Enriching a Linear/non-linear Lambda Calculus: A Programming Language for String Diagrams

Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev

Department of Computer Science Tulane University

> LICS'18 University of Oxford 9 July 2018

Proto-Quipper-M

- We will consider several variants of a functional programming language called *Proto-Quipper-M* (renamed to ECLNL in our LICS paper).
 - We wanted to emphasize its dependence on enrichment in the name.

Proto-Quipper-M

- We will consider several variants of a functional programming language called *Proto-Quipper-M* (renamed to ECLNL in our LICS paper).
 - We wanted to emphasize its dependence on enrichment in the name.
- Original language developed by Francisco Rios and Peter Selinger.
 - We present a more general abstract model.
- Language is equipped with formal denotational and operational semantics.
- Primary application is in quantum computing, but the language can describe arbitrary string diagrams.
- Original model does not support general recursion.
 - We extend the language with general recursion and prove soundness.

Circuit Model

ECLNL is used to describe *families* of morphisms of an arbitrary, but fixed, symmetric monoidal category, which we denote M.

Example

If M = FdCStar, the category of finite-dimensional C^{*}-algebras and completely positive maps, then a program in our language is a family of quantum circuits.

Example

M could also be a category of string diagrams which is freely generated.

Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

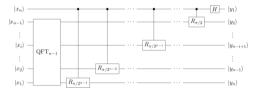


Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).¹

¹Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612

Syntax of ECLNL calculus

The types of the language:

TypesA, B::= $\alpha \mid 0 \mid A + B \mid I \mid A \otimes B \mid A \multimap B \mid !A \mid \mathsf{Circ}(\mathsf{T}, \mathsf{U})$ Intuitionistic typesP, R::= $0 \mid P + R \mid I \mid P \otimes R \mid !A \mid \mathsf{Circ}(\mathsf{T}, \mathsf{U})$ M-typesT, U::= $\alpha \mid I \mid T \otimes U$

The term language:

Terms
$$M, N$$
 ::= $x \mid I \mid c \mid \text{let } x = M \text{ in } N$
 $\mid \Box_A M \mid \text{left}_{A,B} M \mid \text{right}_{A,B} M \mid \text{case } M \text{ of } \{\text{left } x \to N \mid \text{right } y \to P\}$
 $\mid * \mid M; N \mid \langle M, N \rangle \mid \text{let } \langle x, y \rangle = M \text{ in } N \mid \lambda x^A M \mid MN$
 $\mid \text{lift } M \mid \text{force } M \mid \text{box}_{\mathsf{T}} \mathsf{M} \mid \text{apply}(\mathsf{M}, \mathsf{N}) \mid (\widetilde{\mathsf{I}}, \mathsf{C}, \widetilde{\mathsf{I}}')$

Example

Example qubit-copy $\equiv \lambda q^{\mathbf{qubit}} . \langle q, q \rangle$

Not a well-typed program. Linear type checker will complain.

Example

 $\mathsf{nat-copy} \equiv \lambda n^{\mathbf{Nat}}.\langle n, n \rangle$

This is fine.

Example

Assume $H: Q \multimap Q$ is a constant representing the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)two-hadamard \equiv box lift $\lambda q^Q.HHq$

A program which creates a completed circuit consisting of two H gates. The term is intuitionistic (can be copied, deleted).

Our approach

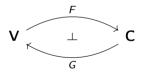
- Describe an *abstract* categorical model for the same language.
- Describe an abstract categorical model for the language extended with recursion.

Related work: Rennela and Staton describe a different circuit description language, called EWire (based on QWire), where they also use enriched category theory.

Linear/Non-Linear models

A Linear/Non-Linear (LNL) model as described by Benton is given by the following data:

- A cartesian closed category V.
- A symmetric monoidal closed category C.
- A symmetric monoidal adjunction:



Remark

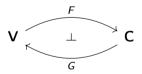
An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

Models of the Enriched Effect Calculus

A model of the Enriched Effect Calculus (EEC) is given by the following data:

- A cartesian closed category V, enriched over itself.
- A V-enriched category C with powers, copowers, finite products and finite coproducts.
- A V-enriched adjunction:



Theorem

Every LNL model with additives determines an EEC model.

Egger, Møgelberg, Simpson. The enriched effect calculus: syntax and semantics. Journal of Logic and Computation 2012

An abstract model for ECLNL

A model of ECLNL is given by the following data:

3. A

- 1. A cartesian closed category V together with its self-enrichment $\mathcal V,$ such that $\mathcal V$ has finite V-coproducts.
- 2. A V-symmetric monoidal closed category C with underlying category C such that C has finite V-coproducts.

V-symmetric monoidal adjunction:
$$\mathcal{V} \xrightarrow[\mathcal{C}(I,-)]{} \mathcal{C},$$

where $(-\odot I)$ denotes the **V**-copower of the tensor unit in C.

4. A symmetric monoidal category **M** and a strong symmetric monoidal functor $E: \mathbf{M} \to \mathbf{C}$.

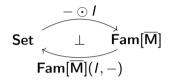
Theorem: Ignorning condition 4, an LNL model canonically induces a model of ECLNL.

Soundness

Theorem (Soundness) Every abstract model of ECLNL is computationally sound.

Concrete models of ECLNL

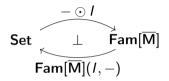
The original Proto-Quipper-M model is given by the LNL model: ²



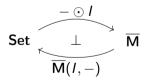
²Thanks to Sam Staton for asking why do we need the Fam construction for this.

Concrete models of ECLNL

The original Proto-Quipper-M model is given by the LNL model: ²



A simpler model for the same language is given by:



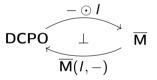
where in both cases $\overline{\mathbf{M}} = [\mathbf{M}^{\mathrm{op}}, \mathbf{Set}]$.

 $^{^{2}}$ Thanks to Sam Staton for asking why do we need the Fam construction for this.

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category M.

Equipping **M** with the free **DCPO**-enrichment yields another concrete (order-enriched) ECLNL model:



where $\overline{\mathbf{M}} = [\mathbf{M}^{\mathrm{op}}, \mathbf{DCPO}].$

A constructive property

Assuming there is a full and faithful embedding of $E : \mathbf{M} \to \mathbf{C}$, then the model enjoys the following property:

$$\mathsf{C}(\llbracket\Phi\rrbracket,\llbracket T\rrbracket\multimap\llbracket U\rrbracket)\cong\mathsf{V}(\llbracket\Phi\rrbracket,\mathcal{M}(\llbracket T\rrbracket_{\mathsf{M}},\llbracket U\rrbracket_{\mathsf{M}}))$$

Therefore any well-typed term $\Phi; \emptyset \vdash m : T \multimap U$ corresponds to a V-parametrised family of string diagrams. For example, if V = Set (or V = DCPO), then we get precisely a (Scott-continuous) function from X to $\mathcal{M}(\llbracket T \rrbracket_{M}, \llbracket U \rrbracket_{M})$ or in other words, a (Scott-continuous) family of string diagrams from M.

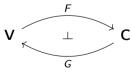
Abstract model with recursion?

Definition

An endofunctor $T : \mathbf{C} \to \mathbf{C}$ is *parametrically algebraically compact*, if for every $A \in Ob(\mathbf{C})$, the endofunctor $A \otimes T(-)$ has an initial algebra and a final coalgebra whose carriers coincide.

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion is given by an LNL model:



where FG (or equivalently GF) is parametrically algebraically compact 3 .

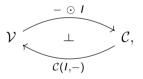
³Benton & Wadler. *Linear logic, monads and the lambda calculus*. LiCS'96.

ECLNL extended with general recursion

Definition

A categorical model of ECLNL extended with general recursion is given by a model of ECLNL, where in addition:

5. The comonad endofunctor:



is parametrically algebraically compact.

Recursion

Extend the syntax:

$$\frac{\Phi, x : !A; \emptyset \vdash m : A}{\Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A} (\operatorname{rec})$$

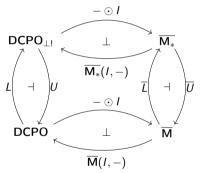
Extend the operational semantics:

$$\frac{(C, m[\text{lift rec } x^{!A}m/x]) \Downarrow (C', v)}{(C, \text{rec } x^{!A}m) \Downarrow (C', v)}$$

Soundness

Theorem (Soundess) Every model of ECLNL extended with recursion is computationally sound.

Concrete model of ECLNL extended with recursion Let M_* be the free DCPO_{$\perp !}-enrichment of M and <math>\overline{M_*} = [M_*^{op}, DCPO_{\perp !}]$ be the associated enriched functor category.</sub>

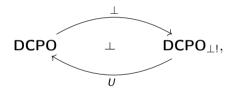


Remark

If M = 1, then the above model degenerates to the left vertical adjunction, which is a model of a LNL lambda calculus with general recursion.

Computational adequacy

Theorem The following LNL model:



is computationally adequate at intuitionistic types for the diagram-free fragment of *ECLNL*.

Future work

- Inductive / recursive types (model appears to have sufficient structure).
- Dependent types (Fam/CFam constructions are well-behaved w.r.t. current models).
- Dynamic lifting.

Conclusion

- One can construct a model of ECLNL by categorically enriching certain denotational models.
- We described a sound abstract model for ECLNL (with general recursion).
- Systematic construction for concrete models that works for any circuit (string diagram) model described by a symmetric monoidal category.
- Concrete models indicate good prospects for additional features.

Thank you for your attention!

Syntax

$$\frac{\Phi, r_{1}; Q_{1} + m : A = \Phi, r_{2}; Q_{2} + n : B}{\Gamma; Q + m : A} \text{ (var)} \qquad \frac{\Phi, r_{1}; Q + m : A = \Phi, r_{2}; x : A; Q_{2} + n : B}{\Phi, r_{1}, r_{2}; Q_{1}, Q_{2} + \text{let } x = m \text{ in } n : B} \text{ (let)} \qquad \frac{\Phi, r_{1}; Q + m : A = \Phi, r_{2}; x : A; Q_{2} + n : B}{\Phi, r_{1}, r_{2}; Q_{1}, Q_{2} + \text{let } x = m \text{ in } n : B} \text{ (let)} \qquad \frac{\Phi, r_{1}; Q + m : B}{\Gamma; Q + \text{let} R_{A}, B^{m} : A + B} \text{ (let)} \qquad \frac{\Phi, r_{1}; Q + m : B}{\Gamma; Q + \text{let} R_{A}, B^{m} : A + B} \text{ (let)} \qquad \frac{\Phi, r_{1}; Q + m : B}{\Gamma; Q + \text{right}_{A, B}, m : A + B} \text{ (right)} \qquad \frac{\Phi, r_{1}; Q_{1} + m : I = \Phi, r_{2}; Q_{2} + n : C}{\Phi, r_{1}, r_{2}; Q_{1}, Q_{2} + \text{case } m \text{ of } \text{let} x \rightarrow n | \text{ right } y \rightarrow p \} : C} \text{ (case)} \qquad \frac{\Phi, r_{1}; Q_{1} + m : I = \Phi, r_{2}; Q_{2} + n : C}{\Phi, r_{1}, r_{2}; Q_{1}, Q_{2} + (m, n) : A \otimes B} \text{ (pair)} \qquad \frac{\Phi, r_{1}; Q_{1} + m : A \otimes B = \Phi, r_{2}; Q_{2} + n : C}{\Phi, r_{1}, r_{2}; Q_{1}, Q_{2} + \text{let} \langle x, y \rangle = m \text{ in } n : C} \text{ (let-pair)} \text{ (let-pair)}$$

Operational semantics

	$(S,m) \Downarrow (S', \langle v, v' \rangle) (S', n[v])$	
$(S, \langle m, n \rangle) \Downarrow (S'', \langle v, v' \rangle)$ $(S, \text{let } \langle x, y \rangle = m \text{ in }$		$n) \Downarrow (S'', w)$
$\frac{(S, \text{lift } m) \Downarrow (S, \text{lift } m)}{(S, \text{lift } m)} \qquad \frac{(S, m) \Downarrow (S', \text{lift } m') (S', m') \Downarrow (S'', v)}{(S, \text{force } m) \Downarrow (S'', v)}$		
$(S,m) \Downarrow (S', \text{lift } n) \text{freshlabels}(T) = (Q, \vec{\ell}) (\text{id}_Q, n\vec{\ell}) \Downarrow (D, \vec{\ell'})$		
$(S, \mathrm{box}_T m) \Downarrow (S', (\vec{\ell}, D, \vec{\ell'}))$		
$(S,m) \Downarrow (S',(\vec{\ell},D,\vec{\ell}')) (S',n) \Downarrow (S'',\vec{k}) \operatorname{append}(S'',\vec{k},\vec{\ell},D,\vec{\ell}') = (S''',\vec{k}')$		
$(S, \operatorname{apply}(m, n)) \Downarrow (S''', \vec{k}')$		
$(S,m) \downarrow (S',(\vec{\ell},D,\vec{\ell}')) (S',n) \downarrow (S'',\vec{k}) \text{append}(S'',\vec{k},\vec{\ell},D,\vec{\ell}') \text{ undefined}$		
$(S, apply(m, n)) \Downarrow $ Error		$(S,(\vec{\ell},D,\vec{\ell}')) \Downarrow (S,(\vec{\ell},D,\vec{\ell}'))$

Recursion (contd.) Extend the denotational semantics: $\llbracket \Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A \rrbracket := \sigma_{\llbracket m \rrbracket} \circ \gamma_{\llbracket \Phi \rrbracket}.$ $\llbracket \Phi \rrbracket \otimes \llbracket \Phi \rrbracket \xleftarrow{\mathsf{id}} B \blacksquare \llbracket \Phi \rrbracket \xleftarrow{\mathsf{id}} B \blacksquare \bigoplus \llbracket \Phi \rrbracket \xleftarrow{\mathsf{d}} B \blacksquare \bigoplus \llbracket \Phi \rrbracket$ $\mathsf{id} \otimes !\gamma_{\llbracket \Phi \rrbracket}$ $\gamma \llbracket \mathbf{\Phi} \rrbracket$ $\omega_{[\![\Phi]\!]}^{-1}$ $\llbracket \Phi \rrbracket \otimes ! \Omega_{\llbracket \Phi \rrbracket} \leftarrow$ $\Omega_{\llbracket \Phi \rrbracket}$ id id $\omega_{\llbracket \Phi \rrbracket}$ $\llbracket \Phi \rrbracket \otimes ! \Omega_{\llbracket \Phi \rrbracket}$ $\Omega_{\llbracket \Phi \rrbracket}$ $\mathrm{id} \otimes !\sigma_{[\![m]\!]}$ $\sigma_{\llbracket m \rrbracket}$ **[**Φ]]⊗!**[***A*] $\llbracket A \rrbracket$ $\llbracket m \rrbracket$