An introduction to discrete & computational geometry

Xavier Goaoc
LIGM - Université Paris-Est Marne-la-Vallée

Midi – Rouen, September 2015
Computational geometry studies the algorithmic foundations of geometric computing.

“Builds general tools – analytic and computational – to satisfy the algorithmic needs of geometric computing.”

[CG impact task force, '96]

Design of algorithms, analysis of their resource consumption.
Computational geometry studies the algorithmic foundations of geometric computing.

“Builds general tools – analytic and computational – to satisfy the algorithmic needs of geometric computing.”
[CG impact task force, '96]

Design of algorithms, analysis of their resource consumption.

Algorithms are described and analyzed in a computational model.

Définition: the operations allowed and their costs.

Usual model: Real RAM (exact arithmetic over \mathbb{R} in constant time).

Complexity measured as a function of the input size.
Computational geometry studies the algorithmic foundations of geometric computing.

“Builds general tools – analytic and computational – to satisfy the algorithmic needs of geometric computing.”

[CG impact task force, '96]

Design of algorithms, analysis of their resource consumption.

Algorithms are described and analyzed in a computational model.

Défine the operations allowed and their costs.

Usual model: Real RAM (exact arithmetic over \(\mathbb{R} \) in constant time).

Complexity measured as a function of the input size.

Interested in the asymptotic behaviour.

Compare algorithms independently of implementation or technology.
70’s - beginnings

segments intersection
Voronoi diagrams
nearest neighbours
70’s - beginnings

segments intersection
Voronoi diagrams
nearest neighbours

80’s - exact solutions, lower bounds

range searching
convex hulls
arrangements
triangulations
70’s - beginnings

segments intersection
Voronoi diagrams
nearest neighbours

80’s - exact solutions, lower bounds

range searching
convex hulls
arrangements
triangulations

90’s - approximation, probabilistic methods

ε-nets, cuttings...
robustness, CGAL...
applications: GIS, CAD...
70’s - beginnings

segments intersection
Voronoi diagrams
nearest neighbours

80’s - exact solutions, lower bounds

range searching
convex hulls
arrangements
triangulations

90’s - approximation, probabilistic methods

\(\epsilon \)-nets, cuttings…
robustness, CGAL…
applications: GIS, CAD...

00’s - other geometries, large amount of data

metric spaces, embeddings…
computational topology
external memory algorithms
Computational geometry makes heavy use of **discrete** properties of geometric objects…

… which are the specialty of **discrete geometry**.

- Packing & covering
- Polytopes
- Space partitions
- Points configurations
- Geometric (hyper)graphs

These two communities merged during the 80’s.
Some classics
Arrangements
Delaunay triangulations & Voronoi diagrams

New development: algebraic/polynomial methods
Incidence geometry, around the Szemeredi-Trotter theorem
Solution to the joint problem by algebraic arguments

New developments: topological methods
Topological combinatorics and inclusion-exclusion formulas
Persistent homology and topological inference
Some classics
Arrangements
Delaunay triangulations & Voronoi diagrams

New development: algebraic/polynomial methods
Incidence geometry, around the Szemeredi-Trotter theorem
Solution to the joint problem by algebraic arguments

New developments: topological methods
Topological combinatorics and inclusion-exclusion formulas
Persistent homology and topological inference
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2
is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2 is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2 is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting sub-structures and refinements.

An arrangement of 6 segments.
Their lower envelope.
Their trapezoidal decomposition.
The zone of a 7th segment.
(Geometric) **arrangements**

The *arrangement* of a family of subsets of \mathbb{R}^2 is the *subdivision* of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting **sub-structures** and **refinements**.

An arrangement of 6 segments.

Their **lower envelope**.

Their **trapezoidal decomposition**.

The **zone** of a 7th segment.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2
is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.
The boundaries of any two objects intersect in a finite number of points.

Various interesting sub-structures and refinements.

An arrangement of 6 segments.
Their lower envelope.
Their trapezoidal decomposition.
The zone of a 7th segment.
(Geometric) **arrangements**

The **arrangement** of a family of subsets of \mathbb{R}^2 is the **subdivision** of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting **sub-structures** and **refinements**.

An arrangement of 6 segments.

Their **lower envelope**.

Their **trapezoidal decomposition**.

The **zone** of a 7th segment.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2 is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting sub-structures and refinements.

An arrangement of 6 segments.
Their lower envelope.
Their trapezoidal decomposition.
The zone of a 7th segment.

Many problems can be modelled by questions on arrangements.

The piano mover’s problem.
(Geometric) **arrangements**

The arrangement of a family of subsets of \mathbb{R}^2 is the **subdivision** of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting **sub-structures** and **refinements**.

- An arrangement of 6 segments.
- Their **lower envelope**.
- Their **trapezoidal decomposition**.
- The **zone** of a 7th segment.

Many problems can be **modelled** by questions on arrangements.

The **piano mover’s problem**.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2 is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects. Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting sub-structures and refinements.

An arrangement of 6 segments.

Their lower envelope.

Their trapezoidal decomposition.

The zone of a 7th segment.

Many problems can be modelled by questions on arrangements.

Arrangement in the space of motions.

\mathbb{R}^2 for translations in the plane.

$\mathbb{R}^3 \times SO(3)$ for rigid motions in space.

The piano mover’s problem.

Motions forbidden by each obstacle.
(Geometric) **arrangements**

The **arrangement** of a family of subsets of \mathbb{R}^2 is the **subdivision** of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting **sub-structures** and **refinements**.

An arrangement of 6 segments.

Their **lower envelope**.

Their **trapezoidal decomposition**.

The **zone** of a 7th segment.

Many problems can be **modelled** by questions on arrangements.

Arrangement in the space of motions.

- \mathbb{R}^2 for translations in the plane.
- $\mathbb{R}^3 \times SO(3)$ for rigid motions in space.

The **piano mover’s problem**.

Motions forbidden by each obstacle.
(Geometric) arrangements

The arrangement of a family of subsets of \mathbb{R}^2 is the subdivision of \mathbb{R}^2 induced by the boundaries of these objects.

Embedded combinatorial structure.

The boundaries of any two objects intersect in a finite number of points.

Various interesting sub-structures and refinements.

An arrangement of 6 segments.

Their lower envelope.

Their trapezoidal decomposition.

The zone of a 7th segment.

Many problems can be modelled by questions on arrangements.

Arrangement in the space of motions.

\mathbb{R}^2 for translations in the plane.

$\mathbb{R}^3 \times SO(3)$ for rigid motions in space.

The piano mover’s problem.

Motions forbidden by each obstacle.
Central question in discrete geometry:

Estimate the **asymptotic complexity** of various sub-structures of arrangements.
Central question in discrete geometry:

Estimate the **asymptotic complexity** of various sub-structures of arrangements.

Notion of **complexity** (of a sub-structure) of an arrangement.

The number of **elements**, of all dimensions.

\[\# \text{vertices} + \# \text{edges} + \# \text{faces}. \]

Expressed as a function of the number \(n \) of objects.

In the **worst-case** position.

Possibly for a **restricted class** of objects.

Line, segments, circles, squares, rectangles...

In arbitrary position, congruents under translation...
Central question in discrete geometry:

Estimate the **asymptotic complexity** of various sub-structures of arrangements.

Notion of **complexity** (of a sub-structure) of an arrangement.

The number of **elements**, of all dimensions.

\# vertices + \# edges + \# faces.

Expressed as a function of the number \(n \) of objects.

In the **worst-case** position.

Possibly for a **restricted class** of objects.

Line, segments, circles, squares, rectangles...
In arbitrary position, congruents under translation...

Question: What is the complexity of the lower envelope of \(n \) segments in the plane?
Lower envelope of n segments \rightarrow word on $\{1, 2, \ldots n\}$.

Number the segments (arbitrarily).

Read off the sequence of segments appearing on the lower envelope.
Lower envelope of \(n \) segments \(\rightarrow \) word on \(\{1, 2, \ldots n\} \).

Number the segments (arbitrarily).

Read off the sequence of segments appearing on the lower envelope.

This word obeys (at least) two rules:

1. Consecutive letters are distinct.

2. For any letter \(a, b \) there is no sub-word \(a \ldots b \ldots a \ldots b \ldots a \).
Lower envelope of \(n \) segments \(\rightarrow \) word on \(\{1, 2, \ldots n\} \).

Number the segments (arbitrarily).

Read off the sequence of segments appearing on the lower envelope.

This word obeys (at least) two rules:

1. Consecutive letters are distinct.
2. For any letter \(a, b \) there is no sub-word \(a \ldots b \ldots a \ldots b \ldots a \).
Lower envelope of n segments \rightarrow word on $\{1, 2, \ldots n\}$.

Number the segments (arbitrarily).
Read off the sequence of segments appearing on the lower envelope.

This word obeys (at least) two rules:

1. Consecutive letters are distinct.
2. For any letter a, b there is no sub-word $a \ldots b \ldots a \ldots b \ldots a$.

Define $\lambda_3(n)$ as the maximum length of a word on $\{1, 2, \ldots, n\}$ obeying these two rules.
Lower envelope of \(n \) segments \(\rightarrow \) word on \(\{1, 2, \ldots, n\} \).

Number the segments (arbitrarily).

Read off the sequence of segments appearing on the lower envelope.

This word obeys (at least) two rules:

1. Consecutive letters are distinct.
2. For any letter \(a, b \) there is no sub-word \(a \ldots b \ldots a \ldots b \ldots a \).

Define \(\lambda_3(n) \) as the maximum length of a word on \(\{1, 2, \ldots, n\} \) obeying these two rules.

Theorem. [Hart-Sharir, 1986] \(\lambda_3(n) = \Theta(n\alpha(n)) \).

\(\alpha(n) \) is the inverse of the Ackermann function \(n \mapsto A_n(n) \) defined by \(A_2(n) = 2^n \) and \(A_k(n) = A_{k-1}(A_k(n-1)) \).

\(\alpha(n) \leq 4 \) for \(n \leq 2^{2^{\ldots^2}} \) (tower of 65536 exponentials).

Related to path compressions on trees and inspired by union-find structures [Tarjan 1975].
Lower envelope of n segments \rightarrow word on $\{1, 2, \ldots n\}$.

Number the segments (arbitrarily).
Read off the sequence of segments appearing on the lower envelope.

This word obeys (at least) two rules:

1. Consecutive letters are distinct.
2. For any letter a, b there is no sub-word $a \ldots b \ldots a \ldots b \ldots a$.

Define $\lambda_3(n)$ as the maximum length of a word on $\{1, 2, \ldots, n\}$ obeying these two rules.

Theorem. [Hart-Sharir, 1986] $\lambda_3(n) = \Theta(n \alpha(n))$.

$n \mapsto \alpha(n)$ is the inverse of the Ackermann function $n \mapsto A_n(n)$ defined by $A_2(n) = 2n$ and $A_k(n) = A_{k-1}(A_{k-1}(n-1))$.

$\alpha(n) \leq 4$ for $n \leq 2^{2^{2^{2^{65536}}}}$ (tower of 65536 exponentials).

Related to path compressions on trees and inspired by union-find structures [Tarjan 1975].

Theorem. The lower envelope of n segments in the plane has complexity $\Theta(n \alpha(n))$.

Lower envelope of \(n \) segments \(\rightarrow \) word on \(\{1, 2, \ldots n\} \).

\(Number \text{ the segments (arbitrarily).} \)

\(Read \text{ off the sequence of segments appearing on the lower envelope.} \)

This word obeys (at least) two rules:

(1) Consecutive letters are distinct.

(2) For any letter \(a, b \) there is no sub-word \(a \ldots b \ldots a \ldots b \ldots a \).

Define \(\lambda_3(n) \) as the maximum length of a word on \(\{1, 2, \ldots, n\} \) obeying these two rules.

Theorem. [Hart-Sharir, 1986] \(\lambda_3(n) = \Theta(n\alpha(n)) \).

\(n \mapsto \alpha(n) \) is the inverse of the Ackermann function \(n \mapsto A_n(n) \) defined by \(A_2(n) = 2n \) and \(A_k(n) = A_{k-1}(A_k(n-1)) \).

\(\alpha(n) \leq 4 \) for \(n \leq 2^{2^{\ldots^2}} \) (tower of 65536 exponentials).

\(Related \text{ to path compressions on trees and inspired by union-find structures [Tarjan 1975].} \)

Theorem. The lower envelope of \(n \) segments in the plane has complexity \(\Theta(n\alpha(n)) \).

One of many applications of Davenport-Schinzel sequences.
A *triangulation* of a finite point set \(P \subseteq \mathbb{R}^d \) is a decomposition of the *convex hull* of \(P \) in a union of simplices with vertices in \(P \) and disjoint interiors.
A **triangulation** of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the **convex hull** of P in a union of simplices with vertices in P and disjoint interiors.
A **triangulation** of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the **convex hull** of P in a union of simplices with vertices in P and disjoint interiors.
A triangulation of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the convex hull of P in a union of simplices with vertices in P and disjoint interiors.

Any set of $n \geq 5$ points in \mathbb{R}^2 has several triangulations.
A **triangulation** of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the **convex hull** of P in a union of simplices with vertices in P and disjoint interiors.

Any set of $n \geq 5$ points in \mathbb{R}^2 has several triangulations.
A **triangulation** of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the **convex hull** of P in a union of simplices with vertices in P and disjoint interiors.

Any set of $n \geq 5$ points in \mathbb{R}^2 has several triangulations.

The number of triangulations grows exponentially with the number n of points.

$$\frac{1}{n-1} \binom{2n-4}{n-2} \sim \frac{4^n}{n\sqrt{\pi n}}$$ triangulations for $n + 2$ points in convex position in \mathbb{R}^2.

Any planar set of n points has $\Omega(2.43^n)$ and $O(30^n)$ triangulations and there exist examples with $\Omega(8.65^n)$ triangulations.
A triangulation of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the convex hull of P in a union of simplices with vertices in P and disjoint interiors.

Any set of $n \geq 5$ points in \mathbb{R}^2 has several triangulations.

The number of triangulations grows exponentially with the number n of points.

$$\frac{1}{n-1} \binom{2n-4}{n-2} \sim \frac{4^n}{n\sqrt{\pi n}}$$

triangulations for $n + 2$ points in convex position in \mathbb{R}^2.

Any planar set of n points has $\Omega(2.43^n)$ and $O(30^n)$ triangulations and there exist examples with $\Omega(8.65^n)$ triangulations.

The simplices whose circumscribed ball contains no other point in its interior form the Delaunay triangulation.

Exception: cospherical $(d + 2)$-tuples of points need to be handled separately.
A **triangulation** of a finite point set $P \subseteq \mathbb{R}^d$ is a decomposition of the **convex hull** of P in a union of simplices with vertices in P and disjoint interiors.

Any set of $n \geq 5$ points in \mathbb{R}^2 has several triangulations.

The number of triangulations grows exponentially with the number n of points.

$$\frac{1}{n-1} \binom{2n-4}{n-2} \sim \frac{4^n}{n^{\sqrt{n}} n}$$

triangulations for $n + 2$ points in convex position in \mathbb{R}^2.

Any planar set of n points has $\Omega(2.43^n)$ and $O(30^n)$ triangulations

and there exist examples with $\Omega(8.65^n)$ triangulations.

The simplices whose **circumscribed ball** contains no other point in its interior form the **Delaunay triangulation**.

Exception: cospherical $(d + 2)$-tuples of points need to be handled separately.

Nice properties, eg. maximizes the smallest angle.

$\text{Triangulation} \rightarrow \text{vector of its angles in increasing order}.$

$\text{Triangulation de Delaunay} \rightarrow \text{lexicographically maximal vector}.$
$S = \{p_1, p_2 \ldots p_n\}$ a set of points in \mathbb{R}^2.

The **Voronoi diagram** of S is the partition of \mathbb{R}^2 into regions $R_1, \ldots R_n$ where

$R_i = \{x \in \mathbb{R}^2 | \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|xp_j\| \geq \|xp_i\|\}$
$S = \{p_1, p_2 \ldots p_n\}$ a set of points in \mathbb{R}^2.

The **Voronoi diagram** of S is the partition of \mathbb{R}^2 into regions $R_1, \ldots R_n$ where

$$R_i = \{x \in \mathbb{R}^2 \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|xp_j\| \geq \|xp_i\|\}$$

 Captures growth phenomena.
$S = \{p_1, p_2 \ldots p_n\}$ a set of points in \mathbb{R}^2.

The **Voronoi diagram** of S is the partition of \mathbb{R}^2 into regions $R_1, \ldots R_n$ where

$$R_i = \{x \in \mathbb{R}^2 \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|xp_j\| \geq \|xp_i\|\}$$

Captures **growth phenomena**.
$S = \{p_1, p_2 \ldots p_n\}$ a set of points in \mathbb{R}^2.

The **Voronoi diagram** of S is the partition of \mathbb{R}^2 into regions $R_1, \ldots R_n$ where

$$R_i = \{x \in \mathbb{R}^2 \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|xp_j\| \geq \|xp_i\|\}$$

Captures **growth phenomena**.

Used by Descartes to study “cosmic fragmentation”.

Also known as Dirichlet tesselations.

Used in meteorology under the name of Thiessen polygons.

Used in chemistry under the name of Wigner-Seitz cell.

Used in biology under the name of area potentially available to a tree or plant polygon.
\[S = \{p_1, p_2 \ldots p_n\} \text{ a set of points in } \mathbb{R}^2. \]

The **Voronoi diagram** of \(S \) is the partition of \(\mathbb{R}^2 \) into regions \(R_1, \ldots R_n \) where

\[
R_i = \{x \in \mathbb{R}^2 \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|xp_j\| \geq \|xp_i\|\}
\]

Captures growth phenomena.

Used by Descartes to study “cosmic fragmentation”. Also known as Dirichlet tesselations.

Used in meteorology under the name of Thiessen polygons.

Used in chemistry under the name of Wigner-Seitz cell.

Used in biology under the name of area potentially available to a tree or plant polygon.

Generalizes to arbitrary families of subsets of a **metric space**.
Dualities between Delaunay triangulation and Voronoi diagram.
Dualities between Delaunay triangulation and Voronoi diagram.

Combinatorial

Voronoi vertex
 $= \text{center of a ball circumscribed to a Delaunay simplex.}$
Dualities between Delaunay triangulation and Voronoi diagram.

Combinatorial

Voronoi vertex

= center of a ball circumscribed to a Delaunay simplex.

Quadratic form (here for $d = 2$)

Let Γ be the paraboloid in \mathbb{R}^3 with equation $z = x^2 + y^2$.
We “lift” $q = (x, y)$ to $q' = (x, y, x^2 + y^2) \in \Gamma$.
The dual of q' is $h(q')$, the tangent plane to Γ in q'.
Dualities between Delaunay triangulation and Voronoi diagram.

Combinatorial

Voronoi vertex
= center of a ball circumscribed to a Delaunay simplex.

Quadratic form (here for $d = 2$)

Let Γ be the paraboloid in \mathbb{R}^3 with equation $z = x^2 + y^2$.

We “lift” $q = (x, y)$ to $q' = (x, y, x^2 + y^2) \in \Gamma$.

The dual of q' is $h(q')$, the tangent plane to Γ in q'.

The Voronoi diagram of p_1, p_2, \ldots, p_n
\simeq upper enveloppe of $h(p_1'), h(p_2'), \ldots, h(p_n')$.

Delaunay triangulation of p_1, p_2, \ldots, p_n
\simeq convex hull of p_1', p_2', \ldots, p'_n.

Let $q_1, q_2 \in \mathbb{R}^2$ and let q_2'' be the lift of q_2 on $h(q_1')$.

$h(q_1') : 2x_1(x - x_1) + 2y_1(y - y_1) - z + x_1^2 + y_1^2 = 0$

height of $q_2'' : (2x_1(x_2 - x_1) + 2y_1(y_2 - y_1) + x_1^2 + y_1^2)$

height of $q_2' : x_2^2 + y_2^2$.

$\Rightarrow ||q_1q_2||^2 = ||q_2q_2''||$.
Dualities between Delaunay triangulation and Voronoi diagram.

Combinatorial

Voronoi vertex
= center of a ball circumscribed to a Delaunay simplex.

Quadratic form (here for \(d = 2\))

Let \(\Gamma\) be the paraboloid in \(\mathbb{R}^3\) with equation \(z = x^2 + y^2\).

We “lift” \(q = (x, y)\) to \(q' = (x, y, x^2 + y^2)\) ∈ \(\Gamma\).

The dual of \(q'\) is \(h(q')\), the tangent plane to \(\Gamma\) in \(q'\).

The Voronoi diagram of \(p_1, p_2, \ldots, p_n\)
\(\simeq\) upper envelope of \(h(p'_1), h(p'_2), \ldots, h(p'_n)\).

Delaunay triangulation of \(p_1, p_2, \ldots, p_n\)
\(\simeq\) convex hull of \(p'_1, p'_2, \ldots, p'_n\).

Topological

Delaunay = Nerve(Voronoi). cf. “topological methods”

Let \(q_1, q_2 \in \mathbb{R}^2\) and let \(q'_2\) be the lift of \(q_2\) on \(h(q'_1)\).

\(h(q'_1) : 2x_1(x - x_1) + 2y_1(y - y_1) - z + x_1^2 + y_1^2 = 0\)

height of \(q'_2\) : \((2x_1(x_2 - x_1) + 2y_1(y_2 - y_1) + x_1^2 + y_1^2)\)

height of \(q'_2\) : \(x_2^2 + y_2^2\).

\(\Rightarrow \|q_1q_2\|^2 = \|q_2q'_2\|\).
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1p_2p_3\} \quad // \text{We assume } p_1p_2p_3 \text{ contains all the points}
\]

For \(i = 4 \ldots n \)

1. Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
2. \(T \leftarrow T \setminus \{pqr\} \cup \{p_ipq, p_iqr, p_irp\} \)
3. Make \(T \) Delaunay by flips.

Localization of point \(p_i \)
Incremental algorithm to construct Delaunay triangulations.

\[T \leftarrow \{p_1p_2p_3\} \quad \text{// We assume } p_1p_2p_3 \text{ contains all the points} \]

For \(i = 4 \ldots n \)

Find the triangle \(pqr \) in \(T \) that contains \(p_i \).

\[T \leftarrow T \setminus \{pqr\} \cup \{p_ipq,p_iqr,p_irp\} \]

Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1p_2p_3\} \quad \text{// We assume } p_1p_2p_3 \text{ contains all the points}
\]

For \(i = 4 \ldots n \)
- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_i\} \cup \{pq, pqr, prp\} \)
- Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[T \leftarrow \{p_1p_2p_3\} \] // We assume \(p_1p_2p_3 \) contains all the points

For \(i = 4 \ldots n \)

- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).

\[T \leftarrow T \setminus \{pqr\} \cup \{p_ipq, p_iqr, p_irp\} \]

Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1p_2p_3\} \quad \text{// We assume } \{p_1p_2p_3\} \text{ contains all the points}
\]

For \(i = 4 \ldots n \)

- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_i pq, p_i qr, p_i rp\} \)
- Make \(T \) Delaunay by flips.

Localization

Subdivision

Correction
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1p_2p_3\} \quad \text{// We assume } p_1p_2p_3 \text{ contains all the points}
\]

\text{For } i = 4 \ldots n

1. Find the triangle } pqr \text{ in } T \text{ that contains } p_i.
2. \[
T \leftarrow T \setminus \{pqr\} \cup \{p_iq,p_iq,p_irp\}
\]
3. Make } T \text{ Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[T \leftarrow \{p_1p_2p_3\} \quad // \text{We assume } p_1p_2p_3 \text{ contains all the points} \]

For \(i = 4 \ldots n \)

- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_iq,p_iq,p_ipr\} \)

Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1 p_2 p_3\} \quad // \text{We assume } p_1 p_2 p_3 \text{ contains all the points}
\]

For \(i = 4 \ldots n \)

- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_i p q, p_i q r, p_i r p\} \)
- Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1p_2p_3\} \quad // \text{We assume } p_1p_2p_3 \text{ contains all the points}
\]

For \(i = 4 \ldots n \)
- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_ipq, p_iqr, p_irp\} \)
- Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[T \leftarrow \{p_1p_2p_3\} \quad // \text{We assume } p_1p_2p_3 \text{ contains all the points} \]

For \(i = 4 \ldots n \)
- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_ipq, p_iqr, p_irp\} \)
- Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[
T \leftarrow \{p_1 p_2 p_3\} \quad \text{// We assume } p_1 p_2 p_3 \text{ contains all the points}
\]

For \(i = 4 \ldots n \)
- Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
- \(T \leftarrow T \setminus \{pqr\} \cup \{p_i pq, p_i qr, p_i rp\} \)
- Make \(T \) Delaunay by flips.
Incremental algorithm to construct Delaunay triangulations.

\[T \leftarrow \{p_1p_2p_3\} \] // We assume \(p_1p_2p_3 \) contains all the points
For \(i = 4 \ldots n \)
 Find the triangle \(pqr \) in \(T \) that contains \(p_i \).
 \[T \leftarrow T \setminus \{pqr\} \cup \{p_ipq, p_iqr, p_irp\} \]
Make \(T \) Delaunay by flips.

Analysis of the correction phase:
\[d_i = \text{degree of } p_i \text{ in } \text{Del}(\{p_1, p_2, \ldots, p_i\}). \]
At most \(d_i \) flips.
Backward analysis for a **random** insertion order.
Efficient **localization** uses (random) walks.

Start from a known triangle.
Walk in the triangulation
(triangles have pointers to adjacent triangles).
Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

- Start from a known triangle.
- Walk in the triangulation (triangles have pointers to adjacent triangles).
 - Various walking strategies exist.

Example of open question.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

Start from a known triangle.
Walk in the triangulation
(triangles have pointers to adjacent triangles).
Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

Start from a known triangle.
Walk in the triangulation
(triangles have pointers to adjacent triangles).
Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

Start from a known triangle.
Walk in the triangulation
(triangles have pointers to adjacent triangles).
Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

- Start from a known triangle.
- Walk in the triangulation (triangles have pointers to adjacent triangles).
- Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.

Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.

Cross this edge to find the new current triangle.

Repeat until the triangle containing the target point is found.
Efficient **localization** uses (random) walks.

- Start from a known triangle.
- Walk in the triangulation
 - (triangles have pointers to adjacent triangles).
- Various walking strategies exist.

Example of open question.

1. Start from a **known** triangle.
2. Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
3. **Cross** this edge to find the new current triangle.
4. Repeat until the triangle containing the target point is found.

Conjecture: Let P be a set of n random points chosen uniformly in $[0, 1]^2$. The expectation of the maximum number of steps in a visibility walk is $O(\sqrt{n})$.
Efficient **localization** uses (random) walks.

- Start from a known triangle.
- Walk in the triangulation
 (triangles have pointers to adjacent triangles).
- Various walking strategies exist.

Example of **open question**.

Start from a **known** triangle.
Choose one of its edges whose supporting line separates the target point from the interior of the current triangle.
Cross this edge to find the new current triangle.
Repeat until the triangle containing the target point is found.

Conjecture: Let P be a set of n random points chosen uniformly in $[0, 1]^2$. The expectation of the maximum number of steps in a visibility walk is $O(\sqrt{n})$.

Other open problem: probabilistic complexity, in particular **smoothed complexity**.

[Spielman-Tang'04]
Some classics
Arrangements
Delaunay triangulations & Voronoi diagrams

New development: algebraic/polynomial methods
Incidence geometry, around the Szemeredi-Trotter theorem
Solution to the joint problem by algebraic arguments

New developments: topological methods
Topological combinatorics and inclusion-exclusion formulas
Persistent homology and topological inference
An incidence between a set C of curves and a set P of points is a pair $(c, p) \in C \times P$ such that $c \in p$.

Problem: estimate the maximum number of incidences given $|C|$, $|P|$ and the nature of the curves in C.
An **incidence** between a set C of curves and a set P of points is a pair $(c, p) \in C \times P$ such that $c \in p$.

Problem: estimate the maximum number of incidences given $|C|$, $|P|$ and the nature of the curves in C.

Theorem. [Szemeredi-Trotter, 1983] The number of incidences between n points and ℓ lines in the plane is $O(n + \ell + n^{2/3} \ell^{2/3})$.
An incidence between a set C of curves and a set P of points is a pair $(c, p) \in C \times P$ such that $c \in p$.

Problem: estimate the maximum number of incidences given $|C|$, $|P|$ and the nature of the curves in C.

Theorem. [Szemeredi-Trotter, 1983] The number of incidences between n points and ℓ lines in the plane is $O(n + \ell + n^{2/3} \ell^{2/3})$.

Application:

Sum-product conjecture [Erdös-Szemeredi, 1983]: For any $\epsilon > 0$ there exists $C' \in \mathbb{R}$ such that for any $A \subset \mathbb{N}$ finite and large enough,

$$\max\{|A + A|, |A \ast A|\} \geq C'|A|^{2-\epsilon}.$$

$$A + A = \{x + y \mid x, y \in A\} \text{ and } A \ast A = \{x \ast y \mid x, y \in A\}$$
An **incidence** between a set \(C \) of curves and a set \(P \) of points is a pair \((c, p) \in C \times P\) such that \(c \in p \).

Problem: estimate the maximum number of incidences given \(|C|, |P|\) and the nature of the curves in \(C \).

Theorem. [Szemeredi-Trotter, 1983] The number of incidences between \(n \) points and \(\ell \) lines in the plane is \(O(n + \ell + n^{2/3} \ell^{2/3}) \).

Application:

Sum-product conjecture [Erdös-Szemeredi, 1983]: For any \(\epsilon > 0 \) there exists \(C \in \mathbb{R} \) such that for any \(A \subset \mathbb{N} \) finite and large enough, \(\max\{|A + A|, |A \cdot A|\} \geq C |A|^{2-\epsilon} \).

\[
A + A = \{x + y \mid x, y \in A\} \text{ and } A \cdot A = \{x \cdot y \mid x, y \in A\}
\]

Associate to \(A \) the points \(P = (A + A) \times (A \cdot A) \) and lines \(L = \{y = a(x - b) : a, b \in A\} \).

The number of incidence is **at least** \(|A||L| \).

any line \(y = a(x - b)\) contains every point \((c + b, a \cdot c)\) for \(c \in A\).

\[
\text{Szemeredi-Trotter } \Rightarrow |A||L| = O(|P|^{2/3}|L|^{2/3}) \Rightarrow |P| = \Omega(|A|^{3/2}|L|^{1/2}) = \Omega(|A|^{5/2}).
\]

\[
|P| = |A + A||A \cdot A| \text{ implies } \max\{|A + A|, |A \cdot A|\} = \Omega(|A|^{5/4}).
\]

[Elekes, 1997]
Preparation for the proof of the Szemeredi-Trotter theorem.

Crossing lemma. Let G be a graph with v vertices and $e \geq 4v$ edges. In any drawing of G in the plane, at least $\frac{e^3}{64v^2}$ pairs of edges cross.

[Leighton, 1983] [Ajtai-Chvátal-Newborn-Szemeredi, 1982]

Conjectured by [Erdős-Guy, 1972]

edges = Jordan arcs
crossing = intersection other than a common endpoint.
Preparation for the proof of the Szemeredi-Trotter theorem.

Crossing lemma. Let G be a graph with v vertices and $e \geq 4v$ edges. In any drawing of G in the plane, at least $\frac{e^3}{64v^2}$ pairs of edges cross.

Proof: χ a drawing of G and $Cr(\chi) = \text{its number of crossings.}$

\[(*) \quad Cr(\chi) \geq e - 3v. \]

Any planar graph has at most $3v - 3$ edges (Euler relation + double counting).

Fix $p \in [0, 1]$ and delete every vertex of G with probability $1 - p$ (independently).

We obtain a random graph G_p and a drawing χ_p of G_p induced by χ.

\[(*) \Rightarrow p^4Cr(\chi) = E[Cr(\chi_p)] \geq p^2e - 3pv \quad \text{so} \quad Cr(\chi) \geq \frac{e}{p^2} - 3\frac{v}{p^3} \]

Setting $p = \frac{4v}{e}$ yields $Cr(\chi) \geq \frac{e^3}{16v^2} - 3\frac{e^3}{64v^2} = \frac{e^3}{64v^2}$. \[\square \]
Theorem. [Szemeredi-Trotter, 1983] The number of incidences between \(n \) points and \(\ell \) lines in the plane is \(O(n + \ell + n^{2/3} \ell^{2/3}) \).

Proof:

Start with a family of \(n \) points and \(\ell \) lines. Let \(k \) be the number of point/line incidences.

Consider the graph with vertices the \(n \) points and edges the pairs of points **incident** to a common line and **consecutive** on that line.

This graph has at most \(k \) edges.
Theorem. [Szemerédi-Trotter, 1983] The number of incidences between n points and ℓ lines in the plane is $O(n + \ell + n^{2/3}\ell^{2/3})$.

Proof:

Start with a family of n points and ℓ lines.

Let k be the number of point/line incidences.

Consider the graph with vertices the n points and edges the pairs of points **incident** to a common line and **consecutive** on that line.

This graph has at most k edges.
Proof:

Start with a family of n points and ℓ lines. Let k be the number of point/line incidences. Consider the graph with vertices the n points and edges the pairs of points incident to a common line and consecutive on that line. This graph has at most k edges.

In the straight-line drawing of this graph there are at most $\binom{\ell}{2}$ crossings.

Theorem. [Szemeredi-Trotter, 1983] The number of incidences between n points and ℓ lines in the plane is $O(n + \ell + n^{2/3} \ell^{2/3})$.

Theorem. [Szemeredi-Trotter, 1983] The number of incidences between n points and ℓ lines in the plane is $O(n + \ell + n^{2/3} \ell^{2/3})$.

Proof:

Start with a family of n points and ℓ lines.

Let k be the number of point/line incidences.

Consider the graph with vertices the n points and edges the pairs of points *incident* to a common line and *consecutive* on that line.

This graph has at most k edges.

In the straight-line drawing of this graph there are at most $\binom{\ell}{2}$ crossings.

By the **crossing lemma**, any drawing of a graph with v vertices and $e \geq 4v$ edges has at least $\frac{e^3}{64v^2}$ crossings.

$$k < 4n \text{ or } \frac{k^3}{64n^2} \leq \binom{\ell}{2} \quad \Rightarrow \quad k = O(n + \ell + n^{2/3} \ell^{2/3}).$$
A **joint** in a set of lines is a point incident to 3 non-coplanar lines.

Question: what is the maximum number of joints in a set of n lines in \mathbb{R}^3?

Motivation: understand **cycles** in **depth orders**.
A joint in a set of lines is a point incident to 3 non-coplanar lines.

Question: what is the maximum number of joints in a set of \(n \) lines in \(\mathbb{R}^3 \)?

Motivation: understand cycles in depth orders.

Lower bound: \(\Omega(n\sqrt{n}) \).

\[\sqrt{n} \left\{ \begin{array}{c} \text{\sqrt{n}} \\ \text{\sqrt{n}} \end{array} \right\} \left\{ \begin{array}{c} \text{\sqrt{n}} \end{array} \right\} \]

\[3n \text{ lines} \]

\[n\sqrt{n} \text{ joints} \]
A **joint** in a set of lines is a point incident to 3 non-coplanar lines.

Question: what is the maximum number of joints in a set of \(n \) lines in \(\mathbb{R}^3 \)?

Motivation: understand **cycles** in **depth orders**.

- **Lower bound:** \(\Omega(n\sqrt{n}) \).

- **Upper bounds:**

 \[
 O(n^{7/4}) \rightarrow O(n^{23/14} \log^{31/14} n) \rightarrow O(n\sqrt{n})
 \]

[Chazelle et al.’92] [Sharir’94] [Guth-Katz’08]

Uses an idea from Dvir’s solution to the discrete Kakeya problem.
A Kakeya set is a subset of \mathbb{R}^d containing a unit-length segment in every direction.
A Kakeya set is a subset of \mathbb{R}^d containing a unit-length segment in every direction.

Theorem. [Besicovitch 1919] There exist planar Kakeya sets of arbitrarily small measure.
A Kakeya set is a subset of \mathbb{R}^d containing a unit-length segment in every direction.

Theorem. [Besicovitch 1919] There exist planar Kakeya sets of arbitrarily small measure.

Kakeya conjecture. Any Kakeya set in \mathbb{R}^d has dimension d.

Need clarifications: which classes of sets? Which dimension?...

Proven for $d = 2$ and open for any $d \geq 3$.
A Kakeya set is a subset of \mathbb{R}^d containing a unit-length segment in every direction.

Theorem. [Besicovitch 1919] There exist planar Kakeya sets of arbitrarily small measure.

Kakeya conjecture. Any Kakeya set in \mathbb{R}^d has dimension d.

Need clarifications: which classes of sets? Which dimension?

Proven for $d = 2$ and open for any $d \geq 3$.

Discrete analogue of the Kakeya conjecture:

Fix a field \mathbb{F} with q elements.

A discrete Kakeya set is a subset $K \subseteq \mathbb{F}^d$ satisfying: for any $x \in \mathbb{F}^d$ there exists $y \in \mathbb{F}^d$ such that $\{y + ax : a \in \mathbb{F}\} \subseteq K$.

How large must a discrete Kakeya set be?
A Kakeya set is a subset of \mathbb{R}^d containing a unit-length segment in every direction.

Theorem. [Besicovitch 1919] There exist planar Kakeya sets of arbitrarily small measure.

Kakeya conjecture. Any Kakeya set in \mathbb{R}^d has dimension d.

Need clarifications: which classes of sets? Which dimension?... Proven for $d = 2$ and open for any $d \geq 3$.

Discrete analogue of the Kakeya conjecture:

Fix a field \mathbb{F} with q elements.

A discrete Kakeya set is a subset $K \subseteq \mathbb{F}^d$ satisfying: for any $x \in \mathbb{F}^d$ there exists $y \in \mathbb{F}^d$ such that $\{y + ax : a \in \mathbb{F}\} \subset K$.

How large must a discrete Kakeya set be?

Lower bounds: $\Omega(q^{\frac{d+2}{2}}) \rightarrow \Omega(q^{\frac{4}{7}d}) \rightarrow \Omega(q^{d-1})$

[Wolff’99] [Bourgain-Katz-Tao’04] [Mockenhaupt-Tao’04][Dvir’09]

Dvir’s idea: a non-zero polynomial of deg. b has at most bq^{d-1} zeros. [Zippel’79][Shwartz’80]
Theorem. [Guth-Katz, 2008] Any set of n lines in \mathbb{R}^3 has $O(n\sqrt{n})$ joints.

Proof: Let L be a set of n lines in \mathbb{R}^3 with j joints.

We can assume that every line of L contains at least $\frac{j}{2n}$ joints.

Eliminate any line with less than $\frac{j}{2n}$ joints and any joint on less than 3 remaining lines.

If αn lines were eliminated then at most $\frac{\alpha}{2} j$ joints were eliminated.

$$(1 - \frac{\alpha}{2})j = O((1 - \alpha)^{3/2} n^{3/2}) \Rightarrow j = O(n^{3/2}).$$
Theorem. [Guth-Katz, 2008] Any set of n lines in \mathbb{R}^3 has $O(n\sqrt{n})$ joints.

Proof: Let L be a set of n lines in \mathbb{R}^3 with j joints.

We can assume that every line of L contains at least \(\frac{j}{2n} \) joints.

Eliminate any line with less than \(\frac{j}{2n} \) joints and any joint on less than 3 remaining lines.

If αn lines were eliminated then at most $\frac{\alpha}{2} j$ joints were eliminated.

\[
(1 - \frac{\alpha}{2})j = O((1 - \alpha)^{3/2}n^{3/2}) \Rightarrow j = O(n^{3/2}).
\]

Choose a polynomial $P(x, y, z) \neq 0$ vanishing in every joints and with minimal total degree b.

Every joint defines a linear constraint in the $\binom{b+3}{3}$ coefficients of P so $b = O(j^{1/3})$.

Theorem. [Guth-Katz, 2008] Any set of n lines in \mathbb{R}^3 has $O(n\sqrt{n})$ joints.

Proof: Let L be a set of n lines in \mathbb{R}^3 with j joints.

We can assume that every line of L contains at least $\frac{j}{2n}$ joints.

Eliminate any line with less than $\frac{j}{2n}$ joints and any joint on less than 3 remaining lines.

If αn lines were eliminated then at most $\alpha \frac{j}{2}$ joints were eliminated.

$$(1 - \frac{\alpha}{2})j = O((1 - \alpha)^{3/2}n^{3/2}) \Rightarrow j = O(n^{3/2}).$$

Choose a polynomial $P(x, y, z) \neq 0$ vanishing in every joints and with minimal total degree b.

Every joint defines a linear constraint in the $\binom{b+3}{3}$ coefficients of P so $b = O(j^{1/3})$.

Minimality imposes $b \geq \frac{j}{2n}$.

Else every line of L is contained in $P(x, y, z) = 0$ (Bezout).

then $\overrightarrow{\text{grad}} P = \vec{0}$ in every joint; since one of $\frac{\partial P}{\partial x}$, $\frac{\partial P}{\partial y}$, $\frac{\partial P}{\partial z}$ is not identically zero, b is not minimal.
Theorem. [Guth-Katz, 2008] Any set of \(n\) lines in \(\mathbb{R}^3\) has \(O(n\sqrt{n})\) joints.

Proof: Let \(L\) be a set of \(n\) lines in \(\mathbb{R}^3\) with \(j\) joints.

We can assume that every line of \(L\) contains at least \(\frac{j}{2n}\) joints.

Eliminate any line with less than \(\frac{j}{2n}\) joints and any joint on less than 3 remaining lines.

If \(\alpha n\) lines were eliminated then at most \(\alpha^2 j\) joints were eliminated.

\[
(1 - \frac{\alpha}{2})j = O((1 - \alpha)^{3/2} n^{3/2}) \Rightarrow j = O(n^{3/2}).
\]

Choose a polynomial \(P(x, y, z) \neq 0\) vanishing in every joints and with minimal total degree \(b\).

Every joint defines a linear constraint in the \(\binom{b+3}{3}\) coefficients of \(P\) so \(b = O(j^{1/3})\).

Minimality imposes \(b \geq \frac{j}{2n}\).

Else every line of \(L\) is contained in \(P(x, y, z) = 0\) (Bezout).

Then \(\overrightarrow{\text{grad}}P = \vec{0}\) in every joint; since one of \(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}, \frac{\partial P}{\partial z}\) is not identically zero, \(b\) is not minimal.

Thus, \(\frac{j}{2n} = O(j^{1/3})\) and we have \(j = O(n^{3/2})\).

\(\square\)
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ **distinct distances** problem.

Question: how few distinct distances are determined by n points in the plane?
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ distinct distances problem.

Question: how few distinct distances are determined by \(n \) points in the plane?

\(O(n/\sqrt{\log n}) \) for regular grids, conjectured to be minimal.

Slow progress on lower bounds of the form \(\Omega(n^c) \).

\[
c = \frac{1}{2} \rightarrow \frac{2}{3} \rightarrow \frac{5}{7} \rightarrow \frac{4}{5} \rightarrow \frac{6}{7} \rightarrow \frac{4e}{5e-1} - \epsilon \rightarrow \frac{48-14e}{55-16e} - \epsilon
\]

[Erdős'46][Moser’52][Chung’84][Chung-Szemerédi-Trotter’92][Szekely’93][Solymosi-Tóth’01][Tardos’03][Katz-Tardos’04]
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ **distinct distances** problem.

Question: how few distinct distances are determined by \(n \) points in the plane?

\(O(n/\sqrt{\log n}) \) for regular grids, conjectured to be minimal.

Slow progress on lower bounds of the form \(\Omega(n^c) \).

\[
c = 1/2 \rightarrow 2/3 \rightarrow 5/7 \rightarrow 4/5 \rightarrow 6/7 \rightarrow \frac{4e}{5e-1} - \epsilon \rightarrow \frac{48-14e}{55-16e} - \epsilon
\]

\[\text{[Erdős’46][Moser’52][Chung’84][Chung-Szemerédi-Trotter’92][Szekely’93]}
\[\text{[Solymosi-Tóth’01][Tardos’03][Katz-Tardos’04]}
\]

\(\Omega(n/\log n) \) by incidence geometry + polynomial method.

\[\text{[Guth-Katz’15] using [Elekes-Sharir’10]}\]
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ **distinct distances** problem.

Question: how few distinct distances are determined by \(n \) points in the plane?

\(O(n/\sqrt{\log n}) \) for regular grids, conjectured to be minimal.

Slow progress on lower bounds of the form \(\Omega(n^c) \).

\[
c = 1/2 \rightarrow 2/3 \rightarrow 5/7 \rightarrow 4/5 \rightarrow 6/7 \rightarrow \frac{4e}{5e-1} - \epsilon \rightarrow \frac{48 - 4e}{55 - 16e} - \epsilon
\]

[Chung’84][Chung-Szemerédi-Trotter’92][Szekely’93]

\[\Omega(n/\log n) \] by incidence geometry + polynomial method.

Partitioning theorems.

Partition a set of \(n \) points into \(r \) balanced subsets so that any line intersects \(O(\sqrt{r}) \) of the convex hulls of the subsets.

Cuttings, simplicial partition theorem... [Chazelle-Friedman’90]

Algorithmic applications (eg. range searching) by divide-and-conquer.

[Chazelle’93][Matoušek & Chazelle’88–’93]

Complicated proofs, not effective.
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ distinct distances problem.

Question: how few distinct distances are determined by n points in the plane?

$O(n/\sqrt{\log n})$ for regular grids, conjectured to be minimal.

Slow progress on lower bounds of the form $\Omega(n^c)$.

$$c = \frac{1}{2} \rightarrow \frac{2}{3} \rightarrow \frac{5}{7} \rightarrow \frac{4}{5} \rightarrow \frac{6}{7} \rightarrow \frac{4e}{5e-1} - \epsilon \rightarrow \frac{48-14e}{55-16e} - \epsilon$$

[**Erdős'46**][Moser'52][Chung'84][Chung-Szemerédi-Trotter'92][Szekely'93][Solymosi-Tóth'01][Tardos'03][Katz-Tardos'04]

$\Omega(n/\log n)$ by incidence geometry + polynomial method.

[Guth-Katz'15] *using* [Elekes-Sharir'10]

Partitioning theorems.

Partition a set of n points into r **balanced** subsets so that any line intersects $O(\sqrt{r})$ of the convex hulls of the subsets.

Cuttings, simplicial partition theorem... [Chazelle-Friedman'90]

Algorithmic applications (eg. range searching) by divide-and-conquer.

[Chazelle'93][Matoušek & Chazelle'88-'93]

Complicated proofs, not effective.
Stimulated a re-examination of old questions through a polynomial lens.

Erdős’ distinct distances problem.

Question: how few distinct distances are determined by n points in the plane?

$O(n/\sqrt{\log n})$ for regular grids, conjectured to be minimal.

Slow progress on lower bounds of the form $\Omega(n^c)$.

$$c = \frac{1}{2} \rightarrow \frac{2}{3} \rightarrow \frac{5}{7} \rightarrow \frac{4}{5} \rightarrow \frac{6}{7} \rightarrow \frac{4e}{5e-1} - \epsilon \rightarrow \frac{48-14e}{55-16e} - \epsilon$$

[Chazelle-Friedman’90] [Chazelle’93] [Matoušek & Chazelle’88-’93]

$\Omega(n/\log n)$ by incidence geometry + polynomial method.

Partitioning theorems.

Partition a set of n points into r balanced subsets so that any line intersects $O(\sqrt{r})$ of the convex hulls of the subsets.

Cuttings, simplicial partition theorem... [Chazelle-Friedman’90]

Algorithmic applications (eg. range searching) by divide-and-conquer.

[Chazelle’93] [Matoušek & Chazelle’88-’93]

Complicated proofs, not effective.

Simplified and strengthened using the polynomial ham-sandwich theorem.
Some classics
 Arrangements
 Delaunay triangulations & Voronoi diagrams

New development: algebraic/polynomial methods
 Incidence geometry, around the Szemeredi-Trotter theorem
 Solution to the joint problem by algebraic arguments

New developments: topological methods
 Topological combinatorics and inclusion-exclusion formulas
 Persistent homology and topological inference
Geometric graph theory studies graphs through their embedding properties.

Rich theory of **planar graphs**.

- \# edges \leq 3\# vertices - 3
- Circle packing theorem [Koebe][Thurston][Andreev]
- Structural properties (eg. planar separator theorem).
- Characterization by excluded minors.
 ...

Generalizes to the theory of graphs embedding on a **compact 2-manifold**.

- Euler characteristic, characterization by excluded minors...
- Heawood inequality: if K_n embeds into M then
 \[(n - 3)(n - 4) \leq 6b_1(M) = 12 - 6\chi(M). \]

 \[M \text{ is a compact 2-manifold and } b_i(M) \text{ is its } i\text{th Betti number.} \]
Generalization of graphs: (uniform) **hypergraphs** model r-wise interactions for $r > 2$.

Hypergraph with vertex set $V = \text{set of subsets of } V$. Uniform if all subsets have the same size.
Generalization of graphs: (uniform) **hypergraphs** model r-wise interactions for $r > 2$.

Hypergraph with vertex set $V = \text{set of subsets of } V$. Uniform if all subsets have the same size.

Generalization of **embedded** graphs: **simplicial complexes**.

abstract simplicial complex

“Collection of sets that is closed under taking subsets.”

\{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}\}

general geometric simplicial complex

“Collection of geometric simplices in \mathbb{R}^d s.t. any two are disjoint or intersect in a common face.”
Generalization of graphs: (uniform) hypergraphs model r-wise interactions for $r > 2$.

Hypergraph with vertex set $V = \text{set of subsets of } V$. Uniform if all subsets have the same size.

Generalization of embedded graphs: simplicial complexes.

- **Abstract simplicial complex**
 - "Collection of sets that is closed under taking subsets."
 - \{∅, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}\}

- **Geometric simplicial complex**
 - "Collection of geometric simplices in \mathbb{R}^d s.t. any two are disjoint or intersect in a common face."

- **Geometric realization**: map singletons to points in general position in \mathbb{R}^d, d large enough, take convex hulls of points corresponding to abstract simplices.
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_d f_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K.

Known for $d = 2, 3$ and open for any $d \geq 4$.
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any \(d \) there exists \(C_d \) such that \(f_d(K) \leq C_d f_{d-1}(K) \) for any finite simplicial complex \(K \) embedding in \(\mathbb{R}^d \).

\(f_i(K) \) is the number of faces of dimension \(i \) of \(K \).

Known for \(d = 2, 3 \) and open for any \(d \geq 4 \).

We can study these **combinatorial** objects through their associated **topological** space.

If \(K \) is a simplicial complex and \(|K| \) is its realization then

\[
\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)
\]
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_d f_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K.
Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these **combinatorial** objects through their associated **topological** space.

If K is a simplicial complex and $|K|$ is its realization then

$$
\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)
$$

The **nerve** $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{G : G \subseteq \mathcal{F} \text{ and } \cap G \neq \emptyset\}$.

\[\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}\} \]
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_d f_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K. Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these combinatorial objects through their associated topological space.

If K is a simplicial complex and $|K|$ is its realization then

$$
\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{\mathcal{G} : \mathcal{G} \subseteq \mathcal{F} \text{ and } \cap \mathcal{G} \neq \emptyset\}$.

$$
\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}\}
$$
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_d f_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K.
Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these **combinatorial** objects through their associated **topological** space.

If K is a simplicial complex and $|K|$ is its realization then

$$
\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{G : G \subseteq \mathcal{F} \text{ and } \cap G \neq \emptyset\}$.

$\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that
$$f_d(K) \leq C_d f_{d-1}(K)$$
for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K.
Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these **combinatorial** objects through their associated **topological** space.

If K is a simplicial complex and $|K|$ is its realization then
$$\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{ \mathcal{G} : \mathcal{G} \subseteq \mathcal{F} \text{ and } \cap \mathcal{G} \neq \emptyset \}$.

$$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$$
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_d f_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K. Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these **combinatorial** objects through their associated **topological** space.

If K is a simplicial complex and $|K|$ is its realization then

$$
\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)
$$

The nerve $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{ \mathcal{G} : \mathcal{G} \subseteq \mathcal{F} \text{ and } \cap \mathcal{G} \neq \emptyset \}$.

$\mathcal{N}(\mathcal{F}) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}$

Nerves are simplicial complexes.
Conjecture [Grünbaum][Sarkaria][Kalai][Dey] For any d there exists C_d such that $f_d(K) \leq C_df_{d-1}(K)$ for any finite simplicial complex K embedding in \mathbb{R}^d.

$f_i(K)$ is the number of faces of dimension i of K. Known for $d = 2, 3$ and open for any $d \geq 4$.

We can study these **combinatorial** objects through their associated **topological** space.

If K is a simplicial complex and $|K|$ is its realization then

$$\chi(K) = \sum_{i \geq 0} (-1)^i f_i(K) = \sum_{i \geq 0} (-1)^i \beta_i(|K|)$$

The **nerve** $\mathcal{N}(\mathcal{F})$ of a family \mathcal{F} of sets is $\mathcal{N}(\mathcal{F}) = \{G : G \subseteq \mathcal{F} \text{ and } \cap G \neq \emptyset\}$.

$\mathcal{N}(\mathcal{F}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Nerves are simplicial complexes.

Nerve Theorem.[Borsuk’48][Leray] If \mathcal{F} is a good cover in \mathbb{R}^d then $\mathcal{N}(\mathcal{F}) \simeq \bigcup \mathcal{F}$.

good cover = any subfamily has empty or contractible intersection.
We can use simplicial complexes to simplify **inclusion-exclusion formulas**.

For any family $\mathcal{F} = \{A_1, A_2, \ldots, A_n\}$ of sets $1 \bigcup_{i=1}^{n} A_i = \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S|+1} 1 \bigcap_{i \in S} A_i$.

1_X is the indicator function of X.

Question: can we express 1_{\bigcup} using fewer 1_{\bigcap}'s?

Effective volume computation, inclusion-exclusion algorithms
We can use simplicial complexes to simplify **inclusion-exclusion formulas**.

For any family \(\mathcal{F} = \{ A_1, A_2, \ldots, A_n \} \) of sets
\[
1_{\bigcup_{i=1}^n A_i} = \sum_{0 \neq S \subseteq [n]} (-1)^{|S| + 1} 1_{\bigcap_{i \in S} A_i}.
\]

1\(_x\) is the indicator function of \(X \).

Question: can we express \(1_{\bigcup} \) using fewer \(1_{\bigcap} \)'s?

Effective volume computation, inclusion-exclusion algorithms

Not in general...

\[
1_{A \cup B \cup C} = \lambda_a 1_A + \lambda_b 1_B + \lambda_c 1_C + \lambda_{ab} 1_{A \cap B} + \lambda_{ac} 1_{A \cap C} + \lambda_{bc} 1_{B \cap C} + \lambda_{abc} 1_{A \cap B \cap C}
\]

\(\Rightarrow \lambda_a = 1 \quad \Rightarrow \lambda_b = 1 \quad \Rightarrow \lambda_a + \lambda_b + \lambda_{ab} = 1 \Rightarrow \lambda_{ab} = -1 \)

Set systems with complete Venn diagram have only one inclusion-exclusion formula.
We can use simplicial complexes to simplify **inclusion-exclusion formulas**.

For any family $\mathcal{F} = \{A_1, A_2, \ldots, A_n\}$ of sets $1_{\bigcup_{i=1}^n A_i} = \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S| + 1} 1_{\bigcap_{i \in S} A_i}$.

1_X is the indicator function of X.

Question: can we express 1_\bigcup using fewer 1_\bigcap's?

Effective volume computation, inclusion-exclusion algorithms

Not in general...

$1_{A\cup B\cup C} = \lambda_a 1_A + \lambda_b 1_B + \lambda_c 1_C + \lambda_{ab} 1_{A\cap B} + \lambda_{ac} 1_{A\cap C} + \lambda_{bc} 1_{B\cap C} + \lambda_{abc} 1_{A\cap B\cap C}$

$\Rightarrow \lambda_a = 1 \quad \Rightarrow \lambda_b = 1 \quad \Rightarrow \lambda_a + \lambda_b + \lambda_{ab} = 1 \Rightarrow \lambda_{ab} = -1$

Set systems with complete Venn diagram have only one inclusion-exclusion formula.

... but sometimes.

$1_{A\cup B\cup C} = 1_A + 1_B + 1_C - 1_{A\cap B} - 1_{A\cap C} - 1_{B\cap C} + 1_{A\cap B\cap C}$
We can use simplicial complexes to simplify **inclusion-exclusion formulas**.

For any family \(\mathcal{F} = \{A_1, A_2, \ldots, A_n\} \) of sets \(\bigcup_{i=1}^{n} A_i = \sum_{\emptyset \neq S \subseteq [n]} (-1)^{|S|+1} \bigcap_{i \in S} A_i \) .

1\(_X\) is the indicator function of \(X \).

Question: can we express \(1_\bigcup \) using fewer \(1_\cap \)'s?

Effective volume computation, inclusion-exclusion algorithms

Not in general...

\[
1_{A \cup B \cup C} = \lambda_a 1_A + \lambda_b 1_B + \lambda_c 1_C + \lambda_{ab} 1_{A \cap B} + \lambda_{ac} 1_{A \cap C} + \lambda_{bc} 1_{B \cap C} + \lambda_{abc} 1_{A \cap B \cap C}
\]

\[\Rightarrow \lambda_a = 1 \quad \Rightarrow \lambda_b = 1 \quad \Rightarrow \lambda_a + \lambda_b + \lambda_{ab} = 1 \Rightarrow \lambda_{ab} = -1\]

Set systems with complete Venn diagram have only one inclusion-exclusion formula.

... but sometimes.

\[
1_{A \cup B \cup C} = 1_A + 1_B + 1_C - 1_{A \cap B} - 1_{A \cap C} - 1_{B \cap C} + 1_{A \cap B \cap C} \text{ since } A \cap C = A \cap B \cap C.
\]

Any set system has a inclusion-exclusion formula quasi-polynomial in the number of sets and the size of the Venn diagram.

[Goaoc-Matoušek-Paták-Safernova-Tancer’15]
Let $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ be a family of unit balls in \mathbb{R}^d.

Write p_i for the center of B_i.

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$\sigma \in K \iff \{p_i : i \in \sigma\}$ has no p_j in the interior of its circumscribed ball.

Theorem [Naiman-Wynn’92’97] \[\bigcup_{i=1}^{n} B_i = \sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}. \]

For $d = 2$, $6n - 11$ terms, each of size at most 3, and computable in $O(n \log n)$ time.

For $d \geq 3$, $O(n^{\lceil d/2 \rceil})$ terms, each of size at most d, and computable in $O(n^{\lceil d/2 \rceil})$ time.

Idem for balls of different radii but uses the power diagram.

“A correct inclusion-exclusion formula for a family of unit radius balls in \mathbb{R}^d is given by the Delaunay triangulation of their centers.”
Let $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ be a family of unit balls in \mathbb{R}^d.

Write p_i for the center of B_i.

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$$\sigma \in K \iff \{p_i : i \in \sigma\} \text{ has no } p_j \text{ in the interior of its circumscribed ball.}$$

Theorem [Naiman-Wynn'92'97]

$$\mathbf{1}_{\bigcup_{i=1}^{n} B_i} = \sum_{\sigma \in K} (-1)^{\dim \sigma} \mathbf{1}_{\bigcap_{i \in \sigma} B_i}.$$

For $d = 2$, $6n - 11$ terms, each of size at most 3, and computable in $O(n \log n)$ time.

For $d \geq 3$, $O(n^{\lceil d/2 \rceil})$ terms, each of size at most d, and computable in $O(n^{\lceil d/2 \rceil})$ time.

Idem for balls of different radii but uses the power diagram.

“A correct inclusion-exclusion formula for a family of unit radius balls in \mathbb{R}^d is given by the Delaunay triangulation of their centers.”
Let $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ be a family of unit balls in \mathbb{R}^d.

Write p_i for the center of B_i.

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$\sigma \in K \iff \{p_i : i \in \sigma\}$ has no p_j in the interior of its circumscribed ball.

Theorem [Naiman-Wynn'92'97]

\[1 \bigcup_{i=1}^{n} B_i = \sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\bigcap_{i \in \sigma} B_i}.\]

For $d = 2$, $6n - 11$ terms, each of size at most 3, and computable in $O(n \log n)$ time.

For $d \geq 3$, $O(n^{\lceil d/2 \rceil})$ terms, each of size at most d, and computable in $O(n^{\lceil d/2 \rceil})$ time.

Idem for balls of different radii but uses the power diagram.

“A correct inclusion-exclusion formula for a family of unit radius balls in \mathbb{R}^d is given by the Delaunay triangulation of their centers.”
Let $\mathcal{F} = \{B_1, B_2, \ldots, B_n\}$ be a family of unit balls in \mathbb{R}^d.

Write p_i for the center of B_i.

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$\sigma \in K \Leftrightarrow \{p_i : i \in \sigma\}$ has no p_j in the interior of its circumscribed ball.

Theorem [Naiman-Wynn’92’97] $\mathbf{1}_{\bigcup_{i=1}^n B_i} = \sum_{\sigma \in K} (-1)^{\text{dim } \sigma} \mathbf{1}_{\bigcap_{i \in \sigma} B_i}$.

For $d = 2$, $6n - 11$ terms, each of size at most 3, and computable in $O(n \log n)$ time.

For $d \geq 3$, $O(n^{\lceil d/2 \rceil})$ terms, each of size at most d, and computable in $O(n^{\lceil d/2 \rceil})$ time.

Idem for balls of different radii but uses the power diagram.

“A correct inclusion-exclusion formula for a family of unit radius balls in \mathbb{R}^d is given by the Delaunay triangulation of their centers.”

It suffices to prove that for any $x \in \bigcup_{i=1}^n B_i$

$$\sum_{\sigma \in K} (-1)^{\text{dim } \sigma} \mathbf{1}_{\bigcap_{i \in \sigma} B_i}(x) = 1.$$
Claim. For any $x \in \bigcup_{i=1}^{n} B_i$, \(\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = 1 \).

B_1, B_2, \ldots, B_n unit balls in \mathbb{R}^d with B_i centered in p_i.

$R_i = \{ y \in \mathbb{R}^d \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|yp_j\| \geq \|yp_i\| \}$

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$\sigma \in K \Leftrightarrow \{p_i : i \in \sigma\}$ has no p_j in the interior of its circumscribed ball.

$\mathbf{Claim.}$ For any $x \in \bigcup_{i=1}^{n} B_i$, \(\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = 1 \).
Claim. For any $x \in \bigcup_{i=1}^{n} B_i$, $\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_i \in \sigma} B_i(x) = 1$.

Proof: Define $F_x = \{i : x \in B_i\}$. It suffices to show that $K[F_x]$ is contractible:

$$\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_i \in \sigma} B_i(x) = \sum_{\sigma \in K; \sigma \subseteq F_x} (-1)^{\dim \sigma} = \chi(K[F_x]).$$

$K[F_x]$ is the subcomplex of K induced by $F_x = \text{all simplices contained in } F_x$.

B_1, B_2, \ldots, B_n unit balls in \mathbb{R}^d with B_i centered in p_i.

$R_i = \{y \in \mathbb{R}^d \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|yp_j\| \geq \|yp_i\|\}$

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$\sigma \in K \Leftrightarrow \{p_i : i \in \sigma\}$ has no p_j in the interior of its circumscribed ball.
B_1, B_2, \ldots, B_n unit balls in \mathbb{R}^d with B_i centered in p_i.

$R_i = \{y \in \mathbb{R}^d \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|yp_j\| \geq \|yp_i\|\}$

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

$$\sigma \in K \iff \{p_i : i \in \sigma\} \text{ has no } p_j \text{ in the interior of its circumscribed ball.}$$

Claim. For any $x \in \bigcup_{i=1}^{n} B_i$, $\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = 1$.

Proof: Define $\mathcal{F}_x = \{i : x \in B_i\}$. It suffices to show that $K[\mathcal{F}_x]$ is contractible:

$$\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = \sum_{\sigma \in K ; \sigma \subset \mathcal{F}_x} (-1)^{\dim \sigma} = \chi(K[\mathcal{F}_x]).$$

$K[\mathcal{F}_x]$ is the subcomplex of K induced by $\mathcal{F}_x = \text{all simplices contained in } \mathcal{F}_x$.

Delaunay = Nerve(Voronoi) \Rightarrow $K[\mathcal{F}_x]$ is the nerve of $\{R_i : x \in B_i\}$.

Nerve theorem \Rightarrow it suffices to argue that $\bigcup_{i : x \in B_i} R_i$ is contractible.
Claim. For any $x \in \bigcup_{i=1}^n B_i$, $\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = 1$.

Proof: Define $F_x = \{i : x \in B_i\}$. It suffices to show that $K[F_x]$ is contractible:

$\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = \sum_{\sigma \in K : \sigma \subseteq F_x} (-1)^{\dim \sigma} = \chi(K[F_x])$.

$K[F_x]$ is the subcomplex of K induced by $F_x = \text{all simplices contained in } F_x$.

Delaunay $= \text{Nerve(Voronoi)} \Rightarrow K[F_x]$ is the nerve of $\{R_i : x \in B_i\}$.

Nerve theorem \Rightarrow it suffices to argue that $\bigcup_{i : x \in B_i} R_i$ is contractible.

Renumber the p_i so that $\|xp_1\| \leq \|xp_2\| \leq \ldots \leq \|xp_n\|$.

Define $R'_i = \{y \in \mathbb{R}^d | \forall j \in \{i+1, i+2, \ldots, n\}, \|yp_j\| \geq \|yp_i\|\}$.
B_1, B_2, \ldots, B_n unit balls in \mathbb{R}^d with B_i centered in p_i.

$R_i = \{ y \in \mathbb{R}^d \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|yp_j\| \geq \|yp_i\|\}$

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

Claim. For any $x \in \bigcup_{i=1}^n B_i$, $\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = 1$.

Proof: Define $F_x = \{i : x \in B_i\}$. It suffices to show that $K[F_x]$ is contractible:

$$\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_{i \in \sigma} B_i}(x) = \sum_{\sigma \in K; \sigma \subseteq F_x} (-1)^{\dim \sigma} = \chi(K[F_x]).$$

$K[F_x]$ is the subcomplex of K induced by $F_x = \text{all simplices contained in } F_x$.

Delaunay = Nerve(Voronoi) \Rightarrow $K[F_x]$ is the nerve of $\{R_i : x \in B_i\}$.

Nerve theorem \Rightarrow it suffices to argue that $\bigcup_{i : x \in B_i} R_i$ is contractible.

Renumber the p_i so that $\|xp_1\| \leq \|xp_2\| \leq \ldots \leq \|xp_n\|$.

Define $R_i' = \{ y \in \mathbb{R}^d \mid \forall j \in \{i + 1, i + 2, \ldots, n\}, \|yp_j\| \geq \|yp_i\|\}$
B_1, B_2, \ldots, B_n unit balls in \mathbb{R}^d with B_i centered in p_i.

$R_i = \{ y \in \mathbb{R}^d \mid \forall j \in \{1, 2, \ldots, n\} \setminus \{i\}, \|yp_j\| \geq \|yp_i\| \}$

K the simplicial complex encoding the Delaunay triangulation of $\{p_1, p_2, \ldots, p_n\}$.

Claim. For any $x \in \bigcup_{i=1}^n B_i$, $\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_i \in \sigma B_i}(x) = 1$.

Proof: Define $F_x = \{ i : x \in B_i \}$. It suffices to show that $K[F_x]$ is contractible:

$$\sum_{\sigma \in K} (-1)^{\dim \sigma} 1_{\cap_i \in \sigma B_i}(x) = \sum_{\sigma \in K; \sigma \subset F_x} (-1)^{\dim \sigma} = \chi(K[F_x]).$$

Delaunay = Nerve(Voronoi) \Rightarrow $K[F_x]$ is the nerve of $\{R_i : x \in B_i\}$.

Nerve theorem \Rightarrow it suffices to argue that $\bigcup_{i : x \in B_i} R_i$ is contractible.

Renumber the p_i so that $\|xp_1\| \leq \|xp_2\| \leq \ldots \leq \|xp_n\|$.

Define $R'_i = \{ y \in \mathbb{R}^d \mid \forall j \in \{i + 1, i + 2, \ldots, n\}, \|yp_j\| \geq \|yp_i\| \}$

$$\bigcup_{i : x \in B_i} R_i = \bigcup_{i : x \in B_i} R'_i$$ which is star-shaped wrt x. \qed
Another kind of use of topological methods: **topological data analysis**

Data is commonly obtained by **sampling**.
Distance/similarity notion influenced by the underlying topology/geometry.
Another kind of use of topological methods: **topological data analysis**

Data is commonly obtained by **sampling**.

Distance/similarity notion influenced by the underlying topology/geometry.

Topological data analysis aims at inferring these structures.

Better understand the observed phenomena.

Improve the treatment of this data (dimension reduction, parameterization...)

Applications: clustering, matching, classification, visualization, learning,...
Another kind of use of topological methods: **topological data analysis**

Data is commonly obtained by **sampling**.

Distance/similarity notion influenced by the underlying topology/geometry.

Topological data analysis aims at inferring these structures.

> Better understand the observed phenomena.
> Improve the treatment of this data (dimension reduction, parameterization...)
> Applications: clustering, matching, classification, visualization, learning, ...

Need for intermediate constructions (simplicial complexes).
Distinguish "signal" from "topological noise", multi-scale information.
Exemple: **Betti numbers** inference.

$\beta_i(X)$ is the rank of the ith homology group $H_i(X)$.

$\beta_0 = \text{number of connected components}$.

β_i formalizes the “number of independent holes of dimension i”.
Exemple: **Betti numbers** inference.

\[\beta_i(X) \] is the rank of the \(i \)th homology group \(H_i(X) \).

\[\beta_0 = \text{number of connected components.} \]
\[\beta_i \] formalizes the “number of independent holes of dimension \(i \)”.

Data: a sample \(S \) from a **compact** space \(X \).

The geometry/topology of \(X \) is not known (ex: all configurations of a given molecule).

We assume \(X \) sufficiently “regular”.

(This assumption can be dispensed of.)
Exemple: **Betti numbers** inference.

\[\beta_i(X) \] is the rank of the \(i \)th homology group \(H_i(X) \).

\[\beta_0 = \text{number of connected components}. \]
\[\beta_i \text{ formalizes the “number of independent holes of dimension } i \”. \]

Data: a sample \(S \) from a **compact** space \(X \).

The geometry/topology of \(X \) is not known (ex: all configurations of a given molecule).

We assume \(X \) sufficiently “regular”.

(This assumption can be dispensed of.)

We use the **reach** of \(X \).

Distance from \(X \) to its medial axis.
* = locus of the points with more than one nearest neighbour on \(X \).*
positive if \(X \) is smooth.
Approach: union of balls.

For $\varepsilon > 0$ let $S^{(\varepsilon)} = \bigcup_{p \in S} B(p, \varepsilon)$.
Approach: **union of balls.**

For $\varepsilon > 0$ let $S^{(\varepsilon)} = \bigcup_{p \in S} B(p, \varepsilon)$.

Theorem. [Nyogi-Smale-Weinberger’04] Let $X \subset \mathbb{R}^d$ be a smooth, compact manifold and $S \subset \mathbb{R}^d$ finite. For any $\varepsilon \in [d_H(P, X), (3 - \sqrt{8})r_X]$,

$$\forall i \in \mathbb{N}, \quad \beta_i \left(S^{((2+\sqrt{2})\varepsilon)} \right) = \beta_i (X)$$

r_X: reach of X.

$$d_H(P, X) = \max\{\sup_{p \in P} \inf_{x \in X} \|px\|, \sup_{x \in X} \inf_{p \in P} \|px\|\} \ (\text{Hausdorff distance})$.
Approach: **union of balls**.

For \(\varepsilon > 0 \) let \(S(\varepsilon) = \bigcup_{p \in S} B(p, \varepsilon) \).

Theorem. [Nyogi-Smale-Weinberger’04] Let \(X \subset \mathbb{R}^d \) be a smooth, compact manifold and \(S \subset \mathbb{R}^d \) finite. For any \(\varepsilon \in [d_H(P, X), (3 - \sqrt{8})r_X] \),

\[
\forall i \in \mathbb{N}, \quad \beta_i \left(S((2 + \sqrt{2})\varepsilon) \right) = \beta_i(X)
\]

\(r_X \): reach of \(X \).

\[
d_H(P, X) = \max \{ \sup_{p \in P} \inf_{x \in X} \|px\|, \sup_{x \in X} \inf_{p \in P} \|px\| \} \quad (\text{Hausdorff distance})
\]

Intuition: take \(\varepsilon \) large enough to fill the holes in the sampling, small enough not to fill the holes in \(X \).
Approach: **union of balls.**

For $\varepsilon > 0$ let $S^{(\varepsilon)} = \bigcup_{p \in S} B(p, \varepsilon)$.

Theorem.[Nyiogi-Smale-Weinberger’04] Let $X \subset \mathbb{R}^d$ be a smooth, compact manifold and $S \subset \mathbb{R}^d$ finite. For any $\varepsilon \in [d_H(P, X), (3 - \sqrt{8}) r_X]$,

$$\forall i \in \mathbb{N}, \quad \beta_i \left(S^{((2+\sqrt{2})\varepsilon)} \right) = \beta_i (X)$$

(\textit{Hausdorff distance}).

Intuition: take ε large enough to fill the holes in the sampling, small enough not to fill the holes in X.

Algorithm:

- **Input:** a sample S of a space X.
- Compute a radius ε such that $\beta_i \left(S^{(\varepsilon)} \right) = \beta_i (X)$.
- Compute the nerve \mathcal{N} of the balls of radius ε centered in S.
- Compute the Betti numbers of \mathcal{N} using simplicial homology.
This algorithm can be improved using **Vietoris-Rips complexes**.

\[S = \{p_1, p_2, \ldots, p_n\} \subset \mathbb{R}^d \text{ and } S_t = \{B(p_1, t), B(p_2, t), \ldots, B(p_n, t)\}. \]

The **Vietoris-Rips complex** \(R_t(S) \) of \(S \) with parameter \(t \) is the clique complex of the intersection graph of \(S_t \).

\[R_t(S) = \{I \subset \{1, 2, \ldots, n\} \mid \forall i, j \in I, \|p_ip_j\| \leq 2t\}. \]
This algorithm can be improved using **Vietoris-Rips complexes**.

\[S = \{p_1, p_2, \ldots, p_n\} \subset \mathbb{R}^d \text{ and } S_t = \{B(p_1, t), B(p_2, t), \ldots, B(p_n, t)\}. \]

The **Vietoris-Rips complex** \(R_t(S) \) of \(S \) with parameter \(t \) is the clique complex of the intersection graph of \(S_t \).

\[
R_t(S) = \{ I \subset \{1, 2, \ldots, n\} \mid \forall i, j \in I, \|p_i p_j\| \leq 2t \}.
\]

\(R_t(S) \) is easier to compute than the nerve of \(S_t \).

Only needs the 1-skeleton, makes for a greater numerical stability.

Critical because one extra or fewer simplex changes the \(\beta_i \).

Theorem. [Attali-Lieutier-Salinas’10] For any smooth, compact manifold \(X \subset \mathbb{R}^d \), any finite subset \(S \subset \mathbb{R}^d \), any \(\varepsilon \in [d_H(P, X), 0.034r_X] \),

\[
\forall i \in \mathbb{N}, \quad \beta_i \left(R_{7.22\varepsilon}(S) \right) = \beta_i(X)
\]
This algorithm can be improved using **Vietoris-Rips complexes**.

\[S = \{ p_1, p_2, \ldots, p_n \} \subset \mathbb{R}^d \text{ and } S_t = \{ B(p_1, t), B(p_2, t), \ldots, B(p_n, t) \}. \]

The **Vietoris-Rips complex** \(R_t(S) \) of \(S \) with parameter \(t \) is the clique complex of the intersection graph of \(S_t \).

\[
R_t(S) = \{ I \subset \{1, 2, \ldots, n\} \mid \forall i, j \in I, \|p_i p_j\| \leq 2t \}.
\]

\(R_t(S) \) is easier to compute than the nerve of \(S_t \).

Only needs the 1-skeleton, makes for a greater numerical stability.

Critical because one extra or fewer simplex changes the \(\beta_i \).

Theorem. [Attali-Lieutier-Salinas’10] For any smooth, compact manifold \(X \subset \mathbb{R}^d \), any finite subset \(S \subset \mathbb{R}^d \), any \(\varepsilon \in [d_H(P, X), 0.034r_X] \),

\[
\forall i \in \mathbb{N}, \quad \beta_i(R_{7.22\varepsilon}(S)) = \beta_i(X)
\]

Proof: collapse Vietoris-Rips complexes onto nerves.
Another improvement: consider the sequence of $S^{(r)}$ as r ranges in $[0, +\infty]$. We obtain a family of nerves filtered by the radius of the balls.
Another improvement: consider the sequence of $S^{(r)}$ as r ranges in $[0, +\infty[$. We obtain a family of nerves filtered by the radius of the balls.

We can follow the “birth” and “death” of the generators of homology groups,

For $x < y$ the injection $S^{(x)} \hookrightarrow S^{(y)}$ induces a morphism $H_k(S^{(x)}) \to H_k(S^{(y)})$.

to obtain a persistence diagram (or a topological bar code).

Effective computation based on Rips-Vietoris / nerve interleavings.
Another improvement: consider the sequence of $S^{(r)}$ as r ranges in $[0, +\infty[$. We obtain a family of nerves filtered by the radius of the balls.

We can follow the “birth” and “death” of the generators of homology groups,

For $x < y$ the injection $S^{(x)} \hookrightarrow S^{(y)}$ induces a morphism $H_k(S^{(x)}) \to H_k(S^{(y)})$.

to obtain a persistence diagram (or a topological bar code).

Effective computation based on Rips-Vietoris / nerve interleavings.

This persistence diagram is continuous in the space that is sampled

(If the metrics are chosen adequately.)

and provides a multiscale topological signature of the sampled space.
And the story could continue...
Discrepancy

[Weil][Roth][Beck][Spencer][Matoušek][Chazelle]… [Bansal]…

VC-dimension, sampling

[Vapnick-Chervonenkis][Alon][Frankl][Clarkson][Haussler-Welzl]…

Convex/combinatorial geometry, convex optimization, combinatorial LP…

[Lovasz][Kannan][Barvinok][Vempala][Kalai][Clarkson][Matoušek]…

Geometric Ramsey theory…

[Erdős][Szemeredi][Gowers][Tao][Pach][Fox]…

Embedding & dimension reduction, computational geometry on GPU, algebraic (hyper)graphs, matroids, optimal transport…
Thank you for your attention
Thank you for your attention

Further reading...
Thank you for your attention

Further reading...

And for your next linear algebra class check out