Verifying cryptographic implementations with Jasmin & EasyCrypt

Vincent Laporte; Benjamin Grégoire Manuel Barbosa; François Dupressoir; Pierre-Yves Strub; Tiago Oliveira

2023-09-12, ST&V 2023, Brussels

High-Assurance Implementation of Cryptography

The Jasmin tool-box

Verified Compilation

Some Unique Features of the Jasmin Language

Verification with EasyCrypt

High-Assurance Implementation of Cryptography

Security Protocols

Needham–Schroeder Symmetric Key Protocol

Ensure security properties (e.g., mutual authentication)

Rely on secure primitives (e.g., a symmetric encryption scheme)

Cryptographic Primitives

Example: a nonce-based encryption scheme

- ► k : key
- n : nonce
- m, m' : plain-text messages
- ► c : ciphertext

Correctness of an encryption scheme

Knowing the secret key allows to recover the plaintext:

Dec(k, n, Enc(k, n, m)) = m

Cryptographic security (IND\$-CPA)

A ciphertext is indistinguishable from random:

 $\frac{\text{Game IND}-\text{CPA-Real}_{\mathcal{A}}()}{k \leftarrow K}$ $b \leftarrow \mathcal{A}^{\text{RealEnc}(\cdot,\cdot)}()$ Return b $\frac{\text{proc RealEnc}(n,m)}{\text{Return Enc}(k,n,m)}$

 $\frac{\text{Game IND}-\text{CPA-Ideal}_{\mathcal{A}}()}{b \leftarrow \mathcal{A}^{\text{IdealEnc}(\cdot, \cdot)}()}$ Return b $\frac{\text{proc IdealEnc}(n, m)}{c \leftarrow C}$ Return c

Security requires the following advantage measure to be small

 $|\Pr[\mathsf{IND}-\mathsf{CPA-Real}_{\mathcal{A}}() \Rightarrow \mathsf{true}] - \Pr[\mathsf{IND}-\mathsf{CPA-Ideal}_{\mathcal{A}}() \Rightarrow \mathsf{true}]|$

Adversaries may observe the machine running a victim program.

Is any sensitive information leaked into these observations?

Constant-Time

- A popular mitigation against timing (cache-based) side-channel attacks
- Two rules
 - No branching on secret data
 - No memory access at secret addresses

We can generalize the IND\$-CPA definition

Security still holds for constant-time programs

Other Implementation-Level Requirements

Efficiency

- CPU cycles matter
- This can be assessed experimentally (through measurements)

Safety

Running the program:

- terminates
- does not crash (division by zero...)
- does not access arrays out of bounds, uninitialized variables
- Programs are usually not safe. Only under some precondition.

Correctness

The program actually fulfills its specification.

The Formosa Crypto project federates multiple projects in machine-checked cryptography and high-assurance cryptographic engineering under a single banner, to better support developers and users.

EasyCrypt Construction and verification of game-based cryptographic proofs Jasmin Programming language for high-speed secure implementations LibJade High-assurance software implementations of post-quantum crypto

https://formosa-crypto.org/

Secure High-Assurance Implementations of SHA-3

► Fast (optimized for AVX2)

- Secure (constant-time)
- Correct (wrt. a reference implementation)

Indifferentiability proof of the Sponge construction

- Main theorem about security of SHA-3
- Bounds the probability for an adversary to break it:
 - in particular to find collisions, preimages, or second preimages
- Theorem applies to the optimized implementation!

[CCS2019]

Reference & optimized implementations

- Correctness proof
- Theoretical results about the random sampling procedures

Work in progress

- Security proof
- Verification of the fully optimized implementation
- Integrate with the existing proofs of SHA-3

...

Jasmin is also a nice tool for research on (verified) (secure) compilation:

- use machine learning to search for faster implementations;
- study counter-measures against speculative execution attacks (Spectre);
- enforce zeroing of local memory after use;

The Jasmin tool-box

Example: symmetric encryption from a PRF

$$\begin{aligned} &\mathsf{Enc}(\mathsf{k},\,\mathsf{n},\,\mathsf{m}) = \mathsf{m}\,\oplus\,\mathsf{f}(\mathsf{k},\,\mathsf{n}) \\ &\mathsf{Dec}(\mathsf{k},\,\mathsf{n},\,\mathsf{c}) = \mathsf{c}\,\oplus\,\mathsf{f}(\mathsf{k},\,\mathsf{n}) \end{aligned}$$

Example: symmetric encryption from a PRF

$$\begin{split} &\mathsf{Enc}(k,\,n,\,m) = m \,\oplus\, f(k,\,n) \\ &\mathsf{Dec}(k,\,n,\,c) = c \,\oplus\, f(k,\,n) \end{split}$$

Specific choice of PRF: AES-128

Key, nonce, mask, plaintext, and ciphertext are 128-bit values.

Counter mode of operation

There are a few common (and secure) ways to turn a block cipher into a stream cipher, e.g.:

Counter (CTR) mode encryption

Example Encryption Scheme in Jasmin

Look at nbaesenc.jazz

In program p, calling function f with arguments \vec{a} from initial memory m terminates in final memory m' and returns values \vec{r} :

 $f:(\vec{a},m)\Downarrow_p(\vec{r},m')$

This is the definition of the program *behaviors* (formalized in Coq).

All proofs are made relative to this definition.

We gain *trust* by using it (execute & verify programs, verify static analyses, verify program transformations, ...)

- \blacktriangleright Produces (predictable) assembly for $x86_64$
- Experimental support for ARMv7 architecture (Cortex-M4)
- Complies with standard ABI
 - for interoperability with other languages
 - look at bindings/

Safety: jasminc -checksafety ...

- Programs are usually **not** safe
 - Restrictions on the initial state
- Returns a sufficient pre-condition for safety (a predicate)
- Overapproximation because of undecidability
- The design of the programming language encourages the use high-level features that make safety verification doable automatically

When the safety checker infers precondition P (for a function f in program p), then for all initial state satisfying this precondition, there exists a corresponding final state:

$$\forall \vec{a} \ m, P(\vec{a}, m) \implies \exists \vec{r} \ m', f : (\vec{a}, m) \Downarrow_{p} (\vec{r}, m')$$

No formal proof of this property.

Function signatures can be decorated with # public and # secret annotations.

An automated source-level checker validates that no sensitive values flow to:

- branching conditions (including loop guards)
- array indices and dereferenced pointers

Approximations are unavoidable

- Memory contents are assumed to be #secret
- When needed, assignments can be annotated with #declassify to claim (admit) they produce public values (e.g., at the end of encryption)

Reasoning about semantics of source programs is better done in a dedicated proof assistant.

Extract an EasyCrypt model from a Jasmin source program.

For safe inputs to the Jasmin program, the EasyCrypt program computes the same outputs (as the Jasmin program).

No formal proof of this statement.

The Jasmin tool-box

Verified Compilation

What we run is not what has been verified

Source vs. assemblyCan we trust the compiler?

Program transformations in the Jasmin compiler

Forward simulation

If the compilation of source program S succeeds and produces target program T, if from the initial state i, S terminates with final result r, then from the same initial state i, T also terminates with final result r.

Overlooked details

- Initial states may not be the same
 - Global data must be in the target memory
 - ▶ The "stack pointer" (RSP) must point to a valid region of memory
- The target stack must be large enough
 - i.e., the compiler does not enforce the absence of "stack overflow"

No guaranties about unsafe executions

Compiler correctness implies

If a property holds for all source behaviors, then it holds for all target behaviors.

When the source program is a *function* (deterministic, terminating)

Then the target program is the *same* function.

Cryptographic primitives are usually functionseven PRNGs!

When a function consumes random data

Reasoning about the *distribution* of the results in terms of the distribution of the inputs can be done at the source level.

Probabilistic properties of functions are preserved (example: IND\$-CPA)

Given a secret key, an adversary cannot distinguish (with non-negligible probability) the encryption function from random sampling This property is independent of the implementation

This property is independent of the implementation.

Unless the adversary has access to non-functional properties of the implementation

Non-preservation

Non-deterministic programs

A correct compiler may not preserve distributions.

For instance, a source program that tosses a coin may be correctly compiled to the constant program that always returns *heads*.

Changing the representation of values

E.g., booleans implemented as 63-bit machine integers.

 $S: b \mapsto \neg b$ $T: n \mapsto 1-n$

How to map *invalid* target values to source values? There is no way to express at the source level the target behavior.

Non-functional properties

The theorem does not say anything about things that cannot be described by behaviors.

The compiler (always) preserves the constant-time property.

Formal (machine-checked) proof of this statement for version 21.0 of the compiler [CCS21].

This is a stronger property than compiler-correctness.

Verification of Jasmin Programs

Verification of Jasmin Programs

Verification of Jasmin Programs

Some Unique Features of the Jasmin Language

Overview of the Jasmin programming language

Look at aes.jinc.

High-level structure, with low-level control

A few data-types

- ▶ int; bool; machine words u8, ..., u256; arrays of words, e.g., u128[11]
- convenient syntax for vector (SIMD) instructions

Functions

- ▶ inline fn or #inline calls
- return address can be passed in a register or on the stack

Structured control flow

- usual if-then-else (no goto)
- two kinds of loops:
 - ▶ for loops: unrolled
 - while loops: preserved

Low-level programming

Explicit storage class

- param, inline: compile-time use only
- global, stack: memory
- reg: registers
- Direct access to target instructions & flag registers
 - jasminc -help-intrinsics to get the list
 - Flags are plain variables

Common uses of intrinsics & flags

- Initialize to zero using a XOR: #set0
- Branch on the result of an arithmetic operation
- ► A single comparison with more than two outcomes See src/low-level.jazz

Can we tell something about the first returned value?

```
\begin{array}{l} 1 \ // \ \text{Defines fn } f(\text{reg } u8 \times y) \longrightarrow \text{reg } u8 \\ 2 \ \text{require "array.jinc"} \\ 3 \\ 4 \ \text{inline} \\ 5 \ \text{fn } \textbf{quizz0}(\text{reg } u8 \times) \longrightarrow \text{reg } u8, \ \text{reg } u8 \\ 6 \quad \text{reg } u8 \ \text{r}, \ y; \\ 7 \\ 8 \quad r = 0; \\ 9 \quad y = f(r, \ x); \\ 10 \quad \text{return } r, \ y; \\ 11 \end{array}
```

Can we tell something about the first returned value?

```
\begin{array}{l} 1 \ // \ \text{Defines fn } f(\text{reg } u8 \times y) \longrightarrow \text{reg } u8 \\ 2 \ \text{require "array.jinc"} \\ 3 \\ 4 \ \text{inline} \\ 5 \ \text{fn } \textbf{quizz0(\text{reg } u8 \times)} \longrightarrow \text{reg } u8, \ \text{reg } u8 \\ 6 \quad \text{reg } u8 \ \text{r}, \ \text{y}; \\ 7 \\ 8 \quad r = 0; \\ 9 \quad y = f(r, \ x); \\ 10 \quad \text{return } r, \ y; \\ 11 \end{array}
```

```
\begin{array}{l} 1 \ // \ Defines \ fn \ g(stack \ u8[1] \ x, \ reg \ u8 \ y) \longrightarrow stack \ u8[1] \\ 2 \ require \ "array.jinc" \\ 3 \\ 4 \ inline \\ 5 \ fn \ quizz1(reg \ u8 \ x) \longrightarrow stack \ u8[1], \ stack \ u8[1] \\ 6 \quad stack \ u8[1] \ r, \ y; \\ 7 \\ 8 \quad r[0] = 0; \\ 9 \quad y = g(r, \ x); \\ 10 \quad return \ r, \ y; \\ 11 \end{array}
```

Arrays: an explicit and powerful way to structure memory

Things made easier

- Modular reasoning is possible
- Sizes are explicit
 - Useful for proving safety
- Alias analysis is trivial
 - Arrays may overlap only when they have the same name

Caveat

Ensuring call-by-value semantics without copy is tricky (the compiler rejects programs)

Verification with EasyCrypt

- 1. Start from a Jasmin implementation
- 2. Extract from it an EasyCrypt model
- 3. Prove it equivalent to a hand-written refined (detailed) specification
- 4. Show it refines a higher-level specification
- 5. Prove security of the specification

Agenda

- 1. Specify a correct nonce-based encryption scheme (proof/NbEnc.eca)
- 2. Specify the construction with a PRF, and prove it correct (proof/NbPRFEnc.eca)
- 3. Refine the construction with AES as PRF and prove it equivalent to the Jasmin implementation (proof/NbAESEnc_proof.ec)

 $\frac{\text{Game Correctness}_{\text{Scheme}}(k, n, m)}{\text{Game Correctness}_{\text{Scheme}}(k, n, m)}$

 $c \ll$ Scheme.enc(k, n, m) $m' \ll$ Scheme.dec(k, n, c)Return m' = m

The nonce-based symmetry encryption scheme Scheme is correct when, for all key k, nonce n and plaintext message m, the probability for this game to return true is one:

 $\Pr[\operatorname{Correctness}_{\operatorname{Scheme}}(k, n, m) \Rightarrow \operatorname{true}] = 1.$

The Jasmin implementation (modeled by the pWhile procedure M.enc) is equivalent to the refined specification Scheme.enc, as expressed in pRHL:

$$\{=_{\{k,n,m\}}\}$$
 M.enc \sim Scheme.enc $\{=_{\{\mathsf{res}\}}\}$

Agenda

- 1. Specify the intended security goal (proof/NbEnc.eca)
- 2. State the cryptographic assumption ($\mathrm{proof}/\mathrm{RFth.eca})$
- 3. Prove security of the generic construction (proof/NbPRFEnc.eca)

(Nonce-based) IND\$-CPA security

 $\frac{\text{Game IND}-\text{CPA-Real}_{\mathcal{A}}()}{k \leftarrow K}$ $b \leftarrow \mathcal{A}^{\text{RealEnc}(\cdot, \cdot)}()$ Return b $\frac{\text{proc RealEnc}(n, m)}{\text{Return Enc}(k, n, m)}$

 $\frac{\text{Game IND}-\text{CPA-Ideal}_{\mathcal{A}}()}{b \leftarrow \mathcal{A}^{\text{IdealEnc}(\cdot, \cdot)}()}$ Return b $\frac{\text{proc IdealEnc}(n, m)}{c \leftarrow C}$ Return c

Security requires the following advantage measure to be small

 $|\Pr[\mathsf{IND}-\mathsf{CPA-Real}_{\mathcal{A}}() \Rightarrow \mathsf{true}] - \Pr[\mathsf{IND}-\mathsf{CPA-Ideal}_{\mathcal{A}}() \Rightarrow \mathsf{true}]|$

If we don't restrict class of attackers:

always one attacker with large advantage.

If we don't restrict class of attackers:

always one attacker with large advantage.

Restrictions that come up explicitly in EasyCrypt:

- Do not place two queries with the same nonce n
- Place at most q oracle queries (RP/RF switch in exercise)

If we don't restrict class of attackers:

always one attacker with large advantage.

Restrictions that come up explicitly in EasyCrypt:

- Do not place two queries with the same nonce n
- Place at most q oracle queries (RP/RF switch in exercise)

Restrictions on attacker power that will be implicit:

- IND\$-CPA attacker executes in at most t steps
- we assume that PRF/PRP cannot be broken in $\sim t$ steps

Pseudorandom Functions

Let f be a function of type f : $\{0,1\}^{\lambda} \times \{0,1\}^{\kappa} \rightarrow \{0,1\}^{\ell}$.

 $\begin{array}{ll} \begin{array}{l} \begin{array}{l} \operatorname{Game} \mathsf{PRF}\operatorname{-Real}_{\mathcal{A}}(\) \\ \hline k \leftarrow \{0,1\}^{\lambda} \\ b \leftarrow \mathcal{A}^{\mathsf{f}(k,\cdot)}(\) \\ \mathsf{Return} \ b \end{array} & \begin{array}{l} \begin{array}{l} \operatorname{Game} \mathsf{PRF}\operatorname{-Ideal}_{\mathcal{A}}(\) \\ \hline T \leftarrow \{\} \\ b \leftarrow \mathcal{A}^{\mathsf{F}(\cdot)}(\) \\ \mathsf{Return} \ b \end{array} & \begin{array}{l} \begin{array}{l} \operatorname{Return} \ b \\ \end{array} & \begin{array}{l} \begin{array}{l} \operatorname{Proc} \mathsf{F}(x): \\ \\ \mathsf{If} \ x \notin \ T: \ T[x] \leftarrow \{0,1\}^{\ell} \end{array} \end{array}$

F is a truly random function (lazily sampled).

f is pseudorandom if the following advantage measure is small

Return T[x]

 $|\Pr[\mathsf{PRF-Real}_{\mathcal{A}}() \Rightarrow \mathsf{true}] - \Pr[\mathsf{PRF-Ideal}_{\mathcal{A}}() \Rightarrow \mathsf{true}]|$

Standard game hop: modify IND\$-CPA-Real game.

$Game\;IND\$ - $CPA ext{-}Real_\mathcal{A}($)	Game IND $-CPA-Modified_{\mathcal{A}}()$
k - K	$\overline{\mathcal{T} \leftarrow \{\ \}}$
$b \twoheadleftarrow \mathcal{A}^{RealEnc(\cdot, \cdot)}($)	$b \twoheadleftarrow \mathcal{A}^{ModifiedEnc(\cdot, \cdot)}($)
Return <i>b</i>	Return <i>b</i>
proc RealEnc(<i>n</i> , <i>m</i>)	proc ModifiedEnc(<i>n</i> , <i>m</i>)
$\overline{Return\ m\oplusf(k,n)}$	If $n \notin T$: $T[n] \twoheadleftarrow \{0,1\}^{\ell}$
	Return $m \oplus T(n)$

We replaced $f(k, \cdot)$ with a truly random function (lazily sampled).

Security proof: Step #2

If \mathcal{A} notices the change we break f as a PRF.

Attacker \mathcal{B} against the PRF property of f:

• Runs A and answers encryption queries (n, m):

- calls its own oracle on n to get mask
- \blacktriangleright returns $m \oplus$ mask to $\mathcal A$
- When \mathcal{A} terminates \mathcal{B} uses output as its own.

Security proof: Step #2

If \mathcal{A} notices the change we break f as a PRF.

Attacker \mathcal{B} against the PRF property of f:

• Runs A and answers encryption queries (n, m):

- calls its own oracle on n to get mask
- \blacktriangleright returns $m \oplus$ mask to $\mathcal A$

• When \mathcal{A} terminates \mathcal{B} uses output as its own.

Observations:

- If $\mathcal{B}(\mathcal{A})$ is run in the PRF-Real game:
 - ▶ Output matches *A*'s output in IND\$-CPA-Real
- If $\mathcal{B}(\mathcal{A})$ is run in the PRF-Ideal game:
 - Output matches to A's output in IND\$-CPA-Modified

Security proof: Step #3

 $\mathcal A\text{'s}$ view in modified game matches the IND\$-CPA ideal game.

$$\frac{\text{Game IND}-\text{CPA-Modified}_{\mathcal{A}}()}{T \leftarrow \{\}}$$

$$b \ll \mathcal{A}^{\text{ModifiedEnc}(\cdot, \cdot)}()$$

Return b

 $\frac{\text{Game IND}-\text{CPA-Ideal}_{\mathcal{A}}()}{b \leftarrow \mathcal{A}^{\text{IdealEnc}(\cdot, \cdot)}()}$ Return b

 $\frac{\text{proc ModifiedEnc}(n, m)}{\text{If } n \notin T: T[n] \leftarrow \{0, 1\}^{\ell}}$ Return $m \oplus T(n)$ $\frac{\text{proc IdealEnc}(n, m)}{c \ll C}$ Return c

Nonce-respecting adversary:

- T values always fresh random strings.
- XOR operation produces totally random string (OTP).
- Oracle outputs are identically distributed in both games.
- A's output is identically distributed in both games.

Wrapping up:

 $\Pr[\mathsf{IND}\-\mathsf{CPA}-\mathsf{Real}_{\mathcal{A}}(\) \Rightarrow \mathsf{true}] = \Pr[\mathsf{PRF}-\mathsf{Real}_{\mathcal{B}(\mathcal{A})}(\) \Rightarrow \mathsf{true}]$ $\Pr[\mathsf{IND}\-\mathsf{CPA}-\mathsf{Modified}_{\mathcal{A}}(\) \Rightarrow \mathsf{true}] = \Pr[\mathsf{PRF}-\mathsf{Ideal}_{\mathcal{B}(\mathcal{A})}(\) \Rightarrow \mathsf{true}]$ $\Pr[\mathsf{IND}\-\mathsf{CPA}-\mathsf{Modified}_{\mathcal{A}}(\) \Rightarrow \mathsf{true}] = \Pr[\mathsf{IND}\-\mathsf{CPA}-\mathsf{Ideal}_{\mathcal{A}}(\) \Rightarrow \mathsf{true}]$

Implies \mathcal{A} 's advantage is exactly that of $\mathcal{B}(\mathcal{A})$:

- substitute last equation in middle equation
- subtract middle equation from first

 $\mathcal{B}(\mathcal{A})$ is as efficient as \mathcal{A} and makes same number of queries.