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Introduction

Mixed linear/non-linear type systems have recently found applications in:
® concurrency (session types for m-calculus);
® quantum programming (substructural limitations imposed by quantum information);
® circuit description languages (dealing with wires of string diagrams);
® programming resource-sensitive data (file handlers, etc.).

This talk: add recursive types to a mixed linear/non-linear type system.

Very detailed denotational (and categorical) treatment:
® a new technique for solving recursive domain equations within CPO;
® coherence theorems for (parameterised) initial algebras;
® we describe the canonical comonoid structure of recursive types;
® sound and adequate categorical models.

Paper to appear in ICFP'19, arxiv:1906.09503.
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Long story short

Syntax and operational semantics is mostly straightforward and is based on prior
work?.

Main difficulty is on the denotational and categorical side.
® How can we copy/discard non-linear recursive types implicitly?

® A list of qubits (or file handlers) should be linear — cannot copy/discard.
® A list of natural numbers should be non-linear — can copy/discard at will (and
implicitly).

For the rest of the talk we focus on the linear/non-linear type structure.

How do we design a linear/non-linear fixpoint calculus (LNL-FPC)?

1Rios and Selinger, QPL'17; Lindenhovius, Mislove and Zamdzhiev LICS’18
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Type variables

Term variables

Types

Non-linear types

Type contexts

Term contexts
Non-linear term contexts
Terms

Values

X,Y,Z
X?.y?Z
A B, C
P,R
ry

m, n, p

Syntax

X|A+B|A®B|A—B|IA|uX.A
X|P+R|POR|IA|uX.P

X17X27"'7XI‘I
x1: A1, X Ao, xn A
x1:P1,x0: Po,....xy: Py

x | lefta gm | righta gm

| case m of {left x — n right y — p}

| (m,n) | let (x,y) =min n| Ax*.m | mn
| lift m | force m | fold,x am | unfold m
x | leftagv | rightagv | (v,w) | AxA.m

| lift m| fold,x.av
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Operational Semantics

ml v ml v
x | x left m | left v right m |} right v
mlleft v n[v/x] | w mlright v p[v/y] | w
case m of {left x — n|right y — p} | w case m of {left x — n|righty — p} I w

miv nlw ml (v,v')y  nlv/x,v'/y] | w
(m,n) 4 (v,w) let (x,y)=minn{ w

mlix.m"  nlv mv/x]lw

Ax.m |} Ax.m mn || w
miliftm  m v ml v m fold v
lift m | lift m force m{ v fold m || fold v unfold m |} v
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Some derived types and terms

0 = uX.X is the empty type (non-linear).

I = (0 —o 0) is the unit type (non-linear).

* = 1ift Ax%.x : | is the canonical value of unit type (non-linear).

Nat = pX./ 4+ X is the type of natural numbers (non-linear).

zero = fold left * : Nat is the zero natural number, which is a non-linear value.
succ = An.fold right n: Nat — Nat is the successor function.

List Nat = pX./ + Nat ® X is the type of lists of natural numbers (non-linear).
List Qubit = puX./ + Qubit ® X is the type of lists of qubits (linear).

Stream Qubit = pX.Qubit ® !X is the type of streams of qubits (linear).
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Term level recursion

In FPC, a term-level recursion operator may be defined using fold /unfold terms. The
same is true for LNL-FPC.

Theorem
The term-level recursion operator from? is now a derived rule. For a given term

&, z:1AF m: A, define:

o, = it fold Ax"#X-(X=A) (X\z'A m)(lift (unfold force x)x)

A z

rec z'4.m = (unfold force aZ,)a?,

2Lindenhovius, Mislove, Zamdzhiev: Enriching a Linear/Non-linear Lambda Calculus: A

Programming Language for String Diagrams. LICS 2018
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Example: functorial function

rec fact. A n.
case unfold n of
left u -> succ zero
right n’ -> mult(n, (force fact) n’)

Remark

The above program is written in the formal syntax without syntactic sugar. Note:
implicit rules for copying and discarding.
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w-categories

A recap on w-categories®.

e A functor F : A — C is a (strict) w-functor if it preserves w-colimits (and the
initial object).

e o-functors are closed under composition and pairing, that is, if F and G are
w-functors, then so are F o G and (F, G).

e A category C is an w-category if it has an initial object and all w-colimits.

e (-categories are perfectly suited for computing parameterised initial algebras.

3Lehmann and Smyth 1981
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Baby's first parameterised initial algebra definition

Definition
Let B be an w-category and let T : A x B — B be an w-functor. A parameterised
initial algebra (TT,¢7) consists of:

e An w-functor T : A — B;
® A natural isomorphism ¢ : To(ld, TT) = TT: A = B.
® characterised by the property that (TTA, ¢ ) is the initial T(A, —)-algebra.

Remark

Parameterised initial algebras are necessary to interpret recursive types defined by
nested recursion (also known as mutual recursion).
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Coherence Properties for Parameterised Initial Algebras

Theorem
Let A and C be categories and let B and D be w-categories. Let

a:To(NxM)=MoH

be a natural isomorphism, where H and T are w-functors and where M is a strict
w-functor. Then, the natural isomorphism « induces a natural isomorphism

al :TToN= MoH : A - D,

which satisfies some important coherence conditions (omitted here).
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How to see a mixed-variance functor as a covariant one

Definition

Given a CPO-category C, its subcategory of embeddings, denoted C., is the
full-on-objects subcategory of C whose morphisms are exactly the embeddings of C.
Theorem (Smyth and Plotkin’82)

Let A,B and C be CPO-categories where A and B have w-colimits over embeddings.
If T : A°? x B — C is a CPO-functor, then the covariant functor Te : Ae X Be — C¢

T(AB)=T(AB) and Teler, &)= T((e})", &)
is an w-functor.

Remark
Even though this has been known for a while, | found no papers which use this for
denotational semantics as a basis for type interpretation.
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Models of Intuitionistic Linear Logic

A model of ILL* is given by the following data:
® A cartesian closed category C with finite coproducts.

e A symmetric monoidal closed category L with finite coproducts.

e A symmetric monoidal adjunction:

“Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94
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Models of LNL-FPC

Definition
A CPO-LNL model is given by the following data:
1. A CPO-symmetric monoidal closed category (L, ®, —o, /), such that:

la. L has an initial object 0, such that the initial morphisms e : 0 — A are embeddings;

1b. L has w-colimits over embeddings;

lc. L has finite CPO-coproducts, where (— 4+ —) : L x L — L is the coproduct functor.

2. A CPO-symmetric monoidal adjunction CPQO N L .
G

Theorem
In every CPO-LNL model:

1. The initial object 0 is a zero object and each zero morphism L4 g is least in
L(A, B),
2. L is CPO-algebraically compact.
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A new technique for solving recursive domain equations

Problem
How to interpret the non-linear recursive types within CPO.

Definition
Let T : A — B be a CPO-functor between CPO-categories A and B. A morphism f in
A is called a pre-embedding with respect to T if Tf is an embedding in B.

Definition
Let CPO,, be the full-on-objects subcategory of CPO of all cpo’s with pre-embeddings
with respect to the functor F : CPO — L.

Example

Every embedding in CPO is a pre-embedding, but not vice versa. The empty map
t: & — X is a pre-embedding (w.r.t to F in our model), but not an embedding.
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A new technique for solving recursive domain equations (contd.)

Theorem
In every CPO-LNL model:

(1) Le is an w-category, and the subcategory inclusion L — L is a strict w-functor
which also reflects w-colimits.

(2) CPOye is an w-category and the subcategory inclusion CPOpe — CPO is a strict
w-functor which also reflects w-colimits.

(3) The subcategory inclusion CPOg — CPO, preserves and reflects w-colimits
(CPO. has no initial object).

Remark

We have a few more theorems showing all relevant functors (even mixed-variance ones)
from the categorical data become w-functors when considered as covariant functors on
CPO,e and L.. So, we interpret our types in CPOpe and L.
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Concrete Models

Theorem

G
The adjunction CPO 1 CPO |, , where the left adjoint is given by
V)

(domain-theoretic) lifting and the right adjoint U is the forgetful functor, is a
CPO-LNL model.
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Concrete Models (Presheaves)

For M a small symmetric monoidal category, let M, indicate the free
CPO 1-enrichment of M and let M be the category of CPO | |-presheafs and
CPO | i-natural transformations from M, to CPO .

Theorem

(—)L ©/
Composing the two adjunctions CPO T CPO, = "M vields a
u M(l7 _)

CPO-LNL model.
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Concrete Models (Presheaves contd.)

Example
If the category M is:

e the PROP with morphisms n x n complex matrices, then we get a model for
quantum programming.

® the free category of ZX-calculus diagrams, then we get a model for a ZX-diagram
description language.

e the free category of string diagrams generated by some signature, then we get a
string diagram description language.

e the category of Petri Nets with Boundary® then we get a model for a petri net
description language.

®Qwen Stephens (2015): Compositional specification and reachability checking of net systems.
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Concrete Models (Kegelspitzen)

Conjecture

We suspect a model based on Kegelspitzen® also satisfies our requirements and is a
CPO-LNL model.

®Keimel and Plotkin 2016, Mixed powerdomains for probability and nondeterminism.
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Denotational Semantics (Types)

Main idea:

® Provide a standard interpretation for all types [© F A] : LLel — Le.

® A closed type is interpreted as [A] € Ob(L.) = Ob(L).

® Provide a non-linear interpretation for non-linear types
(©+ P): CPO — CPO,..

® A closed non-linear type admits an interpretation as
(P) € Ob(CPO,.) = Ob(CPO).

® Show that there exists a coherent family of isomorphisms [P] = F(P), which are
then used to carry the comonoid structure from CPO to L.
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Denotational Semantics (Types)

[OFA]: LE L,

(©+ P):cPO — cPO,.
[[@ - @,]] = |_|,' (]@ - @,[) - I_I
[OHA] = 1.0[OF Al o
[OF A+ B] = +e0 ([OF A][OF B]) (© FIA) = Gpe 0 [O - A] o Fpe
[0+ Aw Bl =0 (Or AL [or Bl (07 P T A o llO T (57 )
OFA— Bl = —o([OF AL[orB]) ©F POQ=Yeo(@FP).(OF Q)
©F uX.P) = qe,Xl—P[)

[©F uX.A] =0, X A]l
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Coherence of the interpretations

Theorem
For any non-linear type © & P, there exists a natural isomorphism

a® P [0F PloF® = Freo(@r P): CPOR — L.
defined by induction on © & P which satisfies some important coherence conditions.

Corollary

For any closed non-linear type P, there exists an isomorphism
P . ~
a” [P = F(P)

which satisfies some important coherence conditions.
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Coherence for folding/unfolding

Theorem
Let © b uX.P be a non-linear type. Then the diagram of natural isomorphisms

[0 F PuX.P/X]] o Fol® == Fpe 0 (© F P[uX.P/X])

fold F0l°! Fpe fold

[0 F uX.P] o Fl®) ———= Fpe 0 (O F uX.P)
(6%

commutes (note: one has to first formulate 3 substitution lemmas and define 2
fold /unfold maps).

23/26



Copying and discarding

Definition
We define morphisms, called discarding (<), copying (A) and promotion (CJ):

M= W] S FQw) BB P

PO, qu X ) T P e F) 22 [w] o [l

AY = [V] S F(v)
0% = [w] & Fw) 225 1 Fqu) 2275 1w,
where V is a closed non-linear type or non-linear term context.

Proposition
The triple ([W], AV, oY) forms a cocommutative comonoid in L.
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Denotational Semantics (Terms)

A term [ m: Ais interpreted as a morphism [ m: A] : [I] — [A] in L in the
standard way.

The interpretation of a non-linear value [® - v : P] commutes with the
substructural operations of ILL (shown by providing a non-linear interpretation
(¢ v : P) within CPO).

Soundness: If m || v, then [m] = [v].

Adequacy: For models that satisfy some additional axioms, the following is true:
for any - F m: P with P non-linear, then m |} iff [m] #L .
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Conclusion

Introduced LNL-FPC: the linear/non-linear fixpoint calculus;

Implicit weakening and contraction rules (copying and deletion of non-linear
variables);

New results about parameterised initial algebras;

New technique for solving recursive domain equations in CPO;
Detailed semantic treatment of mixed linear/non-linear recursive types;
Sound and adequate models;

How to axiomatise CPO away?

More concrete models?
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Thank you for your attention!
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