

...

25/77



Equational theory for blind signatures

[Kremer Ryan 05]

checksign(sign(x , y), pk(y)) = x
unblind(blind(x , y), y) = x

unblind(sign(blind(x , y), z), y) = sign(x , z)

26/77



Syntax for processes

The grammar of processes is as follows :

P,Q,R :=
0
if M1 = M2 then P else Q
let x = M in P
in(c , x).P
out(c ,N).P
νn.P
P | Q
!P

Inspired from the applied-pi calculus [Abadi-Fournet]

27/77



Example : Needham-Schroeder protocol

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Na random number generated by A.
Nb random number generated by B.

We need to model two processes :

I one corresponding to the role of A

I one corresponding to the role of B

28/77



Example : Needham-Schroeder protocol

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

Na random number generated by A.
Nb random number generated by B.

We need to model two processes :

I one corresponding to the role of A

I one corresponding to the role of B

28/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=

out(c, enca(pair(A,NA), pubB)).
in(c , x).

let z = deca(x , privA) in
if NA = π1(z) then let y = π2(z) in

out(c , enca(y , pubB))

29/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
out(c, enca(pair(A,NA), pubB)).

in(c , x).
let z = deca(x , privA) in
if NA = π1(z) then let y = π2(z) in

out(c , enca(y , pubB))

29/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
out(c, enca(pair(A,NA), pubB)).
in(c , x).

let z = deca(x , privA) in
if NA = π1(z) then let y = π2(z) in

out(c , enca(y , pubB))

29/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
out(c, enca(pair(A,NA), pubB)).
in(c , x).

let z = deca(x , privA) in

if NA = π1(z) then let y = π2(z) in
out(c , enca(y , pubB))

29/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
out(c, enca(pair(A,NA), pubB)).
in(c , x).

let z = deca(x , privA) in
if NA = π1(z) then let y = π2(z) in

out(c , enca(y , pubB))

29/77



Role of A

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
out(c, enca(pair(A,NA), pubB)).
in(c , x).

let z = deca(x , privA) in
if NA = π1(z) then let y = π2(z) in

out(c , enca(y , pubB))

29/77



Role of B

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
out(c , enca(pair(y ,NB), pubA)).
in(c, z).
if deca(z , privB) = NB then 0 else 0

30/77



Role of B

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in

out(c , enca(pair(y ,NB), pubA)).
in(c, z).
if deca(z , privB) = NB then 0 else 0

30/77



Role of B

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
out(c , enca(pair(y ,NB), pubA)).

in(c, z).
if deca(z , privB) = NB then 0 else 0

30/77



Role of B

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
out(c , enca(pair(y ,NB), pubA)).
in(c, z).

if deca(z , privB) = NB then 0 else 0

30/77



Role of B

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
out(c , enca(pair(y ,NB), pubA)).
in(c, z).
if deca(z , privB) = NB then 0 else 0

30/77



Complete process

Then, the complete process representing the Needham-Schroeder
protocol is :

P :=

!(νNA.PA(privA, pub(privB),A,B,NA)) |
!(νNB .PB(privB , pub(privA),A,B,NB))

satisfied ?

31/77



Complete process

Then, the complete process representing the Needham-Schroeder
protocol is :

P :=
ν privA .ν privB .
out(c , pub(privA)).out(c , pub(privB)).

!(νNA.PA(privA, pub(privB),A,B,NA)) |
!(νNB .PB(privB , pub(privA),A,B,NB))

satisfied ?

31/77



Complete process

Then, the complete process representing the Needham-Schroeder
protocol is :

P :=
ν privA .ν privB .
out(c , pub(privA)).out(c , pub(privB)).

!(νNA.PA(privA, pub(privB),A,B,NA)) |
!(νNB .PB(privB , pub(privA),A,B,NB))

satisfied ?

31/77



Complete process - continued

Better :

P :=
ν privA .ν privB .ν privC .
out(c , pub(privA)).out(c , pub(privB)).out(c , privC ).

!(νNA.PA(privA, pub(privB),A,B,NA)) |
!(νNA.PA(privA, pub(privC ),A,C ,NA)) |
!(νNB .PB(privB , pub(privA),A,B,NB)) |
!(νNB .PB(privB , pub(privC ),C ,B,NB))

and also

!(νNA.PA(privB , pub(privA),B,A,NA)) |
!(νNA.PA(privB , pub(privC ),B,C ,NA)) |
. . .

32/77



Complete process - continued

Better :

P :=
ν privA .ν privB .ν privC .
out(c , pub(privA)).out(c , pub(privB)).out(c , privC ).

!(νNA.PA(privA, pub(privB),A,B,NA)) |
!(νNA.PA(privA, pub(privC ),A,C ,NA)) |
!(νNB .PB(privB , pub(privA),A,B,NB)) |
!(νNB .PB(privB , pub(privC ),C ,B,NB))

and also

!(νNA.PA(privB , pub(privA),B,A,NA)) |
!(νNA.PA(privB , pub(privC ),B,C ,NA)) |
. . .

32/77



What to remember when modeling a protocol ?

1. A process for each role of the protocol
I identify the initial knowledge of the agent

(here, NA, privA, pubB ,A, . . .)
I identify the values learned during the protocol, modeled with

variables

Don’t think you’re done !

2. Initial knowledge of the intruder
I identify the public data, should be sent to the network
I identify the private data of the corrupted agents

3. Finally, the complete process
I put all the roles together
I don’t forger roles where an honest agent talks with a corrupted

one !

33/77



What to remember when modeling a protocol ?

1. A process for each role of the protocol
I identify the initial knowledge of the agent

(here, NA, privA, pubB ,A, . . .)
I identify the values learned during the protocol, modeled with

variables

Don’t think you’re done !

2. Initial knowledge of the intruder
I identify the public data, should be sent to the network
I identify the private data of the corrupted agents

3. Finally, the complete process
I put all the roles together
I don’t forger roles where an honest agent talks with a corrupted

one !

33/77



What to remember when modeling a protocol ?

1. A process for each role of the protocol
I identify the initial knowledge of the agent

(here, NA, privA, pubB ,A, . . .)
I identify the values learned during the protocol, modeled with

variables

Don’t think you’re done !

2. Initial knowledge of the intruder
I identify the public data, should be sent to the network
I identify the private data of the corrupted agents

3. Finally, the complete process
I put all the roles together
I don’t forger roles where an honest agent talks with a corrupted

one !

33/77



What to remember when modeling a protocol ?

1. A process for each role of the protocol
I identify the initial knowledge of the agent

(here, NA, privA, pubB ,A, . . .)
I identify the values learned during the protocol, modeled with

variables

Don’t think you’re done !

2. Initial knowledge of the intruder
I identify the public data, should be sent to the network
I identify the private data of the corrupted agents

3. Finally, the complete process
I put all the roles together
I don’t forger roles where an honest agent talks with a corrupted

one !

33/77



How to express that a protocol is secure ? (in
ProVerif)

34/77



Secrecy

Pretty simple :

query attacker(s)

35/77



How to express authentication ?

→ a correspondence property : if B finishes a session, thinking he
has talked to A with session nonce Nb then A has also finished a
session, thinking she has talked to B with session nonce Nb.

36/77



Syntax - enriched

P,Q,R := 0
if M1 = M2 then P else Q
in(c , x).P
out(c ,N).P
νn.P
!P
event(p(u1, . . . , un)).P

where p is a predicate of arity n.

Example : Needham-Schroeder (continued)

37/77



Role of A - with events

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=

out(c, enca(pair(A,NA), pubB)).
in(c , x).

let (= NA, y) = deca(x , privA) in
out(c , enca(y , pubB))

38/77



Role of A - with events

A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PA(privA, pubB ,A,B,NA):=
BeginA(A,B,NA)
out(c, enca(pair(A,NA), pubB)).
in(c , x).

let (= NA, y) = deca(x , privA) in
out(c , enca(y , pubB))

EndA(A,B, y)

38/77



Role of B
A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in

out(c , enca(pair(y ,NB), pubA)).
in(c , z).
if deca(z , privB) = NB

then 0 else 0

Authentication properties :

∀x EndB(A,B, x) ⇒ BeginA(A,B, x)

∀x EndA(A,B, x) ⇒ BeginB(A,B, x)

39/77



Role of B
A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
BeginB(A,B,NB)
out(c , enca(pair(y ,NB), pubA)).
in(c , z).
if deca(z , privB) = NB

then EndB(A,B, y) else 0

Authentication properties :

∀x EndB(A,B, x) ⇒ BeginA(A,B, x)

∀x EndA(A,B, x) ⇒ BeginB(A,B, x)

39/77



Role of B
A → B : {A,Na}pub(B)

B → A : {Na,Nb}pub(A)
A → B : {Nb}pub(B)

PB(privB , pubA,A,B,NB):=
in(c , x).

let (= A, y) = deca(x , privB) in
BeginB(A,B,NB)
out(c , enca(pair(y ,NB), pubA)).
in(c , z).
if deca(z , privB) = NB

then EndB(A,B, y) else 0

Authentication properties :

∀x EndB(A,B, x) ⇒ BeginA(A,B, x)

∀x EndA(A,B, x) ⇒ BeginB(A,B, x)

39/77



Part 3

Analysis : protocols as Horn clauses

40/77



How to analyse security protocols ?

?

non-repudiation

authenticity|= confidentiality

Methodology

1. Proposing accurate models
I symbolic models
I cryptographic/computational models

2. Proving security
I decidability/undecidability results
I tools

41/77



Difficulty

Presence of an attacker

I may read every message sent on
the net,

I may intercept and send new
messages.

⇒ The system is infinitely branching

42/77



A first approach

Why not modeling security protocol using a (possibly extended)
automata ?

START VALIDATE CONNECTED

LOG ERRORDELAY

login name

restart

pw correct

pw wrong

log pw wrong

restart

43/77



How to model a security protocol ?

START VALIDATE CONNECTED

LOG ERRORDELAY

login name

restart

pw correct

pw wrong

log pw wrong

restart

I The output of each participants strongly depends on the data
received inside the message.

I At each step, a malicious user (called the adversary) may
create arbitrary messages.

I The output of the adversary strongly depends on the
messages sent on the network.

→ It is important to have a tight modeling of the messages.

44/77



Messages

Messages are abstracted by terms.

Agents : a, b, . . . Nonces : n1, n2, . . .
Keys : k1, k2, . . .
Cyphertext : enc(m, k) Concatenation : pair(m1,m2)

Example : The message {A,Na}K is represented by :

enc(pair(A,Na),K )

enc

pair

a na

k

Intuition : only the structure of the message is kept.

45/77



A simple protocol

〈Alice,k〉−−−−−→
〈Bob,enc(s,k)〉←−−−−−−−−−

46/77



A simple protocol

〈Alice,k〉−−−−−→
〈Bob,enc(s,k)〉←−−−−−−−−−

Question ?
Can the attacker learn the secret s ?

46/77



A simple protocol

〈Alice,k〉−−−−−→
〈Bob,enc(s,k)〉←−−−−−−−−−

Question ?
Can the attacker learn the secret s ?

Answer : Of course, Yes !

〈Bob, enc(s, k)〉

enc(s, k)

〈Alice, k〉

k

s

46/77



Intruder abilities

Composition rules

u v

pair(u, v)

u v

enc(u, v)

u v

enca(u, v)

Decomposition rules

u ∈ T
u

pair(u, v)

u

pair(u, v)

v

enc(u, v) v

u

enca(u, pub(v)) priv(v)

u

47/77



Intruder abilities

Composition rules

u v

pair(u, v)

u v

enc(u, v)

u v

enca(u, v)

Decomposition rules

u ∈ T
u

pair(u, v)

u

pair(u, v)

v

enc(u, v) v

u

enca(u, pub(v)) priv(v)

u

47/77



Deducibility relation

Deducibility relation

A term u is deducible from a set of terms T , denoted by T ` u, if
there exists a prooftree witnessing this fact.

48/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,

k1 k1

pair(k1, k1) enc(k3, pair(k1, k1))

k3

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,S

?
` pair(a, k3),

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,S

?
` pair(a, k3),

k1 k1

pair(k1, k1) enc(k3, pair(k1, k1))

k3

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,S

?
` pair(a, k3),

k1 k1

pair(k1, k1) enc(k3, pair(k1, k1))

k3 a

pair(a, k3)

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,S

?
` pair(a, k3), S

?
` k4,

49/77



Examples

S =


enc(pair(pair(a, k3), k4), pair(k1, k2)),
a,
k1,
enc(k3, pair(k1, k1))


S

?
` k1,S

?
` k3,S

?
` pair(a, k3), S

?
` k4, S

?
` pair(a, k4)

49/77



Decision of the intruder problem

Given A set of messages S and a message m

Question Can the intruder learn m from S that is S ` m ?

This problem is decidable in polynomial time. (left as exercice)

Lemma (Locality)

If there is a proof of S ` m then there is a proof that only uses the
subterms of S and m.

Induction hypothesis : If there is a (length minimal) proof of S ` m
then there is a proof that only uses the subterms of S and m,
Moreover
If there is a (length minimal) proof of S ` m that ends with a
decomposition rule then there is a proof that only uses the
subterms of S .

50/77



Decision of the intruder problem

Given A set of messages S and a message m

Question Can the intruder learn m from S that is S ` m ?

This problem is decidable in polynomial time. (left as exercice)

Lemma (Locality)

If there is a proof of S ` m then there is a proof that only uses the
subterms of S and m.

Induction hypothesis : If there is a (length minimal) proof of S ` m
then there is a proof that only uses the subterms of S and m,
Moreover
If there is a (length minimal) proof of S ` m that ends with a
decomposition rule then there is a proof that only uses the
subterms of S .

50/77



Decision of the intruder problem

Given A set of messages S and a message m

Question Can the intruder learn m from S that is S ` m ?

This problem is decidable in polynomial time. (left as exercice)

Lemma (Locality)

If there is a proof of S ` m then there is a proof that only uses the
subterms of S and m.

Induction hypothesis : If there is a (length minimal) proof of S ` m
then there is a proof that only uses the subterms of S and m,
Moreover
If there is a (length minimal) proof of S ` m that ends with a
decomposition rule then there is a proof that only uses the
subterms of S .

50/77



How to decide security in the active case ?

I In general, it is undecidable !
Easily encode two-counters machines, Post correspondence
problem, etc (even for a passive adversary)

I Bounded number of sessions
I secrecy is (co)NP-complete [Rusinowitch, Turuani 2001]
I tools : Avispa, Scyther (bounded and unbounded), ...

I Unbounded number of sessions
How to circumvent undecidability ?

51/77



How to decide security in the active case ?

I In general, it is undecidable !
Easily encode two-counters machines, Post correspondence
problem, etc (even for a passive adversary)

I Bounded number of sessions
I secrecy is (co)NP-complete [Rusinowitch, Turuani 2001]
I tools : Avispa, Scyther (bounded and unbounded), ...

I Unbounded number of sessions
How to circumvent undecidability ?

51/77



How to decide security in the active case ?

I In general, it is undecidable !
Easily encode two-counters machines, Post correspondence
problem, etc (even for a passive adversary)

I Bounded number of sessions
I secrecy is (co)NP-complete [Rusinowitch, Turuani 2001]
I tools : Avispa, Scyther (bounded and unbounded), ...

I Unbounded number of sessions
How to circumvent undecidability ?

51/77



How to decide security in the active case ?

I In general, it is undecidable !
Easily encode two-counters machines, Post correspondence
problem, etc (even for a passive adversary)

I Bounded number of sessions
I secrecy is (co)NP-complete [Rusinowitch, Turuani 2001]
I tools : Avispa, Scyther (bounded and unbounded), ...

I Unbounded number of sessions
How to circumvent undecidability ?

51/77



How to model an unbounded number of sessions ?

“For any x, if the agent A receives enc(x , ka) then A
responds with x.”

→ Use of first-order logic.

52/77



Intruder

Horn clauses perfectly reflects the attacker symbolic manipulations
on terms.

∀x∀y I (x), I (y) ⇒ I ({x}y ) encryption
∀x∀y I ({x}y ), I (y) ⇒ I (x) decryption

∀x∀y I (x), I (y) ⇒ I (< x , y >) concatenation
∀x∀y I (< x , y >) ⇒ I (x) first projection
∀x∀y I (< x , y >) ⇒ I (y) second projection

53/77



Protocol as Horn clauses

secret : 3443

{secret : 3443}kalice−−−−−−−−−−−−−→{
{secret : 3443}kalice

}
kbob←−−−−−−−−−−−−−−−−−

{secret : 3443}kbob−−−−−−−−−−−−→
secret : 3443

Each action of the protocol is expressed by a logical implication.

⇒ I ({secret}ka)
∀x I (x) ⇒ I ({x}kb)
∀x I ({x}ka) ⇒ I (x)

54/77



Security reduces to consistency

secure ?

 

¬I (secret)

∀x∀y I (x), I (y) ⇒ I (< x , y >)
∀x∀y I (x), I (y) ⇒ I ({x}y )
∀x∀y I ({x}y ), I (y) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (y)

I ({secret}ka)
∀x I (x) ⇒ I ({x}kb)
∀x I ({x}ka) ⇒ I (x)

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

55/77



Security reduces to consistency

secure ?

 

¬I (secret)
∀x∀y I (x), I (y) ⇒ I (< x , y >)
∀x∀y I (x), I (y) ⇒ I ({x}y )
∀x∀y I ({x}y ), I (y) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (y)

I ({secret}ka)
∀x I (x) ⇒ I ({x}kb)
∀x I ({x}ka) ⇒ I (x)

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

55/77



How to know if a set of formula is consistent ?

Hilbert’s program (1928)
“Entscheidung Problem”

David Hilbert

It is undecidable ! (1936)
→ There is no algorithm that answers
this question.

Alan Turing

(at a time with no computers)

56/77



How to know if a set of formula is consistent ?

Hilbert’s program (1928)
“Entscheidung Problem”

David Hilbert

It is undecidable ! (1936)
→ There is no algorithm that answers
this question.

Alan Turing

(at a time with no computers)

56/77



Back to our business

secure ?

 

¬I (secret)
∀x∀y I (x), I (y) ⇒ I (< x , y >)
∀x∀y I (x), I (y) ⇒ I ({x}y )
∀x∀y I ({x}y ), I (y) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (x)
∀x∀y I (< x , y >) ⇒ I (y)

I ({secret}ka)
∀x I (x) ⇒ I ({x}kb)
∀x I ({x}ka) ⇒ I (x)

Does not yield a
contradiction ?

(i.e. consistent
theory ?)

All this for nothing ?

57/77



A standard technique : resolution

Idea : add logical consequences . . .

∀xP(x) ⇒ I (s(x))

∀xI (x) ⇒ P(s(x))

P(0)

¬I (s(s(s(0))))

. . . until a contradiction is found.

We need a method (a strategy) which is :

I correct : adds formula that are indeed consequences

I complete : finds a contradiction (if it exists)

I in a finite number of steps (decidable fragment)

58/77



A standard technique : resolution

Idea : add logical consequences . . .

P(0)

¬I (s(s(s(0))))
I (s(0))

∀xI (x) ⇒ P(s(x))

∀xP(x) ⇒ I (s(x))

... until a contradiction is found.

We need a method (a strategy) which is :

I correct : adds formula that are indeed consequences

I complete : finds a contradiction (if it exists)

I in a finite number of steps (decidable fragment)

59/77



A standard technique : resolution

Idea : add logical consequences . . .

P(0)

¬I (s(s(s(0))))
I (s(0))

P(s(s(0)))∀xP(x) ⇒ I (s(x))

∀xI (x) ⇒ P(s(x))

... until a contradiction is found.

We need a method (a strategy) which is :

I correct : adds formula that are indeed consequences

I complete : finds a contradiction (if it exists)

I in a finite number of steps (decidable fragment)

60/77



A standard technique : resolution

Idea : add logical consequences . . .

I (s(0))

P(s(s(0))) I (s(s(s(0))))

⊥?

∀xP(x) ⇒ I (s(x))

∀xI (x) ⇒ P(s(x))

P(0)

¬I (s(s(s(0))))

... until a contradiction is found.

We need a method (a strategy) which is :

I correct : adds formula that are indeed consequences

I complete : finds a contradiction (if it exists)

I in a finite number of steps (decidable fragment)

61/77



Binary resolution

A,B are atoms and C ,D are clauses.

An intuitive rule A⇒ C A

C

In other words ¬A ∨ C A

C

Generalizing

¬A ∨ C B

Cθ
θ = mgu(A,B) (i.e. Aθ = Bθ)

Generalizing a bit more

¬A ∨ C B ∨ D

Cθ ∨ Dθ
θ = mgu(A,B) Binary resolution

62/77



Binary resolution

A,B are atoms and C ,D are clauses.

An intuitive rule A⇒ C A

C

In other words ¬A ∨ C A

C

Generalizing

¬A ∨ C B

Cθ
θ = mgu(A,B) (i.e. Aθ = Bθ)

Generalizing a bit more

¬A ∨ C B ∨ D

Cθ ∨ Dθ
θ = mgu(A,B) Binary resolution

62/77



Binary resolution

A,B are atoms and C ,D are clauses.

An intuitive rule A⇒ C A

C

In other words ¬A ∨ C A

C

Generalizing

¬A ∨ C B

Cθ
θ = mgu(A,B) (i.e. Aθ = Bθ)

Generalizing a bit more

¬A ∨ C B ∨ D

Cθ ∨ Dθ
θ = mgu(A,B) Binary resolution

62/77



Binary resolution and Factorization

¬A ∨ C B ∨ D
θ = mgu(A,B)

Cθ ∨ Dθ
Binary resolution

A ∨ B ∨ C
θ = mgu(A,B)

Aθ ∨ Cθ
Factorisation

Theorem (Soundness and Completeness [Robinsson 1965])

Binary resolution and factorisation are sound and refutationally
complete,
i.e. a set of clauses C is not satisfiable if and only if ⊥ (the empty
clause) can be obtained from C by binary resolution and
factorisation.

Exercise : Why do we need the factorisation rule ?

63/77



Example

C = {¬I (s), I (k1), I ({s}〈k1,k1〉),
I ({x}y ), I (y)⇒ I (x), I (x), I (y)⇒ I (〈x , y〉)

¬I (s)

I ({s}〈k1,k1〉) I ({x}y ), I (y) ⇒ I (x)

I (〈k1, k1〉) ⇒ s

I (k1)

I (k1) I (x), I (y) ⇒ I (〈x , y〉)

I (y) ⇒ I (〈k1, y〉)

I (〈k1, k1〉)

I (s)

⊥

64/77



But it is not terminating !

I (y)⇒ I (〈s, y〉)

I (y)⇒ I (〈s, y〉)

I (s)

I (s) I (x), I (y)⇒ I (〈x , y〉)

I (y)⇒ I (〈s, y〉)

I (〈s, s〉)

I (〈s, 〈s, s〉〉)

I (〈s, 〈s, 〈s, s〉〉〉)

· · ·

→ This does not yield any decidability result.

65/77



Ordered Binary resolution and Factorization

Let < be any order on clauses.

¬A ∨ C B ∨ D θ = mgu(A,B)
Aθ 6< Cθ ∨ DθCθ ∨ Dθ

Ordered binary resolution

A ∨ B ∨ C θ = mgu(A,B)
Aθ 6< CθAθ ∨ Cθ

Ordered factorisation

Theorem (Soundness and Completeness)

Ordered binary resolution and factorisation are sound and
refutationally complete provided that < is liftable

∀A,B, θ A < B ⇒ Aθ < Bθ

66/77



Ordered Binary resolution and Factorization

Let < be any order on clauses.

¬A ∨ C B ∨ D θ = mgu(A,B)
Aθ 6< Cθ ∨ DθCθ ∨ Dθ

Ordered binary resolution

A ∨ B ∨ C θ = mgu(A,B)
Aθ 6< CθAθ ∨ Cθ

Ordered factorisation

Theorem (Soundness and Completeness)

Ordered binary resolution and factorisation are sound and
refutationally complete provided that < is liftable

∀A,B, θ A < B ⇒ Aθ < Bθ

66/77



Examples of liftable orders

∀A,B, θ A < B ⇒ Aθ < Bθ

First example : subterm order

P(t1, . . . , tn) < Q(u1, . . . , uk) iff any ti is a subterm of u1, . . . , uk

→ extended to clauses as follows : C1 < C2 iff any literal of C1 is
smaller than some literal of C2.

Exercise : Show that C is not satisfiable by ordered resolution (and
factorisation).

67/77



Examples of liftable orders - continued

Second example : P(t1, . . . , tn) . Q(u1, . . . , uk) iff

1. depth(P(t1, . . . , tn)) ≤ depth(Q(u1, . . . , uk))

2. For any variable x ,
depthx(P(t1, . . . , tn)) ≤ depthx(Q(u1, . . . , uk))

f

x f

x f

y a

?

.

f

x h

h

h

y

Exercise : Show that ∀A,B, θ A . B ⇒ Aθ . Bθ

68/77



Examples of liftable orders - continued

Second example : P(t1, . . . , tn) . Q(u1, . . . , uk) iff

1. depth(P(t1, . . . , tn)) ≤ depth(Q(u1, . . . , uk))

2. For any variable x ,
depthx(P(t1, . . . , tn)) ≤ depthx(Q(u1, . . . , uk))

f

x f

x f

y a

6.

f

x h

h

h

y

Exercise : Show that ∀A,B, θ A . B ⇒ Aθ . Bθ

68/77



Examples of liftable orders - continued

Second example : P(t1, . . . , tn) . Q(u1, . . . , uk) iff

1. depth(P(t1, . . . , tn)) ≤ depth(Q(u1, . . . , uk))

2. For any variable x ,
depthx(P(t1, . . . , tn)) ≤ depthx(Q(u1, . . . , uk))

f

x f

x f

y a

6.

f

x h

h

h

y

Exercise : Show that ∀A,B, θ A . B ⇒ Aθ . Bθ

68/77



Back to protocols
Intruder clauses are of the form

±I (f (x1, . . . , xn)), ±I (xi ), ±I (xj)

Protocol clauses

⇒ I ({pin}ka)

I (x) ⇒ I ({x}kb)

I ({x}ka) ⇒ I (x)

At most one variable per clause !

Theorem ([Comon, C. 2003])

Given a set C of clauses such that each clause of C
I either contains at most one variable

I or is of the form ±I (f (x1, . . . , xn)), ±I (xi ), ±I (xj)
Then ordered (.) binary resolution and factorisation is terminating.

69/77



Back to protocols
Intruder clauses are of the form

±I (f (x1, . . . , xn)), ±I (xi ), ±I (xj)

Protocol clauses

⇒ I ({pin}ka)

I (x) ⇒ I ({x}kb)

I ({x}ka) ⇒ I (x)

At most one variable per clause !

Theorem ([Comon, C. 2003])

Given a set C of clauses such that each clause of C
I either contains at most one variable

I or is of the form ±I (f (x1, . . . , xn)), ±I (xi ), ±I (xj)
Then ordered (.) binary resolution and factorisation is terminating.

69/77



Decidability for an unbounded number of sessions

Corollary

For any protocol that can be encoded with clauses of the previous
form, then checking secrecy is decidable.

But how to deal with protocols that need more than one variable
per clause ?

70/77



ProVerif

Developed by Bruno Blanchet, Paris, France.

I No restriction on the clauses

I Implements a sound semi-decision procedure (that may not
terminate).

I Based on a resolution strategy well adapted to protocols.

I performs very well in practice !
I Works on most of existing protocols in the literature
I Is also used on industrial protocols (e.g. certified email

protocol, JFK, Plutus filesystem)

71/77



Resolution strategy with selection

Definition
A selection function is any function sel such that sel(H ⇒ C ) ⊆ H.

¬A ∨ C B ∨ D θ = mgu(A,B)
A ∈ sel(¬A ∨ C ) or sel(¬A ∨ C ) = ∅

sel(B ∨ D) = ∅Cθ ∨ Dθ

Theorem ([Bachmair, Ganziger 1992])

Resolution and factorisation with selection are sound and
refutationally complete for any selection function.

72/77



Resolution strategy with selection

Definition
A selection function is any function sel such that sel(H ⇒ C ) ⊆ H.

¬A ∨ C B ∨ D θ = mgu(A,B)
A ∈ sel(¬A ∨ C ) or sel(¬A ∨ C ) = ∅

sel(B ∨ D) = ∅Cθ ∨ Dθ

Theorem ([Bachmair, Ganziger 1992])

Resolution and factorisation with selection are sound and
refutationally complete for any selection function.

72/77



False attacks

Horn clauses make some abstractions w.r.t. process algebra.
which ones ?

I The order of the actions is lost

I Nonces are abstracted by constants

∀x I (x)⇒ I ({x}kb)

Better :
∀x I (x)⇒ I ({x}kb(x))

(but still an over-approximation.)

73/77



False attacks

Horn clauses make some abstractions w.r.t. process algebra.
which ones ?

I The order of the actions is lost

I Nonces are abstracted by constants

∀x I (x)⇒ I ({x}kb)

Better :
∀x I (x)⇒ I ({x}kb(x))

(but still an over-approximation.)

73/77



False attacks

Horn clauses make some abstractions w.r.t. process algebra.
which ones ?

I The order of the actions is lost

I Nonces are abstracted by constants

∀x I (x)⇒ I ({x}kb)

Better :
∀x I (x)⇒ I ({x}kb(x))

(but still an over-approximation.)

73/77



Conclusion

Formal methods form a powerful approach for analyzing security
protocols

I Makes use of classical techniques in formal methods : term
algebra, equational theories, clauses and resolution techniques,
tree automata, etc.
⇒ Many decision procedures

I Several automatic tools
I For successfully detecting attacks on protocols (e.g. Casper,

Avispa)
I For proving security for an arbitrary number of sessions (e.g.

ProVerif)

I Provides cryptographic guarantees under classical assumptions
on the implementation of the primitives

74/77



Some current directions of research

Enriching the symbolic model

I Considering more equational theories (e.g. theories for
e-voting protocols)

I Adding more complex structures for data (list, XML, ...)

I Considering recursive protocols (e.g. group protocol) where
the number of message exchanges in a session is not fixed

I Proving more complex security properties like
equivalence-based properties (e.g. for anonymity or e-voting
protocols)

75/77



Some bibliographical references (1/2)
A book that gathers several chapters on models and procedures for
security protocols
Formal Models and Techniques for Analyzing Security Protocols.
Cryptology and Information Security Series 5, IOS Press, 2011.

Notes of this course (and more) Formal Models and Techniques for
Analyzing Security Protocols : A Tutorial. VÃ c©ronique Cortier
and Steve Kremer. Foundations and Trends in Programming
Languages, 2014.

On protocols

I B. Schneier. Applied Cryptography Second Edition : protocols,
algorithms, and source code in C, J. Wiley & Sons, Inc.
publisher, 1996.

I A. J. Menezes and P. C. van Oorschot and S. A. Vanstone.
Handbook of applied cryptography, CRC Press publisher,
1997.

76/77



Some bibliographical references (2/2)
Procedures on Horn clauses, for an unbounded number of sessions

I B. Blanchet. An Efficient Cryptographic Protocol Verifier
Based on Prolog Rules. CSFW 2001.

I H. Comon-Lundh, V. Cortier. New Decidability Results for
Fragments of First-Order Logic and Application to
Cryptographic Protocols. RTA 2003.

I H. Comon, V. Cortier. Tree automata with one memory set
constraints and cryptographic protocols. Theoretical
Computer Science 2005.

Constraint solving for a bounded number of sessions

I J. K. Millen, V. Shmatikov. Constraint solving for
bounded-process cryptographic protocol analysis. ACM
Conference on Computer and Communications Security 2001.

I H. Comon-Lundh, V. Shmatikov. Intruder Deductions,
Constraint Solving and Insecurity Decision in Presence of
Exclusive or. LICS 2003

77/77


	Introduction on security protocols
	Context

	Examples
	Commutative encryption (RSA)
	Needham-Schroeder Example
	Wide Mouthed Frog

	Modelling messages
	Terms
	Equational theory

	Modelling protocols
	Process algebra
	Security properties

	Deduction
	Example
	Intruder

	Decision procedures
	Horn clauses
	Conclusion


