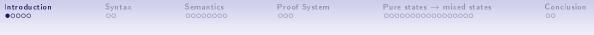


Baby's First Diagrammatic Calculus for Quantum Information Processing

Vladimir Zamdzhiev

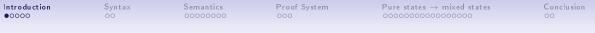
Department of Computer Science Tulane University

1 August 2018



Quantum computing

- Quantum computing is usually described using finite-dimensional Hilbert spaces and linear maps (or finite-dimensional C*-algebras and completely positive maps).
- Computing the matrix representation of quantum operations requires memory exponential in the number of input qubits.
- This is not a scalable approach for software applications related to quantum information processing (QIP).



Quantum computing

- Quantum computing is usually described using finite-dimensional Hilbert spaces and linear maps (or finite-dimensional C*-algebras and completely positive maps).
- Computing the matrix representation of quantum operations requires memory exponential in the number of input qubits.
- This is not a scalable approach for software applications related to quantum information processing (QIP).
- An alternative is provided by the *ZX-calculus* which is a sound, complete and universal diagrammatic calculus for equational reasoning about finite-dimensional quantum computing.

- The calculus is *diagrammatic* (some similarities to quantum circuits).
 - Example: Preparation of a Bell state.

- The ZX-calculus is *practical*. Used to study and discover new results in:
 - Quantum error-correcting codes [Chancellor, Kissinger, et. al 2016].
 - Measurement-based quantum computing [Duncan & Perdrix 2010].
 - (Quantum) foundations [Backens & Duman 2014].
 - and others...

Introduction	Syntax	Semantics	Proof System	Pure states $\rightarrow mixed$ states	Conclusion
00●00	00	00000000	000	0000000000000000	00
			ZX-calculus		

- The ZX-calculus is *formal*.
 - Developed through the study of categorical quantum mechanics.
 - Rewrite system based on string diagrams of dagger compact closed categories.
 - Universal: Any linear map in **FdHilb** is the interpretation of some ZX-diagram D.
 - Sound: If $ZX \vdash D_1 = D_2$, then $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$.
 - Complete: If $\llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket$, then $ZX \vdash D_1 = D_2$.

Introduction 000●0 x

Proof System

Pure states → mixed state

Conclusion

ZX-calculus

- The ZX-calculus is amenable to automation and formal reasoning.
 - Implemented in the Quantomatic proof assistant.

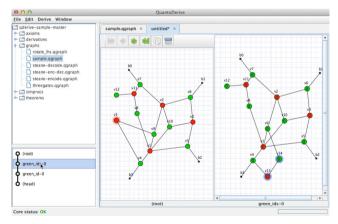
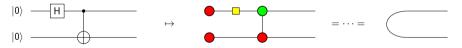


Figure: The quantomatic proof assistant.

• The ZX-calculus provides a different *conceptual perspective* of quantum information.

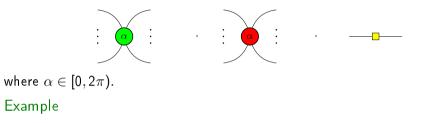
Example

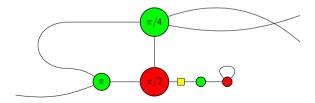
The Bell state is the standard example of an entangled state:



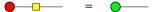
The diagrammatic notation clearly indicates this is not a separable state.

A ZX-diagram is an open undirected graph constructed from the following generators:





The ZX-calculus is an equational theory. Equality is written as $D_1 = D_2$: Example



Remark: I ignore scalars and normalisation throughout the rest of the talk for brevity. But that can be handled by the language. ntroduction

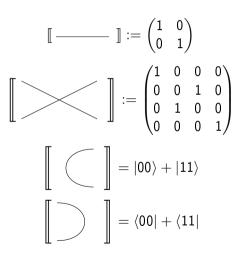
< Contract of the second secon

Semantics

Proof System

Conclusion

Semantics: wires



n	t	r	0	d	u	ct	io	n		
	0			0	С					

Semantics

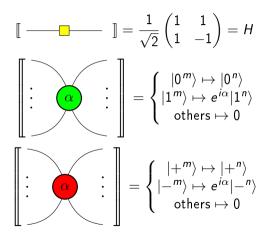
0000000

Proof System

Pure states → mixed states

Conclusion

Semantics: spiders and hadamard



In	t	r	0	du	ct	i	0	n			
0	C	(00							

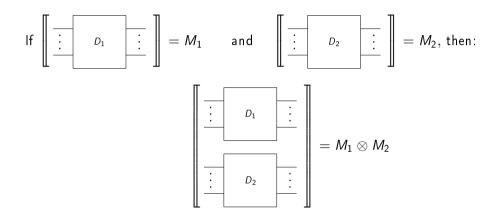
Semantics

Proof System

Pure states → mixed state

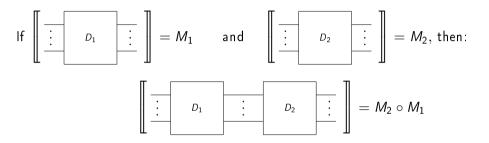
Conclusion

Semantics: tensors



	Conclusion
00000 00 00000000 000 000000000000000	00

Semantics: composition



By following these rules we can represent any linear map $f : \mathbb{C}^{2^m} \mapsto \mathbb{C}^n$ as a ZX-diagram (universality).

Introduction 00000 tax

Semantics

Proof System

Conclusion

Example: Quantum States

State	ZX-diagram
$ 0\rangle$	—
1 angle	π
$ +\rangle$	— —
- angle	π
00 angle+ 11 angle	\subset

Introduction	Syntax	Semantics	Proof System	Pure states \rightarrow mixed states	Conclusion
00000	00	00000000	000		00
		E		and the set	

Example: unitary operations

Unitary map	ZX-diagram
Z	
X	
Н	<u>D</u>
$Z \circ X$	-

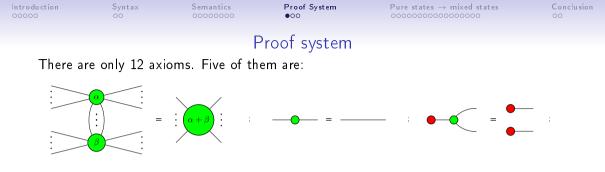
Introduction 00000 Syntax

Semantics 0000000 Proof System

Conclusion

Example: 2-qubit gates

Unitary map	ZX-diagram
$Z \otimes X$	π π
∧Z	
CNOT	

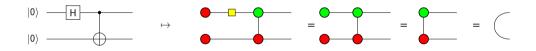


Remark: The color-swapped versions follow as *derived rules*. **Remark:** This rewrite system is sound and complete, i.e. no need for linear algebra:

$$ZX \vdash D_1 = D_2 \iff \llbracket D_1 \rrbracket = \llbracket D_2 \rrbracket.$$

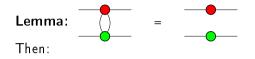
Introduction	Syntax	Semantics	Proof System	Pure states \rightarrow mixed states	Conclusion
00000	00	00000000	○●○		00

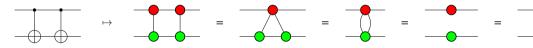
Example: Preparation of Bell state



Introduction	Syntax	Semantics	Proof System	Pure states $ ightarrow$ mixed states	Conclusion
00000	00	0000000	000	000000000000000	00

Example: CNOT is self-adjoint



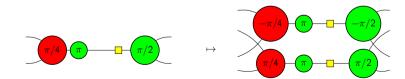


Conclusion 00

From Hilbert spaces to C*-algebras

- So far we talked about pure state quantum mechanics (FdHilb).
- Next, we show how to model mixed-states (FdCStar).
- I omit some details for simplicity (see [Coecke & Kissinger, Picturing Quantum Processes]).
- The basic idea is to double up our diagrams and negate all angles in one of the copies (but there are other ways as well).

Example



Introduction

Syntax

Proof System

Conclusion

Example: Quantum States

State (FdHilb)	ZX-diagram
0 angle	•
1 angle	π
$ +\rangle$	—
$ -\rangle$	π
00 angle+ 11 angle	\subset

State (FdCStar)	ZX-diagram
$ 0 angle\langle 0 $	•
$ 1 angle\langle 1 $	π
$ +\rangle\langle+ $	•
$ -\rangle\langle - $	π
$ 00 angle\langle 00 + 11 angle\langle 11 $	

Inti	o du	ction
00		

Proof System

Conclusion

Example: unitary operations

Unitary map (FdCStar)	ZX-diagram
Ζ	π
X	
Т	- <u>π/4</u> - - <u>π/4</u> -
Н	
$Z \circ X$	π

Unitary map (FdHilb)	ZX-diagram
Z	
X	-
Т	
Н	D
$Z \circ X$	

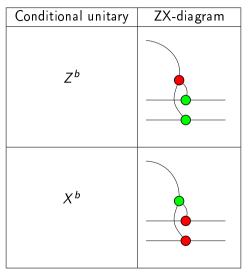
Introduction 00000 ¢

)

Proof System

Conclusion

Example: conditional unitary operations



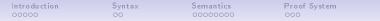
Introduction	
00000	

Semantics 00000000 Proof System

Conclusion 00

Measuremens

Measurement	ZX-diagram
Measurement in Z basis) -
Measurement in X basis	\rightarrow
Measurement in Bell basis	



Conclusion 00

Example: quantum teleportation

0. A qubit owned by Alice.

1. Prepare Bell state.

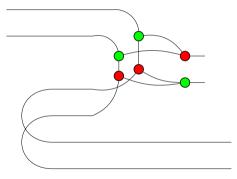
Se

Proof System

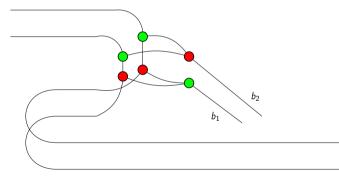
Conclusion 00

Example: quantum teleportation

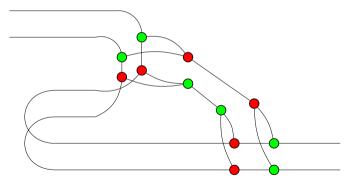
2. Do Bell basis measurement on both of Alice's qubits.



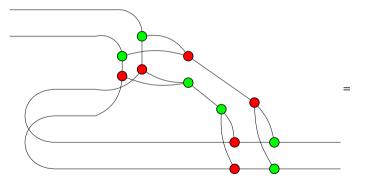
3. Alice sends two bits (b_1, b_2) to Bob to inform him of measurement outcome.



4. Bob performs unitary correction $X^{b_1} \circ Z^{b_2}$.



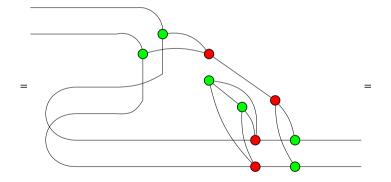
We can now prove the correctness of the teleportation protocol in the ZX-calculus:



Int	ro	du	ct	io	n	
00		00				

ics 200 Proof System

Conclusion

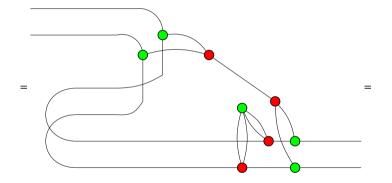


Int	r o	du	ct	io	n
00	00	00			

F

Proof System

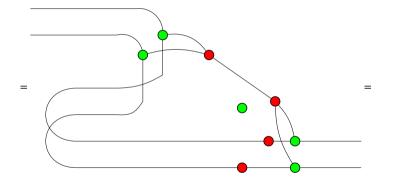
Conclusion



Intro	du	ct	io	n
0000				

antics 00000 Proof System

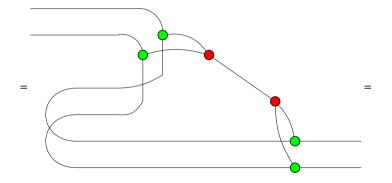
Conclusion



Intro	du	ct	io	n
0000				

antics 00000 Proof System

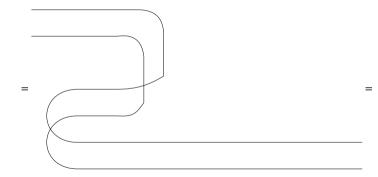
Conclusion



Intro	o du	ct	io	n
	00			

tics 000 Proof System

Conclusion



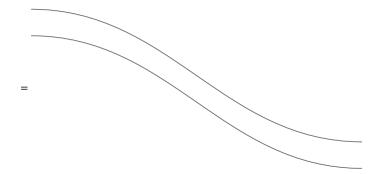
n tr	o du	ctic	n
		CUIC	

ах

Proof System

Conclusion 00

Example: quantum teleportation



Therefore, teleportation works as expected.

ntroduction

ax

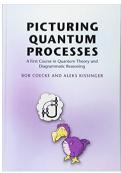
antics 00000 Proof System

Pure states → mixed state

Conclusion •0

Conclusion

- The ZX-calculus is a sound and complete alternative to linear algebra for *finite-dimensional* quantum information processing.
- Great potential for formal methods, verification and computer-aided reasoning.
- Useful tool for studying QIP.
- If you want to learn more, check out the book (contains outdated and incomplete version of ZX):



Introduction	Syntax	Semantics	Proof System	Pure states \rightarrow mixed states	Conclusion
00000	00	0000000	000		○●

Thank you for your attention!