
Enriching a Linear/non-linear Lambda Calculus:
A Programming Language for String Diagrams

Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev

Department of Computer Science
Tulane University

LICS’18
University of Oxford

9 July 2018

0 / 22

Proto-Quipper-M

• We will consider several variants of a functional programming language called
Proto-Quipper-M (renamed to ECLNL in our LICS paper).
• We wanted to emphasize its dependence on enrichment in the name.

• Original language developed by Francisco Rios and Peter Selinger.
• We present a more general abstract model.

• Language is equipped with formal denotational and operational semantics.

• Primary application is in quantum computing, but the language can describe
arbitrary string diagrams.

• Original model does not support general recursion.
• We extend the language with general recursion and prove soundness.

1 / 22

Proto-Quipper-M

• We will consider several variants of a functional programming language called
Proto-Quipper-M (renamed to ECLNL in our LICS paper).
• We wanted to emphasize its dependence on enrichment in the name.

• Original language developed by Francisco Rios and Peter Selinger.
• We present a more general abstract model.

• Language is equipped with formal denotational and operational semantics.

• Primary application is in quantum computing, but the language can describe
arbitrary string diagrams.

• Original model does not support general recursion.
• We extend the language with general recursion and prove soundness.

1 / 22

Circuit Model

ECLNL is used to describe families of morphisms of an arbitrary, but fixed, symmetric
monoidal category, which we denote M.

Example
If M = FdCStar, the category of finite-dimensional C ∗-algebras and completely
positive maps, then a program in our language is a family of quantum circuits.

Example
M could also be a category of string diagrams which is freely generated.

2 / 22

Circuit Model

Example
Shor’s algorithm for integer factorization may be seen as an infinite family of quantum
circuits – each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor’s algorithm).1

1Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
3 / 22

https://commons.wikimedia.org/w/index.php?curid=14545612

Syntax of ECLNL calculus

The types of the language:

Types A,B ::= α | 0 | A + B | I | A⊗ B | A(B | !A | Circ(T,U)
Intuitionistic types P,R ::= 0 | P + R | I | P ⊗ R | !A | Circ(T,U)
M-types T ,U ::= α | I | T ⊗ U

The term language:

Terms M,N ::= x | l | c | let x = M in N
| �AM | leftA,BM | rightA,BM | case M of {left x → N | right y → P}
| ∗ | M;N | 〈M,N〉 | let 〈x , y〉 = M in N | λxA.M | MN

| lift M | force M | boxTM | apply(M,N) | (~l,C,~l′)

4 / 22

Example

Example
qubit-copy ≡ λqqubit.〈q, q〉

Not a well-typed program. Linear type checker will complain.

Example
nat-copy ≡ λnNat.〈n, n〉

This is fine.

5 / 22

Example

Assume H : Q (Q is a constant reprsenting the Hadamard gate.

Example
two-hadamard : Circ(Q,Q)
two-hadamard ≡ box lift λqQ .HHq

A program which creates a completed circuit consisting of two H gates. The term is
intuitionistic (can be copied, deleted).

6 / 22

Our approach

• Describe an abstract categorical model for the same language.

• Describe an abstract categorical model for the language extended with recursion.

Related work: Rennela and Staton describe a different circuit description language,
called EWire (based on QWire), where they also use enriched category theory.

7 / 22

Linear/Non-Linear models
A Linear/Non-Linear (LNL) model as described by Benton is given by the following
data:
• A cartesian closed category V.

• A symmetric monoidal closed category C.

• A symmetric monoidal adjunction:

V ` C

F

G

Remark
An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL’94
8 / 22

Models of the Enriched Effect Calculus
A model of the Enriched Effect Calculus (EEC) is given by the following data:
• A cartesian closed category V, enriched over itself.

• A V-enriched category C with powers, copowers, finite products and finite
coproducts.

• A V-enriched adjunction:

V ` C

F

G

Theorem
Every LNL model with additives determines an EEC model.

Egger, Møgelberg, Simpson. The enriched effect calculus: syntax and semantics. Journal of Logic
and Computation 2012

9 / 22

An abstract model for ECLNL
A model of ECLNL is given by the following data:
1. A cartesian closed category V together with its self-enrichment V, such that V has

finite V-coproducts.
2. A V-symmetric monoidal closed category C with underlying category C such that C

has finite V-coproducts.

3. A V-symmetric monoidal adjunction: V ` C,

− � I

C(I ,−)

where (−� I) denotes the V-copower of the tensor unit in C.
4. A symmetric monoidal category M and a strong symmetric monoidal functor

E : M→ C.
Theorem: Ignorning condition 4, an LNL model canonically induces a model of ECLNL.

10 / 22

Soundness

Theorem (Soundness)
Every abstract model of ECLNL is computationally sound.

11 / 22

Concrete models of ECLNL

The original Proto-Quipper-M model is given by the LNL model: 2

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

A simpler model for the same language is given by:

Set M

−� I

M(I ,−)

⊥

where in both cases M = [Mop,Set].

2Thanks to Sam Staton for asking why do we need the Fam construction for this.
12 / 22

Concrete models of ECLNL

The original Proto-Quipper-M model is given by the LNL model: 2

Set Fam[M]

−� I

Fam[M](I ,−)

⊥

A simpler model for the same language is given by:

Set M

−� I

M(I ,−)

⊥

where in both cases M = [Mop,Set].

2Thanks to Sam Staton for asking why do we need the Fam construction for this.
12 / 22

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category M.
Equipping M with the free DCPO-enrichment yields another concrete (order-enriched)
ECLNL model:

DCPO M

−� I

M(I ,−)

⊥

where M = [Mop,DCPO].

13 / 22

A constructive property

Assuming there is a full and faithful embedding of E : M→ C, then the model enjoys
the following property:

C(JΦK, JT K(JUK) ∼= V(LΦM,M(JT KM, JUKM))

Therefore any well-typed term Φ; ∅ ` m : T (U corresponds to a V-parametrised
family of string diagrams. For example, if V = Set (or V = DCPO), then we get
precisely a (Scott-continuous) function from X toM(JT KM, JUKM) or in other words, a
(Scott-continuous) family of string diagrams from M.

14 / 22

Abstract model with recursion?

Definition
An endofunctor T : C→ C is parametrically algebraically compact, if for every
A ∈ Ob(C), the endofunctor A⊗ T (−) has an initial algebra and a final coalgebra
whose carriers coincide.

Theorem
A categorical model of a linear/non-linear lambda calculus extended with recursion is
given by an LNL model:

V ` C

F

G

where FG (or equivalently GF) is parametrically algebraically compact 3.

3Benton & Wadler. Linear logic, monads and the lambda calculus. LiCS’96.
15 / 22

ECLNL extended with general recursion

Definition
A categorical model of ECLNL extended with general recursion is given by a model of
ECLNL, where in addition:
5. The comonad endofunctor:

V ` C,

− � I

C(I ,−)

is parametrically algebraically compact.

16 / 22

Recursion

Extend the syntax:
Φ, x :!A; ∅ ` m : A

(rec)
Φ; ∅ ` rec x !A m : A

Extend the operational semantics:

(C ,m[lift rec x !Am/x]) ⇓ (C ′, v)

(C , rec x !Am) ⇓ (C ′, v)

17 / 22

Soundness

Theorem (Soundess)
Every model of ECLNL extended with recursion is computationally sound.

18 / 22

Concrete model of ECLNL extended with recursion
Let M∗ be the free DCPO⊥!-enrichment of M and M∗ = [Mop

∗ ,DCPO⊥!] be the
associated enriched functor category.

DCPO⊥! M∗

−� I

M∗(I ,−)

⊥

−� I

M(I ,−)

⊥DCPO M

a aL L UU

Remark
If M = 1, then the above model degenerates to the left vertical adjunction, which is a
model of a LNL lambda calculus with general recursion.

19 / 22

Computational adequacy

Theorem
The following LNL model:

DCPO ` DCPO⊥!,

⊥

U

is computationally adequate at intuitionistic types for the diagram-free fragment of
ECLNL.

20 / 22

Future work

• Inductive / recursive types (model appears to have sufficient structure).

• Dependent types (Fam/CFam constructions are well-behaved w.r.t. current
models).

• Dynamic lifting.

21 / 22

Conclusion

• One can construct a model of ECLNL by categorically enriching certain
denotational models.

• We described a sound abstract model for ECLNL (with general recursion).

• Systematic construction for concrete models that works for any circuit (string
diagram) model described by a symmetric monoidal category.

• Concrete models indicate good prospects for additional features.

22 / 22

Thank you for your attention!

22 / 22

Syntax

22 / 22

Operational semantics

22 / 22

Recursion (contd.)
Extend the denotational semantics: JΦ; ∅ ` rec x !A m : AK := σJmK ◦ γJΦK.

JΦKJΦK⊗ JΦKJΦK⊗!JΦK ∆id⊗ lift

JΦK⊗!ΩJΦK ΩJΦK
ω−1

JΦK

γJΦKid⊗!γJΦK

ΩJΦK

σJmK

JΦK⊗!ΩJΦK

JAK

ωJΦK

JΦK⊗!JAK

id⊗!σJmK

JmK

idid

22 / 22

