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Probability

The probability of an event E in a procedure M.f applied to a argument a starting from a memory &m is
denoted by Pr[M.f(a) @ &m : E].

The initial memory &m contains the value of global variables.

The event is an expression that can depend of global variables and a special variable res denoting the returned
result of the procedure.

Hoare logic

The Hoare logic allows to prove properties on the result of a procedure.

A statement in this logic uses the following syntax:

lemma myFirstLemma : hoare[M.f : pre =⇒ post]

The pre-condition pre is a proposition than can depend of global variables, parameters and a special name
arg denoting the arguments of the procedure.

The post-condition post can depend of global variables, and the special variable res.

The judgment imposes that any state with a non zero probability in the distribution generated by the
procedure M.f starting from a memory and arguments satisfying the pre-condition will satisfy the post-
condition.

For example for the program on the left, the Hoare judgements on the right are equivalent.

module M = {
var v1 : int
var v2 : int

proc f(x:int; y: int) = {
v1← 0;
return x + y;
}
}.

lemma version1 : hoare[M.f : x=1 ∧ y=2 =⇒ res = 3 ∧ M.v1 = 0].
lemma version2 : hoare[M.f : arg=(1,2) =⇒ res = 3 ∧ M.v1 = 0].

You can also relate initial and final values using logical variables:

lemma relate : ∀ x y v2, hoare[M.f : arg=( x, y) ∧ M.v2 = v2 =⇒ res= x + y ∧ M.v2= v2].

Here, the result is the sum of the arguments; global variable M.v2 un-
changed.

To make the declaration shorter you can also use the following syntax:

hoare relate x y v2 : M.f : arg=( x, y) ∧ v2 = v2 =⇒ res= x + y ∧ v2= v2.

Probabilistic Hoare logic

Probabilistic Hoare logic allows bounding the probability of an event.

module P = {
proc s() = {

var r;
r←$ {0,1};
return r;
}
}.

Statement: probability that the result is true equals 1/2.

lemma Ps half eq : phoare[P.s : true =⇒ res] = 0.5.

We can also express probability lower an upper bounds.

lemma Ps half le : phoare[P.s : true =⇒ res] ≤ 0.5.
lemma Ps half ge : phoare[P.s : true =⇒ res] ≥ 0.5.

We can prove probability statements using pHoare judgments by applying the byphoare tactic.

lemma pr Ps half eq &m : Pr[P.s() @ &m : res] = 0.5.
proof. byphoare. done. done. apply Ps half eq. qed.

A shorter version of the proof is:

lemma pr Ps half eq &m : Pr[P.s() @ &m : res] = 0.5.
proof. byphoare Ps half eq⇒ //. qed.

EasyCrypt provides a special notation islossless P.f for judgments that require only that the program always
terminates.

islossless P.f := phoare[ P.f : true =⇒ true] = 1.0.



Probabilistic Relational Hoare logic

The main ingredient of EasyCrypt is the Probabilistic Relational Hoare logic (pRHL), which allows describ-
ing events involving the execution of two programs. The general syntax is

equiv[M1.f ∼ M2.g : pre =⇒ post]

The pre-condition pre is a relation between the initial state (arguments and global variables).

The post-condition is a relation between the final states (result of each procedure and global variables).

module Pn = {
proc s() = {

var r;
r←$ {0,1};
return ¬r;
}
}

We can relate the executions of P.s and Pn.s:

lemma myFirstEquiv : equiv [P.s ∼ Pn.s : true =⇒ ¬res{1} = res{2}].

res{1} denotes the result of the left-hand procedure (i.e. P.s).
res{2} denotes the result of the right-hand procedure (i.e. Pn.s).
Statement: P.s output is the negation of Pn.s output.

EasyCrypt provides a special notation for variable equalities: ={x, y} is a shortcut for x{1} = x{2}∧ y{1} = y{2}.

We can prove probability statements involving two programs using pRHL judgements with the byequiv tactic.

Probability equalities. For example, assume we have proved equiv eq M N : M.f ∼ N.g : pre =⇒ post.

Then byequiv can be used to discard the following proof goal.

lemma pr eq M N &m1 a1 &m2 a2 : Pr[M.f(a1) @ &m1 : E1] = Pr[N.g(a2) @ &m2 : E2].
proof. byequiv eq M N.

The tactic will generate two side conditions:

i. the pre-condition pre is satisfied by a1, &m1, a2, &m2; and

ii. the post-condition post implies the equivalence of the two events: post⇒ E1⇔ E2.

Probability equalities. Tactic byequiv recognizes a number of patterns, such as inequalities:

lemma pr eq M N &m1 a1 &m2 a2 : Pr[M.f(a1) @ &m1 : E1] ≤ Pr[N.g(a2) @ &m2 : E2].
proof. byequiv eq M N.

lemma pr eq M N &m1 a1 &m2 a2 : Pr[M.f(a1) @ &m1 : E1] ≥ Pr[N.g(a2) @ &m2 : E2].
proof. byequiv eq M N.

In these cases the postcondition subgoals change to post⇒ E1⇒ E2 and post⇒ E2⇒ E1, respectively.

For clarity, here are two additional examples of using the byequiv tactics for probability equalities:

lemma rel &m1 &m2: Pr[P.s() @ &m1 : ¬res] = Pr[Pn.s() @ &m2 : res].
proof. byequiv myFirstEquiv. done. done. qed.

axiom mySecondEquiv : equiv [P.s ∼ Pn.s : true =⇒ res{1} = res{2}].

lemma rel2 &m1 &m2: Pr[P.s() @ &m1 : res] = Pr[Pn.s() @ &m2 : res].
proof. byequiv mySecondEquiv⇒ //. qed.

Shorter proof byequiv mySecondEquiv⇒ // works in both, as ⇒ // tries to apply done to the subgoals.

Up-to-bad relations. The fundamental theorem of game-hopping is native in the EasyCrypt pRHL logic.

Rather than conditional probabilities, the following general derivation is used:

Pr[G1 : ¬bad1∧ E1] = Pr[G2 : ¬bad2∧ E2]⇒ Pr[G1 : bad1] = Pr[G2 : bad2]⇒ `|Pr[G1 : E1] − Pr[G2 : E2]| ≤ Pr[G2 : bad2]

Tactic byequiv recognizes goals such as the consequence above:

lemma upto &m : `|Pr[G1 : E1] − Pr[G2 : E2]| ≤ Pr[G2 : bad2].
proof. byequiv: bad1.

This yields one sub-goal, where the hypotheses are proved using equiv and pre is inferred automatically:

equiv [G1 ∼ G2 : pre =⇒ (bad1{1} ⇔ bad2{2}) ∧ (¬bad2{2} ⇒ E1{1} ⇔ E2{2})]

For pattern Pr[G1 : E1] ≤ Pr[G2 : E2] + Pr[G2 : bad2], tactic byequiv generates subgoal justified by the derivation below.

equiv [G1 ∼ G2 : pre =⇒ ¬bad2{2} ⇒ E1{1} ⇒ E2{2}]}

Pr[G1 : E1] ≤ Pr[G2 : ¬bad2 ∧ E2∨ bad2]⇒ Pr[G1 : E1] ≤ Pr[G2 : ¬bad2 ∧ E2] + Pr[G2 : bad2] ≤ Pr[G2 : E2] + Pr[G2 : bad2]



Combining one-sided and two-sided (relational) results

The HL, pHL and pRHL logics can be combined together using tactic conseq.

Refining pHL with HL. Assume we have proved using pHL that a coarse post condition post1 holds with
probability r. (Note that post1 = true implies termination with probability r and islossless is a particular case.)

We can refine this post condition to post2 using HL, without thinking about probabilities and termination:

axiom a1 : phoare[M.f : pre1 =⇒ post1] = r.
axiom a2 : hoare [M.f : pre2 =⇒ post2].
lemma l1 : phoare[M.f : pre =⇒ post] = r.
proof. conseq a1 a2.

This generates two natural sub-goals: pre⇒ pre1 ∧ pre2 and post1 ∧ post2⇒ post.

One can also provide the pre and post-conditions required by the rule and prove the hypotheses as subgoals:

lemma l1 : phoare[M.f : pre =⇒ post] = r.
proof. conseq (: pre1 =⇒ post1) (: pre2 =⇒ post2).

One can take the current pre- and post-conditions using underscore notation (e.g., pre1=pre and post2=post):

lemma l1 : phoare[M.f : pre =⇒ post] = r.
proof. conseq (: =⇒ post1) (: pre2 =⇒ ).

Restating pHL in a different procedure using pRHL. Assume we have proved a probabilistic
statement of the form

axiom a1 : phoare [M.f : pre1 =⇒ post1] = r.

Suppose also we use pRHL to relate the events in post1 to events post2 in procedure N.g, e.g.

axiom a2: equiv [N.g ∼ M.f : pre =⇒ post1{1} ⇔ post2{2} ].

Then conseq a1 a2 yields phoare [N.g : pre2 =⇒ post2] = r under side condition ∀ m2, pre2{m2} ⇒ ∃ m1, pre ∧ pre1{m1}.

Existential quantification allows us to provide memory m1 in which we want to use the relational hypothesis.

This is useful when proving a1 in M.f is much easier, e.g., due to control-flow/abstract data types.

More generally, the same pattern can be proved using equiv post condition post if post⇒ post2⇔ post1.

Other useful tactics

EasyCrypt has logics for high-level reasoning about procedures and low-level reasoning about statements.

The proc tactic transforms a judgment on a procedure into a judgment on its statements. The arg variable in
the precondition is replaced by the actual parameters and the res variable in the post-condition is replaced
by the expression returned by the procedure.

The tactics that follow are useful for reasoning over statements. They exist for both one-sided (HL, pHL)
and two-sided (pRHL)goals. The simplest ones are wp/sp for the weakest/strongest pre-/post-condition.

inline Tactic inline M.f will inline the function M.f. inline * will inline (recursively) all functions. If the goal is a
pRHL judgment, then one can specify inline{1} M.f to inline M.f in the left-hand statement, whereas inline{2} *
will inline all procedures in the right-hand statement.

call The call tactic applies when the last instruction(s) is/are a procedure call. For HL, this rule is standard.
Assume we have

axiom a1 : hoare [M.f : pre1(arg) =⇒ post1(res) ]

and the current goal is hoare [ S; x← M.f(e) : pre =⇒ post(x)]. call a1 will transform the goal (possibly with quantifi-
cation over the modified global variables) into hoare[ S : pre =⇒ pre1(e) ∧ ∀ r, post1(r)⇒ post(r) ]

It is also possible to provide directly the pre and post-conditions to the tactic: call (: pref arg =⇒ postf res).

For pRHL, suppose we have

axiom a2 : equiv [ M.f1 ∼ N.f2 : pre2(arg{1},arg{2}) =⇒ post2(res{1},res{2}) ]

and the current goal is

equiv [ S1; x1← M.f1(e1) ∼ S2; x2← N.f2(e2) : pre =⇒ post(x1,x2) ]



Tactic call a2 will transform the goal into

equiv[ c1 ∼ c2 : pre =⇒ pre2(e1{1},e2{2}) ∧ ∀ r1 r2, post2(r1,r2)⇒ post(r1,r2)]

Again, it is possible to provide directly the pre- and post-conditions to the tactic.

There is a special case when the called procedure are abstract, e.g, adversarial procedures.

For example, support that the goal is of the form:

equiv [ S1; x1← A(O1).f(e1) ∼ S2; x2← A(O2).f(e2) : pre =⇒ post(x1,x2) ]

The call tactic then implicitly quantifies for all possible code of A and rely on the fact that the same code is
being run on both sides: if the code on both sides gets the same inputs, then it will return the same outputs.

The call tactic therefore requires proving as sub-goals that the adversary gets the same original inputs to
the procedure, but also that it gets the same outputs from every oracle (procedure) call it makes.

For example, let us assume only one oracle procedure on each side O1.g/O2.g and suppose inv is a relational
invariant preserved by the oracles, so we have proved:

equiv [O1.g ∼ O2.g : ={arg} ∧ inv =⇒ ={res} ∧ inv ]

Then we can use call to derive

equiv [A(O1).f ∼ A(O2).f : ={arg, glob A} ∧ inv =⇒ ={res, glob A} ∧ inv].

where glob A represents the global memory read/written to by A.

The rule is sound as long as A is not able to break the invariant inv between calls to its oracles, so EasyCrypt
ensures that the variables of inv can not be written by A (this is declared in the type of A).

Tactic call (inv) permits transforming the original goal

equiv [ S1; x1← A(O1).f(e1) ∼ S2; x2← A(O2).f(e2) : pre =⇒ post(x1,x2) ]

into a number of subgoals reminiscent of a classical HL while rule:

- the standard subgoal for call on precondition ={arg, glob A} ∧ inv

- the standard subgoal for call on postcondition ={res, glob A} ∧ inv

- for each possible oracle call, a subgoal imposing invariant preservation of the form

equiv[O1.g ∼ O2.g : ={arg} ∧ inv =⇒ ={res} ∧ inv]

sim The sim tactic gives automation when the post-condition can be reduced to a conjunction of equalities
over variables on two-sided statements. It often discards goals fully automatically if the two programs have
similar control flow.


