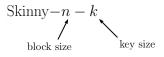
| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks<br>0000000000 | Conclusion<br>O |
|--------------------|-----------------|--------------------------|---------------------------|-----------------|
|                    |                 |                          |                           |                 |
|                    |                 |                          |                           |                 |

# Cryptanalysis of SKINNY in the Framework of the SKINNY 2018-2019 Cryptanalysis Competition

Patrick Derbez<sup>1</sup>, Virginie Lallemand<sup>2</sup>, Aleksei Udovenko<sup>3</sup>

<sup>1</sup>Univ Rennes, CNRS, IRISA, France

<sup>2</sup>Université de Lorraine, CNRS, Inria, France


<sup>3</sup>SnT and CSC, University of Luxembourg, Luxembourg

SAC 2019

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks<br>0000000000 | Conclusion<br>O |
|--------------------|-----------------|--------------------------|---------------------------|-----------------|
|                    |                 |                          |                           |                 |
|                    |                 |                          |                           |                 |

### Problem

### Given a set of 2<sup>20</sup> messages, practically recover the 128-bit keys of reduced versions of SKINNY-64-128 and SKINNY-128-128



| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |
|                    |                 |                          |             |            |

### **Overview of SKINNY**

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |

# SKINNY [BJK+16]

The SKINNY family of block ciphers and its low-latency variant MANTIS Beierle, Jean, Kölbl, Leander, Moradi, Peyrin, Sasaki, Sasdrich, Sim Crypto 2016

Performs as well as Simon

Follows the Tweakey Framework [JNP14] :

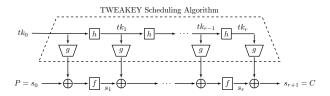
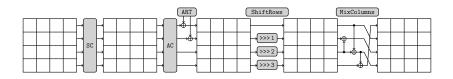
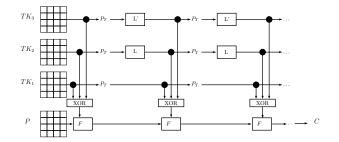



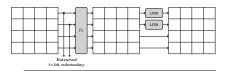

Figure credits: TikZ for Cryptographers [Jea16]

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |

## Skinny round function




MixColumns Matrix:


$$M = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

- Block size of 64 or 128 bits
- Tweakey added on the first two lines of the state, after SC
- Binary diffusion matrix

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             | 6          |

### Skinny Tweakey Schedule





|            | Tweakey blocks |    |    |
|------------|----------------|----|----|
| block size | 1              | 2  | 3  |
| n = 64     | 32             | 36 | 40 |
| n = 128    | 40             | 48 | 56 |

Figure credits: TikZ for Cryptographers [Jea16]

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | •0              | 00000                    | 000000000   | 0          |

### The SKINNY Competition

|  | Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|--|--------------------|-----------------|--------------------------|-------------|-----------------|
|  |                    |                 |                          |             | -               |

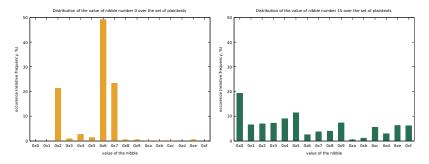
### The SKINNY 2018-2019 Cryptanalysis Competition

- 2017 2018 Similar, except with higher number of rounds
- 2018 2019 More practical scenario:

Provided:

- Set of 2<sup>20</sup> (plaintexts, ciphertexts) encrypted under a single and secret key
- Sample C code

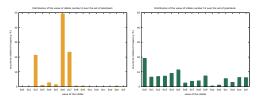
Return the key


| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |
|                    |                 |                          |             |            |

### On the Provided Messages

| Overview of SKINNY | The Competition | On the Provided Messages<br>○●○○○ | Our Attacks<br>0000000000 | Conclusion<br>O |
|--------------------|-----------------|-----------------------------------|---------------------------|-----------------|
|                    |                 |                                   |                           |                 |
|                    |                 |                                   |                           |                 |

### Bias on the Provided Messages


Distribution of the value of nibble 0 (left) and of nibble 15 (right) of the plaintexts for the 12-round attack on SKINNY-64-128





| 0000 00 <b>00000</b> 0000000 0 | Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------------------|--------------------|-----------------|--------------------------|-------------|------------|
|                                | 0000               | 00              | 00000                    | 000000000   | 0          |

# Recalling the ASCII/UTF8 encoding



|     | 0     | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | Α | В | С | D | Е | F |
|-----|-------|---|---|---|----|---|---|---|---|---|---|---|---|---|---|---|
| :   |       |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |
|     |       |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |
|     |       |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |
| 2   | space | ! | " | # | \$ | % | & | ' | ( | ) | * | + | , | - |   | / |
| 3   | 0     | 1 | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | : | ; | i | = | i | ? |
| 4   | Q     | А | В | С | D  | E | F | G | Н |   | J | K | L | М | Ν | 0 |
| 5   | Р     | Q | R | S | Т  | U | V | W | Х | Y | Ζ | [ | / | ] | ^ | - |
| 6   | ``    | а | b | С | d  | е | f | g | h | i | j | k | 1 | m | n | 0 |
| 7   | р     | q | r | S | t  | u | V | w | х | У | z | { | — | } | ~ |   |
|     |       |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |
| 1 : |       |   |   |   |    |   |   |   |   |   |   |   |   |   |   |   |

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks<br>0000000000 | Conclusion<br>O |
|--------------------|-----------------|--------------------------|---------------------------|-----------------|
|                    |                 |                          |                           |                 |
|                    |                 |                          |                           |                 |

### The Plaintexts actually come from English Novels!

Project Gutenberg's Alice's Adventures in Wonderland, by Lewis Carroll This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever.

And few lines later:

[...] when suddenly a White Rabbit with pink eyes ran close by her. There was nothing so VERY remarkable in that; nor did Alice think it so VERY much out of the way to hear the Rabbit say to itself, 'Oh dear! Oh dear! I shall be late!'



Other data sets correspond to other books (for instance Metamorphosis, by Franz Kafka or The Prince, by Nicolo Machiavelli).

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |
|                    |                 |                          |             |            |

### Possible Attacks?

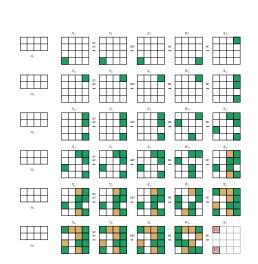
Given our specific set:

- We expect pairs that differ only in few cells
- A differential attack seems possible
- Still, we expect that only little data is exploitable: look for truncated, high probability distinguisher

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | •00000000   | 0          |
|                    |                 |                          |             |            |
|                    |                 |                          |             |            |

### **Our Attacks**

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 000000000   | 0          |
|                    |                 |                          |             |            |


## Our Attack on 12-round SKINNY-64-128

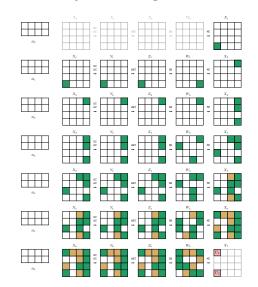
- **6** rounds of truncated differential of probability 1
- ▶ 1 round prepended for free
- **5 rounds** of key recovery

Total complexity: 2<sup>51.95</sup> basic operations, 32 pairs, 256G memory

| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages<br>00000 | Our Attacks<br>000000000 | Conclusion<br>O |
|----------------------------|-----------------|-----------------------------------|--------------------------|-----------------|
|                            |                 |                                   |                          |                 |

### Probability 1 Distinguisher over 7 rounds






- Truncated differential of probability 1
- If only  $X_1[12]$  is active,  $X_7[0] = X_7[12]$ :

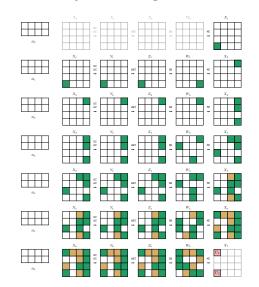


| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages<br>00000 | Our Attacks | Conclusion<br>O |
|----------------------------|-----------------|-----------------------------------|-------------|-----------------|
|                            |                 |                                   |             |                 |

### Probability 1 Distinguisher over 7 rounds






- Truncated differential of probability 1
- If only  $X_1[12]$  is active,  $X_7[0] = X_7[12]$ :



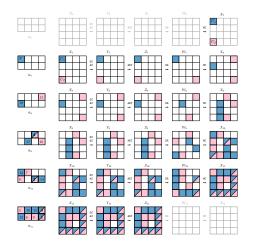
 1 round for free from ARK position

| Overview of SKINNY | The Competition | On the Provided Messages<br>00000 | Our Attacks | Conclusion<br>O |
|--------------------|-----------------|-----------------------------------|-------------|-----------------|
|                    |                 |                                   |             |                 |

### Probability 1 Distinguisher over 7 rounds



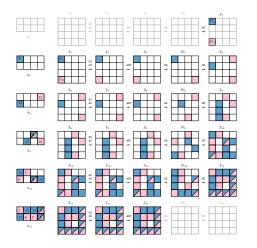



- Truncated differential of probability 1
- If only  $X_1[12]$  is active,  $X_7[0] = X_7[12]$ :



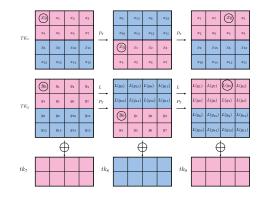
- 1 round for free from ARK position
- In the provided set, 57 pairs follow this trail

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               |                 | 00000                    | 000●000000  | O          |
|                    |                 |                          |             |            |

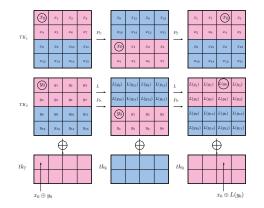

### Adding 5 rounds of Key Recovery



- in blue the nibbles that are required to compute X<sub>7</sub>[0]
- in pink the nibbles that are required to compute X<sub>7</sub>[12]
- total of 19 nibbles, 4 in common

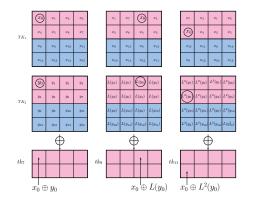

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               |                 | 00000                    | 000●000000  | O          |
|                    |                 |                          |             |            |

## Adding 5 rounds of Key Recovery



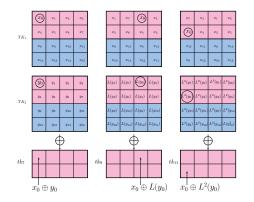

- in blue the nibbles that are required to compute X<sub>7</sub>[0]
- in pink the nibbles that are required to compute X<sub>7</sub>[12]
- total of 19 nibbles, 4 in common
  - 1 guess can be saved!

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|--------------------|-----------------|--------------------------|-------------|-----------------|
|                    |                 |                          |             |                 |




| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|--------------------|-----------------|--------------------------|-------------|-----------------|
|                    |                 |                          |             |                 |



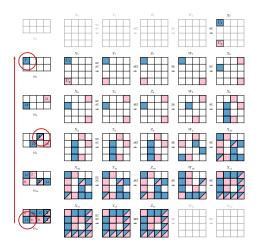

Tweakey nibbles stay 'aligned' in TK1 and TK2 (e.g.  $x_0$  and  $y_0$ )

| Overview of SKINNY | The Competition | On the Provided Messages<br>00000 | Our Attacks<br>00000●0000 | Conclusion<br>O |
|--------------------|-----------------|-----------------------------------|---------------------------|-----------------|
|                    |                 |                                   |                           | (               |



- Focus on odd rounds:
  - $\blacktriangleright tk_7[0] = x_0 \oplus y_0$
  - $\blacktriangleright tk_9[2] = x_0 \oplus L(y_0)$
  - $tk_{11}[4] = x_0 \oplus L^2(y_0)$

| Overview of SKINNY | The Competition | On the Provided Messages<br>00000 | Our Attacks<br>00000●0000 | Conclusion<br>O |
|--------------------|-----------------|-----------------------------------|---------------------------|-----------------|
|                    |                 |                                   |                           | (               |




Focus on odd rounds:

- $tk_7[0] = x_0 \oplus y_0$ •  $tk_9[2] = x_0 \oplus L(y_0)$
- $tk_{9}[2] = x_{0} \oplus L(g_{0})$ •  $tk_{11}[4] = x_{0} \oplus L^{2}(y_{0})$

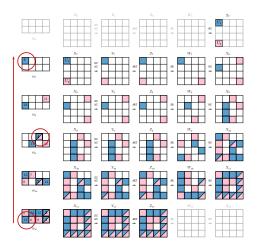
► 
$$tk_7[0] = L^{-1}(tk_9[2] \oplus tk_{11}[4]) \oplus tk_9[2]$$

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|--------------------|-----------------|--------------------------|-------------|-----------------|
|                    |                 |                          |             |                 |



Focus on odd rounds:

$$tk_7[0] = x_0 \oplus y_0$$


$$tk_9[2] = x_0 \oplus L(y_0)$$

$$tk_{11}[4] = x_0 \oplus L^2(y_0)$$

$$tk_7[0] = L^{-1}(tk_9[2] \oplus$$

 $tk_{11}[4]) \oplus tk_9[2]$ 

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks<br>0000000000 | Conclusion<br>O |
|--------------------|-----------------|--------------------------|---------------------------|-----------------|
|                    |                 |                          |                           |                 |



Focus on odd rounds:

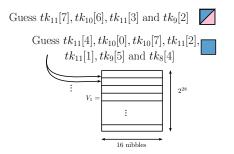
▶ 
$$tk_7[0] = x_0 \oplus y_0$$
  
▶  $tk_9[2] = x_0 \oplus L(y_0)$   
▶  $tk_{11}[4] = x_0 \oplus L^2(y_0)$   
 $tk_7[0] = L^{-1}(tk_9[2] \oplus$ 

 $tk_{11}[4]) \oplus tk_9[2]$ 

 $\rightarrow$  If  $tk_9[2]$  and  $tk_{11}[4]$  are known,  $tk_7[0]$  can be deduced

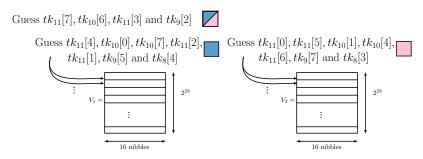
| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

57 pairs available, 32 used


| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|----------------------------|-----------------|--------------------------|-------------|-----------------|
|                            |                 |                          |             |                 |

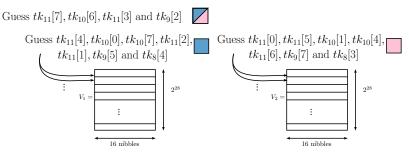
57 pairs available, 32 used

Guess  $tk_{11}[7], tk_{10}[6], tk_{11}[3]$  and  $tk_{9}[2]$ 


| 00000 <b>00000000</b> 000 |  | Overview of SKINNY<br>0000 | The Competition | On the Provided Messages<br>00000 | Our Attacks<br>0000000000 | Conclusion<br>O |
|---------------------------|--|----------------------------|-----------------|-----------------------------------|---------------------------|-----------------|
|---------------------------|--|----------------------------|-----------------|-----------------------------------|---------------------------|-----------------|

### 57 pairs available, 32 used

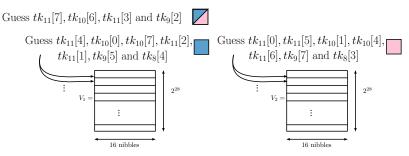



| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

### 57 pairs available, 32 used



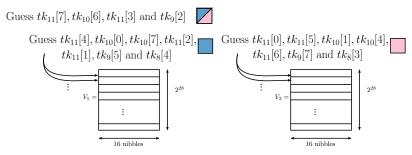
| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |


#### 57 pairs available, 32 used



Sort and Merge  $V_1$  and  $V_2$ :  $2^{28} \times 2^{28} \times 2^{-64} = 2^{-8}$  $2^8$  values of  $tk_{11}[7], tk_{10}[6], tk_{11}[3]$  and  $tk_9[2]$  survive

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

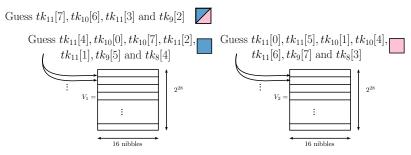

#### 57 pairs available, 32 used



Sort and Merge  $V_1$  and  $V_2$ :  $2^{28} \times 2^{28} \times 2^{-64} = 2^{-8}$  $2^8$  values of  $tk_{11}[7], tk_{10}[6], tk_{11}[3]$  and  $tk_9[2]$  survive for these, repeat with 32 pairs obtain  $tk_{11}$ 

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

#### 57 pairs available, 32 used




Sort and Merge  $V_1$  and  $V_2$ :  $2^{28} \times 2^{28} \times 2^{-64} = 2^{-8}$  $2^8$  values of  $tk_{11}$ [7],  $tk_{10}$ [6],  $tk_{11}$ [3] and  $tk_9$ [2] survive for these, repeat with 32 pairs obtain  $tk_{11}$ 

 $2^{16} \times (2 \times 32 \times 2^{28} + 2 \times 28 \times 2^{28} + 2^{-8} \times 2 \times 64 \times 2^{28}) \approx 2^{51.95} \text{ op}.$ 

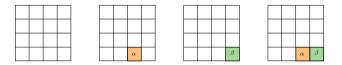
| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

### 57 pairs available, 32 used



Sort and Merge  $V_1$  and  $V_2$ :  $2^{28} \times 2^{28} \times 2^{-64} = 2^{-8}$  $2^8$  values of  $tk_{11}$ [7],  $tk_{10}$ [6],  $tk_{11}$ [3] and  $tk_9$ [2] survive for these, repeat with 32 pairs obtain  $tk_{11}$ 

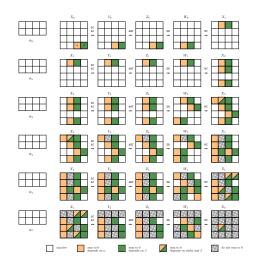
114 CPU days, 256 GB of memory required


| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | 0          |
|                    |                 |                          |             |            |

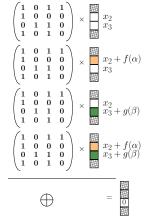
### Our Attack on 10-round SKINNY-128-128

Second order differential [Lai94, Knu95]

▶ (first-order) differentials consider difference between 2 messages

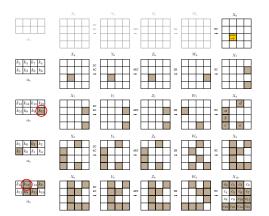

 $\blacktriangleright$  (second-order) differentials consider difference between  $2^2$  messages



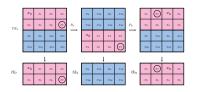

After encryption over 6 rounds, the values obtained for cell 9 sum to 0

|  | Overview of SKINNY<br>0000 | The Competition | On the Provided Messages | Our Attacks | Conclusion<br>O |
|--|----------------------------|-----------------|--------------------------|-------------|-----------------|
|--|----------------------------|-----------------|--------------------------|-------------|-----------------|

### Probability 1 Distinguisher over 6 Rounds

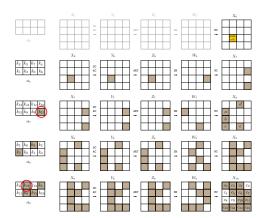



 follow the propagation of α (orange) and of β (green)

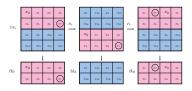



| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages | Our Attacks<br>00000000● | Conclusion<br>O |
|----------------------------|-----------------|--------------------------|--------------------------|-----------------|
|                            |                 |                          |                          |                 |

## Adding 4 rounds of Key Recovery



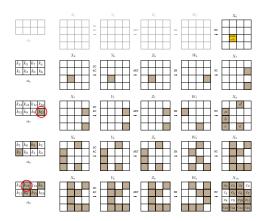

7 key bytes involved, 6 unique



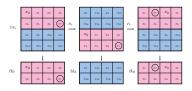

| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages | Our Attacks<br>00000000● | Conclusion<br>O |
|----------------------------|-----------------|--------------------------|--------------------------|-----------------|
|                            |                 |                          |                          |                 |

## Adding 4 rounds of Key Recovery




7 key bytes involved, 6 unique




- Guess 6 bytes of key, invert rounds and check that X<sub>6</sub>[9] sums to 0
- ► 6 quadruples are sufficient

| Overview of SKINNY<br>0000 | The Competition | On the Provided Messages | Our Attacks<br>000000000 | Conclusion<br>O |
|----------------------------|-----------------|--------------------------|--------------------------|-----------------|
|                            |                 |                          |                          |                 |

## Adding 4 rounds of Key Recovery



7 key bytes involved, 6 unique



- Guess 6 bytes of key, invert rounds and check that X<sub>6</sub>[9] sums to 0
- 6 quadruples are sufficient

 $2^{52}$  operations, 32 CPU days, 24 messages, 0.5 GB of memory

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | •          |

### Conclusion

We showed that 12-round SKINNY-64-128 and 10-round SKINNY-128-128 can be attacked in practical time

| Version        | Rounds | Technique        | Data | Time        | Memory |
|----------------|--------|------------------|------|-------------|--------|
| SKINNY-64-128  | 12     | Trunc. diff.     | 64   | $2^{51.95}$ | 256 GB |
| SKINNY-128-128 | 10     | 2nd-order T.diff | 24   | $2^{52}$    | 0.5 GB |

- So far these are the best attacks of the challenge
- The challenge is still open and names will still be added to the list for winning any challenge.

Source code available at: http://skinnysac19.gforge.inria.fr/

| Overview of SKINNY | The Competition | On the Provided Messages | Our Attacks | Conclusion |
|--------------------|-----------------|--------------------------|-------------|------------|
| 0000               | 00              | 00000                    | 0000000000  | •          |

### Conclusion

We showed that 12-round SKINNY-64-128 and 10-round SKINNY-128-128 can be attacked in practical time

| Version        | Rounds | Technique        | Data | Time        | Memory |
|----------------|--------|------------------|------|-------------|--------|
| SKINNY-64-128  | 12     | Trunc. diff.     | 64   | $2^{51.95}$ | 256 GB |
| SKINNY-128-128 | 10     | 2nd-order T.diff | 24   | $2^{52}$    | 0.5 GB |

- So far these are the best attacks of the challenge
- The challenge is still open and names will still be added to the list for winning any challenge.

Source code available at: http://skinnysac19.gforge.inria.fr/

Thank you for your attention

### Bibliography I

Ralph Ankele, Subhadeep Banik, Avik Chakraborti, Eik List, Florian Mendel, Siang Meng Sim, and Gaoli Wang.

Related-key impossible-differential attack on reduced-round skinny.

In Dieter Gollmann, Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17: 15th International Conference on Applied Cryptography and Network Security, volume 10355 of Lecture Notes in Computer Science, pages 208–228. Springer, Heidelberg, July 2017.

Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim.

The SKINNY family of block ciphers and its low-latency variant MANTIS.

In Matthew Robshaw and Jonathan Katz, editors, *Advances in Cryptology – CRYPTO 2016, Part II*, volume 9815 of *Lecture Notes in Computer Science*, pages 123–153. Springer, Heidelberg, August 2016.

#### Jérémy Jean.

TikZ for Cryptographers.

https://www.iacr.org/authors/tikz/, 2016.

## **Bibliography II**

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and keys for block ciphers: The TWEAKEY framework.

In Palash Sarkar and Tetsu Iwata, editors, *Advances in Cryptology* – *ASIACRYPT 2014, Part II*, volume 8874 of *Lecture Notes in Computer Science*, pages 274–288. Springer, Heidelberg, December 2014.

#### Lars R. Knudsen.

#### Truncated and higher order differentials.

In Bart Preneel, editor, *Fast Software Encryption – FSE'94*, volume 1008 of *Lecture Notes in Computer Science*, pages 196–211. Springer, Heidelberg, December 1995.

#### Xuejia Lai.

#### Higher order derivatives and differential cryptanalysis.

In Richard E. Blahut, Daniel J. Costello, Ueli Maurer, and Thomas Mittelholzer, editors, *Communications and Cryptography: Two Sides of One Tapestry*, pages 227–233, Boston, MA, 1994. Springer US.

# **Bibliography III**

Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under related-tweakey settings (long paper). *IACR Transactions on Symmetric Cryptology*, 2017(3):37–72, 2017.