Mixed Linear and Non-linear Recursive Types

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

Applied Category Theory 2019 University of Oxford 19 July 2019

> 01101100 01101001 01100001

Introduction

- Mixed linear/non-linear type systems have recently found applications in:
 - concurrency (session types for π -calculus);
 - quantum programming (substructural limitations imposed by quantum information);
 - circuit description languages (dealing with wires of string diagrams);
 - programming resource-sensitive data (file handlers, etc.).
- This talk: add recursive types to a mixed linear/non-linear type system.
- Very detailed denotational (and categorical) treatment:
 - a new technique for solving recursive domain equations within CPO;
 - coherence theorems for (parameterised) initial algebras;
 - we describe the canonical comonoid structure of recursive types;
 - sound and adequate categorical models.
- Paper to appear in ICFP'19, arxiv:1906.09503.

Long story short

- Syntax and operational semantics is mostly straightforward and is based on prior work¹.
- Main difficulty is on the denotational and categorical side.
- How can we copy/discard non-linear recursive types *implicitly*?
 - A list of qubits (or file handlers) should be *linear* cannot copy/discard.
 - A list of natural numbers should be *non-linear* can copy/discard at will (and implicitly).
- For the rest of the talk we focus on the linear/non-linear type structure.
- How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

¹Rios and Selinger, QPL'17; Lindenhovius, Mislove and Zamdzhiev LICS'18

Syntax

Type variables	X, Y, Z		
Term variables	x, y, z		
Types	A, B, C	::=	$X \mid A + B \mid A \otimes B \mid A \multimap B \mid !A \mid \mu X.A$
Non-linear types	P, R	::=	$X \mid P + R \mid P \otimes R \mid !A \mid \mu X.P$
Type contexts	Θ	::=	X_1, X_2, \ldots, X_n
Term contexts	Γ, Σ	::=	$x_1: A_1, x_2: A_2, \ldots, x_n: A_n$
Non-linear term contexts	Φ	::=	$x_1: P_1, x_2: P_2, \ldots, x_n: P_n$
Terms	m, n, p	::=	$x \mid left_{A,B}m \mid right_{A,B}m$
			$\mid case m of \{left \; x o n \; right \; y o p\}$
			$ \langle m,n angle $ let $\langle x,y angle = m$ in $n \mid \lambda x^{\mathcal{A}}.m \mid mn$
			$ $ lift $m $ force $m $ fold _{$\mu X.A$} $m $ unfold m
Values	v, w	::=	$x \mid left_{A,B} v \mid right_{A,B} v \mid \langle v, w \rangle \mid \lambda x^A.m$
			\mid lift $m \mid$ fold $_{\mu X.A} v$

Operational Semantics

	$\overline{x \Downarrow x}$	$\frac{m \Downarrow v}{\text{left } m \Downarrow \text{left } v}$	right <i>m</i>	$\begin{array}{c} \Downarrow v \\ \Downarrow \text{ right } v \end{array}$		
$\frac{m \Downarrow \text{left } v \qquad n[v/x] \Downarrow w}{\text{case } m \text{ of } \{\text{left } x \to n \mid \text{right } v \to n\} \Downarrow w}$			$\frac{m \Downarrow \text{right } v p[v/y] \Downarrow w}{\text{case } m \text{ of } \{\text{left } x \to n \mid \text{right } v \to p\} \Downarrow w}$			
	$\frac{m \Downarrow v n}{\langle m, n \rangle \Downarrow \langle v}$	$\frac{\Downarrow w}{, w\rangle} \qquad \frac{m \Downarrow \langle v \\ \text{let} \end{cases}$	$\langle v, v' \rangle = n[v/v]$ t $\langle x, y \rangle = m$ i	$[x, v'/y] \Downarrow v$ in $n \Downarrow w$	<u>v</u>	
	$\lambda x.m \Downarrow \lambda x.m$	$\frac{m \Downarrow \lambda x.m}{m}$	′ n ↓ v mn ↓ w	$m'[v/x] \Downarrow$	w	
$\boxed{lift\ m\Downarrow lift\ m}$	$\frac{m \Downarrow lift}{for}$	$\frac{m' m' \Downarrow v}{\operatorname{ce} m \Downarrow v}$	$\frac{m\Downarrow}{\texttt{fold}\ m\Downarrow}$	v fold v	$\frac{m \Downarrow \texttt{fold } v}{\texttt{unfold } m \Downarrow v}$	

Some derived types and terms

- $0 \equiv \mu X.X$ is the empty type (non-linear).
- $I \equiv !(0 \multimap 0)$ is the unit type (non-linear).
- $* \equiv \text{lift } \lambda x^0.x : I$ is the canonical value of unit type (non-linear).
- Nat $\equiv \mu X.I + X$ is the type of natural numbers (non-linear).
- $zero \equiv \texttt{fold left} *$: Nat is the zero natural number, which is a non-linear value.
- succ $\equiv \lambda n.fold$ right $n : Nat \multimap Nat$ is the successor function.
- List Nat $\equiv \mu X.I + Nat \otimes X$ is the type of lists of natural numbers (non-linear).
- List Qubit $\equiv \mu X.I + \text{Qubit} \otimes X$ is the type of lists of qubits (linear).
- Stream Qubit $\equiv \mu X$.Qubit $\otimes !X$ is the type of streams of qubits (linear).

Term level recursion

In FPC, a term-level recursion operator may be defined using fold/unfold terms. The same is true for LNL-FPC.

Theorem

The term-level recursion operator from² is now a derived rule. For a given term Φ , z :! $A \vdash m$: A, define:

 $\alpha_m^z \equiv \text{lift fold } \lambda x^{!\mu X.(!X \multimap A)}.(\lambda z^{!A}.m)(\text{lift (unfold force } x)x)$ rec $z^{!A}.m \equiv (\text{unfold force } \alpha_m^z)\alpha_m^z$

²Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. LICS 2018

Example: functorial function

```
rec fact. \lambda n.
case unfold n of
   left u -> succ zero
   right n' -> mult(n, (force fact) n')
```

Remark

The above program is written in the formal syntax without syntactic sugar. Note: implicit rules for copying and discarding.

ω -categories

A recap on ω -categories³.

- A functor F : A → C is a (strict) ω-functor if it preserves ω-colimits (and the initial object).
- ω -functors are closed under composition and pairing, that is, if F and G are ω -functors, then so are $F \circ G$ and $\langle F, G \rangle$.
- A category **C** is an ω -category if it has an initial object and all ω -colimits.
- ω -categories are perfectly suited for computing *parameterised initial algebras*.

³Lehmann and Smyth 1981

Baby's first parameterised initial algebra definition

Definition

Let **B** be an ω -category and let $\mathcal{T} : \mathbf{A} \times \mathbf{B} \to \mathbf{B}$ be an ω -functor. A parameterised initial algebra ($\mathcal{T}^{\dagger}, \phi^{\mathcal{T}}$) consists of:

- An ω -functor T^{\dagger} : $\mathbf{A} \rightarrow \mathbf{B}$;
- A natural isomorphism $\phi^{T} : T \circ \langle \mathsf{Id}, T^{\dagger} \rangle \Rightarrow T^{\dagger} : \mathbf{A} \to \mathbf{B}.$
- characterised by the property that $(T^{\dagger}A, \phi_A^T)$ is the initial T(A, -)-algebra.

Remark

Parameterised initial algebras are necessary to interpret recursive types defined by nested recursion (also known as mutual recursion).

Coherence Properties for Parameterised Initial Algebras

Theorem

Let A and C be categories and let B and D be ω -categories. Let

 $\alpha: T \circ (N \times M) \Rightarrow M \circ H$

be a natural isomorphism, where H and T are ω -functors and where M is a strict ω -functor. Then, the natural isomorphism α induces a natural isomorphism

$$\alpha^{\dagger}: T^{\dagger} \circ N \Rightarrow M \circ H^{\dagger}: \mathbf{A} \to \mathbf{D},$$

which satisfies some important coherence conditions (omitted here).

How to see a mixed-variance functor as a covariant one

Definition

Given a CPO-category C, its *subcategory of embeddings*, denoted C_e , is the full-on-objects subcategory of C whose morphisms are exactly the embeddings of C.

Theorem (Smyth and Plotkin'82)

Let A, B and C be CPO-categories where A and B have ω -colimits over embeddings. If $T : A^{op} \times B \to C$ is a CPO-functor, then the covariant functor $T_e : A_e \times B_e \to C_e$

$$T_e(A,B) = T(A,B)$$
 and $T_e(e_1,e_2) = T((e_1^{\bullet})^{\mathrm{op}},e_2)$

is an ω -functor.

Remark

Even though this has been known for a while, I found no papers which use this for denotational semantics as a basis for type interpretation.

Models of Intuitionistic Linear Logic

A model of ILL^4 is given by the following data:

- A cartesian closed category **C** with finite coproducts.
- A symmetric monoidal closed category L with finite coproducts.
- A symmetric monoidal adjunction:

⁴Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

Models of LNL-FPC

Definition

A **CPO**-LNL model is given by the following data:

- 1. A CPO-symmetric monoidal closed category (L, $\otimes, \! \circ, {\it I}$), such that:
 - 1a. L has an initial object 0, such that the initial morphisms $e: 0 \rightarrow A$ are embeddings;
 - 1b. L has ω -colimits over embeddings;
 - 1c. L has finite CPO-coproducts, where $(-+-): L \times L \rightarrow L$ is the coproduct functor.
- 2. A CPO-symmetric monoidal adjunction $CPO \xrightarrow[]{} \xrightarrow{F} L$.

Theorem

In every CPO-LNL model:

- The initial object 0 is a zero object and each zero morphism ⊥_{A,B} is least in L(A, B);
- 2. L is CPO-algebraically compact.

A new technique for solving recursive domain equations

Problem

How to interpret the non-linear recursive types within CPO.

Definition

Let $T : A \to B$ be a CPO-functor between CPO-categories A and B. A morphism f in A is called a *pre-embedding with respect to* T if Tf is an embedding in B.

Definition

Let CPO_{pe} be the full-on-objects subcategory of CPO of all cpo's with pre-embeddings with respect to the functor $F : CPO \rightarrow L$.

Example

Every embedding in **CPO** is a pre-embedding, but not vice versa. The empty map $\iota : \emptyset \to X$ is a pre-embedding (w.r.t to F in our model), but not an embedding.

A new technique for solving recursive domain equations (contd.)

Theorem

In every CPO-LNL model:

- (1) L_e is an ω -category, and the subcategory inclusion $L_e \hookrightarrow L$ is a strict ω -functor which also reflects ω -colimits.
- (2) CPO_{pe} is an ω -category and the subcategory inclusion $CPO_{pe} \hookrightarrow CPO$ is a strict ω -functor which also reflects ω -colimits.
- (3) The subcategory inclusion $CPO_e \hookrightarrow CPO_{pe}$ preserves and reflects ω -colimits (CPO_e has no initial object).

Remark

We have a few more theorems showing all relevant functors (even mixed-variance ones) from the categorical data become ω -functors when considered as covariant functors on CPO_{pe} and L_e . So, we interpret our types in CPO_{pe} and L_e .

Concrete Models

Theorem The adjunction $CPO(\xrightarrow{(-)_{\perp}} U) CPO_{\perp !}$, where the left adjoint is given by (domain-theoretic) lifting and the right adjoint U is the forgetful functor, is a CPO-LNL model.

Concrete Models (Presheaves)

For M a small symmetric monoidal category, let M_* indicate the free $CPO_{\perp !}$ -enrichment of M and let \widehat{M} be the category of $CPO_{\perp !}$ -presheafs and $CPO_{\perp !}$ -natural transformations from M_* to $CPO_{\perp !}$.

Theorem

CPO-LNL model.

Concrete Models (Presheaves contd.)

Example

If the category M is:

- the PROP with morphisms $n \times n$ complex matrices, then we get a model for quantum programming.
- the free category of ZX-calculus diagrams, then we get a model for a ZX-diagram description language.
- the free category of string diagrams generated by some signature, then we get a string diagram description language.
- the category of Petri Nets with Boundary⁵ then we get a model for a petri net description language.

⁵Owen Stephens (2015): Compositional specification and reachability checking of net systems.

Concrete Models (Kegelspitzen)

Conjecture

We suspect a model based on Kegelspitzen⁶ also satisfies our requirements and is a CPO-LNL model.

⁶Keimel and Plotkin 2016, Mixed powerdomains for probability and nondeterminism.

Denotational Semantics (Types)

Main idea:

- Provide a standard interpretation for all types $\llbracket \Theta \vdash A \rrbracket$: $L_{e}^{|\Theta|} \rightarrow L_{e}$.
- A closed type is interpreted as [[A]] ∈ Ob(L_e) = Ob(L).
- Provide a non-linear interpretation for non-linear types $(\Theta \vdash P) : \mathbf{CPO}_{pe}^{|\Theta|} \to \mathbf{CPO}_{pe}.$
- A closed non-linear type admits an interpretation as (*P*) ∈ Ob(CPO_{pe}) = Ob(CPO).
- Show that there exists a *coherent* family of isomorphisms [[P]] ≃ F([P]), which are then used to carry the comonoid structure from CPO to L.

Denotational Semantics (Types)

$$\begin{split} \llbracket \Theta \vdash A \rrbracket : \ \mathbf{L}_{\mathbf{e}}^{[\Theta]} \to \mathbf{L}_{e} \\ \llbracket \Theta \vdash \Theta_{i} \rrbracket \coloneqq \Pi_{i} \\ \llbracket \Theta \vdash A \rrbracket \coloneqq !_{e} \circ \llbracket \Theta \vdash A \rrbracket \\ \llbracket \Theta \vdash A + B \rrbracket \coloneqq !_{e} \circ \langle \llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket \rangle \\ \llbracket \Theta \vdash A \otimes B \rrbracket \coloneqq \otimes_{e} \circ \langle \llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket \rangle \\ \llbracket \Theta \vdash A \odot B \rrbracket \coloneqq \otimes_{e} \circ \langle \llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket \rangle \\ \llbracket \Theta \vdash A \multimap B \rrbracket \coloneqq = -\circ_{e} \circ \langle \llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket \rangle \\ \llbracket \Theta \vdash \mu X.A \rrbracket \coloneqq \llbracket \Theta, X \vdash A \rrbracket^{\dagger} \end{split}$$

$$\begin{split} (\Theta \vdash P) &: \mathbf{CPO}_{pe}^{|\Theta|} \to \mathbf{CPO}_{pe} \\ (\Theta \vdash \Theta_i) &:= \Pi_i \\ (\Theta \vdash !A) &:= G_{pe} \circ [\![\Theta \vdash A]\!] \circ F_{pe}^{\times |\Theta|} \\ (\Theta \vdash P + Q) &:= \amalg_{pe} \circ \langle (\![\Theta \vdash P]\!], (\![\Theta \vdash Q]\!] \rangle \\ (\![\Theta \vdash P \otimes Q]\!] &:= \times_{pe} \circ \langle (\![\Theta \vdash P]\!], (\![\Theta \vdash Q]\!] \rangle \\ (\![\Theta \vdash \mu X.P]\!] &:= (\![\Theta, X \vdash P]\!]^{\dagger} \end{split}$$

Coherence of the interpretations

Theorem

For any non-linear type $\Theta \vdash P$, there exists a natural isomorphism

$$\alpha^{\Theta \vdash P} : \llbracket \Theta \vdash P \rrbracket \circ F_{pe}^{\times |\Theta|} \Rightarrow F_{pe} \circ (\!\![\Theta \vdash P]\!\!] : \mathbf{CPO}_{pe}^{|\Theta|} \to \mathbf{L}_{e}$$

defined by induction on $\Theta \vdash P$ which satisfies some important coherence conditions.

Corollary

For any closed non-linear type P, there exists an isomorphism

 $\alpha^{P}: \llbracket P \rrbracket \cong F(\! \! | P \! \!)$

which satisfies some important coherence conditions.

Coherence for folding/unfolding

Theorem

Let $\Theta \vdash \mu X.P$ be a non-linear type. Then the diagram of natural isomorphisms

commutes (note: one has to first formulate 3 substitution lemmas and define 2 fold/unfold maps).

Copying and discarding

Definition

We define morphisms, called discarding (\diamond), copying (\triangle) and promotion (\Box):

where $\boldsymbol{\Psi}$ is a closed non-linear type or non-linear term context.

Proposition

The triple $(\llbracket \Psi \rrbracket, \bigtriangleup^{\Psi}, \diamond^{\Psi})$ forms a cocommutative comonoid in L.

Denotational Semantics (Terms)

- A term Γ ⊢ m : A is interpreted as a morphism [[Γ ⊢ m : A]] : [[Γ]] → [[A]] in L in the standard way.
- The interpretation of a non-linear value [[Φ ⊢ v : P]] commutes with the substructural operations of ILL (shown by providing a non-linear interpretation ([Φ ⊢ v : P]) within CPO).
- Soundness: If $m \Downarrow v$, then $\llbracket m \rrbracket = \llbracket v \rrbracket$.
- Adequacy: For models that satisfy some additional axioms, the following is true: for any · ⊢ m : P with P non-linear, then m ↓ iff [[m]] ≠⊥.

Conclusion

- Introduced LNL-FPC: the linear/non-linear fixpoint calculus;
- Implicit weakening and contraction rules (copying and deletion of non-linear variables);
- New results about parameterised initial algebras;
- New technique for solving recursive domain equations in CPO;
- Detailed semantic treatment of mixed linear/non-linear recursive types;
- Sound and adequate models;
- How to axiomatise CPO away?
- More concrete models?

Thank you for your attention!