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Introduction

• This talk is about categorical semantics of inductive / recursive types.
• (Inductive datatypes ⇐⇒ polynomial functors) can be modelled by initial

algebras.
• (Recursive datatypes ⇐⇒ mixed-variance functors) can be modelled by compact

algebras, i.e., initial algebras whose inverse is a final coalgebra.
• The known constructions of compact algebras are based on limit-colimit

coincidence results.
• In this talk we present a more abstract method for their construction.
• Application in semantics for mixed linear/non-linear type systems.
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Background: Initial and final (co)algebras
Definition
Given an endofunctor T : C→ C, a T -algebra is a pair (A, a), where A is an object of
C and TA

a−→ A is a morphism of C. A T -algebra morphism f : (A, a)→ (B, b) is a
morphism f : A→ B of C, such that:

TA A

TB B

a

b

fTf

• The dual notion is called a T -coalgebra.
• T -(co)algebras form a category.
• A T -(co)algebra is initial (final) if it is initial (final) in that category.
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Initial and final (co)algebras
Theorem (Lambek)
If (TA, a) is an initial (final) T -(co)algebra, then a is an isomorphism.

Theorem (Adámek)
Let T : C→ C be an endofunctor. Assume that the colimit of the initial sequence of T :

∅ ι−→ T∅ T ι−→ T 2∅ T 2ι−−→ · · ·

exists and is preserved by T . Then T has an initial T -algebra.

Theorem (coAdámek)
Let T : C→ C be an endofunctor. Assume that the limit of the final sequence of T :

1 ι←− T1 T ι←− T 21 T 2ι←−− · · ·

exists and is preserved by T . Then T has a final T -coalgebra.
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Categorical Semantics of Inductive Datatypes

• Inductive datatypes are an important programming concept.
• Data structures such as natural numbers, lists, trees, etc.

• Type expressions made from constants, ⊗ and + (polynomial endofunctors).
• In programming semantics inductive datatypes are modelled via initial algebras.

Example
• Natural numbers are defined by the type expression Nat ≡ µX .I + X .

• To interpret it, we need an object JNatK ∼= I + JNatK.
• Consider the functor T (X ) = I + X : C→ C.
• Solution: JµX .I + X K := Y (T ), the carrier of the initial algebra of T .
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Categorical Semantics of Recursive Datatypes

• Recursive datatypes also allow type expressions involving function space.
• Lazy datatypes, such as streams.
• Example: µX .1→ Nat× X , a stream of natural numbers (in a non-linear setting).

• Type expressions made from constants, ⊗,+,( (and possibly ! in linear settings).
• The semantic treatment is considerably more complicated and requires additional

structure.
• One approach is based on algebraic compactness, i.e., the property of a functor to

have an initial algebra whose inverse is a final coalgebra.
• Under some reasonable conditions, this property carries over to endofunctors
T : Cop × C→ Cop × C which allows one to interpret recursive types.
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Algebraic Compactness

Definition
An endofunctor T : C→ C is
• algebraically complete if it has an initial T -algebra;
• algebraically cocomplete if it has a final T -coalgebra;
• algebraically compact if it has an initial T -algebra TΩ

ω−→ Ω, such that

TΩ
ω−1
←−− Ω is a final T -coalgebra. We say ω is a compact T -algebra.

Definition
A category C is algebraically compact if every endofunctor T : C→ C is algebraically
compact.
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Compact algebra constructions in the literature

Problem
How can one construct compact algebras?

Solution
Require that the initial and final sequences of a functor coincide (limit-colimit
coincidence).

Example
The terminal category 1 is algebraically compact.

Example (Barr)
Let λ be a cardinal and let Hilb≤1

λ be the category whose objects are the Hilbert spaces
with dimension at most λ and whose morphisms are the linear maps of norm at most 1.
Then Hilb≤1

λ is algebraically compact.

7 / 19



Enriched Algebraic Compactness
There are a few issues with algebraic compactness as presented:
• Very few known algebraically compact categories.
• Algebraically compact functors do not compose.

Solution
Consider a class of algebraically compact functors which is well-behaved. Usually, in an
enriched sense.

Definition
Given a V-category C, a V-functor T : C → C is algebraically compact if its underlying
functor T : C→ C is algebraically compact.

Definition
A V-category C is V-algebraically compact if every V-endofunctor acting on it is
algebraically compact.
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Domain Theory

• A complete partial order (cpo) is a poset where every increasing chain has a
supremum.
• A pointed cpo is a cpo with a least element.
• A (strict) Scott-continuous function f : X → Y between two (pointed) cpo’s is a

monotone function which preserves suprema of chains (and the least element).
• CPO is the category of cpo’s and Scott-continuous functions. It is complete,

cocomplete and cartesian closed.
• CPO⊥! is the category of pointed cpo’s and strict Scott-continuous functions. It is

complete, cocomplete and symmetric monoidal closed.
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Order-enriched Category Theory

• CPO-enriched and CPO⊥!-enriched categories are often used in programming
semantics to interpret recursion and recursive types.
• A CPO(⊥!)-category C is a category where C(A,B) is a (pointed) cpo and where

(− ◦ −) : C(B,C )× C(A,B)→ C(A,C ) is a (strict) Scott-continuous function.
• A CPO(⊥!)-functor T : C→ D is a functor whose action on hom-cpo’s
TA,B : C(A,B)→ D(TA,TB) is a (strict) Scott-continuous function.
• In a CPO-category C, an embedding is a morphism e : A→ B , for which there

exists a (necessarily unique) morphism p : B → A, called a projection, such that
p ◦ e = id and e ◦ p ≤ id.
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The limit-colimit coincidence theorem

A classical result in domain theory (see [Smyth & Plotkin 1982] and [Fiore & Plotkin
1994]):

Theorem
Let C be a CPO-category with ω-colimits (over embeddings) and a zero object 0 such
that each e : 0→ A is an embedding. Then C is CPO-algebraically compact.

Example
The category CPO⊥! is CPO-algebraically compact.
Many other examples in semantics.
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Semantics for mixed linear/non-linear type systems

• To interpret mixed linear/non-linear recursive types, one also has to provide an
interpretation within a cartesian closed category.
• Existing methods for the construction of compact algebras do not work well in

CCCs.
• This talk: we address this issue.
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A Reflection Theorem for Algebraically Compact Functors

Lemma (Freyd)
Let C and D be categories and F : C→ D and G : D→ C functors. If GFΩ

ω−→ Ω is
an initial GF -algebra, then FGFΩ

Fω−−→ FΩ is an initial FG -algebra.

Lemma (coFreyd)
Let C and D be categories and F : C→ D and G : D→ C functors. If GFΩ

ω←− Ω is a
final GF -coalgebra, then FGFΩ

Fω←−− FΩ is a final FG -coalgebra.

Theorem
Let C and D be categories and F : C→ D and G : D→ C functors. Then FG is
algebraically complete/cocomplete/compact iff GF is algebraically
complete/cocomplete/compact, respectively.
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A factorisation result
Definition
A V-endofunctor T : C → C has a V-algebraically compact factorisation if there exists a
V-algebraically compact category D and V-functors F : C → D and G : D → C such
that T ∼= G ◦ F .

Theorem
If a V-endofunctor T : C → C has a V-algebraically compact factorisation, then it is
algebraically compact.

Corollary
Any endofunctor T : Set→ Set which factors through Hilb≤1

λ is algebraically compact.

Corollary
Any CPO-endofunctor T : CPO→ CPO which factors through a CPO-algebraically
compact category (like CPO⊥!) in an enriched sense, is algebraically compact. Thus
the lifting functor (−)⊥ : CPO→ CPO is algebraically compact.
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A compositionality principle

Proposition
Let H : C → C be a V-endofunctor and T : C → C be a V-endofunctor with a
V-algebraically compact factorisation. Then H ◦ T also has a V-algebraically compact
factorisation and is thus algebraically compact.
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A couple of notes

• Most results are stated for algebraic compactness, but many of them also hold for
algebraic completeness / cocompleteness.
• For the next slide, consider a model of a mixed linear/non-linear lambda calculus

with recursive types. It is given by the following data:
• A CPO-algebraically compact category D;

• A CPO-symmetric monoidal adjunction CPO D
F

`

G
.

• A bit more structure which is irrelevant for this talk.
• Let T := G ◦ F : CPO→ CPO.

16 / 19



An application of the theory

Consider the following formal grammar:

A,B ::= c | TX | HA | A + B | A× B | A→ B

where c ranges over the objects of CPO and H ranges over CPO-endofunctors on
CPO. Every such type expression induces a CPO-endofunctor
JX ` AK : CPOop × CPO→ CPOop × CPO, when interpreted in the standard way.

Theorem
Every JX ` AK : CPOop × CPO→ CPOop × CPO is algebraically compact.

Remark
The above result also holds when CPO is replaced with a CCC V and where D is
parameterised V-algebraically compact.
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Conclusion

• New method for establishing algebraic completeness/cocompleteness/compactness
which does not rely on limits, colimits or their coincidence.
• Simple compositionality principle.
• Applications for semantics of mixed linear/non-linear type systems with

inductive/recursive datatypes.
• Easy to establish constructive classes of algebraically compact functors with the

new method.
• The new method nicely complements other approaches from the literature.
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Thank you for your attention!
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