An abstract model for Proto-Quipper-M extended with general recursion

Bert Lindenhovius Michael Mislove Vladimir Zamdzhiev

Department of Computer Science Tulane University

Proto-Quipper-M

- We will consider several variants of a functional programming language called *Proto-Quipper-M*.
- Language and model developed by Francisco Rios and Peter Selinger.
- Language is equipped with formal denotational and operational semantics.
- Primary application is in quantum computing, but the language can describe arbitrary string diagrams.
- Their model supports primitive recursion, but does not support general recursion.

Circuit Model

Proto-Quipper-M is used to describe *families* of morphisms of an arbitrary, but fixed, symmetric monoidal category, which we denote M.

Example

If M = FdCStar, the category of finite-dimensional C^* -algebras and completely positive maps, then a program in our language is a family of quantum circuits.

Circuit Model

Example

Shor's algorithm for integer factorization may be seen as an infinite family of quantum circuits – each circuit is a procedure for factorizing an n-bit integer, for a fixed n.

Figure: Quantum Fourier Transform on n qubits (subroutine in Shor's algorithm).¹

¹Figure source: https://commons.wikimedia.org/w/index.php?curid=14545612

Syntax of Proto-Quipper-M

The type system is given by:

Types	A, B	::=	$\alpha \mid 0 \mid A + B \mid \mathbf{I} \mid A \otimes B \mid A \multimap B \mid !A \mid Circ(T, U)$
Parameter types	P, R	::=	$lpha \mid 0 \mid P + R \mid I \mid P \otimes R \mid !A \mid Circ(T,U)$
M-types	T, U	::=	$lpha \mid I \mid \ \mathcal{T} \otimes \mathcal{U}$

The term language is given by:

Terms
$$M, N$$
 ::= $x \mid I \mid c \mid \text{let } x = M \text{ in } N$
 $\mid \Box_A M \mid \text{left}_{A,B} M \mid \text{right}_{A,B} M \mid \text{case } M \text{ of } \{\text{left } x \to N \mid \text{right } y \to P\}$
 $\mid * \mid M; N \mid \langle M, N \rangle \mid \text{let } \langle x, y \rangle = M \text{ in } N \mid \lambda x^A M \mid MN$
 $\mid \text{lift } M \mid \text{force } M \mid \mathbf{box_T} M \mid \mathbf{apply}(M, N) \mid (\widetilde{I}, C, \widetilde{I'})$

Families Construction

The following construction is well-known.

Definition

Given a category $\boldsymbol{\mathsf{C}},$ we define a new category $\boldsymbol{\mathsf{Fam}}[\boldsymbol{\mathsf{C}}]$:

- Objects are pairs (X, A) where X is a discrete category and $A : X \to \mathbf{C}$ is a functor.
- A morphism $(X, A) \rightarrow (Y, B)$ is a pair (f, ϕ) where $f : X \rightarrow Y$ is a functor and $\phi : A \rightarrow B \circ f$ is a natural transformation.
- Composition of morphisms is given by: $(g, \psi) \circ (f, \phi) = (g \circ f, \psi f \circ \phi).$

Remark

Fam[C] is the free coproduct completion of C and as a result has all small coproducts.

Proposition

If C is a symmetric monoidal closed and product-complete category, then Fam[C] is a symmetric monoidal closed category.

Categorical Model

Definition

- A symmetric monoidal closed and product-complete category $\overline{\mathbf{M}}$.
- A fully faithful strong monoidal embedding $M\to \overline{M}.$
- A symmetric monoidal closed category $Fam[\overline{M}]$ which we will refer to as Fam.
- A symmetric monoidal adjunction:

Remark

Setting $\overline{M} := [M^{op}, Set]$ satisfies the first two requirements and can be done for any M.

Categorical Model

Theorem (Rios & Selinger 2017)

Every categorical model of Proto-Quipper-M is computationally sound and adequate with respect to its operational semantics.

Question

Sam Staton: Why do you need the Fam construction for this?

Open Problem

Find a categorical model of Proto-Quipper-M which supports general recursion.

Our approach

- Describe an *abstract* categorical model for the same language.
- Describe an abstract categorical model for the language extended with recursion.

Related work: Rennela and Staton describe a different circuit description language where they also use enriched category theory.

Models of Intuitionistic Linear Logic

A model of Intuitionistic Linear Logic (ILL) as described by Benton is given by the following data:

- A cartesian closed category V.
- A symmetric monoidal closed category L.
- A symmetric monoidal adjunction:

Nick Benton. A mixed linear and non-linear logic: Proofs, terms and models. CSL'94

Models of the Enriched Effect Calculus

A model of the Enriched Effect Calculus (EEC) is given by the following data:

- A cartesian closed category V, enriched over itself.
- A V-enriched category L with powers, copowers, finite products and finite coproducts.
- A V-enriched adjunction:

Theorem

Every model of ILL with additives determines an EEC model.

Egger, Møgelberg, Simpson. The enriched effect calculus: syntax and semantics. Journal of Logic and Computation 2012

An abstract model for Proto-Quipper-M

A model of Proto-Quipper-M is given by the following data:

- 1. A cartesian closed category P (the category of parameters) together with its self-enrichment \mathcal{P} , such that \mathcal{P} has finite P-coproducts.
- 2. A P-symmetric monoidal category ${\cal M}$ with underlying category M.
- 3. A P-symmetric monoidal closed category C with underlying category C such that C has finite P-coproducts.

 \mathcal{D}

- 4. A P-strong symmetric monoidal functor $E: \mathcal{M} \to \mathcal{C}$.
- 5. A **P**-symmetric monoidal adjunction:

where $(-\odot I)$ denotes the P-copower of the tensor unit in C.

Remark: A model of PQM is essentially given by an enriched model of ILL.

Soundness

Theorem (Soundness)

Every abstract model of Proto-Quipper-M is computationally sound.

Concrete models of PQM

The original Proto-Quipper-M model is given by the model of ILL

Concrete models of PQM

The original Proto-Quipper-M model is given by the model of ILL

A simpler model for the same language is given by the model of ILL:

where in both cases $\overline{M} = [M^{op}, Set]$.

Remark

When M = 1, the latter model degenerates to Set which is a model of a simply-typed (non-linear) lambda calculus.

Concrete models of the base language (contd.)

Fix an arbitrary symmetric monoidal category M. Equipping M with the free DCPO-enrichment yields another concrete (order-enriched) Proto-Quipper-M model:

where $\overline{M} = [M^{op}, DCPO]$.

Remark

The three concrete models of Proto-Quipper-M are EEC models whose underlying (unenriched) structure is a model of ILL.

Abstract model with recursion?

Intuitionistic linear logics correspond to linear/non-linear lambda calculi under the Curry-Howard isomorphism.

Theorem

A categorical model of a linear/non-linear lambda calculus extended with recursion is given by a model of ILL:

where FG (or equivalently GF) is parametrically algebraically compact².

²Benton & Wadler. *Linear logic, monads and the lambda calculus*. LiCS'96.

Proto-Quipper-M extended with general recursion

Definition

A categorical model of PQM extended with general recursion is given by a model of PQM, where in addition:

6. The comonad endofunctor:

is parametrically algebraically compact.

Moreover, if:

7. $\mathcal{P} = \mathsf{DCPO} \text{ and } \mathbf{0}_{\mathcal{T},\mathcal{U}} \notin \mathsf{Im}(E).$

then we call this a *computationally adequate* categorical model of PQM extended with general recursion.

Recursion

Extend the syntax:

$$\frac{\Phi, x : !A; \emptyset \vdash m : A}{\Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A} (\operatorname{rec})$$

Extend the operational semantics:

$$\frac{(C, m[\text{lift rec } x^{!A}m/x]) \Downarrow (C', v)}{(C, \text{rec } x^{!A}m) \Downarrow (C', v)}$$

Recursion (contd.)

Extend the denotational semantics: $\llbracket \Phi; \emptyset \vdash \operatorname{rec} x^{!A} m : A \rrbracket := \sigma_{\llbracket m \rrbracket} \circ \gamma_{\llbracket \Phi \rrbracket}.$

Soundness and adequacy

Theorem (Soundess)

Every model of Proto-Quipper-M extended with recursion is computationally sound.

Theorem (Termination)

Consider a computationally adequate model of PQM extended with recursion. For any well-typed configuration (C, m), if $[(C, m)] \neq 0$, then $(C, m) \Downarrow$. (Proof in progress).

Theorem (Adequacy)

Consider a computationally adequate model of PQM extended with recursion. For any well-typed configuration (C, m), where m is a term of parameter type:

 $[\![(C,m)]\!] \neq 0 \text{ iff } (C,m) \Downarrow$

Concrete model of Proto-Quipper-M extended with recursion Let M_* be the DCPO_{\perp !}-category obtained by freely adding a zero object to M and $\overline{M_*} = [M_*^{op}, DCPO_{\perp !}]$ be the associated enriched functor category.

Remark

If M = 1, then the above model degenerates to the left vertical adjunction, which is a model of a simply-typed lambda calculus with term-level recursion.

Original model revisited

Fix an arbitrary symmetric monoidal category **M**. Original Proto-Quipper-M model:

Simpler model:

Question: What does the extra layer of abstraction provide? **Answer:** A model of the language extended with dependent types.

Linear dependent types

Theorem

The category $\operatorname{Fam}[\overline{M}]$ is a model of dependently typed intuitionistic linear logic ³.

Conjecture

Remark

If M = 1, the above model degenerates to $Fam[\overline{M}] = Fam[M^{op}, Set] \cong Fam[Set] \simeq [2^{op}, Set]$, which is a closed comprehension category and thus a model of intuitionistic dependent type theory⁴.

³Matthijs Vákár. *In Search of Effectful Dependent Types*. PhD thesis, University of Oxford. ⁴Bart Jacobs. *Categorical Logic and Type Theory*. 1999.

Abstract model with dependent types?

Theorem

A model of dependently typed intuitionistic linear logic is given by an indexed monoidal category with some additional structure (comprehension, strictness, ...) ⁵.

Conjecture

An abstract model of Proto-Quipper-M extended with dependent types is given by an **enriched** indexed monoidal category ⁶ with some additional structure (comprehension, strictness, ...).

⁵Matthijs Vákár. *In Search of Effectful Dependent Types*. PhD thesis, University of Oxford. ⁶Michael Shulman. *Enriched Indexed Categories*. Theory and Application of Categories, 2013.

What about recursion and dependent types simultaneously?

• This is the most complicated case by far.

Remark

If M = 1, then the model collapses to a model which is very similar to Palmgren and <u>Stoltenberg-Hansen's model of partial intuitionistic dependent type theory</u>⁷.

⁷Erik Palmgren & Viggo Stoltenberg-Hansen. *Domain interpretations of Martin-Löf's partial type theory*. Annals of Pure and Applied Logic 1990.

Abstract model with recursion and dependent types?

Conjecture

An abstract model of Proto-Quipper-M extended with recursion and dependent types is given by an **enriched** indexed monoidal category with some additional structure (comprehension, strictness, ...) and suitable algebraic compactness conditions on the underlying adjoint functors.

Conclusion

- One can construct a model of PQM by categorically enriching certain denotational models.
- We described a sound abstract model for PQM.
- We described a sound and computationally adequate abstract model for PQM with general recursion.
- Systematic construction for concrete models that works for any circuit (string diagram) model described by a symmetric monoidal category.
- We have conjectured what possible models that support dependent types should look like.

Thank you for your attention!