Enriching a Linear/non-linear Lambda Calculus:
A Programming Language for String Diagrams

Bert Lindenhovius, Michael Mislove and Vladimir Zamdzhiev

Department of Computer Science
Tulane University

LICS'18
University of Oxford
9 July 2018

0/22

Proto-Quipper-M

e \We will consider several variants of a functional programming language called
Proto-Quipper-M (renamed to ECLNL in our LICS paper).

® We wanted to emphasize its dependence on enrichment in the name.

1/22

Proto-Quipper-M

We will consider several variants of a functional programming language called
Proto-Quipper-M (renamed to ECLNL in our LICS paper).

® We wanted to emphasize its dependence on enrichment in the name.

Original language developed by Francisco Rios and Peter Selinger.
® We present a more general abstract model.

Language is equipped with formal denotational and operational semantics.

Primary application is in quantum computing, but the language can describe
arbitrary string diagrams.

Original model does not support general recursion.
® We extend the language with general recursion and prove soundness.

1/22

Circuit Model

ECLNL is used to describe families of morphisms of an arbitrary, but fixed, symmetric
monoidal category, which we denote M.
Example

If M = FdCStar, the category of finite-dimensional C*-algebras and completely
positive maps, then a program in our language is a family of quantum circuits.

Example

M could also be a category of string diagrams which is freely generated.

2/22

Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum
circuits — each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

) - - 1 {H}- lw}
o)] :] Bea e}

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).

Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612
3/22

https://commons.wikimedia.org/w/index.php?curid=14545612

Syntax of ECLNL calculus

The types of the language:

Types AB = a|0|A+B|I|A®B|A—B|!A] Circ(T,U)
Intuitionistic types P,R == O0|P+R|I|P®R|!A| Circ(T,U)
M-types T,U = «all| TeU
The term language:
Terms M,N == x|/|c|letx=Min N

| OaM | lefta gM | righta gM | case M of {left x = N | right y — P}
| % | M;N | (M,N) | let (x,y) = Min N | \>x*.M | MN

| lift M | force M | boxtM | apply(M,N) | (I,C,I")

4/22

Example

Example
qubit-copy = Aq®Pt (g, q)

Not a well-typed program. Linear type checker will complain.

Example
nat-copy = AnNat (n, n)

This is fine.

5/22

Example

Assume H : Q — Q is a constant reprsenting the Hadamard gate.

Example

two-hadamard : Circ(Q, Q)
two-hadamard = box lift A\g®.HHgq

A program which creates a completed circuit consisting of two H gates. The term is
intuitionistic (can be copied, deleted).

6/22

Our approach

® Describe an abstract categorical model for the same language.

® Describe an abstract categorical model for the language extended with recursion.

Related work: Rennela and Staton describe a different circuit description language,
called EWire (based on QWire), where they also use enriched category theory.

7/22

Linear/Non-Linear models

A Linear/Non-Linear (LNL) model as described by Benton is given by the following
data:

® A cartesian closed category V.
® A symmetric monoidal closed category C.

® A symmetric monoidal adjunction:

Remark
An LNL model is a model of Intuitionistic Linear Logic.

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94
8/22

Models of the Enriched Effect Calculus
A model of the Enriched Effect Calculus (EEC) is given by the following data:
® A cartesian closed category V, enriched over itself.

e A V-enriched category C with powers, copowers, finite products and finite
coproducts.

® A V-enriched adjunction:

Theorem
Every LNL model with additives determines an EEC model.

Egger, Mggelberg, Simpson. The enriched effect calculus: syntax and semantics. Journal of Logic
and Computation 2012

9/22

An abstract model for ECLNL

A model of ECLNL is given by the following data:

1. A cartesian closed category V together with its self-enrichment V), such that V has
finite V-coproducts.

2. A V-symmetric monoidal closed category C with underlying category C such that C
has finite V-coproducts.

3. A V-symmetric monoidal adjunction: V £ C,
C(l,—)
where (— ® 1) denotes the V-copower of the tensor unit in C.

4. A symmetric monoidal category M and a strong symmetric monoidal functor
E:M— C.

Theorem: Ignorning condition 4, an LNL model canonically induces a model of ECLNL.

10/22

Soundness

Theorem (Soundness)
Every abstract model of ECLNL is computationally sound.

11/22

Concrete models of ECLNL
The original Proto-Quipper-M model is given by the LNL model: 2
-0l
/\ o
Set L Fam[M]
f\;/
Fam[M](/, —)

2Thanks to Sam Staton for asking why do we need the Fam construction for this.
12/22

Concrete models of ECLNL
The original Proto-Quipper-M model is given by the LNL model: 2
-l
/\ o
Set L Fam[M]

f\;/

Fam[M](/,)
A simpler model for the same language is given by:

-l

where in both cases M = [M°P, Set].

2Thanks to Sam Staton for asking why do we need the Fam construction for this.
12/22

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category M.
Equipping M with the free DCPO-enrichment yields another concrete (order-enriched)
ECLNL model:

—ol

where M = [M°P, DCPO].

13/22

A constructive property

Assuming there is a full and faithful embedding of E : M — C, then the model enjoys
the following property:

C([*], [TT — [UI) = V((®), M([T]m, [UIm))

Therefore any well-typed term ®;() = m: T —o U corresponds to a V-parametrised
family of string diagrams. For example, if V = Set (or V = DCPO), then we get
precisely a (Scott-continuous) function from X to M([T]p, [Ulm) or in other words, a
(Scott-continuous) family of string diagrams from M.

14 /22

Abstract model with recursion?

Definition
An endofunctor T : C — C is parametrically algebraically compact, if for every
A € Ob(C), the endofunctor A® T(—) has an initial algebra and a final coalgebra

whose carriers coincide.

Theorem
A categorical model of a linear/non-linear lambda calculus extended with recursion is

given by an LNL model:

where FG (or equivalently GF) is parametrically algebraically compact 3.

3Benton & Wadler. Linear logic, monads and the lambda calculus. LiCS'96.
15/22

ECLNL extended with general recursion

Definition
A categorical model of ECLNL extended with general recursion is given by a model of
ECLNL, where in addition:

5. The comonad endofunctor:

is parametrically algebraically compact.

16 /22

Recursion

Extend the syntax:
O, x:ADFm:A

O:0Frecx“m:A

Extend the operational semantics:

(rec)

(C, mlift rec xAm/x]) |} (C',v)
(C,rec x'"Am) | (C',v)

17/22

Soundness

Theorem (Soundess)

Every model of ECLNL extended with recursion is computationally sound.

18/22

Concrete model of ECLNL extended with recursion

Let M, be the free DCPO | j-enrichment of M and M, = [M3?, DCPO] be the
associated enriched functor category.

0ol
DCPO |, 1 M,
_/
W*(la 7)
L 4 U L -4 U
-0l
DCPO 1 M
_/

M(h _)

Remark
If M = 1, then the above model degenerates to the left vertical adjunction, which is a
model of a LNL lambda calculus with general recursion.

19/22

Computational adequacy

Theorem
The following LNL model:

/\

DCPO €L [)(:F)()JJ,

_/

U

is computationally adequate at intuitionistic types for the diagram-free fragment of
ECLNL.

20/22

Future work

¢ Inductive / recursive types (model appears to have sufficient structure).

® Dependent types (Fam/CFam constructions are well-behaved w.r.t. current
models).

e Dynamic lifting.

21/22

Conclusion

One can construct a model of ECLNL by categorically enriching certain
denotational models.

We described a sound abstract model for ECLNL (with general recursion).

Systematic construction for concrete models that works for any circuit (string
diagram) model described by a symmetric monoidal category.

Concrete models indicate good prospects for additional features.

22/22

Thank you for your attention!

22/22

Syntax

— - (var) — - (label) - - (const) O,I1;01-m:A ®,Ih,x:A;Q2-n: B let
O,x:ADFx:A Oliarl:a D0k c: Ac ®1.15.01.0, F letx =minn B (let)
T;0Frm:0 I'OFrm:A I;Qrm:B X *)
- left : :
.0+ Dom.C (mitiaD T;0F lefty gm: A+ B (left) T;Q+ right,, gm: A+ B (right) Q0F %: 1
O, I1;Q1Fm:A+B O, I, x:AQ2kn:C CD,Fg,y:B;Qz»—p:C() O,I1;01F-m: 1 @,Fz;Qz)—n:C()
O, T1,12;01, 02 + case mof {left x — n | righty — p} : C case O, I1,15;01,02 Fmyn: C seq
O, T1;01+-m: A O, I5;0,Fn:B i O, T1;01Frm:A®B O, ,x:Ay:B;Q2Fn:C .
(pair) - (let-pair)
Q,I11,12; 01,02 F {myn) : A® B Q,11,12,01,0z F let (x,y) =minn: C
Ix:AQFrm:B O, I1;Q1+-m:A—-oB O, I;Q2Fn: A O;0Frm: A I;0Frm:A
- (abs) MO8 202 (app) IR Gify) Qrm (force)
I;0F Ax*m:A—B D, I1,I2;01,02 - mn : B ;0 + lift m 1A T;QF forcem: A
I;0F m (T — U) @,Ty; 01 m: Diag(T.U) ®.Tp;Qp+n: T 0:0rC:T 0;Q'+:U SeMr(Q,Q) ..
- (box) (apply) Ea. (diag)
T;Q + boxym : Diag(T,U) ®,T1,T2; 01, Q2 + apply(m, n) : U ;0 + (£,5.0") : Diag(T.U)

22/22

Operational semantics

S.m)y (S v) (&, ") S.m) (5 (v, (.nfv/xo" [y]) LS w)
(S, (m,m) | (8", {w, ")) (S.let{x,y) =minn) || (5", w)
(S,m) | (8%, 1ift m") (8',m") | (8”,v)
(S, force m) |} (5", v)

(S.lift m) |l (S, lift m)

(S,m) Il (5", lift n) freshlabels(T) = (Q,4) (idg,nf) Il (D, ")
(S, boxpm) | (5", (£, D, £)

(S,m) U (8", (€D, ")) (8’,n) U (5", K) append(S”, kL, D, &) = (", k')
(S.apply(m, n)) I (5", k)

(S.m) I (8. (£. D, ")) (S'.n) U (8", €) append(S”.k.£.D, ") undefined

(S, apply(m, n)) | Error (S.(£.D,€") I (S, (£, D, £7)

22/22

Recursion (contd.)

Extend the denotational semantics: [®;0 F rec x'A m: A] := T[m] © V[o]-

[o]eo] 9N o] g [o] A [o]

Id®|’}/[[q>ﬂi |
| 71 |
[*]®!Qe] i Qo)
o Ji
Wie
[©]©!o) il Qo]
o) O]
@] [A] B 1]

22/22

