
Secure Compilation of Counter-Measures to Spectre Attacks

Santiago Arranz Olmos, Gilles Barthe, Lionel Blatter, Benjamin Grégoire, Vincent Laporte
2024-10-07 — Prosecco Seminar, Paris (XIIIe)

1

Secure Compilation

• Reason about security of target program on the source code

• Example scenarios

2

Security of Software Implementations

• Small-step deterministic semantics with leakage: s o−→ s ′.
• Example: Obs ::= • | branch b | addr a i .

• Programs take inputs to initial states
• Same language of inputs for all programming languages
• Execution states and leakage may differ
• Some states are final

• Relation φ over inputs characterizes their confidentiality
• Semantic security of program P w.r.t. φ:

∀i1 i2 n O1 O2 s1 s2,

i1 φ i2 =⇒ P(i1) O1−→n s1 =⇒ P(i2) O2−→n s2 =⇒ O1 = O2.

3

The (non) issue of safety

Is the following program constant-time?

1 u64[1] t = { 42 };
2 export fn get(#secret reg u64 x) −→ #public reg u64 {
3 reg u64 r;
4 r = t[x];
5 return r;
6 }

All possible executions:
1. P(x) ϵ−→0 P(x)
2. P(0) addr t 0−−−−→ . . .

Yes: function get is CT.

Solution: include all safety preconditions in φ.

4

Compilers vs. Constant-Time

1 param int N = 4;
2 export fn copy(reg ptr u64[N] dst src)
−→ reg ptr u64[N] {
3 reg u64 v i = 0;
4 while (i <u N) {
5 v = src[i];
6 dst[i] = v ;
7 i += 1;
8 }
9 return dst;

10 }

1 copy:
2 mov rax, 0
3 jmp head
4 loop:
5 mov rcx, [rsi + rax * 8]
6 mov [rdi + rax * 8], rcx
7 inc rax
8 head:
9 cmp rax, 4

10 jb loop
11 ret

The compilers knows how to transform code; it also knows how to transform leakage.

5

CT-Simulations

The compilation of program P into program Q preserves CT if there is a function F
from source leakage to target leakage such that:

∀i n O s, P(i) O−→∗ s =⇒ ∃t, Q(i) F (O)−−−→∗ t ∧ (final(s) ⇐⇒ final(t)).

• This whole-trace property can be proved by means of usual simulation diagrams.
• Various examples by Barthe et al. (2021) and Barthe et al. (2019).

6

Speculative Execution: branch prediction and Spectre v1

• Do not wait
• the end of an instruction before

starting to execute the next one
• Speculate

• what is the next instruction to
execute

Example

mov rax, 0
cmp rdi, 2
jnb . . .
mov rax, [rcx + rdi * 8]
mov rax, [rdx + rax * 8]
...

• Some transient effects may be observed
• Speculative bypass of safety checks may

lead to security issues

Example vulnerability: iLeakage [CCS 2023]
We have actively discussed countermea-
sures with Safari’s development team
[. . .]. Our discussion has resulted in
Apple refactoring Safari’s multi-process
architecture significantly.

7

Speculative Execution: branch prediction and Spectre v1

• Do not wait
• the end of an instruction before

starting to execute the next one
• Speculate

• what is the next instruction to
execute

Example

mov rax, 0
cmp rdi, 2
jnb . . .
mov rax, [rcx + rdi * 8]
mov rax, [rdx + rax * 8]
...

• Some transient effects may be observed
• Speculative bypass of safety checks may

lead to security issues

Example vulnerability: iLeakage [CCS 2023]
We have actively discussed countermea-
sures with Safari’s development team
[. . .]. Our discussion has resulted in
Apple refactoring Safari’s multi-process
architecture significantly.

7

Defenses: SLH & SCT

(Selective) Speculative Load Hardening

• Detect mis-speculated executions in software
• (Selectively) sanitize sensitive values before they leak

This is effective (see Ammanaghatta Shivakumar et al. (2023))

• Often cheap to implement
• Protection can be automated
• Security can be proved

8

Running example

1 param int N = 3;
2 export fn main(#secret reg u64 sec) {
3 stack u64[N] spill p;
4 spill[0] = sec;
5 sec = spill[0];
6 reg u64 i = 0;
7 while (i <u N) {
8 p[i] = 0;
9 i += 1;

10 }
11 i = p[0];
12 p[i] = 0;
13 }

Is this program secure?

• Speculative execution may
bypass the initialization loop.

• Compiler may allocate spill and
p at the same address.

• So the leaked value of i at the
final line might be secret.

9

Running example

1 param int N = 3;
2 export fn main(#secret reg u64 sec) {
3 stack u64[N] spill p;
4 spill[0] = sec;
5 sec = spill[0];
6 reg u64 i = 0;
7 while (i <u N) {
8 p[i] = 0;
9 i += 1;

10 }
11 i = p[0];
12 p[i] = 0;
13 }

Is this program secure?

• Speculative execution may
bypass the initialization loop.

• Compiler may allocate spill and
p at the same address.

• So the leaked value of i at the
final line might be secret.

9

Speculative Semantics

• The adversary has full control over the speculation through directives:

Dir ::= step | force b | mem a i .

• No-backtrack theorem: no need for backtracking to reason about Spectre.

• Small steps relate states with an explicit mispeculation bit:

Assign

⟨x = e; c, ρ, µ, ms⟩ •−−→
step
⟨c, ρ[x ← J e Kρ], µ, ms⟩

10

Speculative Semantics (selected rules)

Cond
J e Kρ = b′

⟨if e then c⊤ else c⊥; c, ρ, µ, ms⟩ branch b′
−−−−−→

force b
⟨cb; c, ρ, µ, ms ∨ (b ̸= b′)⟩

n-load
J e Kρ = i i ∈ [0, |a|) µ(a, i) = v

⟨x = a[e]; c, ρ, µ, ms⟩ addr a i−−−−−→
mem b j

⟨c, ρ[x ← v], µ, ms⟩

s-load
J e Kρ = i i /∈ [0, |a|) ∨ µ(a, i) = ⊥ j ∈ [0, |b|) µ(b, j) = v

⟨x = a[e]; c, ρ, µ, ⊤⟩ addr a i−−−−−→
mem b j

⟨c, ρ[x ← v], µ, ⊤⟩

11

Example

1 param int N = 3;
2 export fn main(#secret reg u64 sec) {
3 stack u64[N] spill p;
4 spill[0] = sec;
5 sec = spill[0];
6 reg u64 i = 0;
7 while (i <u N) {
8 p[i] = 0;
9 i += 1;

10 }
11 i = p[0];
12 p[i] = 0;
13 }

Directives
• mem spill 0
• mem spill 0
• step
• force ⊥
• mem spill 0
• mem spill 0

Observations
• addr spill 0
• addr spill 0
• •
• branch ⊤
• addr p 0
• addr p sec

12

Speculative Constant-Time

Given a relation φ on inputs, a program P is φ-SCT when:

∀D i1 i2 O1 O2 s1 s2,

i1 φ i2 =⇒ P(i1) O1−→
D

∗ s1 =⇒ P(i2) O2−→
D

∗ s2 =⇒ O1 = O2.

Informally: no choice of directives can reveal any secret.

Nota bene:

• As usual, φ guarantees safety under normal executions
• Mis-speculated executions cannot be stuck due to a wrong choice of directive

13

Motivating Example: Array Concatenation

Let’s merge two source arrays A and B into a single target array C.
• A[e] becomes C [e]
• B[e] becomes C [e + |A|].

How to explain the value of the
access C [e] when e evaluates to i?

• when source accesses B?
• when it accesses A?

We need to extend the correctness proof to mis-speculated executions (of the target).

14

General Theorem

Secure compilation (backward case)

Let P and Q be programs. If there exist two functions Td and To such that

∀D i Ot t, Q(i) Ot−→
D

∗ t =⇒ ∃Os s, P(i) Os−−−−→
Td (D)

∗ s ∧ Ot = To(Os)

then for any φ, if P is φ-SCT then Q is φ-SCT.

Lockstep simulation diagram

s s ′

t t ′

os

Td (d)

To(os)
d

15

Proof Sketch for Array Concatenation

Transforming directives

Td(mem C j) =

mem A j if j < |A|
mem B (j − |A|) otherwise

Td(d) = d

Transforming observations

To(addr A i) = addr C i
To(addr B i) = addr C (i + |A|)

To(o) = o

16

Applications

The following passes have been proved to preserve security:

Lock-step, identity transformers

• Constant folding
• Constant propagation
• Loop peeling
• Register allocation (no spilling)

Introduce directives, eliminate leakage

• Dead assignment elimination
• Dead branch elimination

More complex transformers

• Array reuse
• Array concatenation
• Linearization

And their composition

Security preservation proofs can be
composed.

17

A dilemma?

What is the right speculative semantics?

Previous work

• Adversaries cannot take advantage
from uninitialized reads

• Fresh arrays can be seen as public

• More programs are SCT

• Array reuse is not secure

This work

• Adversaries can access any
location on uninitialized reads

• Fresh arrays must be seen as
speculatively secret (aka transient)

• Less programs are SCT

• Some compilers are secure

18

Experiments

Set-up

1. Amend the Jasmin SCT checker to treat uninitialized arrays as transient.

2. Typecheck a few programs deemed secure by the unmodified checker

• test-suite of the SCT checker
• the SCT implementations from LibJade

Results

• Only a couple of synthetic programs are now rejected.
• The 44 real cryptographic implementations are still (automatically) proved secure.

19

Questions ?

Thank you

Pre-print available online (Arranz Olmos et al. 2024).

See you soon. . .

https://formosa-crypto.org/

20

https://formosa-crypto.org/

References i

Ammanaghatta Shivakumar, Basavesh, Gilles Barthe, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.
2023. “Typing High-Speed Cryptography against Spectre v1.” In SP 2023- IEEE
Symposium on Security and Privacy, 1592–1609. San Francisco, United States:
IEEE. https://doi.org/10.1109/SP46215.2023.10179418.

Arranz Olmos, Santiago, Gilles Barthe, Lionel Blatter, Benjamin Grégoire, and Vincent
Laporte. 2024. “Preservation of Speculative Constant-time by Compilation.”
https://hal.univ-lorraine.fr/hal-04663857.

21

https://doi.org/10.1109/SP46215.2023.10179418
https://hal.univ-lorraine.fr/hal-04663857

References ii

Barthe, Gilles, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vincent Laporte, David
Pichardie, and Alix Trieu. 2019. “Formal Verification of a Constant-Time Preserving
C Compiler.” Proc. ACM Program. Lang. 4 (POPL).
https://doi.org/10.1145/3371075.

Barthe, Gilles, Benjamin Grégoire, Vincent Laporte, and Swarn Priya. 2021. “Structured
Leakage and Applications to Cryptographic Constant-Time and Cost.” In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 462–76. CCS ’21. New York, NY, USA: Association for
Computing Machinery. https://doi.org/10.1145/3460120.3484761.

22

https://doi.org/10.1145/3371075
https://doi.org/10.1145/3460120.3484761

