Reflecting Algebraically Compact Functors

Vladimir Zamdzhiev

Université de Lorraine, CNRS, Inria, LORIA, F 54000 Nancy, France

Applied Category Theory University of Oxford 17 July 2019

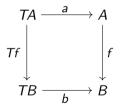
Introduction

- This talk is about categorical semantics of inductive / recursive types.
- (Inductive datatypes \iff polynomial functors) can be modelled by initial algebras.
- (Recursive datatypes \iff mixed-variance functors) can be modelled by compact algebras, i.e., initial algebras whose inverse is a final coalgebra.
- The known constructions of compact algebras are based on limit-colimit coincidence results.
- In this talk we present a more abstract method for their construction.
- Application in semantics for mixed linear/non-linear type systems.

Background: Initial and final (co)algebras

Definition

Given an endofunctor $T : \mathbb{C} \to \mathbb{C}$, a *T*-algebra is a pair (A, a), where A is an object of \mathbb{C} and $TA \xrightarrow{a} A$ is a morphism of \mathbb{C} . A *T*-algebra morphism $f : (A, a) \to (B, b)$ is a morphism $f : A \to B$ of \mathbb{C} , such that:



- The dual notion is called a *T*-coalgebra.
- *T*-(co)algebras form a category.
- A T-(co)algebra is initial (final) if it is initial (final) in that category.

Initial and final (co)algebras

Theorem (Lambek) If (TA, a) is an initial (final) T-(co)algebra, then a is an isomorphism. Theorem (Adámek)

Let $T : \mathbf{C} \to \mathbf{C}$ be an endofunctor. Assume that the colimit of the initial sequence of T:

$$\varnothing \xrightarrow{\iota} T \varnothing \xrightarrow{T\iota} T^2 \varnothing \xrightarrow{T^2\iota} \cdots$$

exists and is preserved by T. Then T has an initial T-algebra.

Theorem (coAdámek)

Let $T : \mathbf{C} \to \mathbf{C}$ be an endofunctor. Assume that the limit of the final sequence of T:

$$1 \xleftarrow{\iota} T1 \xleftarrow{\tau_{\iota}} T^2 1 \xleftarrow{\tau_{\iota}} \cdots$$

exists and is preserved by T. Then T has a final T-coalgebra.

Categorical Semantics of Inductive Datatypes

- Inductive datatypes are an important programming concept.
 - Data structures such as natural numbers, lists, trees, etc.
- Type expressions made from constants, \otimes and + (polynomial endofunctors).
- In programming semantics inductive datatypes are modelled via initial algebras.

Example

- Natural numbers are defined by the type expression $Nat \equiv \mu X.I + X.$
- To interpret it, we need an object $\llbracket Nat \rrbracket \cong I + \llbracket Nat \rrbracket$.
- Consider the functor $T(X) = I + X : \mathbf{C} \to \mathbf{C}$.
- Solution: $\llbracket \mu X.I + X \rrbracket \coloneqq Y(T)$, the carrier of the initial algebra of T.

Categorical Semantics of Recursive Datatypes

- *Recursive datatypes* also allow type expressions involving function space.
 - Lazy datatypes, such as streams.
 - Example: $\mu X.1 \rightarrow \text{Nat} \times X$, a stream of natural numbers (in a non-linear setting).
- Type expressions made from constants, $\otimes, +, -\infty$ (and possibly ! in linear settings).
- The semantic treatment is considerably more complicated and requires additional structure.
- One approach is based on *algebraic compactness*, i.e., the property of a functor to have an initial algebra whose inverse is a final coalgebra.
- Under some reasonable conditions, this property carries over to endofunctors $\mathcal{T}: \mathbf{C}^{\mathrm{op}} \times \mathbf{C} \to \mathbf{C}^{\mathrm{op}} \times \mathbf{C}$ which allows one to interpret recursive types.

Algebraic Compactness

Definition

An endofunctor $\, \mathcal{T} : \mathbf{C} \to \mathbf{C} \,$ is

- algebraically complete if it has an initial *T*-algebra;
- algebraically cocomplete if it has a final *T*-coalgebra;
- algebraically compact if it has an initial *T*-algebra $T\Omega \xrightarrow{\omega} \Omega$, such that $T\Omega \xleftarrow{\omega^{-1}} \Omega$ is a final *T*-coalgebra. We say ω is a compact *T*-algebra.

Definition

A category C is algebraically compact if every endofunctor $\mathcal{T}:C\to C$ is algebraically compact.

Compact algebra constructions in the literature

Problem

How can one construct compact algebras?

Solution

Require that the initial and final sequences of a functor coincide (limit-colimit coincidence).

Example

The terminal category 1 is algebraically compact.

Example (Barr)

Let λ be a cardinal and let $\operatorname{Hilb}_{\lambda}^{\leq 1}$ be the category whose objects are the Hilbert spaces with dimension at most λ and whose morphisms are the linear maps of norm at most 1. Then $\operatorname{Hilb}_{\lambda}^{\leq 1}$ is algebraically compact.

Enriched Algebraic Compactness

There are a few issues with algebraic compactness as presented:

- Very few known algebraically compact categories.
- Algebraically compact functors do not compose.

Solution

Consider a class of algebraically compact functors which is well-behaved. Usually, in an enriched sense.

Definition

Given a V-category C, a V-functor $\mathcal{T} : C \to C$ is algebraically compact if its underlying functor $\mathcal{T} : \mathbf{C} \to \mathbf{C}$ is algebraically compact.

Definition

A V-category ${\cal C}$ is V-algebraically compact if every V-endofunctor acting on it is algebraically compact.

Domain Theory

- A *complete partial order* (cpo) is a poset where every increasing chain has a supremum.
- A *pointed* cpo is a cpo with a least element.
- A (strict) Scott-continuous function f : X → Y between two (pointed) cpo's is a monotone function which preserves suprema of chains (and the least element).
- **CPO** is the category of cpo's and Scott-continuous functions. It is complete, cocomplete and cartesian closed.
- **CPO**₁ is the category of pointed cpo's and strict Scott-continuous functions. It is complete, cocomplete and symmetric monoidal closed.

Order-enriched Category Theory

- CPO-enriched and CPO₁-enriched categories are often used in programming semantics to interpret recursion and recursive types.
- A CPO_(⊥!)-category C is a category where C(A, B) is a (pointed) cpo and where (- ∘ -): C(B, C) × C(A, B) → C(A, C) is a (strict) Scott-continuous function.
- A $CPO_{(\perp !)}$ -functor $T : C \to D$ is a functor whose action on hom-cpo's $T_{A,B} : C(A,B) \to D(TA,TB)$ is a (strict) Scott-continuous function.
- In a CPO-category C, an *embedding* is a morphism e : A → B, for which there exists a (necessarily unique) morphism p : B → A, called a *projection*, such that p ∘ e = id and e ∘ p ≤ id.

The limit-colimit coincidence theorem

A classical result in domain theory (see [Smyth & Plotkin 1982] and [Fiore & Plotkin 1994]):

Theorem

Let **C** be a **CPO**-category with ω -colimits (over embeddings) and a zero object 0 such that each $e : 0 \rightarrow A$ is an embedding. Then **C** is **CPO**-algebraically compact.

Example

The category $CPO_{\perp !}$ is CPO-algebraically compact.

Many other examples in semantics.

Semantics for mixed linear/non-linear type systems

- To interpret mixed linear/non-linear recursive types, one also has to provide an interpretation within a cartesian closed category.
- Existing methods for the construction of compact algebras do not work well in CCCs.
- This talk: we address this issue.

A Reflection Theorem for Algebraically Compact Functors

Lemma (Freyd)

Let **C** and **D** be categories and $F : \mathbf{C} \to \mathbf{D}$ and $G : \mathbf{D} \to \mathbf{C}$ functors. If $GF\Omega \xrightarrow{\omega} \Omega$ is an initial GF-algebra, then $FGF\Omega \xrightarrow{F\omega} F\Omega$ is an initial FG-algebra.

Lemma (coFreyd)

Let **C** and **D** be categories and $F : \mathbf{C} \to \mathbf{D}$ and $G : \mathbf{D} \to \mathbf{C}$ functors. If $GF\Omega \xleftarrow{\omega} \Omega$ is a final GF-coalgebra, then $FGF\Omega \xleftarrow{F\omega} F\Omega$ is a final FG-coalgebra.

Theorem

Let **C** and **D** be categories and $F : \mathbf{C} \to \mathbf{D}$ and $G : \mathbf{D} \to \mathbf{C}$ functors. Then FG is algebraically complete/cocomplete/compact iff GF is algebraically complete/compact, respectively.

A factorisation result

Definition

A V-endofunctor $\mathcal{T} : \mathcal{C} \to \mathcal{C}$ has a V-algebraically compact factorisation if there exists a V-algebraically compact category \mathcal{D} and V-functors $\mathcal{F} : \mathcal{C} \to \mathcal{D}$ and $\mathcal{G} : \mathcal{D} \to \mathcal{C}$ such that $\mathcal{T} \cong \mathcal{G} \circ \mathcal{F}$.

Theorem

If a V-endofunctor $\mathcal{T} : \mathcal{C} \to \mathcal{C}$ has a V-algebraically compact factorisation, then it is algebraically compact.

Corollary

Any endofunctor $T : \mathbf{Set} \to \mathbf{Set}$ which factors through $\mathsf{Hilb}_{\lambda}^{\leq 1}$ is algebraically compact.

Corollary

Any CPO-endofunctor $T : CPO \rightarrow CPO$ which factors through a CPO-algebraically compact category (like $CPO_{\perp !}$) in an enriched sense, is algebraically compact. Thus the lifting functor $(-)_{\perp} : CPO \rightarrow CPO$ is algebraically compact.

A compositionality principle

Proposition

Let $\mathcal{H} : \mathcal{C} \to \mathcal{C}$ be a **V**-endofunctor and $\mathcal{T} : \mathcal{C} \to \mathcal{C}$ be a **V**-endofunctor with a **V**-algebraically compact factorisation. Then $\mathcal{H} \circ \mathcal{T}$ also has a **V**-algebraically compact factorisation and is thus algebraically compact.

A couple of notes

- Most results are stated for algebraic compactness, but many of them also hold for algebraic completeness / cocompleteness.
- For the next slide, consider a model of a mixed linear/non-linear lambda calculus with recursive types. It is given by the following data:
- A CPO-algebraically compact category D;
- A CPO-symmetric monoidal adjunction $CPO \xleftarrow{F}{} D$.
- A bit more structure which is irrelevant for this talk.
- Let $T := G \circ F : \mathbf{CPO} \to \mathbf{CPO}$.

An application of the theory

Consider the following formal grammar:

$$A, B ::= c \mid TX \mid HA \mid A + B \mid A \times B \mid A \to B$$

where *c* ranges over the objects of CPO and *H* ranges over CPO-endofunctors on CPO. Every such type expression induces a CPO-endofunctor $[\![X \vdash A]\!]$: CPO^{op} × CPO \rightarrow CPO^{op} × CPO, when interpreted in the standard way.

Theorem

```
Every \llbracket X \vdash A \rrbracket : CPO<sup>op</sup> × CPO \rightarrow CPO<sup>op</sup> × CPO is algebraically compact.
```

Remark

The above result also holds when CPO is replaced with a CCC V and where D is parameterised V-algebraically compact.

Conclusion

- New method for establishing algebraic completeness/cocompleteness/compactness which does not rely on limits, colimits or their coincidence.
- Simple compositionality principle.
- Applications for semantics of mixed linear/non-linear type systems with inductive/recursive datatypes.
- Easy to establish *constructive* classes of algebraically compact functors with the new method.
- The new method nicely complements other approaches from the literature.

Thank you for your attention!