Mixed Linear and Non-linear Recursive Types

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Joint work with Michael Mislove and Bert Lindenhovius

Applied Category Theory 2019
 University of Oxford
 19 July 2019

Introduction

- Mixed linear/non-linear type systems have recently found applications in:
- concurrency (session types for π-calculus);
- quantum programming (substructural limitations imposed by quantum information);
- circuit description languages (dealing with wires of string diagrams);
- programming resource-sensitive data (file handlers, etc.).
- This talk: add recursive types to a mixed linear/non-linear type system.
- Very detailed denotational (and categorical) treatment:
- a new technique for solving recursive domain equations within CPO;
- coherence theorems for (parameterised) initial algebras;
- we describe the canonical comonoid structure of recursive types;
- sound and adequate categorical models.
- Paper to appear in ICFP'19, arxiv:1906.09503.

Long story short

- Syntax and operational semantics is mostly straightforward and is based on prior work ${ }^{1}$.
- Main difficulty is on the denotational and categorical side.
- How can we copy/discard non-linear recursive types implicitly?
- A list of qubits (or file handlers) should be linear - cannot copy/discard.
- A list of natural numbers should be non-linear - can copy/discard at will (and implicitly).
- For the rest of the talk we focus on the linear/non-linear type structure.
- How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

[^0]
Syntax

Type variables	X, Y, Z	
Term variables	x, y, z	
Types	A, B, C	$::=\quad X\|A+B\| A \otimes B\|A \multimap B\|!A \mid \mu X . A$
Non-linear types	P, R	$::=X\|P+R\| P \otimes R\|!A\| \mu X . P$
Type contexts	Θ	$:=X_{1}, X_{2}, \ldots, X_{n}$
Term contexts	Γ, Σ	$::=x_{1}: A_{1}, x_{2}: A_{2}, \ldots, x_{n}: A_{n}$
Non-linear term contexts	Φ	$::=x_{1}: P_{1}, x_{2}: P_{2}, \ldots, x_{n}: P_{n}$
Terms	m, n, p	$\begin{aligned} ::= & x\left\|\operatorname{left}_{A, B} m\right\| \text { right }_{A, B} m \\ & \mid \text { case } m \text { of }\{\text { left } x \rightarrow n \text { right } y \rightarrow p\} \\ & \|\langle m, n\rangle\| \text { let }\langle x, y\rangle=m \text { in } n\left\|\lambda x^{A} . m\right\| m n \\ & \mid \text { lift } m \mid \text { force } m \mid \text { fold }_{\mu x . A} m \mid \text { unfold } m \end{aligned}$
Values	v, w	$\begin{aligned} := & x\left\|\operatorname{left}_{A, B} V\right\| \text { right }_{A, B} V\|\langle v, w\rangle\| \lambda x^{A} . m \\ & \mid \text { lift } m \mid \text { fold }{ }_{\mu X . A} V \end{aligned}$

Operational Semantics

$$
\overline{x \Downarrow x} \quad \frac{m \Downarrow v}{\text { left } m \Downarrow \text { left } v} \quad \frac{m \Downarrow v}{\text { right } m \Downarrow \text { right } v}
$$

$\frac{m \Downarrow \text { right } v \quad p[v / y] \Downarrow w}{\text { case } m \text { of }\{\text { left } x \rightarrow n \mid \text { right } y \rightarrow p\} \Downarrow w}$

$$
\begin{aligned}
& \frac{m \Downarrow v \quad n \Downarrow w}{\langle m, n\rangle \Downarrow\langle v, w\rangle} \quad \frac{m \Downarrow\left\langle v, v^{\prime}\right\rangle \quad n\left[v / x, v^{\prime} / y\right] \Downarrow w}{\text { let }\langle x, y\rangle=m \text { in } n \Downarrow w} \\
& \frac{m \Downarrow \lambda x \cdot m^{\prime} \quad n \Downarrow v \quad m^{\prime}[v / x] \Downarrow w}{m n \Downarrow w}
\end{aligned}
$$

Some derived types and terms

- $0 \equiv \mu X . X$ is the empty type (non-linear).
- $I \equiv!(0 \multimap 0)$ is the unit type (non-linear).
- $* \equiv \operatorname{lift} \lambda x^{0} \cdot x: I$ is the canonical value of unit type (non-linear).
- Nat $\equiv \mu X . I+X$ is the type of natural numbers (non-linear).
- zero \equiv fold left $*$: Nat is the zero natural number, which is a non-linear value.
- succ $\equiv \lambda$ n.fold right $n:$ Nat \multimap Nat is the successor function.
- List Nat $\equiv \mu X . I+$ Nat $\otimes X$ is the type of lists of natural numbers (non-linear).
- List Qubit $\equiv \mu X . I+$ Qubit $\otimes X$ is the type of lists of qubits (linear).
- Stream Qubit $\equiv \mu X$.Qubit $\otimes!X$ is the type of streams of qubits (linear).

Term level recursion

In FPC, a term-level recursion operator may be defined using fold/unfold terms. The same is true for LNL-FPC.

Theorem

The term-level recursion operator from ${ }^{2}$ is now a derived rule. For a given term $\Phi, z:!A \vdash m: A$, define:

$$
\begin{aligned}
\alpha_{m}^{z} & \equiv \text { lift fold } \lambda x^{!} \mu X .(!X \multimap A) \\
\text { rec } z^{!A} \cdot m & \equiv\left(\text { unfold force } \alpha_{m}^{z}\right) \alpha_{m}^{z}
\end{aligned}
$$

[^1]
Example: functorial function

```
rec fact. }\lambda\textrm{n}
    case unfold n of
        left u -> succ zero
        right n' -> mult(n, (force fact) n')
```

Remark

The above program is written in the formal syntax without syntactic sugar. Note: implicit rules for copying and discarding.

ω-categories

A recap on ω-categories ${ }^{3}$.

- A functor $F: \mathbf{A} \rightarrow \mathbf{C}$ is a (strict) ω-functor if it preserves ω-colimits (and the initial object).
- ω-functors are closed under composition and pairing, that is, if F and G are ω-functors, then so are $F \circ G$ and $\langle F, G\rangle$.
- A category \mathbf{C} is an ω-category if it has an initial object and all ω-colimits.
- ω-categories are perfectly suited for computing parameterised initial algebras.

[^2]
Baby's first parameterised initial algebra definition

Definition

Let \mathbf{B} be an ω-category and let $T: \mathbf{A} \times \mathbf{B} \rightarrow \mathbf{B}$ be an ω-functor. A parameterised initial algebra $\left(T^{\dagger}, \phi^{T}\right)$ consists of:

- An ω-functor $T^{\dagger}: \mathbf{A} \rightarrow \mathbf{B}$;
- A natural isomorphism $\phi^{T}: T \circ\left\langle\mathrm{Id}, T^{\dagger}\right\rangle \Rightarrow T^{\dagger}: \mathbf{A} \rightarrow \mathbf{B}$.
- characterised by the property that $\left(T^{\dagger} A, \phi_{A}^{T}\right)$ is the initial $T(A,-)$-algebra.

Remark

Parameterised initial algebras are necessary to interpret recursive types defined by nested recursion (also known as mutual recursion).

Coherence Properties for Parameterised Initial Algebras

Theorem

Let A and C be categories and let B and D be ω-categories. Let

$$
\alpha: T \circ(N \times M) \Rightarrow M \circ H
$$

be a natural isomorphism, where H and T are ω-functors and where M is a strict ω-functor. Then, the natural isomorphism α induces a natural isomorphism

$$
\alpha^{\dagger}: T^{\dagger} \circ N \Rightarrow M \circ H^{\dagger}: \mathbf{A} \rightarrow \mathbf{D}
$$

which satisfies some important coherence conditions (omitted here).

How to see a mixed-variance functor as a covariant one

Definition

Given a CPO-category C, its subcategory of embeddings, denoted C_{e}, is the full-on-objects subcategory of \mathbf{C} whose morphisms are exactly the embeddings of \mathbf{C}.

Theorem (Smyth and Plotkin'82)
Let \mathbf{A}, B and C be CPO-categories where \mathbf{A} and \mathbf{B} have ω-colimits over embeddings. If $T: \mathbf{A}^{\mathrm{op}} \times \mathbf{B} \rightarrow \mathbf{C}$ is a CPO-functor, then the covariant functor $T_{e}: \mathbf{A}_{e} \times \mathbf{B}_{e} \rightarrow \mathbf{C}_{e}$

$$
T_{e}(A, B)=T(A, B) \quad \text { and } \quad T_{e}\left(e_{1}, e_{2}\right)=T\left(\left(e_{1}^{\bullet}\right)^{\mathrm{op}}, e_{2}\right)
$$

is an ω-functor.

Remark

Even though this has been known for a while, I found no papers which use this for denotational semantics as a basis for type interpretation.

Models of Intuitionistic Linear Logic

A model of ILL ${ }^{4}$ is given by the following data:

- A cartesian closed category C with finite coproducts.
- A symmetric monoidal closed category L with finite coproducts.
- A symmetric monoidal adjunction:

[^3]
Models of LNL-FPC

Definition

A CPO-LNL model is given by the following data:

1. A CPO-symmetric monoidal closed category $(\mathbf{L}, \otimes, \multimap, I)$, such that:

1a. L has an initial object 0 , such that the initial morphisms e:0 $\rightarrow A$ are embeddings;
1b. L has ω-colimits over embeddings;
1c. \mathbf{L} has finite CPO-coproducts, where $(-+-): \mathbf{L} \times \mathbf{L} \rightarrow \mathbf{L}$ is the coproduct functor.
2. A CPO-symmetric monoidal adjunction $\mathrm{CPO}_{\underset{G}{\stackrel{\perp}{\longleftrightarrow}} \mathrm{~L}}^{\stackrel{F}{L}}$

Theorem
In every CPO-LNL model:

1. The initial object 0 is a zero object and each zero morphism $\perp_{A, B}$ is least in $\mathrm{L}(A, B)$;
2. L is CPO -algebraically compact.

A new technique for solving recursive domain equations

Problem

How to interpret the non-linear recursive types within CPO.

Definition

Let $T: \mathbf{A} \rightarrow \mathbf{B}$ be a CPO-functor between CPO-categories \mathbf{A} and \mathbf{B}. A morphism f in \mathbf{A} is called a pre-embedding with respect to T if $T f$ is an embedding in \mathbf{B}.

Definition

Let $\mathrm{CPO}_{p e}$ be the full-on-objects subcategory of CPO of all cpo's with pre-embeddings with respect to the functor $F: \mathrm{CPO} \rightarrow L$.

Example

Every embedding in CPO is a pre-embedding, but not vice versa. The empty map $\iota: \varnothing \rightarrow X$ is a pre-embedding (w.r.t to F in our model), but not an embedding.

A new technique for solving recursive domain equations (contd.)

Theorem

In every CPO-LNL model:
(1) L_{e} is an ω-category, and the subcategory inclusion $\mathrm{L}_{e} \hookrightarrow \mathbf{L}$ is a strict ω-functor which also reflects ω-colimits.
(2) $\mathrm{CPO}_{p e}$ is an ω-category and the subcategory inclusion $\mathrm{CPO}_{p e} \hookrightarrow \mathrm{CPO}$ is a strict ω-functor which also reflects ω-colimits.
(3) The subcategory inclusion $\mathrm{CPO}_{e} \hookrightarrow \mathrm{CPO}_{p e}$ preserves and reflects ω-colimits (CPO_{e} has no initial object).

Remark

We have a few more theorems showing all relevant functors (even mixed-variance ones) from the categorical data become ω-functors when considered as covariant functors on $\mathrm{CPO}_{p e}$ and L_{e}. So, we interpret our types in $\mathrm{CPO}_{p e}$ and L_{e}.

Concrete Models

Theorem
The adjunction $\mathrm{CPO}_{\stackrel{(-)_{\perp}}{\stackrel{(}{U}}}^{\stackrel{(}{4}} \mathrm{CPO}_{\perp!}$, where the left adjoint is given by (domain-theoretic) lifting and the right adjoint U is the forgetful functor, is a CPO-LNL model.

Concrete Models (Presheaves)

For M a small symmetric monoidal category, let M_{*} indicate the free CPO $\mathrm{CPO}_{\perp!}$-natural transformations from M_{*} to $\mathrm{CPO}_{\perp!}$.

Theorem
Composing the two adjunctions $\mathrm{CPO}_{\longleftarrow}^{\frac{(-)_{\perp}}{\stackrel{\perp}{U}}} \mathrm{CPO}_{\perp!}^{\stackrel{-\odot}{\stackrel{\perp}{\mathrm{M}}(I,-)}} \stackrel{\perp}{\longrightarrow} \hat{\mathrm{M}}$ yields a
CPO-LNL model.

Concrete Models (Presheaves contd.)

Example

If the category M is:

- the PROP with morphisms $n \times n$ complex matrices, then we get a model for quantum programming.
- the free category of ZX-calculus diagrams, then we get a model for a ZX-diagram description language.
- the free category of string diagrams generated by some signature, then we get a string diagram description language.
- the category of Petri Nets with Boundary ${ }^{5}$ then we get a model for a petri net description language.

[^4]
Concrete Models (Kegelspitzen)

Conjecture

We suspect a model based on Kegelspitzen ${ }^{6}$ also satisfies our requirements and is a CPO-LNL model.

[^5]
Denotational Semantics (Types)

Main idea:

- Provide a standard interpretation for all types $\llbracket \Theta \vdash A \rrbracket: \mathbf{L}_{\mathbf{e}}^{|\Theta|} \rightarrow \mathbf{L}_{e}$.
- A closed type is interpreted as $\llbracket A \rrbracket \in \mathrm{Ob}\left(\mathrm{L}_{e}\right)=\mathrm{Ob}(\mathrm{L})$.
- Provide a non-linear interpretation for non-linear types $(\Theta \vdash P): \mathrm{CPO}_{p e}^{|\Theta|} \rightarrow \mathrm{CPO}_{p e}$.
- A closed non-linear type admits an interpretation as $(P) \in \mathrm{Ob}\left(\mathrm{CPO}_{p e}\right)=\mathrm{Ob}(\mathrm{CPO})$.
- Show that there exists a coherent family of isomorphisms $\llbracket P \rrbracket \cong F(P)$, which are then used to carry the comonoid structure from CPO to L .

Denotational Semantics (Types)

$$
\begin{aligned}
& (\Theta \vdash P): \mathrm{CPO}_{p e}^{|\Theta|} \rightarrow \mathrm{CPO}_{p e} \\
& \left(\Theta \vdash \Theta_{i}\right):=\Pi_{i}
\end{aligned}
$$

$$
(\Theta \vdash!A):=G_{p e} \circ \llbracket \Theta \vdash A \rrbracket \circ F_{p e}^{\times|\Theta|}
$$

$$
(\Theta \vdash P+Q):=\amalg_{p e} \circ\langle(\Theta \vdash P),(\Theta \vdash Q)\rangle
$$

$$
(\Theta \vdash P \otimes Q):=X_{p e} \circ\langle(\Theta \vdash P),(\Theta \vdash Q)\rangle
$$

$$
(\Theta \vdash \mu X . P):=(\Theta, X \vdash P)^{\dagger}
$$

$$
\begin{aligned}
& \llbracket \Theta \vdash A \rrbracket: \mathbf{L}_{\mathrm{e}}^{|\Theta|} \rightarrow \mathrm{L}_{\mathrm{e}} \\
& \llbracket \Theta \vdash \Theta_{i} \rrbracket:=\Pi_{i} \\
& \llbracket \Theta \vdash!A \rrbracket:=!_{e} \circ \llbracket \Theta \vdash A \rrbracket \\
& \llbracket \Theta \vdash A+B \rrbracket:=+_{e} \circ\langle\llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket\rangle \\
& \llbracket \Theta \vdash A \otimes B \rrbracket:=\otimes_{e} \circ\langle\llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket\rangle \\
& \llbracket \Theta \vdash A \multimap B \rrbracket:=\multimap_{e} \circ\langle\llbracket \Theta \vdash A \rrbracket, \llbracket \Theta \vdash B \rrbracket\rangle \\
& \llbracket \Theta \vdash \mu X . A \rrbracket:=\llbracket \Theta, X \vdash A \rrbracket^{\dagger}
\end{aligned}
$$

Coherence of the interpretations

Theorem
For any non-linear type $\Theta \vdash P$, there exists a natural isomorphism

$$
\alpha^{\Theta \vdash P}: \llbracket \Theta \vdash P \rrbracket \circ F_{p e}^{\times|\Theta|} \Rightarrow F_{p e} \circ(\Theta \vdash P): \mathbf{C P O}_{p e}^{|\Theta|} \rightarrow \mathbf{L}_{e}
$$

defined by induction on $\Theta \vdash P$ which satisfies some important coherence conditions.
Corollary
For any closed non-linear type P, there exists an isomorphism

$$
\alpha^{P}: \llbracket P \rrbracket \cong F(P)
$$

which satisfies some important coherence conditions.

Coherence for folding/unfolding

Theorem

Let $\Theta \vdash \mu X . P$ be a non-linear type. Then the diagram of natural isomorphisms

$$
\begin{aligned}
& \llbracket \Theta \vdash P[\mu X . P / X] \rrbracket \circ F_{p e}^{\times|\Theta|} \xlongequal{\alpha} F_{p e} \circ(\Theta \vdash P[\mu X . P / X]) \\
& \text { fold } F_{p e}^{\times|\Theta|} \| \text { } F_{\text {pe } f o l d} \\
& \llbracket \Theta \vdash \mu X . P \rrbracket \circ F_{p e}^{\times|\Theta|} \xlongequal[\alpha]{ } F_{p e} \circ(\Theta \vdash \mu X . P)
\end{aligned}
$$

commutes (note: one has to first formulate 3 substitution lemmas and define 2 fold/unfold maps).

Copying and discarding

Definition

We define morphisms, called discarding (\diamond), copying (\triangle) and promotion (\square) :

$$
\begin{aligned}
& \diamond^{\Psi}:=\llbracket \Psi \rrbracket \xrightarrow{\alpha} F(\Psi) \xrightarrow{F 1} F 1 \xrightarrow{u^{-1}} I ; \\
& \triangle^{\Psi}:=\llbracket \Psi \rrbracket \xrightarrow{\alpha} F(\Psi) \xrightarrow{F(\mathrm{id}, \mathrm{id}\rangle} F\left((\Psi \Psi) \times(\Psi()) \xrightarrow{m^{-1}} F\left((\Psi) \otimes F(\Psi) \xrightarrow{\alpha^{-1} \otimes \alpha^{-1}} \llbracket \Psi \rrbracket \otimes \llbracket \Psi \rrbracket ;\right.\right. \\
& \square^{\Psi}:=\llbracket \Psi \rrbracket \xrightarrow{\alpha} F(\Psi) \xrightarrow{F \eta}!F(\Psi) \xrightarrow{!\alpha^{-1}}!\llbracket \Psi \rrbracket
\end{aligned}
$$

where Ψ is a closed non-linear type or non-linear term context.

Proposition

The triple $\left(\llbracket \Psi \rrbracket, \triangle^{\Psi}, \diamond^{\Psi}\right)$ forms a cocommutative comonoid in \mathbf{L}.

Denotational Semantics (Terms)

- A term $\Gamma \vdash m: A$ is interpreted as a morphism $\llbracket\ulcorner\vdash m: A \rrbracket: \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$ in \mathbf{L} in the standard way.
- The interpretation of a non-linear value $\llbracket \Phi \vdash v: P \rrbracket$ commutes with the substructural operations of ILL (shown by providing a non-linear interpretation $(\Phi \vdash v: P)$ within CPO).
- Soundness: If $m \Downarrow v$, then $\llbracket m \rrbracket=\llbracket v \rrbracket$.
- Adequacy: For models that satisfy some additional axioms, the following is true: for any $\cdot \vdash m: P$ with P non-linear, then $m \Downarrow$ iff $\llbracket m \rrbracket \neq \perp$.

Conclusion

- Introduced LNL-FPC: the linear/non-linear fixpoint calculus;
- Implicit weakening and contraction rules (copying and deletion of non-linear variables);
- New results about parameterised initial algebras;
- New technique for solving recursive domain equations in CPO;
- Detailed semantic treatment of mixed linear/non-linear recursive types;
- Sound and adequate models;
- How to axiomatise CPO away?
- More concrete models?

Thank you for your attention!

[^0]: ${ }^{1}$ Rios and Selinger, QPL'17; Lindenhovius, Mislove and Zamdzhiev LICS'18

[^1]: ${ }^{2}$ Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A Programming Language for String Diagrams. LICS 2018

[^2]: ${ }^{3}$ Lehmann and Smyth 1981

[^3]: ${ }^{4}$ Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

[^4]: ${ }^{5}$ Owen Stephens (2015): Compositional specification and reachability checking of net systems.

[^5]: ${ }^{6}$ Keimel and Plotkin 2016, Mixed powerdomains for probability and nondeterminism.

