

Grilles & positionnement d'éléments

 pour créer de la régularité
 pour créer de l'équilibre
 pour créer des liens entre les éléments



principe de conception : ALIGNER !

4 colonnes 4 colonnes 4 colonnes

6 colonnes 6 colonnes

3 colonnes

3 colonnes

6 colonnes 1 col. 5 colonnes

grille 12 colonnes

grille 16 colonnes

 Pour aligner efficacement : placer les éléments sur
une grille de mise en page, caractérisée par

 largeur/largeur max. totale : 100 %, 80 %, 64em
 nombre de colonnes : 12, 16, 24
 largeur des gouttières (gutter) : 0 , 2%, 1em

techniques d'intégration

 utiliser une grille générique prédéfinie
 par exemple fournie par un framework

 calculer de façon ad-hoc les dimensions de chaque
élément et les marges nécessaires pour un design
donné, en fonction des caractéristiques de la grille
utilisée,

 fabriquer sa propre grille générique, éventuellement
paramétrée par ses caractéristiques

 utiliser le mode de positionnement css grid

utiliser une grille générique existante

 principe : la grille est fournie sous la forme de classes
css prédéfinies que l'on insère dans le document html

 les caractéristiques de la grille (largeur, nb colonnes,
gouttières) sont fixées par le concepteur de la grille

 intérêt : facile et rapide d'emploi
 inconvénient : adaptation difficile aux besoins

particuliers
 exemple : la grille materialize css

 12 colonnes, largeur 100 %, gutter 0

<div class="row">
 <div class="col m8"> 8 colonnes </div>
 <div class="col m4"> 4 colonnes </div>
</div>
<div class="row">
 <div class="col m6"> 6 colonnes</div>
 <div class="col m4"> 4 colonnes</div>
 <div class="col m2"> 2 colonnes</div>
</div>

<div class="row" >
 <div class="col m2" >2 colonnes</div>
 ...
</div>

placement ad-hoc

 utiliser flex pour placer les éléments
horizontalement

 on se base sur les caractéristiques de la grille
utilisée pour la conception pour calculer les largeurs
des différents éléments

 dimensionner en % pour avoir des éléments fluides

100%

2%

(4x6,5)+(3x2) = 32 % width : (8x6,5)+(7x2)= 66 % -
margin-left : 2 %

23,5 % width : (9x6,5)+(8x2) = 74,5 %
margin-left : 2 %

23,5 % width : 32 %
margin-left : 2 %

width : (5x6,5)+4x2 = 40,5 %
margin-left : 2 %

 largeur 1 colonne L1c = (100% - 11 gouttières) / 12
 L1c = (100 – 22) / 12 = 6,5 %

 gouttière : marge gauche
 largeur n colonnes : (n x L1c) + (n-1) x gouttière
 décalage : (nxL1c) + n x gouttière

width : 49 %
margin-left : 6x6,5+6x2 = 51%

L1c L1c L1c L1c L1c

construire sa grille générique

 principe la grille est fournie sous la forme d'un
ensemble de classes css
 conteneur global éventuel
 ligne
 cellules de toutes les tailles possibles
 décalages (offset)

réalisation (flex)

 conteneur global : fixe la largeur de la grille et
éventuellement les espacements gauches et droits

 conteneur de ligne de type flex
 display : flex ; flex-direction : row

 les éléments :
 taille définie avec width ou flex-basis ; en % (fluidité)
 flex-grow : 0 pour éviter qu'ils grandissent si la ligne n'est

pas complète
 flex-shrink : 1 / nowrap : pour qu'ils rétrecissent de

manière identique si la ligne est trop remplie
 flex-shrink : 0 / wrap : pour qu'ils gardent leur taille et

débordent sur la ligne suivante si la ligne est trop remplie

réalisation (flex)

 les gouttières peuvent être réalisées :

 avec des marges appliquées à gauche de chaque
élément colonne

 avec du padding à l'intérieur des éléments colonne
 prévoir la possibilité de supprimer les goulottes

 les offsets : réalisés avec des marges

.row

100%
2%

.col .l4 .col .l8

.col .l2

.col .l10

 largeur 1 colonne L1c = (100% - 11 gouttières) / 12
 L1c = (100 – 22) / 12 = 6,5 %

 gouttière : marge gauche
 largeur n colonnes : (n x L1c) + (n-1) x gouttière
 décalage : (nxL1c) + n x gouttière

.col .l6 .off6

.col .l2 .col .l2 .col .l2 .col .l2 .col .l2

.col .l2

grille adaptative

 pour fabriquer une grille permettant l'adaptation :
prévoir des classes actives à différentes largeurs de
viewport , définies dans des media-query

<div class="row">
 <div class="col s6 m8"> … </div>
 <div class="col s6 m4"> … </div>
</div>

.s6 {
 flex-basis: calc((89% / 12) * 6 + 5%) ;
}

@media screen and (min-width: 56em) {
 .m4 {
 flex-basis: calc((89% / 12) * 4 + 3%) ;}
 .m8 {
 flex-basis: calc((89% / 12) * 8 + 7%) ;}
}

css grid layout

 mode de placement basé sur la définition d'1 grille
 Le conteneur définit la structure de la grille

 nbre et largeur des colonnes
 nbre et hauteur des lignes

 les items sont placés sur cette grille :
 explicitement : on précise le rectangle occupé par l'item sur la grille
 implicitement : on précise uniquement la taille de l'item, et il est placé

automatiquement
 on peut paramétrer le placement implicite :

 en ligne, en colonne, occupation maximale
 exemple

https://codepen.io/canals/pen/eLojpj

.grid_container {
 display: grid;
 grid-template-columns : 10% 50px 1fr 2fr; // les colonnes
 grid-template-rows: 5rem 4rem; // les lignes
 grid-auto-flow: row; // placemement implicite
 grid-gap: .2em; //gouttières // en ligne
}

.grid_cell { … }

.grid_cell:nth-child(1) { // placement explicite
 grid-column : 3 / 5; // sur la grille
 grid-row: 1/3;
 background-color: cyan;
}
.grid_cell:nth-child(5n+2) { // placement implicite
 background-color: maroon;
 grid-column: span 2; // largeur 2 colonnes
}
.grid_cell:nth-child(5n+3) { // placement implicite
 background-color: green;

}

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16

