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High-Assurance Implementation of Cryptography
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Security Protocols

AS B

kAkA, kB kB

(A, B, N1)

Enc(kA, (N1, B, k, Enc(kB , (k, A))))

Enc(kB , (k, A))

Enc(k, N2)

Enc(k, N2 − 1)

Needham–Schroeder Symmetric Key Protocol

Ensure security properties (e.g., mutual authentication)

Rely on secure primitives (e.g., a symmetric encryption scheme)
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Cryptographic Primitives

Example: a nonce-based encryption scheme
▶ k : key
▶ n : nonce
▶ m, m’ : plain-text messages
▶ c : ciphertext

c := Enc(k, n, m)
m’ := Dec(k, n, c)

Correctness of an encryption scheme
Knowing the secret key allows to recover the plaintext:

Dec(k, n, Enc(k, n, m)) = m
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Cryptographic security (IND$-CPA)

A ciphertext is indistinguishable from random:

Game IND$-CPA-RealA( )
k ←← K
b ←← ARealEnc(·,·)( )
Return b

proc RealEnc(n, m)
Return Enc(k, n, m)

Game IND$-CPA-IdealA( )
b ←← AIdealEnc(·,·)( )
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Security requires the following advantage measure to be small

|Pr [ IND$-CPA-RealA( )⇒ true ]− Pr [ IND$-CPA-IdealA( )⇒ true ] |
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Implementation security

Adversaries may observe the machine running a victim program.

Is any sensitive information leaked into these observations?

Constant-Time
▶ A popular mitigation against timing (cache-based) side-channel attacks
▶ Two rules

▶ No branching on secret data
▶ No memory access at secret addresses
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Cryptographic security in spite of side-channels

We can generalize the IND$-CPA definition

Security still holds for constant-time programs
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Other Implementation-Level Requirements

Efficiency
▶ CPU cycles matter
▶ This can be assessed experimentally (through measurements)

Safety
Running the program:
▶ terminates
▶ does not crash (division by zero. . . )
▶ does not access arrays out of bounds, uninitialized variables

Programs are usually not safe. Only under some precondition.

Correctness
The program actually fulfills its specification.
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Formosa Crypto

The Formosa Crypto project federates multiple projects in machine-checked
cryptography and high-assurance cryptographic engineering under a single
banner, to better support developers and users.

EasyCrypt Construction and verification of game-based cryptographic proofs
Jasmin Programming language for high-speed secure implementations

LibJade High-assurance software implementations of post-quantum crypto

https://formosa-crypto.org/

https://formosa-crypto.org/
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Secure High-Assurance Implementations of sha-3 [CCS2019]

▶ Fast (optimized for avx2)
▶ Secure (constant-time)
▶ Correct (wrt. a reference implementation)

Indifferentiability proof of the Sponge construction
▶ Main theorem about security of sha-3
▶ Bounds the probability for an adversary to break it:

▶ in particular to find collisions, preimages, or second preimages
▶ Theorem applies to the optimized implementation!
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Formally Verifying Kyber – Episode IV [TCHES2023]

▶ Reference & optimized implementations
▶ Correctness proof
▶ Theoretical results about the random sampling procedures

Work in progress
▶ Security proof
▶ Verification of the fully optimized implementation
▶ Integrate with the existing proofs of sha-3
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Beyond Crypto Implementations

Jasmin is also a nice tool for research on (verified) (secure) compilation:

▶ use machine learning to search for faster implementations;
▶ study counter-measures against speculative execution attacks (Spectre);
▶ enforce zeroing of local memory after use;
▶ . . .
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The Jasmin tool-box
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Example: symmetric encryption from a PRF

PRF

Nonce

Key

⊕
Plaintext Ciphertext

mask

Enc(k, n, m) = m ⊕ f(k, n)
Dec(k, n, c) = c ⊕ f(k, n)

Specific choice of PRF: AES-128
Key, nonce, mask, plaintext, and ciphertext
are 128-bit values.
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Counter mode of operation

There are a few common (and secure) ways to turn a block cipher into a stream cipher,
e.g.:

Counter (CTR) mode encryption

block cipher
encryption

Nonce
c59bcf35…

Counter
00000000

Key

Plaintext

Ciphertext

block cipher
encryption

Nonce
c59bcf35…

Counter
00000001

Key

Plaintext

Ciphertext

block cipher
encryption

Nonce
c59bcf35…

Counter
00000002

Key

Plaintext

Ciphertext
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Example Encryption Scheme in Jasmin

Look at nbaesenc.jazz
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Executable semantics

In program p, calling function f with arguments a⃗ from initial memory m terminates in
final memory m′ and returns values r⃗ :

f : (⃗a, m) ⇓p (⃗r , m′)

This is the definition of the program behaviors (formalized in Coq).

All proofs are made relative to this definition.

We gain trust by using it (execute & verify programs, verify static analyses, verify
program transformations, . . . )
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A compiler to assembly

▶ Produces (predictable) assembly for x86_64
▶ Experimental support for ARMv7 architecture (Cortex-M4)
▶ Complies with standard ABI

▶ for interoperability with other languages
▶ look at bindings/
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Safety: jasminc -checksafety . . .

▶ Programs are usually not safe
▶ Restrictions on the initial state

▶ Returns a sufficient pre-condition for safety (a predicate)
▶ Overapproximation because of undecidability
▶ The design of the programming language encourages the use high-level features

that make safety verification doable automatically

When the safety checker infers precondition P (for a function f in program p), then for
all initial state satisfying this precondition, there exists a corresponding final state:

∀a⃗ m, P (⃗a, m) =⇒ ∃⃗r m′, f : (⃗a, m) ⇓p (⃗r , m′)

No formal proof of this property.
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Constant-time: jasminc -checkCT . . .

Function signatures can be decorated with #public and #secret annotations.

An automated source-level checker validates that no sensitive values flow to:

▶ branching conditions (including loop guards)
▶ array indices and dereferenced pointers

Approximations are unavoidable
▶ Memory contents are assumed to be #secret
▶ When needed, assignments can be annotated with #declassify to claim (admit)

they produce public values (e.g., at the end of encryption)
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EasyCrypt models: jasminc -oec . . .

Reasoning about semantics of source programs is better done in a dedicated proof
assistant.

Extract an EasyCrypt model from a Jasmin source program.

For safe inputs to the Jasmin program, the EasyCrypt program computes the same
outputs (as the Jasmin program).

No formal proof of this statement.
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The Jasmin tool-box

Jasmin source

Reference
interpreter

Unit test
Safety checker

Termination
No crash

Constant-time
checker

Security against
side-channel attacks

Compiler

x86-64 assembly

Extraction of
EasyCrypt models

Functional
correctness

Cryptographic
security Constant-time

security
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Verified Compilation
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What we run is not what has been verified

▶ Source vs. assembly
▶ Can we trust the compiler?



26/ 52

Program transformations in the Jasmin compiler

.jazz Parse Preprocess Type-check Jasmin

Array copyAdd initInliningFunction
pruning

Constant
prop.DCEUnrolling

Live-range
splitting

Remove
init

Reference
arguments

Reg. array
expansion

Live-range
splitting Globals Instruction

selection

Inline
prop.

Stack
allocationStack

Remove
ret. ptr.

Register
allocationDCE

One
varmap

Linearize Linear Tunnel. Asm. gen. ASM
Pretty-
printing .s

Trusted step

Proved step

Validated step

Intermediate representation

Checker

Transformation
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Compiler correctness

Forward simulation
If the compilation of source program S succeeds and produces target program T ,
if from the initial state i , S terminates with final result r ,
then from the same initial state i , T also terminates with final result r .

Overlooked details
▶ Initial states may not be the same

▶ Global data must be in the target memory
▶ The “stack pointer” (RSP) must point to a valid region of memory

▶ The target stack must be large enough
▶ i.e., the compiler does not enforce the absence of “stack overflow”
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Note about safety

No guaranties about unsafe executions
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Preservation of functional properties

Compiler correctness implies
If a property holds for all source behaviors,
then it holds for all target behaviors.

When the source program is a function (deterministic, terminating)
Then the target program is the same function.

▶ Cryptographic primitives are usually functions
▶ even PRNGs!
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Probabilities

When a function consumes random data
Reasoning about the distribution of the results in terms of the distribution of the inputs
can be done at the source level.

Probabilistic properties of functions are preserved (example: IND$-CPA)
Given a secret key, an adversary cannot distinguish (with non-negligible probability) the
encryption function from random sampling
This property is independent of the implementation.
▶ Unless the adversary has access to non-functional properties of the implementation
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Non-preservation

Non-deterministic programs
A correct compiler may not preserve distributions.
For instance, a source program that tosses a coin may be correctly compiled to the
constant program that always returns heads.

Changing the representation of values
E.g., booleans implemented as 63-bit machine integers.

S : b 7→ ¬b T : n 7→ 1− n
How to map invalid target values to source values?
There is no way to express at the source level the target behavior.

Non-functional properties
The theorem does not say anything about things that cannot be described by behaviors.
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Constant-time preservation

The compiler (always) preserves the constant-time property.

Formal (machine-checked) proof of this statement for version 21.0 of the compiler
[CCS21].

This is a stronger property than compiler-correctness.
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Verification of Jasmin Programs

Reference
Assembly

Reference Implementation
Jazz EC

EasyCrypt
Specification

Security Goal

Check:
– safety
– CT

Correctness proof

Security
proof

Compile

Extract
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Some Unique Features of the Jasmin Language
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Overview of the Jasmin programming language

Look at aes.jinc.



36/ 52

High-level structure, with low-level control

A few data-types
▶ int; bool; machine words u8, . . . , u256; arrays of words, e.g., u128[11]
▶ convenient syntax for vector (simd) instructions

Functions
▶ inline fn or #inline calls
▶ return address can be passed in a register or on the stack

Structured control flow
▶ usual if-then-else (no goto)
▶ two kinds of loops:

▶ for loops: unrolled
▶ while loops: preserved
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Low-level programming
▶ Explicit storage class

▶ param, inline: compile-time use only
▶ global, stack: memory
▶ reg: registers

▶ Direct access to target instructions & flag registers
▶ jasminc -help-intrinsics to get the list
▶ Flags are plain variables

Common uses of intrinsics & flags
▶ Initialize to zero using a xor: #set0
▶ Branch on the result of an arithmetic operation
▶ A single comparison with more than two outcomes

See src/low-level.jazz
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Quizz (see src/array.jazz)

Can we tell something about the first returned value?

1 // Defines fn f(reg u8 x y) −→ reg u8
2 require "array.jinc"
3
4 inline
5 fn quizz0(reg u8 x) −→ reg u8, reg u8 {
6 reg u8 r, y;
7
8 r = 0;
9 y = f(r, x);

10 return r, y;
11 }

1 // Defines fn g(stack u8[1] x, reg u8 y) −→ stack u8[1]
2 require "array.jinc"
3
4 inline
5 fn quizz1(reg u8 x) −→ stack u8[1], stack u8[1] {
6 stack u8[1] r, y;
7
8 r[0] = 0;
9 y = g(r, x);

10 return r, y;
11 }
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Arrays: an explicit and powerful way to structure memory

Things made easier
▶ Modular reasoning is possible
▶ Sizes are explicit

▶ Useful for proving safety
▶ Alias analysis is trivial

▶ Arrays may overlap only when they have the same name

Caveat
Ensuring call-by-value semantics without copy is tricky (the compiler rejects programs)
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Verification with EasyCrypt



41/ 52

Verification overview

1. Start from a Jasmin implementation
2. Extract from it an EasyCrypt model
3. Prove it equivalent to a hand-written refined (detailed) specification
4. Show it refines a higher-level specification
5. Prove security of the specification
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Formal Verification with EasyCrypt: correctness

Agenda
1. Specify a correct nonce-based encryption scheme (proof/NbEnc.eca)
2. Specify the construction with a PRF, and prove it correct (proof/NbPRFEnc.eca)
3. Refine the construction with AES as PRF and prove it equivalent to the Jasmin

implementation (proof/NbAESEnc_proof.ec)
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Scheme correctness

Game CorrectnessScheme(k, n, m)
c ←← Scheme.enc(k, n, m)
m′ ←← Scheme.dec(k, n, c)
Return m′ = m

The nonce-based symmetry encryption scheme Scheme is correct when, for all key k,
nonce n and plaintext message m, the probability for this game to return true is one:

Pr [ CorrectnessScheme(k, n, m)⇒ true ] = 1.
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Functional correctness

The Jasmin implementation (modeled by the pWhile procedure M.enc) is equivalent to
the refined specification Scheme.enc, as expressed in pRHL:

{={k,n,m}}M.enc ∼ Scheme.enc {={res}}
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Formal Verification with EasyCrypt: security

Agenda
1. Specify the intended security goal (proof/NbEnc.eca)
2. State the cryptographic assumption (proof/RFth.eca)
3. Prove security of the generic construction (proof/NbPRFEnc.eca)
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(Nonce-based) IND$-CPA security

Game IND$-CPA-RealA( )
k ←← K
b ←← ARealEnc(·,·)( )
Return b

proc RealEnc(n, m)
Return Enc(k, n, m)

Game IND$-CPA-IdealA( )
b ←← AIdealEnc(·,·)( )
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Security requires the following advantage measure to be small

|Pr [ IND$-CPA-RealA( )⇒ true ]− Pr [ IND$-CPA-IdealA( )⇒ true ] |
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Restrictions on attacker power

If we don’t restrict class of attackers:

▶ always one attacker with large advantage.

Restrictions that come up explicitly in EasyCrypt:

▶ Do not place two queries with the same nonce n
▶ Place at most q oracle queries (RP/RF switch in exercise)

Restrictions on attacker power that will be implicit:

▶ IND$-CPA attacker executes in at most t steps
▶ we assume that PRF/PRP cannot be broken in ∼ t steps
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Pseudorandom Functions

Let f be a function of type f : {0, 1}λ × {0, 1}κ → {0, 1}ℓ.

Game PRF-RealA( )
k ←← {0, 1}λ
b ←← Af(k,·)( )
Return b

Game PRF-IdealA( )
T ← {}
b ←← AF(·)( )
Return b

proc F(x):
If x /∈ T : T [x ]←← {0, 1}ℓ
Return T [x ]

F is a truly random function (lazily sampled).
f is pseudorandom if the following advantage measure is small

|Pr [ PRF-RealA( )⇒ true ]− Pr [ PRF-IdealA( )⇒ true ] |
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Security proof: Step #1

Standard game hop: modify IND$-CPA-Real game.

Game IND$-CPA-RealA( )
k ←← K
b ←← ARealEnc(·,·)( )
Return b

proc RealEnc(n, m)
Return m ⊕ f(k, n)

Game IND$-CPA-ModifiedA( )
T ← {}
b ←← AModifiedEnc(·,·)( )
Return b

proc ModifiedEnc(n, m)
If n /∈ T : T [n]←← {0, 1}ℓ
Return m ⊕ T (n)

We replaced f(k, ·) with a truly random function (lazily sampled).
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Security proof: Step #2

If A notices the change we break f as a PRF.

Attacker B against the PRF property of f:

▶ Runs A and answers encryption queries (n, m):
▶ calls its own oracle on n to get mask
▶ returns m ⊕mask to A

▶ When A terminates B uses output as its own.

Observations:

▶ If B(A) is run in the PRF-Real game:
▶ Output matches A’s output in IND$-CPA-Real

▶ If B(A) is run in the PRF-Ideal game:
▶ Output matches to A’s output in IND$-CPA-Modified
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Security proof: Step #3

A’s view in modified game matches the IND$-CPA ideal game.

Game IND$-CPA-ModifiedA( )
T ← {}
b ←← AModifiedEnc(·,·)( )
Return b

proc ModifiedEnc(n, m)
If n /∈ T : T [n]←← {0, 1}ℓ
Return m ⊕ T (n)

Game IND$-CPA-IdealA( )
b ←← AIdealEnc(·,·)( )
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Nonce-respecting adversary:

▶ T values always fresh random strings.
▶ XOR operation produces totally random string (OTP).
▶ Oracle outputs are identically distributed in both games.
▶ A’s output is identically distributed in both games.
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Security proof: Step #4

Wrapping up:

Pr [ IND$-CPA-RealA( )⇒ true ] = Pr
[

PRF-RealB(A)( )⇒ true
]

Pr [ IND$-CPA-ModifiedA( )⇒ true ] = Pr
[

PRF-IdealB(A)( )⇒ true
]

Pr [ IND$-CPA-ModifiedA( )⇒ true ] = Pr [ IND$-CPA-IdealA( )⇒ true ]

Implies A’s advantage is exactly that of B(A):

▶ substitute last equation in middle equation
▶ subtract middle equation from first

B(A) is as efficient as A and makes same number of queries.
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