A polynomial-time algorithm to design push plans
for sensorless parts sorting

Abstract—We consider the efficient computation of sequences [47] which hold parts using simple reuable elements whose
of push actions that simultaneously orient two different poly- placements are constrained to a grid of holes. Much less
gons. Our motivation for studying this problem comes from a5 heen done on some of the other challenges listed in the

the observation that appropriately oriented parts admit simple .
sensorless sorting. We study the sorting of two polygonal parts paper by Canny and Goldberg [14]. In this paper we study

by first putting them in properly selected orientations. We their open problem concerning the existence of a polynomial-
give an O(n?logn)-time algorithm to enumerate all pairs of time algorithm for sorting parts with a frictionless parallel-jaw

orientations for the two parts that can be realized by a sequence gripper capable of performing push and squeeze actions [18].
of push actions and admit sensorless sorting. We then propose an - \ye consider the following completely sensorless sorting
O(n*log” n)-time algorithm for finding the shortest sequence of . .
push actions establishing a given realizable pair of orientations scenario for convex polygo_nal pgrts of wo different typés
for the two parts. These results generalize to the sorting ok and@ that can be in any orientation. We have a conveyor belt
polygonal parts. that forks into two smaller sub-belts, as in Figure 1, and we
want to employ push actions by a single jaw of the parallel-
jaw gripper to establish that parts of ty@gecontinue on one
Designers of robotic manipulators for factory environmentub-belt at the split while those of typ@ continue on the
have long been inspired by human arms and hands. The wigher sub-belt. Which sub-belt a part goes depends on the
for a level of flexibility comparable to that of a human arnposition of its center of mass with respect to the line through
and hand led to robotic manipulators that were often fouride split and parallel to the sides of (the wide part of) the
to be too complex to have a chance to stand up in a rdmlt. As a result, our sorting scenario is successful if we can
industrial environment [18]. In the late 80s and early 90énd a sequence of push actions, push plan that—at the
Whitney [44] and others argued that effective factory robotame time—puts the center of mass of parts of tipen one
need far less flexibility than human beings. As more flexibilitgide of a horizontal line and of parts of tygg on the other
incurs an increase of design and maintenance costs, risksife. We will concentrate on push plans that additionally bring
failure, and complexity of control, it is justified to be cautiouparts of the same type into the same orientation. Our goal is
about excess flexibility. Inspired by Whitney's recommentherefore to find the shortest push plan that simultaneously
dations that industrial robots should have simple actuatgrats P and Q into given orientationsp and ) respectively;
and sensors Canny and Goldberg [13], [14] proposed tf@ our application, the orientations and > should be such
Reduced Intricacy in Sensing and Control (RISC) paradigthat the distances from the jaw to the centers of mas® of
for the design of manipulation systems. The paradigm favaasd @Q are different. OnceP and @ are in their respective
easily-reconfigurable simple hardware elements performingentations, a single push by the jaw suffices to puand
simple actions over overly flexible general-purpose hardwaxg, onto the belt, after which the split will take care of the
and prefers simple or no sensors. The authors argued tbatting. Non-convex parts traveling with a cavity facing the
such systems are cheaper, more reliable and better suitedsfait may get stuck at the joint corner of the sub-belts. We
automated planning. can easily identify the orientations in which a part can get
RISC implies a shift of the complexity of system desigistuck beforehand and eliminate those from consideration in
to computer science, as the fundamental question becorttes planning phase.
algorithmic in nature: configure, or plan, a sequence of simpleGoldberg [19] showed that a single polygonal part with
physical actions that accomplishes a higher level manipulativertices can be oriented, i.e., brought into any priorly specified
task on a given part or collection of parts. Over the pastientation, by a push plan; he also showed that the shortest
years researchers have explored the suitability of sequensash plan can be computed {(n?) time. Chen and lerardi
of actions such as pushing [1], [2], [4], [5], [7], [10], [16],[15] proved that the length of the shortest plan (gn).
[23], [25], [27], [30], [31], [45] squeezing [11], [15], [19], Although a concatenation of separate plans for p&rtand
[34], [32], [33], [35], toppling [24], [46], pulling [6], tapping @ puts both parts into a known orientation, these results
[21], dropping [20], [22], [29] wobbling [17], rolling [26], do not provide a way of finding thehortestsequence of
and vibrating [8], [9], [37] by simple hardware elements tpush actions that simultaneously putsand @ into specified
accomplish a common task like feeding (or orienting) partsrientations¢ and . In fact, one of the first results in this
Considerable attention has also been given to the desjgper shows that it is not always possible to gitand
of modular fixtures [12], [38], [39], [40], [43], [41], [42], @ in any desired combination of orientations. For polygons
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Still, we could apply our algorithm to the instrumented parallel
jaw gripper of Rao and Goldberg. If we choose the final
orientations to be such that a squeeze action of the gripper
leads to different width measurements for the two parts, then
our algorithm computes irO(n*log®n) time the shortest
sequence of push actions followed by a squeeze that orients
and sorts the parts.
In [36], Rao and Goldberg studied the registration mark
problem. Given a single polygon with vertices and a set of
k possible poses of that polygon, it asks to locate a mark on
the polygon that maximizes the minimum separation between
Fig. 1. A conveyor belt forking into two sub-belts and two parts that wilthe placements of the mark in the poses. The computed
be separated. location will provide maximum insensitivity to sensor noise
when distinguishing the poses with a computer vision system.
The registration mark problem is in a way almost dual to
_ ) our problem. Whereas the registration mark problem asks to
P and @ with at mostn vertices, we therefore present anyeiermine the optimal distinguishing aspect, the mark, of a
O(n*log n)-time algorithm to determine all combinations Ofjiven set of poses, our problem is to determine the poses (and
0r|ent_at|ons for PP'VQO”SP and () that can be realized by the actions that lead to these poses) that optimize the ability to
applying an oblivious push plan to both. If none of thesgiqiinquish on the basis of a given aspect, the center of mass.
combinations separates the centers of mass then no push plgRy e another crucial difference is that we are dealing with

exists that sorts the parts. The main result of our paper is & (or more) parts, whereas the work of Rao and Goldberg
algorithm that finds the shortest push plan that gatand Q deals with a single part.

in a given realizable paif¢, v') of orientations. The algorithm
runs inO(n*log”® n), so we have a polynomial-time algorithm Il. PRELIMINARIES
for sorting using a pushing jaw and a forking conveyor belt. |, yig section we briefly review pushing of a single polygon

The availability of all realizable pairs of orientations offersp by a jaw of a paralleljaw gripper. We assume zero friction
the practical advantage of being able to choose the pair that\cen the part and the jaw. Lebe the center-of-mass of
maximizes the separation between the centers of mass, as sgchyg jaw always touches the part at its convex hull we

a pair is likely to be less sensitive to control errors and palkc ,me tha® is convex. For the sake of simplicity of our

Imprecision. analysis, we add the weak assumption that no line through a
The aIgorithms for determining all realizable combination@erte)(v of Pis perpendicu|ar to the two edges incidentuwto
of orientations and for computing the shortest plan for a giverhis prevents so-called meta-stable edges.
realizable combination generalizek@arts. The running times  \We assume that a fixed coordinate frame is attache#.to
of these generalizations ar@(n*logn) and O(n**log®* n) Directions are expressed relative to this frame. Ebetact
respectively. All of our aIgorithms use a mU'ti-dimenSiOﬂa&irection of a tangent! of P is unique|y defined as the
generalization of a simplified version of the push functioglirection of the vector perpendicular foand pointing into
(see e.g. [19], [34]). The problems at hand are translated into(see Figure 2 for a tangent with contact directiah As in
geometric queries that are solved efficiently using geometigason [27], we define theadius functionp : [0,27) — R,
data structures [3]. of P with center of mass; p maps a directiony onto the
Our work is closest in spirit to two papers by Rao andistance from the to the tangent of? with contact direction
Goldberg [32], [36]. In [32] these authors considered thé. The radius function is continuous. It determines the push
problem of recognizing a part from a given set of parts, bynction, which, in turn, determines the final orientation of a
means of a sequence of width measurements by a squeegadg that is being pushed.
instrumented parallel jaw gripper. Rao and Goldberg proposedrhroughout this paper, parts are pushed by a single jaw
an O(n*2")-time algorithm for computing the shortest sethat moves in a direction perpendicular to itself. Brost [11]
quence of measurements, and @w? logn)-time algorithm was the first to model parallel-jaw gripper motions in this
for computing a sub-optimal sequence, wherés the total manner. Thepush directionof a single jaw is the direction of
number of stable diameters, which is upper bounded by the motion. The push direction of a jaw pushing a part equals
total number of edges of all parts. This sorting scenario diffetise contact direction of the jaw. In most cases, parts will start
from ours in several aspects. Besides that we use push insteacbtate when pushed. If pushing in a certain direction does
of squeeze actions, we have replaced the instrumentationnot cause the part to rotate, then we refer to the corresponding
the gripper (facilitating the width measurements) by a forkindirection as anequilibrium (push) directionor orientation
conveyor belt. This replacement of sensing functionality by d@quilibrium orientations play a key role throughout this paper.
additional piece of hardware opens the way to a polynomidf- pushing does change the orientation, then this rotation
time algorithm for finding the shortest sequence of actionshanges the orientation of the pushing jaw with respect to




the frame attached to the part. We assume a push action to be
a reorientation of the jaw followed by an actual push on the
object that continues until the part stops rotating and settles
in a stable equilibrium pose.
The push functionp : [0,27) — [0,27) links every
orientation¢ to the orientatiorp(¢) in which the partP settles
after being pushed by a jaw with push directiorfrelative to
the frame attached t®). The final orientation(¢) of the part
is the contact direction of the jaw after the part has settled.
The equilibrium push directions are the fixed points of the
push functionp. T
The push functiorp for a polygonal part consist afteps
which are open intervalld < [0,27) on which p(¢) is
constant, and isolated fixed points. Each step of the push
function intersects the diagonal line through the origin at the
equilibrium orientation corresponding to the step. The steps of 0
the push function are easily constructed [19] from the radius
functionp, using its local extrema; the orientations correspond-
ing to local extrema are the equilibrium push orientations. If
the part is pushed in a direction that is not a local extremum
of the radius function then the part will rotate in the direction
in which the radius decreases until it finally settles in an
orientation corresponding to a local minimum of the radius
function. As a result, all points in the open intervabounded
by two consecutive local maxima of the radius functipmap
onto the orientationy € I corresponding to the unique local
minimum of p on I. (Note thaty itself maps ontap because it
is a local extrema.) The fixed points of the steps aresthble
equilibrium orientations. Besides the steps and ramps there
are isolated points satisfying(¢) = ¢ in the push function,
corresponding to local maxima of the radius function. The
isolated fixed points are thenstableequilibrium orientations.
Projecting the steps of the push function on the horizontal
axis we get thepush diagrama partition of the rangéo, 2r)
into open intervals by the unstable equilibrium orientations
along with a collection of stable equilibriums, one per interval. | |
A push action can be visualized in the push diagram by 0 x o

applylng to the orlglnal orientation of the parta translation arl:d 2. A part, its radius function, the corresponding push function and

. . . .FIg. 2.
a snap rounding. The Iength of the translation 1S the DUSh'ﬁa simplified push diagram. The vector emanating from the center-of-mass
angle and the rounding brings the translated point to the stalews the zero contact direction for supporting lines.

equilibrium of the interval that contains it. Figure 2 shows
an example of a radius function and the corresponding push
function.

In the rest of this paperP and (Q denote two polygonal
shapes, withp and ¢ vertices respectively. To simplify the
bounds somewhat, we will express them in termsnof=
max(p, ¢). Observe that after one push any shape is in so
stable equilibrium orientation. To simplify the exposition, w
denote a stable equilibrium orientation of an objedtable
orientationand a pair of stable equilibrium orientations of tw
objects astable pair
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is. A stable pair for which this can be done is said to be
realizable

For the purpose of separating shapes some realizable stable

airs may be more interesting than others. For example, a pair

t maximizes the separation of the centers of mass is more
?lkely to be tolerant to faults or imprecisions. In this section
we consider the problem of enumerating all realizable stable
Opairs, which allows finding the best separating pair for simple
criteria.

Ill. ENUMERATING REALIZABLE PAIRS OF ORIENTATIONS A Generalized push diagram

We are interested in finding push plans that bridgnd @ Let us first introduce the generalized push diagram, a
into a fixed stable pair no matter what their initial orientatiotool to visualize the effect of a push operation on a pair



of orientations. We partition the séd,27) x [0,27) of all GPD to the set of stable pairs contained in the union of the
possible orientations of and @ by vertical lines at every diagonal lines intersecting the cell ¢f, ) (the shaded zone
instable equilibrium ofP and horizontal lines at every instablein Figure 5). Since a stable pair may have empty pre-image
equilibrium of Q. Let S be the set of points of0,27) x (as in Figure 5) it may not be realizable.

[0,27) corresponding to stable pairs. The couglg S) is

the generalized push diagrafGPD) of the two parts” and

Q (see Figure 3 for an example of such a generalized push ‘
diagram). There is exactly one point §fin each cell ofZ.

% Y Q
Y % 7]

0 Fig. 5. The push diagram of a pair having a non-realizable pair of
0 2 P orientations.

127r

Fig. 3. Two parts, their respective push diagrams and the generalized push ) ) )
diagram of the pair. However, there always exists one realizable pair and such

a pair can be computed in tim@(n?). Indeed, Goldberg

Suppose that a push operation of anglis applied to parts [19] and Chen and lerardi [15] _proved that one shape can.be
P and Q, initially in respective orientations and . The 0”6‘2‘9?’ usingD(n) push operations that can be computed in
resulting orientations of the shapes are the stable pair in &) time. Once a part has been brought from any orientation
cell containing the pointe-+ 3, ¢+ 3). Thus, a push operation'nto some fixed orlentatlpn, any addmgnal pgsh o_peraﬂon
with angle 3 corresponds in the push diagram to a diagonzlﬂaves it into some (possibly d|ffer.ent)_ fixed orientation. We
translatior of length 3v/2 followed by a snap-rounding oper-can thus compute 2 push. plan orientifgand a push plan
ation to the stable pair of the celt.. Figure 4). Since angles °"€Nnting @ in O(n”) time; the concatenation of these two

are represented modutor the diagonal translation may wrapPUSh plans brings botf and@ into a stable pair irrespective
around, namely when + 3 > 27 or ¢ + 3 > 2 of their initial orientations, yielding a realizable stable pair.

C. Enumerating realizable pairs

! Thetransition graphis the directed graph whose nodes are
e ! stable pairs and whose edges connect a node to stable pairs it
e ‘ can reach by one push action.

A T T | AT |

o lele | o] . ole | &8 Lemma 1:Let (¢,7) be a realizable stable pair. A pair
(¢,) ! (6,0) (¢',4") is realizable if and only if it is reachable frofe, ¢)
3 3 in the transition graph.
> > Proof: Omitted. [ |

Fo 4 nth lized push di . ion b The enumeration problem thus reduces to computing a
trfﬁslﬁtion r(]poszilﬁsri]r?vr;\llzire]g apvl:/fap ;%J?gqesl’siarllt?lltjesrigr?tpggrlr?gle)?&?&?@ghzaple stable Pff"r and performlng_a breadt_h'ﬂrSt search
by a snap-rounding. (BFS) in the transition graph. Computing a realizable stable
pair can be done in tim&(n?) as mentioned in Section IIl-
B. The transition graph has size(n®) since it hasO(n?)
B. Realizable pairs nodes and each node h@gn) out-going edges. Thus, using

In the GPD, the stable pairs reachable by one push frons@@ndard graph techniques it ;5 possible to enumerate all
specified pair of orientatior®, 1) are exactly those contained'€@lizable stable pairs in time(n"). Taking advantage of the
in cells intersected by the diagonal through v). The pre- geometry of the problem, we can prune the transition graph

image of a stable pair(¢, ) is the set of stable pairs that™or€ efficient.ly as we perform a BFS. _
are mapped tq(¢, ) by some push; it corresponds in the Theorem 2:The realizable pairs of orlentgtlons of two parts
P and @ can be enumerated i@(n? logn) time andO(n?)
lWhenever we use the terdiagonal we mean the main diagonal direction Space.
(of slope 1). Thus aliagonal translationis a translation in direction of the Proof: The basic step in the breadth-first search is this:

vector (1,1)7, and thediagonal through a pointis the line through that . d hich is i tabl ir that i id
point of slope 1. Notice that a diagonal usually consists of two segments @#VEN & node (which is in our case a stable pair, that is, a gri

the squard0,27)? due to the wrap around effect. point in the push diagram), report all other nodes to which



there is an out-going edge and that have not been visitAgush plan that brings any shapeor @) into some prescribed
before. The basic idea behind our algorithm is to build a datealizable stable paif¢,+) corresponds, in the antecedent
structure that allows us to quickly retrieve the nodes to whiaraph, to a path from; = {(¢, )} to the setd; of all stable
there is an outgoing edge. This data structure should suppgairs. Then, an optimal push plan is simply such a path with
deletions so that we can delete a node from it as soon as iti;iimal length. The antecedent graph has oréfer nodes
reached for the first time. Hence, we will always only reposhich make it too large to be computed in practice.
nodes that have not been reached before. The circular ordering on the angles induces a similar order-

Now consider a pair(¢,1) of stable orientations or, in ing on the stable orientations of a shape. Leireular interval
other words, a grid point in the push diagram. We have sedanote a set of stable orientations that are consecutive for this
before that there is an edge frof, ) to (¢',¢’) iff the ordering (see Figure 7 for some examples). The product of two
diagonal through(¢, v) intersects the cell ¢&',+’). Hence,
we need a data structure (allowing deletions) for the following 1 2 3 4
queries: given a query line of slope 1, the diagonal through 0 2
the point(¢, ), report all cells intersected by that line. Since
the query line always have slope 1, we can project everythiﬁ'g- 7. Push diagram having for exampé, 2,3} or {3,4, 1} as circular

. . intervals.

orthogonally onto a line with slope -1. The cells now become
intervals, the query line becomes a point, and we wish to
report all intervals containing the query point. This problergircular intervals corresponds, in the GPD, to a set of stable
can be solved using an interval tree. An interval tree uspsirs whose cells make up a rectarfigléve call a product
linear storage—in our case this @(n?) since we have that of two circular intervals acircular rectangle The reduced
many cells—and deletions take(logn) time. Reporting all antecedent grapls obtained from the antecedent graph by
intervals containing a query point can be don®ifiogn+ A) deleting all nodes that are not circular rectangles and their
time, whereA is the number of reported intervals. associated edges.

Since any interval is reported and deleted at most once, and.emma 3: The reduced antecedent graph contdifs ¢) },
the interval tree can be built i@ (n? log n) time, the total time the set of all orientations and at least one shortest path of the
to do the BFS isO(n? logn). B antecedent graph between them.

Proof: Obviously{(¢, )} and the set of all orientations
are circular rectangles. Léfl, B) be an edge in the antecedent
graph with A being a circular rectangle. LBt be the smallest
circular rectangle that contairis. By monotonicity of the push
function, any push action sending in A also sendsB’ in
A. Thus, B’ is also an antecedent of. Consider a shortest

\ A path 4, — ... — A; from A; = {(¢,%)} to the setA,

\\\\ 3 of all orientations. By induction there exists a path —

\\\\ By, — ... — B;,_; — A, such that4; c B; and theB, are
circular rectangles. This path is thus contained in the reduced

\s\\\\ antecedent graph and has the same length as a shortest path.

NN [ |
\\\ The reduced antecedent graph BE&*) nodes, each having
O(n?) out-going edgessec-enumerate The size of the graph
Fig. 6. The projections of the cells on the second diagonal. is thus O(n6) and standard graph techniques allows for a

computation of an optimal push plan for a specified realizable
pair in O(n%) time and space. Again, this result can be
IV. DESIGNING PUSH PLANS improved by using the GPD.
In this section we give a polynomial time algorithm to find Consider a copy of a circular rectanglesliding positively
an optimal sequence of push actions bringing any p&ts along the diagonal in the GPD. The circular rectangles that are
and @ into some prescribed realizable stable pair, irrespectis@tecedents oft correspond to the rectangles contained in that
of their initial orientations. We first show how this problentopy at the positions where it has at least one stable pair on
reduces to computing a shortest path in some directed graghlower or left boundary. Therefore, there is an eddeB)
and then improve that computation by using the geometry ofthe reduced antecedent graph iff there exists a translation of
the problem. B along the diagonal mapping the stable pairsBofo A with
An antecedenbf a set of stable paird is any set of stable
pairs B for which there exists a push action bringing any 2The wrap around effect can split it into four rectangles in the region

2
air in B to some pair inA. The antecedent graptis the (027"
’ . grap 3In fact, one can argue that the total number of edge®(n®), but the

directed _graph whose nodes are all sets of St_able pairs @uﬂﬂﬂng time of the algorithm we will present does not depend on the number
whose directed edges connect each node to all its antecedemtgiges, so we do not go into the argument here.



at least one being mapped to the lower or left boundary.of time (plus O(A) time for reporting the answers in case of
We thus organize all the rectangles over the generalized paslquery.) For lack of space, we omit the (standard) details.
diagram in a data structure that allows for efficient answers Snce we have = O(n*) cells, the running time of the entire
such queries. algorithm isO(n* log" ' n). [

Theorem 4:An optimal push plan achieving a specified Our algorithm to compute an optimal push plan generalizes
realizable pair of orientations can be foundd{n*log®n) in a similar way:

time and space. Theorem 6:An optimal push plan for a separating families
Proof: Assume we are looking for rectanglds with of orientations ofk polygonal parts(Py, ..., P;) with O(n)

at least one equilibrium point mapped s left boundary; equilibrium points each can be found @(n2* log®* n) time.

the rectangles with an equilibrium point mappedits bottom Proof: Omitted. ]

side can be found with a similar data structure. It is not difficult

to see that now the query translates to the following: find all VI. CONCLUSION

rectanglesB such that (a) the left side d# is contained in the o ] )
left side of A when both sides are projected orthogonally onto W& Presented a polynomial-time algorithm to design a push

a line of slope -1, and (b) the length Bfs horizontal sides is Plan for putting two types of parts into such orientations
less than or equal to the length dfs horizontal sides. Again that they can be sorted using a simple sensorless device. Our

we can solve this using a suitable geometric data structuf@Proach generalizes to non-polygonal parts with finitely many
More precisely, the above query can be transformed to a%qumprlum.pomts, that is any shape whose boundary does not
dimensional range query. Using a 3-dimensional range tré@ntain a circular arc centered at the center of mass.

and dynamic fractional cascading (with only deletions) [28], Fence designs gained considerable attention recently as they
we obtain a data structure using(slog?n) storage and €an replace push mechanisms for certain tasks and are simpler
preprocessing, and witl®(log? n) update and query time to realize. We also plan to generalize our technique for sorting
(plus, for queriesO(1) time for each reported answer), wherdarts so that it works with fences instead of push actions. The

s is the number of objects stored in the structure. m Main difference for our method is that the pushing angle of
a fence is more restricted than that of a jaw. The diagonal

V. SEPARATING k PARTS query lines thus becomes diagonal query segments and our

Most of our results generalize to any number of polygongfta structures over the generalized push diagram have to be
shapes. Le{ Py, ..., P.} be a set of polygonal parts havingadjusted accordingly.
O(n) equilibrium points each. The problem now becomes to An interesting open problem is to find the shortest se-
find a sequence of push actions that brings any shape ifit¢ence of push actions leading to a stable realizable pair of
some fixed orientation such that the resulting positions of t@é&ientations—or perhaps a stable pair with some prescribed
centers of mass of thi shapes are pairwise separated. Thiginimum separation between the centers of mass—without
would allow for a separation of thee shapes using successivechecking the length of the push plan for any stable realizable
forking into sub-belts. The two fundamental questions remaﬁ.ﬁlir of orientations. It would also be interesting to investigate
the design of algorithms to enumerate all realizable families #fe worst-case number of push actions needed to bring any
orientations, as some families may obviously not be realizabf#/0 shapes into a given stable pair of orientations.
and to compute an optimal push plan for a given realizable
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