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Quantum computing

� Quantum computing is usually described using �nite-dimensional Hilbert spaces
and linear maps (or �nite-dimensional C*-algebras and completely positive maps).

� Computing the matrix representation of quantum operations requires memory
exponential in the number of input qubits.

� This is not a scalable approach for software applications related to quantum
information processing (QIP).

� An alternative is provided by the ZX-calculus which is a sound, complete and
universal diagrammatic calculus for equational reasoning about �nite-dimensional
quantum computing.
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ZX-calculus

� The calculus is diagrammatic (some similarities to quantum circuits).
� Example: Preparation of a Bell state.

H
7→

|0〉

|0〉

� The ZX-calculus is practical. Used to study and discover new results in:
� Quantum error-correcting codes [Chancellor, Kissinger, et. al 2016].
� Measurement-based quantum computing [Duncan & Perdrix 2010].
� (Quantum) foundations [Backens & Duman 2014].
� and others...
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ZX-calculus

� The ZX-calculus is formal.
� Developed through the study of categorical quantum mechanics.
� Rewrite system based on string diagrams of dagger compact closed categories.
� Universal: Any linear map in FdHilb is the interpretation of some ZX-diagram D.
� Sound: If ZX ` D1 = D2, then JD1K = JD2K.
� Complete: If JD1K = JD2K, then ZX ` D1 = D2.
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ZX-calculus
� The ZX-calculus is amenable to automation and formal reasoning.

� Implemented in the Quantomatic proof assistant.

Figure: The quantomatic proof assistant.
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ZX-calculus

� The ZX-calculus provides a di�erent conceptual perspective of quantum
information.

Example

The Bell state is the standard example of an entangled state:

H
7→

|0〉

|0〉
= · · · =

The diagrammatic notation clearly indicates this is not a separable state.
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Syntax
A ZX-diagram is an open undirected graph constructed from the following generators:

α , ,α ,

where α ∈ [0, 2π).

Example

π π/2

π/4
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Syntax

The ZX-calculus is an equational theory. Equality is written as D1 = D2:

Example

=
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Normalisation

Remark: I ignore scalars and normalisation throughout the rest of the talk for brevity.
But that can be handled by the language.
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Semantics: wires

J K :=
(
1 0
0 1

)
t |

:=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


t |

= |00〉+ |11〉

t |

= 〈00|+ 〈11|
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Semantics: spiders and hadamard

J K =
1√
2

(
1 1
1 −1

)
= H

u

www
v

α

}

���
~

=


|0m〉 7→ |0n〉
|1m〉 7→ e iα|1n〉
others 7→ 0

u

www
v

α

}

���
~

=


|+m〉 7→ |+n〉
|−m〉 7→ e iα|−n〉

others 7→ 0
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Semantics: tensors

If

u

v D1

}

~ = M1 and

u

v D2

}

~ = M2, then:

u

wwwwwwww
v

D1

D2

}

��������
~

= M1 ⊗M2
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Semantics: composition

If

u

v D1

}

~ = M1 and

u

v D2

}

~ = M2, then:

u

v D1 D2

}

~ = M2 ◦M1

By following these rules we can represent any linear map f : C2m 7→ Cn as a
ZX-diagram (universality).
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Example: Quantum States

State ZX-diagram

|0〉
|1〉 π

|+〉
|−〉 π

|00〉+ |11〉
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Example: unitary operations

Unitary map ZX-diagram

Z π

X π

H

Z ◦ X ππ
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Example: 2-qubit gates

Unitary map ZX-diagram

Z ⊗ X
π

π

∧Z

CNOT
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Proof system
There are only 12 axioms. Five of them are:

α

β

= α+ β = =

=

; ; ;

; α α=

Remark: The color-swapped versions follow as derived rules.

Remark: This rewrite system is sound and complete, i.e. no need for linear algebra:

ZX ` D1 = D2 ⇐⇒ JD1K = JD2K.
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Example: Preparation of Bell state

H
7→

|0〉

|0〉
= = =
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Example: CNOT is self-adjoint

Lemma: =

Then:

= == =7→

=
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From Hilbert spaces to C*-algebras

� So far we talked about pure state quantum mechanics (FdHilb).

� Next, we show how to model mixed-states (FdCStar).

� I omit some details for simplicity (see [Coecke & Kissinger, Picturing Quantum
Processes]).

� The basic idea is to double up our diagrams and negate all angles in one of the
copies (but there are other ways as well).

Example

π/4 π π/2 7→
π/4 π π/2

−π/4 π −π/2
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Example: Quantum States

State (FdHilb) ZX-diagram

|0〉
|1〉 π

|+〉
|−〉 π

|00〉+ |11〉

State (FdCStar) ZX-diagram

|0〉〈0|

|1〉〈1| π

π

|+〉〈+|

|−〉〈−| π

π

|00〉〈00|+ |11〉〈11|
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Example: unitary operations

Unitary map (FdHilb) ZX-diagram

Z π

X π

T π/4

H

Z ◦ X ππ

Unitary map (FdCStar) ZX-diagram

Z
π

π

X
π

π

T
π/4

−π/4

H

Z ◦ X
ππ

π π
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Example: conditional unitary operations

Conditional unitary ZX-diagram

Zb

X b
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Measuremens

Measurement ZX-diagram

Measurement in Z basis

Measurement in X basis

Measurement in Bell basis
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Example: quantum teleportation

0. A qubit owned by Alice.
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Example: quantum teleportation

1. Prepare Bell state.
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Example: quantum teleportation

2. Do Bell basis measurement on both of Alice's qubits.
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Example: quantum teleportation

3. Alice sends two bits (b1, b2) to Bob to inform him of measurement outcome.

b1

b2
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Example: quantum teleportation

4. Bob performs unitary correction X b1 ◦ Zb2 .
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Example: quantum teleportation

We can now prove the correctness of the teleportation protocol in the ZX-calculus:

=
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Example: quantum teleportation
Input: A qubit owned by Alice.

==
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Example: quantum teleportation

=

Therefore, teleportation works as expected.
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Conclusion

� The ZX-calculus is a sound and complete alternative to linear algebra for
�nite-dimensional quantum information processing.

� Great potential for formal methods, veri�cation and computer-aided reasoning.
� Useful tool for studying QIP.
� If you want to learn more, check out the book (contains outdated and incomplete
version of ZX):
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Thank you for your attention!

38 / 38


	Introduction
	Syntax
	Semantics
	Proof System
	Pure states  mixed states
	Conclusion

