How Social Spiders Inspired
An Approach To Region Detection.(ld 353)

Christine Bourjot

Vincent Chevrier

Vincent Thomas

LORIA,UMR 7503
BP 239,
54506 Vandoeuvre Cedex
{bourjot,chevrier,vthomas}@loria.fr

ABSTRACT

Reactive problem solving is a way to propose systems composed
of simple interacting agents that collectively solve problems
outside the scope of individual perceptions. In this domain,
natural social systems are sources of inspiration for simple
mechanisms.

This article presents an approach for region detection inspired by
social spiders. Based on a behavioral model determined by the
simulation of collective weaving, we describe how we transposed
it to obtain an approach for region detection in gray level images.

Categories and Subject Descriptors
1.2.11 [Artificial intelligence]: Distributed Artificial Intelligence
— Multi-agent systems.

General Terms
Algorithms, Experimentation.

Keywords
Reactive multi-agent system, biological inspiration, region
detection

1. INTRODUCTION

This article presents how social simulation in biology has been
used to propose an approach for region detection in gray level
images.

Reactive approaches emphasize systems of simple behaving units
with decentralized control. In such approaches, “intelligence” is
observed at collective level, but is not necessarily present at agent
level. One of the difficulties in the design of reactive multi-agent
systems is to specify simple interactions between agents and
between them and their environment so as to observe complex
collective properties. This difficulty is proportional to the distance
between the simplicity of individuals and the complexity of the
collective property. Furthermore, links between individual
behaviours and collective properties are not obvious since they are
expressed at two separate levels of abstraction.

Social models in biology are a way to tackle such a problem by
providing decentralized models with simple and robust
mechanisms. Knowledge about the organization of animal
societies can be transposed into multi-agent systems and applied
in collective problem solving, or at least used as a metaphor in
view of designing these systems.

The article is constructed as follows : the first part focuses on
reactive systems and their application to problem solving. The
second part provides a general background about the original
biological model, the social spiders model, and the simulation we
carried out. The third part presents how such a model can be
transposed for region detection in gray level images. The
following section provides an experimental assessment of the
approach before we conclude and propose further works.

2. RELATED WORKS

In this part, we mention works connected to ours in terms of
reactive models for problem solving and applications of multi-
agent systems to image processing.

Reactive approaches [11,5,9] for problem solving place emphasis
on the simplicity of individuals in comparison to the properties
observed at a collective level. In such systems, agents are situated
in a dynamic environment through which they interact. They are
characterized by limited (possibly no) representation of
themselves, of the others and of the environment. Furthermore,
the decision making process is mainly based on stimulus-response
rules and does not refer to explicit deliberation. Therefore,
problem solving is the consequence of interactions between agents
through environment. Such an approach has been applied in
various domains such as cartographic generalization [1],
distributed air traffic control [21], workload management [14],
assignment problems [10], ...

One of the major issues is to determine the environment, the
individual behaviors, and the dynamics of the whole so as to solve
a given problem with reasonable efficiency. Social models in
biology can be a source of inspiration for designing reactive
multi-agent systems [15] since the observed animal societies show
collective behavior to solve an issue faced by the colony with
limited individual capacities.

One of the most common metaphors is that of ants. The
knowledge about interaction mechanisms through pheromones in
ant societies [6,7] has been a source of inspiration for new
methods for reactive problem solving [19,8,3] with applications
on many problems like the traveling salesman problem. Fish and



bird social models in biology have been sources of inspiration to
implement flocking [17,20].

In our case, we applied our approach to images. In the image
processing domain, the multi-agent paradigm has been used in
two different ways. In the first case, the multi-agent approach is
used as a framework to integrate and coordinate image processing
components [2]. In the second case, the image is envisaged as an
environment in which agents evolve: [16] Ramos et al were
inspired by ant behavior to detect outlines and [13]Liu by cellular
automata to extract regions.

3. BACKGROUND ON THE BIOLOGICAL
MODEL

The model we built is inspired by work undertaken to simulate the
collective web building activity of social spiders [4].

In this study, we applied a multi-agent model for the simulation of
collective weaving in a social spider species in order to check
biologists® assumptions that i) social spiders as well as social
insects can exhibit stigmergic coordination [18] and ii) the
sociality can be achieved only with making “lone spiders™ ignore
each others. Stigmergy [12] is a way to achieve coordination
without any explicit reference to the tasks being performed by any
spider of the colony: past actions leave traces in the environment;
and these traces favor in return some actions among others. In the
case of spiders, stigmergy is put into practice through the silk.

We proposed a model that can reproduce the collective behavior
and that was characterized by the absence of social reference and
by simple individual behavioral items.

In our proposal, the environment modeled the natural vegetation
and was implemented as a square grid in which each position
corresponded to a stake. Spiders behaved according to two
independent items: a movement item which consists in the spider
moving to a reachable stake; and a fixing item which consists in
the spider dropping a silk dragline on the top of the current stake.
As spiders move, they construct silky structures in the
environment which offer new paths for their movements. Spiders
are attracted by silk draglines and are likely to follow a dragline
instead of moving to an adjacent stake.

All behavioral items are stochastic : silk fixing is ruled by a
constant probability and movements of the spiders are determined
by a contextual probability distribution which depends on silk
attraction.

Stigmergy occurs in the dynamics of the system through the silk
attraction factor : when attraction is null, silk is not taken into
account during movement and no satisfying web is built; when
attraction is medium, it allows collective web building, when it is
too strong, collective building is impossible, each spider being
trapped in its own silk.

4. APPROACH FOR REGIONS
DETECTION

We first describe the problem to be solved, then provide a brief
overview of the approach and make the link with the simulation
model. In a third section, we detail the components of the
transposed model and, in the final section, we describe how it is
possible to interpret the structures produced by the system to
obtain regions.

4.1 Description of the problem

The goal of our model is to extract various regions from an image.
A region is defined as a set of contiguous pixels whose
radiometric properties are homogeneous.

This definition is voluntarily not explicit. Two different criteria:
the distance between pixels and the homogeneity of the gray level
of the considered pixels have to be taken into account and a
compromise might be required.

Indeed, due to the presence of noise in images, the two criteria
must be loosened. The region, even if it corresponds to an object,
is not characterized by a single gray level but small fluctuations
must be allowed. Moreover, aberrant pixels might appear on a real
image, like, for example, a gray pixel in a black region, that could
create artificial borderlines and split a region into two parts.

Our model will have to produce, from a given picture, sets of
labelled pixels, each label representing a region extracted.

4.2 Generalities about the approach
Before providing a precise description of the multi-agent model,
this part gives a general overview of the principles underlying it.

The approach is built upon the same components as the simulation
model: the environment, the agents and the dynamics of the
whole.

The transposition of the simulation model consists in modifying
the environment so as to make it represent the input of the system,
a gray level image, in which agents will evolve; stakes are now
associated with pixels. As agents evolve in the environment, they
will fix silk draglines between pixels that will allow them to move
on new paths. Finally, the environment will contain collective
webs that will be interpreted to deduce regions.

Agents are ruled by the same basic behaviors but silk fixing now
depends on the context and is related to the gray level of the pixel
of the current agent location. Agents lay down draglines on some
pixels: those that are “interesting”. Silk fixing is then a way to
ensure pixel selection and each agent is provided with parameters
which describe the region it has to detect.

For sake of efficiency, we add a third behavioral item that makes
an agent probabilistically return back to its web when no pixel is
selected, thus avoiding the exploration of the whole image and
restricting selection of pixel to the neighborhood of the already
built web.

The dynamics of the system is still stigmergic: past actions in the
environment will favor some actions among others and focus
activity of the agents.

4.3 Description of the model

In this part, we will use the following notations : If X is a kind of
object to be defined, X=/char; char, ..., char,] specifies the
characteristics of X as being char, etc; and the use of chary will
denote the access to the char characteristic of an instance x of X.

4.3.1 Environment

The environment of the system corresponds to a gray level image
and is represented by a two dimension array whose elements are
the pixels of the image. Each pixel (p) is indexed by its
coordinates (x and y) in the image and is featured by its gray level
and by the list of draglines DI, already fixed on it. Initially, the



environment contains no draglines. Draglines will be added by the
agents during runtime.

Each dragline d of a given DI, conventionally starts from p, is
characterized by its end pixel, and is labeled by the spider that
created it.

If we suppose i is a pixel: Neigh; = {p € P /Dist(p,i) <R and p #i};
Scuts;= {p € P /p=end; V'l € DI} and Access;= Neigh; U Scuts,.

Number(a,b) = cardnb({l € DL,/ end;= b}). and Number(a,b,sp)
= cardnb( {l € DL,/ end;=b and spider,/=sp} ) with cardnb being
the cardinal number.

Environment :
P = array [NxM] of pixel. Pixel=[gray,DI].
Dragline = [end, spider].

4.3.2 Agents
4.3.2.1 Agent features

Features of an agent correspond to parameters conditioning its
behavior and to its internal state. Parameters are fixed for an
execution (there is no online specialization) and internal state
evolves according to performed actions.

A first set of parameters characterizes the region the considered
agent will have to focus on and will condition the pixel selection
made by the agent : RefLev €[0..255] which is the gray value of
the region to be searched and Selectivity, that reflects tolerance of
selection.

A second set of parameters characterizes the exploratory behavior
of the agents. This set is made of BackProbability which is the
probability for the agent to return to the last fixed pixel when no
silk is fixed on the current one, its perception radius R and the
parameters that determine the attraction for silk. We implemented
it in two ways that will be subsequently described. Parameters
could then be Pdragline or AttractSelf and AttractOther
coefficients.

Internal state is described by the position of the agent called the
current pixel CurrentP and by the last pixel on which it has fixed
a dragline LastFixed.

4.3.2.2 Perceptions
Perceptions provide the locally available information in the
environment on the basis of which the decision is made.

We define three functions : Neigh,, Scuts, and Access, that
respectively provide the list of neighbor pixels, the list of pixels
that can be reached by following a dragline and the union of both
corresponding to the accessible pixels in one move.

Non accessible position

Positions in Neigh

Positions in Scut

Current Position

Figure 1. illustration of the different accessible pixels
(perception radius R is supposed to be equal to 1).

We define Number(a,b), with @ and b being two pixels, as the
number of draglines that start on @ and end on 5. Number(a,b,sp)
is the same restricted to the draglines labeled by considered agent

sp.

4.3.2.3 Basic cycle

The basic cycle of an agent can be described in three successive
behavioral items, each one consisting in a probabilistic decision
and the possible performance of the action.

1) Movement: choose a pixel p from accessible ones
according to a probability distribution; then carry out the
movement to the selected pixel.

2) Fixing silk: choose to fix according to a contextual
probability (the lower the distance between gray level of the
current pixel and the RefLevel, the higher the probability) if
the decision is made, carry out the silk fixing and exit basic
cycle

3) otherwise Returning to web: choose to return to the web
according to BackProbability, if the decision is made, return
to the last fixed pixel.

4.3.2.4 Detail of behavioral items

Movement

Probability to move to an accessible pixel (called p) depends on
the way to access it (Figure 1): i) by moving to a neighbor pixel (p
&€ Neighcyremp) o1 i) by following a dragline (p € Scutscyremp)- It
must be noticed that a pixel might belong to the two sets.

We implemented two ways of computing this distribution of
probabilities according to the number of regions to be searched.

The first one corresponds to a situation where agents cooperate to
detect one single region: labels on draglines are not taken into
account.

Proba (move(p))=
i)  (1-Pdragline)/(cardnb(Neighcypenp)) if p €
NeighCurremP

ii) Pdragline*Number(Current, , p)/cardnb(Dleyrentp) if p
€ SCUtSCurrentp

The choice of the kind of movement is not dependent on the
number of draglines observed and the decision can be divided into
two steps. First, the agent faces an alternative : will it follow a silk
dragline or not ? Pdragline is the probability for the agent to move
this way. If the agent prefers not to follow draglines, it moves
randomly to a pixel belonging to Neighcyrenp. Otherwise, it
randomly chooses a dragline and reaches the pixel belonging to
Scuts at its end. Thus, the more draglines leading to p, the more
likely the agent is to reach p.

The second implementation takes place in a perspective of
competition between agents to detect several regions. We
distinguish two kinds of attractions for silk according to the labels
of draglines.




2 (@

allAccessCurrentP

Proba (move(p)) :W(p)/

i) w(p) = constant if p € Neighcyyrenp

ii) w(p)= AttractSelf*F(Number(CurrentP,p,Me))) +
AttractOther*F((Number(CurrentP,p)) - Number(CurrentP,p,Me)
)) if p € Scuts

AttractSelf describes attraction for its own silk, AttactOther
describes attraction for silk of other agents. F is a function
expressing how the number of draglines in the path influences the
weight until a given saturation. In our experiments, we used F(x)=
min(x, SaturationValue).

This procedure consists in giving a constant weight to each
reachable pixel if the considered pixel belongs to Neighyyenp OF a
weight linked to the number of draglines linking this pixel to the
location of the agent. The choice of following a dragline is then
dependent on the numbers of draglines present on the considered
pixel and of the kind of silk.

Once the decision is made, carrying out movement consists in
updating the current pixel value: |(CurrentP — p|.

Silk Fixing

The decision is made according to a probability to fix a dragline
on the current pixel which is computed from a gaussian
distribution whose mean is RefLevel and whose standard deviation
is 1/Selectivity.

Fixing a dragline consists in adding one dragline in the
environment, this is made by updating the dragline list of the
current pixel |Dl(~,,,,m,P — DlcyrrempU{(CurrentP, LastF ixed)}| and
the dragline list of LastFixed Pixel IDlLastFixed — Dl guriced U{(i
ILastFixed, Current,)}|; and updating internal state of the agent
LastFixed — Curreanl.

Returning to web

Decision probability is constant and performance of action
consists in updating the location of agent |CurrentP «LastF ixed|.

4.3.3 System dynamics

Dynamics rules how the system evolves through the interactions
of agents and is based on the stigmergy principle. Agents perform
actions that modity the environment which, in return, constrains
the set of future possible actions. In our case, modifications are
the apparition of silk draglines. Silk attraction implements in the
agents’ behavior the influence of the silky structure: new
possibilities for movement appear and are favored by silk
draglines.

An execution starts initially with an environment empty of silk
representing an image. Each agent is initialized with parameters
describing the region to detect through the Refleve/ and the
Selectivity values. The system evolves by cycles. In each one,
every agent is successively active and applies its “decision”
process according to the local environment.

Execution ends after a user-fixed number of cycles.

4.4 System outputs: from web to regions
Biological simulations aimed to answer how a collective web can
be built from interacting individuals. A qualitative assessment of
the result of simulations was carried out (visual aspect and some
statistics —size, approximate surface, average height- which have
to correspond to real data). Improvement of the individual
behavior model leads to better matching between real and
experimental results. In no case, did the simulation focus on the
efficiency in the process in terms of growth speed, average
density, ...

Here the goal of system is to solve a given problem and, because
agents have no representation of the global task that has to be
accomplished, we must face the issue of interpreting global
results of the model, which was not asked (and thus not answered)
in simulation. We have to deduce regions from sets of pixels and
silk draglines which are the available information dropped in the
environment.

From a local point of view, the pixel perspective, a list of
draglines is associated to each pixel. Each dragline is labeled by
the agent that has laid it down. From a global point of view, each
agent is dedicated to the detection of a given region (through the
Selectivity, Reflevel and BackProbability values).

By gathering all the pixels an agent has woven on, we obtain a
rough region, that is, pixels are put together without consideration
of the number of times the agent has woven on them. Thus, we
define the degree of belonging of each pixel to a region as the
number of draglines which an agent extracting the region wove on
it. To avoid selection of low ranked pixels in a region we propose
to restrict the pixel set composing a region to those whose
belonging degree is above a given threshold.

With such a method, a pixel belongs to a given region with a
certain degree. Thus we define a region as

R={i € P/ Number(i, ,Spider) > Threshold }

and V i € R Number(i,AnyPixel,AgivenSpider) is the belonging
degree of'i to the region R associated to AgivenSpider.

This additional information can be used to improve global results
when an ambiguous pixel simultaneously belongs to several
overlapping regions.

5. EMPIRICAL ASSESSMENT OF THE

APPROACH

This part highlights the main advantages of this approach from
empirical results. After presenting general results obtained with
the approach (such as coverage of the image and homogeneity of
extracted regions), we will focus on the flexibility of the process
to assess its potential.

5.1 Expected properties
Two main properties are generally expected for extracting regions
in pictures: coverage and homogeneity.

An efficient extraction algorithm is first characterised by a good
coverage of the extracted regions. When it determines a region,
we expect it to extract the entire region and not to forget some of
its parts. In our case, this coverage is the consequence of the
exploratory behaviour of the system as a whole related to the
exploration ability of our agents.




Moreover, extracted regions must be relevant. First, the region
extracted must be constituted by pixels of homogeneous
radiometric properties. Furthermore, we do not want the
apparition of artificial boundaries due to small variations of light
intensity in a single region. This characteristic will be the
consequence of the silk-fixing decision process or, in other words,
the selection process.

The results of the execution of such an algorithm are quite
difficult to analyse mathematically because they refer to a
semantic content : indeed, we consider that an extracted region is
relevant if it corresponds to a region a human would have
detected. Therefore we have first focused on qualitative rather that
quantitative results to assess the properties of our approach.

Moreover, the aim of those experiments was not to assess
accurately the results observed but to validate our approach for the
task of extracting regions and to verify its flexibility and
adaptability proper to reactive approaches.

5.2 Experimental sets

The tests presented in this paper have been made with two real
images taken by cameras : the first shows a calibration grid in
front of a wall and the second is Alain. The resolution of those
pictures is 256%256.

Figure 2. Images grid and Alain used for experiments

An experiment consists first in creating the environment
corresponding to the considered picture. Then the user drops
agents in the environment depending on the region to extract. The
Reflevel of agents are assigned according to their initial position
and the user defines for each agent its other parameters. Because
we have limited ourselves for these experiments to extract a single
region, all agents have the same features.

We ran experiments with both cooperative and competitive
behaviours. For the extraction of a single region, results were
qualitatively equivalent. In this paper, we present only results
concerning the first way the moves of the agents were
implemented. Attraction for silk of Agents is thus ruled by a
Pdragline probability.

The exhibited results will be of two kinds. Some will correspond
to the web built by agents : all the draglines are shown even if
they are woven above a non pertinent zone. It explains why some
pixels are not visible as they are hidden by draglines woven onto
ther pixels. Others show the belonging degree of each pixel. The
brighter the pixel is represented, the higher the belonging degree
of the pixel for the considered region.

Ultimately, it must be noted that two kinds of experiments have
been conducted : the first ones are displayed in the next part and
consisted in extracting regions from images, their aim was to

show the results our approach could obtain. The goal of the others
was to exhibit the inherent flexibility and to confirm the relevancy
of our approach. They will be presented in the following part.

5.3 Raw results

As the following pictures bring to light, our approach gives
satifying results when parameters of the spider-model have been
accurately and empirically tuned by trials and errors.

Figure 3. Web (in white) resulting from the extraction of the
grid (Parameters of the experiment : 5 agents each one defined
by RefLevel 175, Selectivityl, Backprobability 0.2,Pdragline 0.5)

after 5000,10000 and 20000 cycles

Figure 4. Degree of belonging of pixels for the same extraction

Although the grid is not well “detached” in the environment the
algorithm provides good results even if the region is not fully
covered (figure 3 and 4), it must be noticed that Alain’s hair is
also well extracted (figure 5 and 6).

Figure 5. Web resulting from the extraction of Alain's hair
(Parameters of the experiment : 5 agents each one defined by
RefLevel 16, Selectivity 0.1, Backprobability 0.2,Pdragline 0.1)

after 5000, 10000 and 20000 cycles

Figure 6. degree of belonging of pixels for the same extraction

Figure 7 shows different regions our approach is able to extract
from Alain’s image.

A first conclusion is that this approach is able to extract properly
different kinds of regions from real images. One of its major



advantages is that the same simple behavior is used, and only
individual parameters determine the extracted region which
confirms the relevancy of our approach.

Figure 7. Example of extracted regions in Alain’s picture :
Face, Hair, Beard, Background and Moustache

In the next part, we will focus on the relationships between
individual parameters and properties of collective webs and then
the quality of the results.

5.4 Discussion about the process

In this part, we will link initial individual parameters with final
collective results in order to find heuristics to estimate parameters
needed to extract a specific region.

To do this, we will center on the relation between parameters of
the model and the observed results. If we consider that all agents
have the same features, a model is described by four parameters :
the Pdragline of the agents, their Backprobability, their Reflevel
and their Selectivity values.

The first two parameters govern the moves of the agents and thus
the exploratory behaviour of the system. The two last ones are
related to the selection of pixels thus determining the relevancy of
the extracted regions.

Of course, because the process is based on the stigmergy ensured
by the silk draglines laid down in the environment, selection and
movement are tied, but we could at first try to specify the
influence of each aspect.

5.4.1 Influence of moves

The three following experiments, shown in figures 8a), 8b), 8c)
and 9a) 9b) 9c¢), have been conducted under the same conditions
except that the value of Pdragline was not the same.

Figure 8. Impact of Pdragline on webs after 20000 cycles
(experiments done with the same parameters for 5 agents :
Reflevel 16, Selectivity 0.1, Backprobability 0.2 but Pdragline is
for 0.8 a), for 0.5 b) and 0.2 for c) ).

a) b) c)

Figure 9. Degree of belonging of fig 8.

These extraction results are representative of the influence of the
attraction for silk parameter : in figure 8a), this parameter was set
high. Agents are captured by the web they have constructed and
do not explore the entire region (the surface covered by the web is
small). In Figure 8b), this parameter is medium and the region
explored by agents is bigger but some part of the region is still
unexplored. Ultimately, when the parameter is low as in Figure
8c), agents are urged to explore their environment and the region
covered is larger.

Thus, if attraction is strong (figure 8a)) the size of the surface
covered by an agent would be small. Obtaining a good coverage
would require to drop a lot of agents in the environment. The
product of the number of agents by the mean size of the covered
surface must correspond to the size of the region we wish to
extract. On the contrary, if silk attraction is weak (figure 8c)), it
requires fewer agents, but the density of draglines might be not
significant enough to lead to relevant results.

Figure 10. Web (in white) built with a null Backprobability
(parameters of the 5 agents : Reflevel 16, Selectivity 0.1,
Backprobability 0 but Pdragline is for 0.5) after 5000, 10000
and 20000 cycles.

Figure 11. Degree of belonging of fig 10

The importance of Backprobability is illustrated by figures 10 and
11. The return behavioural item prevents agents from building a
web linking two non contiguous regions. Indeed, the inverse of
this probability corresponds to the mean length of the path before
returning to the web.

If the probability is not high enough, the agents could reach
another non contiguous region from a web and then weave
draglines linking those two regions. It is the case in Figure 10 in
which a web has been woven in the beard, eyes and eyebrows of
Alain. However, the Backprobability must not be too high,
especially if the agent is highly selective, because low



Backprobability allows the agents to cross small noisy zones to
carry on selection processes afield.

5.4.2 Influ

ence of selection of pixels

Figure 12. Extraction with high Selectivity (parameters for 5
agents : Reflevel 16, Selectivity 1, Backprobability 0.2 and
Pdragline 0.5) after 5000, 10000 and 20000 cycles.

Figure 13. Degree of belonging of fig 12.

Selectivity is directly linked to the homogeneity of the gray level
of woven pixels due to the selection process. Figures 12 and 13
present zones whose borderlines do not correspond to the desired
results because of a too high Selectivity.

In most cases Selectivity has to be accurately tuned. Indeed, the
agents selection must tolerate small light intensity fluctuations
without allowing the selection of pixels of borderlines and of
other regions. If the region we want to extract is well separated
from the rest of the image, Selectivity should be low to consider
small fluctuations of gray level in the region. On the contrary, if
the region is not well detached from the image (like the grid),
selectivity must be set high to extract expected borderlines.
However, from now on, small fluctuations of light intensity in
searched regions might hinder the extraction process.

5.4.3 Heuristics for setting parameters

The experiments cast a new light on the process : even if
parameters are empirically tuned, a few heuristics enabling their
determination can be mentioned.

Relating to the exploratory behavior, the value of the attraction is
highly dependent on the number of agents we put into the
environment. If we drop a lot of spiders, a high attraction would
be interesting : spiders will weave small webs with high density
and the region will be the result of the fusion of those small webs.
On the contrary, if agents are fewer, to ensure a wider exploration
of the environment, a low attraction is required but agents are then
prone to go astray.

Concerning selection, if the region to be extracted has radiometric
properties close to the rest of the picture, a high selectivity is
required.

These hypothesis applied to the task of extracting the Alain’s
beard lead to the results of figure 14. Since, the region is not very
big, few agents will be sufficient and the Backprobability
coefficient and Pdragline parameter will be set high. Because the
region is well detached, selectivity might be not accurately tuned.

Figure 14. Extraction of beard with heuristics (parameters for
2 agents : Reflevel 16, Selectivity 1, Backprobability 0.2 and
Pdragline 0.5) after 1000, 2000 and 3000 cycles.

5.5 Conclusion of these experiments

As shown by our results, all the ingredients are available in our
approach for detecting different regions if the required parameters
are well assessed. It is also possible to detect simultaneously
several regions (figure 15) by the wuse of the second
implementation of movement behaviour and by gathering agents
with the same initial parameters into groups To do so, it is
sufficient to set the Attractother coefficient to null. In this case,
the global process consists in several processes without
competition which ignore each other. A positive value of
Attractother introduces competition between groups: webs built
by a group might be attractive for other groups which will
possibly compete for the selection of the same pixels.

Figure 15. Webs resulting of simultaneous extractions of 4
regions with 4 groups after 0, 5000 and 10000 cycles.

However, a major drawback has to be solved in order to produce a
real application : parameters are empirically adjusted. Liu [13]
faced the same issue but we also have to determine the number of
agents and their initial position. Once this stage is over, we could
undertake automatic region detection and compare our approach
to the algorithms that already exist.

Until now, even if few heuristics have been made clear, these
parameters require information about the region that one wishes to
extract. In some applications, such information might be available
but we can focus also on online specialisation and auto-
organization. Indeed, silk laid down in the environment contains a
lot of information that can be used. For example, if draglines are
not present on pixels, it might mean that this gray level is not
searched by agents and that a region which will not be detected
might be present. Then, if the agent meets a lot of pixels with the
same gray level without any dragline fixed on them, it could
decide to extract the region corresponding to this gray level.

6. CONCLUDING REMARKS AND
FUTURE WORK

We have presented in this article an approach for region detection
inspired by an original social model: the social spiders.

The transposition of this model provides a reactive multi-agent
system in which agent behavior is ruled by 3 simple items, and
relies on very limited information and memory. Furthermore,



agents don’t have any explicit representation of the global task
being performed and coordinate themselves by silk draglines
through environment.

This approach gives very encouraging results. The individual
model is simple and allows flexibility of the system which can be
adapted to various contexts: without any optimisation of the
system it is able to extract different kinds of regions in real images
by simply modifying some parameters.

Currently two drawbacks must be mentioned: assessment of the
approach is qualitative and initial parameters have to be estimated
before runtime, this prevents automatic extraction of all the
significant regions of an image.

Further work will focus on parameter adaptation by adopting a
perspective of self organized systems and by considering natural
abilities of biological systems.
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