Is ZX complete for Clifford+T? Nobody knows (yet)

Vladimir Zamdzhiev

Department of Computer Science, University of Oxford

6 March 2015

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

ZX-calculus

• Introduced by Coecke and Duncan in 2008

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism

ZX-calculus

- Introduced by Coecke and Duncan in 2008
- Diagramatic logical calculus for studying quantum information processing
- Can be used as an alternative to traditional Hilbert space formalism
- Has been used to study:
 - Quantum algorithms
 - Quantum security protocols
 - Quantum error-correcting codes
 - and other problems involving quantum information

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

Atomic Diagrams (1)

$$\begin{bmatrix} & & \\ &$$

Syntax and Semantics Axioms Properties Completeness in terms of 7X-diagram

Atomic Diagrams (2)

where $\alpha \in [0, 2\pi)$

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

Compound Diagrams

then

and

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

"Only the topology matters"

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

Example derivation

Syntax and Semantics Axioms **Properties** Completeness in terms of ZX-diagrams

Soundness, Completeness and Universality results

• The ZX-calculus is sound

Syntax and Semantics Axioms **Properties** Completeness in terms of ZX-diagrams

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$
- The ZX-calculus is complete for stabilizer quantum mechanics

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$
- The ZX-calculus is complete for stabilizer quantum mechanics
 - If D_1 and D_2 are ZX-SQM diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$
- The ZX-calculus is complete for stabilizer quantum mechanics
 - If D_1 and D_2 are ZX-SQM diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$
- $\bullet\,$ The ZX-calculus is complete for the single-qubit Clifford+T segment of quantum mechanics

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$
- The ZX-calculus is complete for stabilizer quantum mechanics
 - If D_1 and D_2 are ZX-SQM diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$
- The ZX-calculus is complete for the single-qubit Clifford+T segment of quantum mechanics
 - If D_1 and D_2 are single qubit Clifford+T ZX-diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$

- The ZX-calculus is sound
 - $ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$
- The ZX-calculus is universal
 - $\forall U : \mathcal{Q}^n \to \mathcal{Q}^m, \exists D.\llbracket D \rrbracket = U$
- ZX-calculus is incomplete for (unrestricted) quantum mechanics even on single qubits
 - $\exists D_1, D_2 : \mathcal{Q} \to \mathcal{Q}$, s.t. $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ but $ZX \vdash D_1 \neq D_2$
- The ZX-calculus is complete for stabilizer quantum mechanics
 - If D_1 and D_2 are ZX-SQM diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$
- The ZX-calculus is complete for the single-qubit Clifford+T segment of quantum mechanics
 - If D_1 and D_2 are single qubit Clifford+T ZX-diagrams and $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$ then $ZX \vdash D_1 = D_2$
- It's not known if it is complete for Clifford+T in general

Syntax and Semantics Axioms Properties Completeness in terms of ZX-diagrams

Completeness in terms of ZX-diagrams

• If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
 - efficient simulation on classical computers

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
 - efficient simulation on classical computers
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
 - efficient simulation on classical computers
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
 - efficient simulation on classical computers
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - complete for line diagrams

- If diagram angles are unrestricted $\alpha \in [0, 2\pi)$ (QM):
 - calculus is universal
 - not complete even for line diagrams
 - significant challenges for completing calculus
- If diagram angles are of the form $\frac{k\pi}{2}$ (Stabilizer QM):
 - completeness holds
 - calculus is not even approximately universal
 - efficient simulation on classical computers
- If diagram angles are of the form $\frac{k\pi}{4}$ (Clifford+T):
 - calculus is approximately universal
 - complete for line diagrams
 - completeness is unknown in general

Clifford+T

- $\bullet\,$ From now on, we restrict ourselves to the Clifford+T segment of QM
- We discuss two (failed) attempts of showing incompleteness for this segment of QM.
- The first one is based on an invariant for the axioms of ZX.
- The second one makes use of alternative interpretations of ZX-diagrams

$$\chi(D) :=$$
 Sum of all the angles in D modulo $rac{\pi}{2}$

 $\chi(D) :=$ Sum of all the angles in D modulo $\frac{\pi}{2}$

This invariant satisfies all of the axioms of the ZX-calculus, so we get:

 $ZX \vdash D_1 = D_2 \Longrightarrow \chi(D_1) = \chi(D_2)$

$$\chi(D) :=$$
 Sum of all the angles in D modulo $\frac{\pi}{2}$

This invariant satisfies all of the axioms of the ZX-calculus, so we get:

$$ZX \vdash D_1 = D_2 \Longrightarrow \chi(D_1) = \chi(D_2)$$

In other words, if two ZX-diagrams D_1 and D_2 have different $\chi(-)$ values, then they are not equal under the axioms of the ZX-calculus. Also, note that

$$\chi(D) = 0 ext{ or } \chi(D) = rac{\pi}{4}$$

 $\chi(D) :=$ Sum of all the angles in D modulo $\frac{\pi}{2}$

This invariant satisfies all of the axioms of the ZX-calculus, so we get:

$$ZX \vdash D_1 = D_2 \Longrightarrow \chi(D_1) = \chi(D_2)$$

In other words, if two ZX-diagrams D_1 and D_2 have different $\chi(-)$ values, then they are not equal under the axioms of the ZX-calculus. Also, note that

$$\chi(D) = 0 ext{ or } \chi(D) = rac{\pi}{4}$$

In terms of circuits, two Clifford+T circuits are not equal under the axioms of the ZX-calculus if their T-count modulo 2 is different.

Invariant approach Alternative Models

Example

Consider the following ZX-diagrams:

Invariant approach Alternative Models

Example

Consider the following ZX-diagrams:

Clearly:

Invariant approach Alternative Models

Example

Consider the following ZX-diagrams:

Clearly:

Moreover:

$$\chi(D_1) \neq \chi(D_2)$$
 and so $ZX \not\vdash D_1 = D_2$

Example

Consider the following ZX-diagrams:

Clearly:

Moreover:

$$\chi(D_1) \neq \chi(D_2)$$
 and so $ZX
eq D_1 = D_2$

So, we have an example of two ZX-diagrams which are equal in Hilbert space, but which are not equal under the axioms of the ZX-calculus.

Why it doesn't work – phases

Recall, that:

$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket = e^{i\phi} \llbracket D_2 \rrbracket$$

Indeed, the same equality holds up to scalars in ZX:

For this reason, this approach won't work for any other pairs of diagrams, because we can always introduce a global phase on one side of the equation. We need a stronger invariant.

Alternative Models

Consider the following models:

 $[\![\cdot]\!]_k:=[\![\cdot]\!]$, otherwise

Alternative Models

Consider the following models:

 $[\![\cdot]\!]_k:=[\![\cdot]\!]$, otherwise

These models are sound when k = 4p + 1 for $p \in \mathbb{Z}$. That is:

$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket_5 = \llbracket D_2 \rrbracket_5$$

Incompleteness for Clifford+T? Conclusion

Alternative Models

Consider the following models:

 $[\![\cdot]\!]_k:=[\![\cdot]\!]$, otherwise

These models are sound when k = 4p + 1 for $p \in \mathbb{Z}$. That is:

$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket_5 = \llbracket D_2 \rrbracket_5$$

Incompleteness has been shown twice for two different versions of the calculus using the following argument:

$$\exists D_1, D_2. \ [\![D_1]\!] = [\![D_2]\!], \text{ but } [\![D_1]\!]_5 \neq [\![D_2]\!]_5$$

Alternative Models

Consider the following models:

 $[\![\cdot]\!]_k := [\![\cdot]\!]$, otherwise

These models are sound when k = 4p + 1 for $p \in \mathbb{Z}$. That is:

$$ZX \vdash D_1 = D_2 \Longrightarrow \llbracket D_1 \rrbracket_5 = \llbracket D_2 \rrbracket_5$$

Incompleteness has been shown twice for two different versions of the calculus using the following argument:

$$\exists D_1, D_2. \ \llbracket D_1
rbracket = \llbracket D_2
rbracket,$$
 but $\llbracket D_1
rbracket_5
eq \llbracket D_2
rbracket_5$

In terms of Clifford+T circuits, this means the following: Find two Clifford+T circuits which are equal, such that when in each of them we replace all T and T^{\dagger} gates with $T \circ Z$ and $T^{\dagger} \circ Z$ gates then equality doesn't hold anymore (even up to a scalar). If we can find such a pair of Clifford+T circuits, then the ZX-calculus is incomplete. Note, that this can be established outside of ZX.

Invariant approach Alternative Models

Example

An example of this argument in action:

So, this example doesn't demonstrate incompleteness.

• The problem is that I can't find such circuits

- The problem is that I can't find such circuits
- This argument doesn't work on over 15 equalities that I found in the literature

- The problem is that I can't find such circuits
- This argument doesn't work on over 15 equalities that I found in the literature
- Maybe this is always the case?

- The problem is that I can't find such circuits
- This argument doesn't work on over 15 equalities that I found in the literature
- Maybe this is always the case?
- Need to consider more equalities or do numerical experiments

Conclusion

- We don't know if ZX is complete for Clifford+T
- My inutition is that it is incomplete
- The invariant approach won't work unless the invariant is significantly strengthened
- The alternative model approach might work, but we need to consider further equalities or get a corpus of circuit equalities and run an algorithm on them to check for incompleteness

Thank you for your attention!