
Mixed Linear and Non-linear Recursive Types

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

Applied Category Theory 2019
University of Oxford

19 July 2019

0 / 26

Introduction

• Mixed linear/non-linear type systems have recently found applications in:
• concurrency (session types for π-calculus);
• quantum programming (substructural limitations imposed by quantum information);
• circuit description languages (dealing with wires of string diagrams);
• programming resource-sensitive data (file handlers, etc.).

• This talk: add recursive types to a mixed linear/non-linear type system.

• Very detailed denotational (and categorical) treatment:
• a new technique for solving recursive domain equations within CPO;
• coherence theorems for (parameterised) initial algebras;
• we describe the canonical comonoid structure of recursive types;
• sound and adequate categorical models.

• Paper to appear in ICFP’19, arxiv:1906.09503.

1 / 26

Long story short

• Syntax and operational semantics is mostly straightforward and is based on prior
work1.
• Main difficulty is on the denotational and categorical side.
• How can we copy/discard non-linear recursive types implicitly?

• A list of qubits (or file handlers) should be linear – cannot copy/discard.
• A list of natural numbers should be non-linear – can copy/discard at will (and

implicitly).

• For the rest of the talk we focus on the linear/non-linear type structure.
• How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

1Rios and Selinger, QPL’17; Lindenhovius, Mislove and Zamdzhiev LICS’18
2 / 26

Syntax

Type variables X ,Y ,Z
Term variables x , y , z
Types A,B,C ::= X | A + B | A⊗ B | A(B | !A | µX .A
Non-linear types P,R ::= X | P + R | P ⊗ R | !A | µX .P
Type contexts Θ ::= X1,X2, . . . ,Xn

Term contexts Γ,Σ ::= x1 : A1, x2 : A2, . . . , xn : An

Non-linear term contexts Φ ::= x1 : P1, x2 : P2, . . . , xn : Pn

Terms m, n, p ::= x | leftA,Bm | rightA,Bm
| case m of {left x → n right y → p}
| 〈m, n〉 | let 〈x , y〉 = m in n | λxA.m | mn
| lift m | force m | foldµX .Am | unfold m

Values v ,w ::= x | leftA,Bv | rightA,Bv | 〈v ,w〉 | λxA.m
| lift m | foldµX .Av

3 / 26

Operational Semantics

⇓
x ⇓ x

m ⇓ v

left m ⇓ left v
m ⇓ v

right m ⇓ right v

m ⇓ left v n[v/x] ⇓ w

case m of {left x → n | right y → p} ⇓ w

m ⇓ right v p[v/y] ⇓ w

case m of {left x → n | right y → p} ⇓ w

m ⇓ v n ⇓ w

〈m, n〉 ⇓ 〈v ,w〉
m ⇓ 〈v , v ′〉 n[v/x , v ′/y] ⇓ w

let 〈x , y〉 = m in n ⇓ w

⇓
λx .m ⇓ λx .m

m ⇓ λx .m′ n ⇓ v m′[v/x] ⇓ w

mn ⇓ w

⇓
lift m ⇓ lift m

m ⇓ lift m′ m′ ⇓ v

force m ⇓ v

m ⇓ v

fold m ⇓ fold v

m ⇓ fold v

unfold m ⇓ v
4 / 26

Some derived types and terms

• 0 ≡ µX .X is the empty type (non-linear).
• I ≡ !(0(0) is the unit type (non-linear).
• ∗ ≡ lift λx0.x : I is the canonical value of unit type (non-linear).
• Nat ≡ µX .I + X is the type of natural numbers (non-linear).
• zero ≡ fold left ∗ : Nat is the zero natural number, which is a non-linear value.
• succ ≡ λn.fold right n : Nat(Nat is the successor function.
• List Nat ≡ µX .I + Nat⊗ X is the type of lists of natural numbers (non-linear).
• List Qubit ≡ µX .I + Qubit⊗ X is the type of lists of qubits (linear).
• Stream Qubit ≡ µX .Qubit ⊗ !X is the type of streams of qubits (linear).

5 / 26

Term level recursion

In FPC, a term-level recursion operator may be defined using fold/unfold terms. The
same is true for LNL-FPC.

Theorem
The term-level recursion operator from2 is now a derived rule. For a given term
Φ, z :!A ` m : A, define:

αz
m ≡ lift fold λx !µX .(!X(A).(λz !A.m)(lift (unfold force x)x)

rec z !A.m ≡ (unfold force αz
m)αz

m

2Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A
Programming Language for String Diagrams. LICS 2018

6 / 26

Example: functorial function

rec fact. λ n.
case unfold n of

left u –> succ zero
right n’ –> mult(n, (force fact) n’)

Remark
The above program is written in the formal syntax without syntactic sugar. Note:
implicit rules for copying and discarding.

7 / 26

ω-categories

A recap on ω-categories3.
• A functor F : A→ C is a (strict) ω-functor if it preserves ω-colimits (and the

initial object).
• ω-functors are closed under composition and pairing, that is, if F and G are
ω-functors, then so are F ◦ G and 〈F ,G 〉.
• A category C is an ω-category if it has an initial object and all ω-colimits.
• ω-categories are perfectly suited for computing parameterised initial algebras.

3Lehmann and Smyth 1981
8 / 26

Baby’s first parameterised initial algebra definition

Definition
Let B be an ω-category and let T : A× B→ B be an ω-functor. A parameterised
initial algebra (T †, φT) consists of:
• An ω-functor T † : A→ B;
• A natural isomorphism φT : T ◦ 〈Id,T †〉 ⇒ T † : A→ B.
• characterised by the property that (T †A, φTA) is the initial T (A,−)-algebra.

Remark
Parameterised initial algebras are necessary to interpret recursive types defined by
nested recursion (also known as mutual recursion).

9 / 26

Coherence Properties for Parameterised Initial Algebras

Theorem
Let A and C be categories and let B and D be ω-categories. Let

α : T ◦ (N ×M)⇒ M ◦ H

be a natural isomorphism, where H and T are ω-functors and where M is a strict
ω-functor. Then, the natural isomorphism α induces a natural isomorphism

α† : T † ◦ N ⇒ M ◦ H† : A→ D,

which satisfies some important coherence conditions (omitted here).

10 / 26

How to see a mixed-variance functor as a covariant one

Definition
Given a CPO-category C, its subcategory of embeddings, denoted Ce , is the
full-on-objects subcategory of C whose morphisms are exactly the embeddings of C.

Theorem (Smyth and Plotkin’82)
Let A,B and C be CPO-categories where A and B have ω-colimits over embeddings.
If T : Aop × B→ C is a CPO-functor, then the covariant functor Te : Ae × Be → Ce

Te(A,B) = T (A,B) and Te(e1, e2) = T ((e•1)op, e2)

is an ω-functor.

Remark
Even though this has been known for a while, I found no papers which use this for
denotational semantics as a basis for type interpretation.

11 / 26

Models of Intuitionistic Linear Logic

A model of ILL4 is given by the following data:
• A cartesian closed category C with finite coproducts.

• A symmetric monoidal closed category L with finite coproducts.

• A symmetric monoidal adjunction:

C ` L

F

G

4Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
12 / 26

Models of LNL-FPC
Definition
A CPO-LNL model is given by the following data:
1. A CPO-symmetric monoidal closed category (L,⊗,(, I), such that:

1a. L has an initial object 0, such that the initial morphisms e : 0→ A are embeddings;
1b. L has ω-colimits over embeddings;
1c. L has finite CPO-coproducts, where (−+−) : L× L→ L is the coproduct functor.

2. A CPO-symmetric monoidal adjunction CPO L
F

`

G
.

Theorem
In every CPO-LNL model:
1. The initial object 0 is a zero object and each zero morphism ⊥A,B is least in

L(A,B);
2. L is CPO-algebraically compact.

13 / 26

A new technique for solving recursive domain equations

Problem
How to interpret the non-linear recursive types within CPO.

Definition
Let T : A→ B be a CPO-functor between CPO-categories A and B. A morphism f in
A is called a pre-embedding with respect to T if Tf is an embedding in B.

Definition
Let CPOpe be the full-on-objects subcategory of CPO of all cpo’s with pre-embeddings
with respect to the functor F : CPO→ L.

Example
Every embedding in CPO is a pre-embedding, but not vice versa. The empty map
ι : ∅→ X is a pre-embedding (w.r.t to F in our model), but not an embedding.

14 / 26

A new technique for solving recursive domain equations (contd.)

Theorem
In every CPO-LNL model:
(1) Le is an ω-category, and the subcategory inclusion Le ↪→ L is a strict ω-functor

which also reflects ω-colimits.
(2) CPOpe is an ω-category and the subcategory inclusion CPOpe ↪→ CPO is a strict

ω-functor which also reflects ω-colimits.
(3) The subcategory inclusion CPOe ↪→ CPOpe preserves and reflects ω-colimits

(CPOe has no initial object).

Remark
We have a few more theorems showing all relevant functors (even mixed-variance ones)
from the categorical data become ω-functors when considered as covariant functors on
CPOpe and Le . So, we interpret our types in CPOpe and Le .

15 / 26

Concrete Models

Theorem

The adjunction CPO CPO⊥!

(−)⊥

`

U
, where the left adjoint is given by

(domain-theoretic) lifting and the right adjoint U is the forgetful functor, is a
CPO-LNL model.

16 / 26

Concrete Models (Presheaves)

For M a small symmetric monoidal category, let M∗ indicate the free
CPO⊥!-enrichment of M and let M̂ be the category of CPO⊥!-presheafs and
CPO⊥!-natural transformations from M∗ to CPO⊥!.

Theorem

Composing the two adjunctions CPO CPO⊥!

(−)⊥

`

U
M̂

−} I

`

M̂(I ,−)
yields a

CPO-LNL model.

17 / 26

Concrete Models (Presheaves contd.)

Example
If the category M is:
• the PROP with morphisms n × n complex matrices, then we get a model for

quantum programming.
• the free category of ZX-calculus diagrams, then we get a model for a ZX-diagram

description language.
• the free category of string diagrams generated by some signature, then we get a

string diagram description language.
• the category of Petri Nets with Boundary5 then we get a model for a petri net

description language.

5Owen Stephens (2015): Compositional specification and reachability checking of net systems.
18 / 26

Concrete Models (Kegelspitzen)

Conjecture
We suspect a model based on Kegelspitzen6 also satisfies our requirements and is a
CPO-LNL model.

6Keimel and Plotkin 2016, Mixed powerdomains for probability and nondeterminism.
19 / 26

Denotational Semantics (Types)

Main idea:
• Provide a standard interpretation for all types JΘ ` AK : L|Θ|e → Le .
• A closed type is interpreted as JAK ∈ Ob(Le) = Ob(L).
• Provide a non-linear interpretation for non-linear types

LΘ ` PM : CPO|Θ|pe → CPOpe .
• A closed non-linear type admits an interpretation as

LPM ∈ Ob(CPOpe) = Ob(CPO).
• Show that there exists a coherent family of isomorphisms JPK ∼= F LPM, which are

then used to carry the comonoid structure from CPO to L.

20 / 26

Denotational Semantics (Types)

JΘ ` AK : L|Θ|e → Le

JΘ ` ΘiK := Πi

JΘ `!AK := !e ◦ JΘ ` AK
JΘ ` A + BK := +e ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` A⊗ BK := ⊗e ◦ 〈JΘ ` AK, JΘ ` BK〉

JΘ ` A(BK := (e ◦ 〈JΘ ` AK, JΘ ` BK〉
JΘ ` µX .AK := JΘ,X ` AK†

LΘ ` PM : CPO|Θ|pe → CPOpe

LΘ ` Θi M := Πi

LΘ `!AM := Gpe ◦ JΘ ` AK ◦ F×|Θ|pe

LΘ ` P + QM := qpe ◦ 〈LΘ ` PM, LΘ ` QM〉
LΘ ` P ⊗ QM := "pe ◦ 〈LΘ ` PM, LΘ ` QM〉
LΘ ` µX .PM := LΘ,X ` PM†

21 / 26

Coherence of the interpretations

Theorem
For any non-linear type Θ ` P, there exists a natural isomorphism

αΘ`P : JΘ ` PK ◦ F×|Θ|pe ⇒ Fpe ◦ LΘ ` PM : CPO|Θ|pe → Le

defined by induction on Θ ` P which satisfies some important coherence conditions.

Corollary
For any closed non-linear type P, there exists an isomorphism

αP : JPK ∼= F LPM

which satisfies some important coherence conditions.

22 / 26

Coherence for folding/unfolding
Theorem
Let Θ ` µX .P be a non-linear type. Then the diagram of natural isomorphisms

JΘ ` P[µX .P/X]K ◦ F×|Θ|pe Fpe ◦ LΘ ` P[µX .P/X]M
α

JΘ ` µX .PK ◦ F×|Θ|pe Fpe ◦ LΘ ` µX .PM
α

foldF×|Θ|pe Fpe fold

commutes (note: one has to first formulate 3 substitution lemmas and define 2
fold/unfold maps).

23 / 26

Copying and discarding

Definition
We define morphisms, called discarding (�), copying (4) and promotion (�):

�Ψ := JΨK α−→ F LΨM F1−→ F1 u−1
−−→ I ;

4Ψ := JΨK α−→ F LΨM
F 〈id,id〉−−−−→ F (LΨM " LΨM)

m−1
−−−→ F LΨM⊗ F LΨM α−1⊗α−1

−−−−−−→ JΨK⊗ JΨK;

�Ψ := JΨK α−→ F LΨM Fη−−→ !F LΨM !α−1
−−−→ !JΨK,

where Ψ is a closed non-linear type or non-linear term context.

Proposition
The triple

(
JΨK,4Ψ, �Ψ

)
forms a cocommutative comonoid in L.

24 / 26

Denotational Semantics (Terms)

• A term Γ ` m : A is interpreted as a morphism JΓ ` m : AK : JΓK→ JAK in L in the
standard way.
• The interpretation of a non-linear value JΦ ` v : PK commutes with the

substructural operations of ILL (shown by providing a non-linear interpretation
LΦ ` v : PM within CPO).
• Soundness: If m ⇓ v , then JmK = JvK.
• Adequacy: For models that satisfy some additional axioms, the following is true:

for any · ` m : P with P non-linear, then m ⇓ iff JmK 6=⊥ .

25 / 26

Conclusion
• Introduced LNL-FPC: the linear/non-linear fixpoint calculus;

• Implicit weakening and contraction rules (copying and deletion of non-linear
variables);

• New results about parameterised initial algebras;

• New technique for solving recursive domain equations in CPO;

• Detailed semantic treatment of mixed linear/non-linear recursive types;

• Sound and adequate models;

• How to axiomatise CPO away?

• More concrete models?
26 / 26

Thank you for your attention!

26 / 26

