
1/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

High-Assurance High-Speed Cryptography Implementations in
Jasmin

Vincent Laporte; Benjamin Grégoire
Manuel Barbosa; François Dupressoir; Pierre-Yves Strub; Tiago Oliveira

2022-07-07, Cyber in Nancy

2/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Cryptography Implementations

High-level specification of protocols

Implementation

Hardware-level security

3/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Example: symmetric encryption scheme

▶ k : key
▶ n : nonce
▶ m : plain-text message
▶ c : cyphertext

c := Enc(k, n, m)

m’ := Dec(k, n, c)

4/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Example: symmetric encryption from a PRF

PRF

Nonce

Key

⊕
Plaintext Cyphertext

mask

Enc(k, n, m) = m ⊕ f(k, n)
Dec(k, n, c) = c ⊕ f(k, n)

5/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Requirements

▶ Efficiency
▶ Correctness
▶ Safety
▶ Confidentiality

▶ against a PPT adversary (cryptographic security)
▶ even in presence of side-channels (implementation security)

5/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Requirements

▶ Efficiency
▶ Correctness
▶ Safety
▶ Confidentiality

▶ against a PPT adversary (cryptographic security)
▶ even in presence of side-channels (implementation security)

6/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Efficiency

▶ CPU cycles matter
▶ This can be assessed experimentally (through measurements)
▶ No formal efficiency in this lecture

7/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Correctness

Knowing the secret key allows to recover the plaintext:

Dec(k, n, Enc(k, n, m)) = m

Classical functional verification

Relies on the (formal) semantics of the programming language.

8/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Safety

Running the program:

▶ terminates
▶ does not crash (division by zero. . .)
▶ does not access arrays out of bounds, uninitialized variables
▶ i.e., has a properly defined behavior

Programs are usually not safe. Only under some precondition.

9/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Cryptographic security (IND$-CPA)
Game IND$-CPA-RealA()
k ←← K
b ←← ARealEnc(·,·)()
Return b

proc RealEnc(n, m)
Return Enc(k, n, m)

Game IND$-CPA-IdealA()
b ←← AIdealEnc(·,·)()
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Security requires the following advantage measure to be small

|Pr [IND$-CPA-RealA()⇒ true]− Pr [IND$-CPA-IdealA()⇒ true] |

▶ Can be done using relational verification of probabilistic programs (e.g., using the
EasyCrypt proof assistant).

▶ Not covered in this lecture.

10/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Implementation security

An adversary can observe some effects of the program execution beyond its result:

▶ execution time
▶ electromagnetic emissions
▶ noise
▶ effect on the branch predictor
▶ effect on the memory cache

Can any sensitive information be learned by means of these side-channels?

11/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Example Encryption Scheme in Jasmin

Look at nbaesenc.jazz

12/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

The Jasmin tool-box

Jasmin source

Reference
interpreter

Unit test
Safety checker

Termination
No crash

Constant-time
checker

Security against
side-channel attacks

Compiler

x86-64 assembly

Extraction of
EasyCrypt models

Functional
correctness

Cryptographic
security Constant-time

security

13/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Executable semantics

In program p, calling function f with arguments a⃗ from initial memory m terminates in
final memory m′ and returns values r⃗ :

f : (⃗a, m) ⇓p (⃗r , m′)

This is the definition of the program behaviors (formalized in Coq).

All proofs are made relative to this definition.

We gain trust by using it (execute & verify programs, verify static analyses, verify
program transformations, . . .)

14/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Safety: jasminc -checksafety . . .

▶ Programs are usually not safe
▶ Restrictions on the initial state

▶ Returns a sufficient pre-condition for safety (a predicate)
▶ Overapproximation because of undecidability
▶ The design of the programming language encourages the use high-level features

that make safety verification doable automatically

When the safety checker infers precondition P (for a function f in program p), then for
all initial state satisfying this precondition, there exists a corresponding final state:

∀a⃗ m, P (⃗a, m) =⇒ ∃⃗r m′, f : (⃗a, m) ⇓p (⃗r , m′)

No formal proof of this property.

15/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Compiler

16/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Compiler correctness

Forward simulation
If the compilation of source program S succeeds and produces target program T ,
if from the initial state i , S terminates with final result r ,
then from the same initial state i , T also terminates with final result r .

Overlooked details
▶ Initial states may not be the same

▶ Global data must be in the target memory
▶ The “stack pointer” (RSP) must point to a valid region of memory

▶ The target stack must be large enough
▶ i.e., the compiler does not enforce the absence of “stack overflow”

17/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Preservation of functional properties

Compiler correctness implies
If a property holds for all source behaviors,
then it holds for all target behaviors.

When the source program is a function (deterministic, terminating)
Then the target program is the same function.

▶ Cryptographic primitives are usually functions
▶ even PRNGs!

18/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Probabilities

When a function consumes random data
Reasoning about the distribution of the results in terms of the distribution of the inputs
can be done at the source level.

Probabilistic properties of functions are preserved (example: IND$-CPA)
Given a secret key, an adversary cannot distinguish (with non-negligible probability) the
encryption function from random sampling
This property is independent of the implementation.
▶ Unless the adversary has access to non-functional properties of the implementation

19/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Non-preservation
Non-deterministic programs
A correct compiler may not preserve distributions.
For instance, a source program that tosses a coin may be correctly compiled to the
constant program that always returns heads.

Changing the representation of values
E.g., booleans implemented as 63-bit machine integers.

S : b 7→ ¬b T : n 7→ 1− n
How to map invalid target values to source values?
There is no way to express at the source level the target behavior.

Non-functional properties
The theorem does not say anything about things that cannot be described by behaviors.

20/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Constant-time: jasminc -checkCT . . .

The compiler (always) preserves the constant-time property.

Formal (machine-checked) proof of this statement for version 21.0 of the compiler
(Barthe et al. 2021).

This is a stronger property than compiler-correctness.

21/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

EasyCrypt models

Reasoning about semantics of source programs is better done in a dedicated proof
assistant.

Extract an EasyCrypt model from a Jasmin source program.

For safe inputs to the Jasmin program, the EasyCrypt program computes the same
outputs (as the Jasmin program).

No formal proof of this statement.

22/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Summary

▶ A language
▶ A compiler
▶ Safety is a key property
▶ Reasoning at the source level is valid

▶ about safety; functional correctness (cryptographic security); constant-time security
▶ Coq proofs justify this claim

23/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Overview of the Jasmin programming language

Look at aes.jinc.

24/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Low-level control

Function inlining
inline fn or #inline calls

Loop unrolling
for loops: unrolled
while loops: preserved

Storage class
param, inline: compile-time use only
global, stack: memory
reg: registers

Vector (simd) instructions
No automatic vectorization
Convenient syntax for most operations

Intrinsic instructions & flag registers
jasminc -help-intrinsics to get the list
Flags are plain variables

25/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Common uses of intrinsics & flags

▶ Initialize to zero using a xor: #set0
▶ Branch on the result of an arithmetic operation
▶ A single comparison with more than two outcomes

See src/low-level.jazz

26/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Quizz (see src/array.jazz)

Can we tell something about the first returned value?

1 // Defines fn f(reg u8 x y) −→ reg u8
2 require "array.jinc"
3
4 inline
5 fn quizz0(reg u8 x) −→ reg u8, reg u8 {
6 reg u8 r, y;
7
8 r = 0;
9 y = f(r, x);

10 return r, y;
11 }

1 // Defines fn g(stack u8[1] x, reg u8 y) −→ stack u8[1]
2 require "array.jinc"
3
4 inline
5 fn quizz1(reg u8 x) −→ stack u8[1], stack u8[1] {
6 stack u8[1] r, y;
7
8 r[0] = 0;
9 y = g(r, x);

10 return r, y;
11 }

26/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Quizz (see src/array.jazz)

Can we tell something about the first returned value?

1 // Defines fn f(reg u8 x y) −→ reg u8
2 require "array.jinc"
3
4 inline
5 fn quizz0(reg u8 x) −→ reg u8, reg u8 {
6 reg u8 r, y;
7
8 r = 0;
9 y = f(r, x);

10 return r, y;
11 }

1 // Defines fn g(stack u8[1] x, reg u8 y) −→ stack u8[1]
2 require "array.jinc"
3
4 inline
5 fn quizz1(reg u8 x) −→ stack u8[1], stack u8[1] {
6 stack u8[1] r, y;
7
8 r[0] = 0;
9 y = g(r, x);

10 return r, y;
11 }

27/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Arrays: an explicit and powerful way to structure memory

Things made easier
▶ Modular reasoning is possible
▶ Sizes are explicit

▶ Useful for proving safety
▶ Alias analysis is trivial

▶ Array may overlap only when they have the same name

Caveat
Ensuring call-by-value semantics without copy is tricky (the compiler rejects programs)

28/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Practice tomorrow

▶ Expand the encryption scheme to messages of 256 bits

▶ Prove constant-time security of small low-level programs

29/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Constant-Time Security?

Threat: any shared component is a communication channel

Aim: protect against remote cache-based timing side-channel attacks

Attack scenarios
▶ A distant server takes time to answer
▶ Two clients of a (trusted) cloud provider

▶ Processes are isolated (virtual memory, hypervisor, . . .)
▶ Two websites in a browser
▶ Two apps running on the same device

30/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Constant-Time Programming

Adversary model aka leakage model
The adversary learns from the victim program (whose code is public):
▶ the sequence of executed instructions (program counter security)
▶ the sequence of accessed memory addresses

▶ sometimes only the cache-line (i.e., the least significant bits are kept secret)
and also:
▶ (size of) operands to some operations (division, floating-point arithmetic, . . .)
▶ values of local variables on function return
▶ . . .

Protection
Ensure that the leakage is independent of secrets

31/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Constant-time select

In order to replace a conditional expression r = c ? t : f:

▶ compute operations from both branches
▶ chose the right result depending on the condition

Using arithmetic
r = (t ×m) + (f × (1−m))

Using a conditional move instruction
r = f;
r = t if c;

See src/ctselect.jazz

32/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Enforcement by typing

See src/max.jazz

Security type annotations
Tell which inputs are public (and which are not).
Security types are ordered (aka two-point lattice)

Typing rules
Result of operations is not lower than the level of arguments
Array indices and branch/loop conditions must be public
Note: usually points-to analysis is hard

33/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Access memory at secret addresses

This can become costly
▶ Load the whole array
▶ Rewrite the whole array
▶ See src/copyMAC.jazz

To avoid table lookups:
▶ Bit-slicing
▶ Hardware support (e.g., aes-ni)
▶ Take constant-time security into account during design

34/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Declassification

Look at nbaesenc.jazz again.

▶ Sometimes, we need to argue that a tainted value is public

35/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

Questions?

A programming language and associated tools for writing & verifying low-level
implementations.

https://formosa-crypto.org/

Thanks for your attention.

https://formosa-crypto.org/

36/ 36

Introduction The Jasmin tool-box The Jasmin Language Constant-time programming Conclusions

References

Literature
Barthe, Gilles, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2021. “Structured Leakage and

Applications to Cryptographic Constant-Time and Cost.” In CCS ’21: 2021 ACM SIGSAC
Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November
15 - 19, 2021, 462–76. https://doi.org/10.1145/3460120.3484761.

https://doi.org/10.1145/3460120.3484761

	Introduction
	The Jasmin tool-box
	The Jasmin Language
	Constant-time programming
	Conclusions

