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Abstract

Bounds on the risk play a crucial role in statistical learning theory. They usually involve

as capacity measure of the model studied the VC dimension or one of its extensions. In

classi�cation, such �VC dimensions� exist for models taking values in {0, 1}, [[ 1, Q ]], and R.

We introduce the generalizations appropriate for the missing case, the one of models with

values in RQ. This provides us with a new guaranteed risk for M-SVMs. For those models,

a sharper bound is obtained by using the Rademacher complexity.

1 Introduction

Vapnik's statistical learning theory (Vapnik, 1998) deals with three types of problems: pattern

recognition, regression estimation and density estimation. However, the theory of bounds has

primarily been developed for the computation of dichotomies only. Central in this theory is the

notion of �capacity� of classes of functions. In the case of binary classi�ers, the standard measure

of this capacity is the Vapnik-Chervonenkis (VC) dimension. Extensions have also been proposed

for real-valued bi-class models and multi-class models taking their values in the set of categories.

Strangely enough, no generalized VC dimension was available so far for Q-category classi�ers

taking their values in RQ. This was all the more unsatisfactory as many classi�ers are of this

kind, such as the multi-layer perceptrons, or the multi-class support vector machines (M-SVMs).

In this paper, scale-sensitive Ψ-dimensions named γ-Ψ-dimensions are introduced to bridge this

gap. A generalization of Sauer's lemma (Sauer, 1972) is given, which relates the covering number

appearing in the standard guaranteed risk for large margin multi-category discriminant models

to one of these dimensions: the margin Natarajan dimension. This latter dimension is then upper

bounded for the class of functions that the M-SVMs can implement. This provides us with a

new bound on the sample complexity of these machines. A sharper bound is then derived using

the Rademacher complexity.

The organization of the paper is as follows. Section 2 introduces the basic bound on the

risk of large margin multi-category discriminant models. In Section 3, the γ-Ψ-dimensions are

de�ned, and the corresponding generalization of Sauer's lemma is formulated. The upper bound

on the margin Natarajan dimension of the M-SVMs is then described in Section 4. Finally, the

bound based on a Rademacher average is established in Section 5.

2 Basic theory of large margin Q-category classi�ers

We consider Q-category pattern recognition problems, with 3 ≤ Q <∞. A pattern is represented

by its description x ∈ X and the set of categories Y is identi�ed with the set of indices of the
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categories: [[ 1, Q ]]. The link between patterns and categories is supposed to be probabilistic. We

assume that the product X × Y is a measurable space endowed with an unknown probability

measure P . Let (X,Y ) be a random pair with values in X × Y distributed according to P .

We observe a m-sample Dm = ((Xi, Yi))1≤i≤m of independent copies of (X,Y ). Training then

consists in using Dm to select, in a given class of functions G on X , a function classifying data

in an optimal way. Given a function g in G, the criterion characterizing the quality of the

corresponding classi�cation, the risk of g, is the expectation with respect to P of a loss function.

We consider classes of functions from X into RQ. The function g = (gk)1≤k≤Q ∈ G assigns x ∈ X

to the category l if and only if gl(x) > maxk 6=l gk(x). Cases of ex æquo are treated as errors.

This calls for the choice of a loss function ` de�ned on Y ×RQ by ` (y, v) = 1l{vy≤maxk 6=y vk}. The

risk of g is then given by:

R(g) = E [` (Y, g (X))] =
∫
X×Y

1l{gy(x)≤maxk 6=y gk(x)}dP (x, y).

This study deals with large margin classi�ers, when the underlying notion of multi-class margin

is the following one.

De�nition 1 (Multi-class margin) Let g be a function from X into RQ. Its margin on

(x, y) ∈ X × Y, M(g, x, y), is given by:

M(g, x, y) =
1
2

{
gy(x)−max

k 6=y
gk(x)

}
.

Basically, the central elements to assign a pattern to a category and to derive a level of con�dence

in this assignment are the index of the highest output and the di�erence between this output and

the second highest one. The class of functions of interest is thus the image of G by application of

an operator extracting the appropriate pieces of information. Two such �margin operators� are

considered here. The �rst one, ∆, preserves all the information provided by g up to an additive

constant.

De�nition 2 (∆ operator) De�ne ∆ as an operator on G such that:

∆ : G −→ ∆G

g 7→ ∆g = (∆gk)1≤k≤Q

∀x ∈ X , ∆g(x) =
1
2

(
gk(x)−max

l 6=k
gl(x)

)
1≤k≤Q

.

For the sake of simplicity, we have written ∆gk in place of (∆g)k. In the sequel, this simpli�cation

will be performed implicitly with other operators. Obviously, M(g, x, y) = ∆gy(x), and thus
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the example (x, y) is correctly classi�ed by g if and only if ∆gy(x) > 0. The second operator,

∆∗, only preserves what is essential to characterize the classi�cation. Since the aforementioned

level of con�dence (y being unknown) is provided by M(g, x, ·) = maxk ∆gk(x), this operator is

de�ned as follows.

De�nition 3 (∆∗ operator) De�ne ∆∗ as an operator on G such that:

∆∗ : G −→ ∆∗G

g 7→ ∆∗g = (∆∗gk)1≤k≤Q

∀x ∈ X , ∆∗g(x) = (sign (∆gk(x)) · M(g, x, ·))1≤k≤Q .

In the sequel, ∆# is used in place of ∆ and ∆∗ in the formulas that hold true for both operators.

Obviously, the �rst of them is R(g) = E
[
1l{∆#gY (X)≤0}

]
. ∆# is also involved in the de�nition

of the margin risk.

De�nition 4 (Margin risk) Let γ ∈ R∗+. The risk with margin γ of g, Rγ(g), and its empirical

estimate on Dm, Rγ,m(g), are de�ned as:

Rγ(g) =
∫
X×Y

1l{∆#gy(x)<γ}dP (x, y), Rγ,m(g) =
1
m

m∑
i=1

1l{∆#gYi
(Xi)<γ}.

For technical reasons, it is useful to squash the functions ∆#gk as much as possible without

altering the value of the margin risk. This is achieved by application of another operator.

De�nition 5 (πγ operator (Bartlett, 1998)) For γ ∈ R∗+, de�ne πγ as an operator on G

such that:

πγ : G −→ πγG

g 7→ πγg = (πγgk)1≤k≤Q

∀x ∈ X , πγg(x) = (sign (gk(x)) ·min (|gk(x)|, γ))1≤k≤Q .

Let ∆#
γ denote πγ ◦ ∆# and let ∆#

γ G be de�ned as the set of functions ∆#
γ g. The capacity of

∆#
γ G is characterized by its covering numbers.

De�nition 6 (ε-cover, ε-net and covering numbers) Let (E, ρ) be a pseudo-metric space,

E′ ⊂ E and ε ∈ R∗+. An ε-cover of E′ is a coverage of E′ with open balls of radius ε the centers

of which belong to E. These centers form an ε-net of E′. A proper ε-net of E′ is an ε-net of E′

included in E′. If E′ has an ε-net of �nite cardinality, then its covering number N (ε, E′, ρ) is
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the smallest cardinality of its ε-nets. If there is no such �nite net, then the covering number is

de�ned to be ∞. N (p)(ε, E′, ρ) will designate the covering number of E′ obtained by considering

proper ε-nets only.

The covering numbers of interest use the following pseudo-metric:

De�nition 7 (dxn pseudo-metric) Let n ∈ N∗. For a sequence xn = (xi)1≤i≤n ∈ X n, de�ne

the pseudo-metric dxn on G as:

∀(g, g′) ∈ G2, dxn(g, g′) = max
1≤i≤n

∥∥g(xi)− g′(xi)
∥∥
∞ .

Let N (p)(ε,G, n) = supxn∈Xn N (p)(ε,G, dxn). The following theorem extends to the multi-class

case Corollary 9 in Bartlett (1998).

Theorem 1 (Theorem 1 in Guermeur (2004)) Let G be the class of functions that a large

margin Q-category classi�er on a domain X can implement. Let Γ ∈ R∗+ and δ ∈ (0, 1). With

probability at least 1− δ, for every value of γ in (0,Γ], the risk of any function g in G is bounded

from above by:

R(g) ≤ Rγ,m(g) +

√
2
m

(
ln
(
2N (p)

(
γ/4,∆#

γ G, 2m
))

+ ln
(

2Γ
γδ

))
+

1
m
.

Studying the sample complexity of a classi�er G can thus amount to computing an upper bound

on N (p)(γ/4,∆#
γ G, 2m). In Guermeur et al. (2005), we reached this goal by relating this number

to the entropy numbers of the corresponding evaluation operator. In the present paper, we follow

the traditional path of VC bounds, by making use of a generalized VC dimension.

3 Bounding covering numbers in terms of the margin Natarajan

dimension

The Ψ-dimensions are the generalized VC dimensions that characterize the learnability of classes

of [[ 1, Q ]]-valued functions.

De�nition 8 (Ψ-dimensions (Ben-David et al., 1995)) Let F be a class of functions on a

set X taking their values in the �nite set [[ 1, Q ]]. Let Ψ be a family of mappings ψ from [[ 1, Q ]]

into {−1, 1, ∗}, where ∗ is thought of as a null element. A subset sXn = {xi : 1 ≤ i ≤ n} of X
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is said to be Ψ-shattered by F if there is a mapping ψn =
(
ψ(i)

)
1≤i≤n

in Ψn such that for each

vector vy in {−1, 1}n, there is a function fy in F satisfying(
ψ(i) ◦ fy(xi)

)
1≤i≤n

= vy.

The Ψ-dimension of F , denoted by Ψ-dim(F), is the maximal cardinality of a subset of X Ψ-

shattered by F , if this cardinality is �nite. If no such maximum exists, F is said to have in�nite

Ψ-dimension.

One of these dimensions needs to be singled out: the Natarajan dimension.

De�nition 9 (Natarajan dimension (Natarajan, 1989)) Let F be a class of functions on

a set X taking their values in [[ 1, Q ]]. The Natarajan dimension of F , N-dim(F), is the Ψ-

dimension of F in the speci�c case where Ψ = {ψk,l : 1 ≤ k 6= l ≤ Q}, such that ψk,l takes the

value 1 if its argument is equal to k, the value −1 if its argument is equal to l, and ∗ otherwise.

The fat-shattering dimension characterizes the uniform Glivenko-Cantelli classes among the

classes of real-valued functions.

De�nition 10 (Fat-shattering dimension (Kearns and Schapire, 1994)) Let G be a class

of real-valued functions on a set X . For γ ∈ R∗+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said

to be γ-shattered by G if there is a vector vb = (bi) in Rn such that, for each vector vy = (yi) in

{−1, 1}n, there is a function gy in G satisfying

∀i ∈ [[ 1, n ]] , yi (gy(xi)− bi) ≥ γ.

The fat-shattering dimension with margin γ, or Pγ dimension, of the class G, Pγ-dim (G), is the

maximal cardinality of a subset of X γ-shattered by G, if this cardinality is �nite. If no such

maximum exists, G is said to have in�nite Pγ dimension.

Given the results available for the Ψ-dimensions and the fat-shattering dimension, it appears

natural, to study the generalization capabilities of classi�ers taking values in RQ, to consider

the use of capacity measures obtained as mixtures of the two concepts, namely scale-sensitive

Ψ-dimensions. We now introduce a class of dimensions of this kind, the γ-Ψ-dimensions. In their

de�nition, ∧ denotes the conjunction of two events.

De�nition 11 (γ-Ψ-dimensions) Let G be a class of functions on a set X taking their values

in RQ. Let Ψ be a family of mappings ψ from [[ 1, Q ]] into {−1, 1, ∗}. For γ ∈ R∗+, a subset sXn =

{xi : 1 ≤ i ≤ n} of X is said to be γ-Ψ-shattered by ∆#G if there is a mapping ψn =
(
ψ(i)

)
1≤i≤n
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in Ψn and a vector vb = (bi) in Rn such that, for each vector vy = (yi) in {−1, 1}n, there is a

function gy in G satisfying

∀i ∈ [[ 1, n ]] ,

 if yi = 1, ∃k : ψ(i)(k) = 1 ∧ ∆#gy,k(xi)− bi ≥ γ

if yi = −1, ∃l : ψ(i)(l) = −1 ∧ ∆#gy,l(xi) + bi ≥ γ
.

The γ-Ψ-dimension of ∆#G, Ψ-dim(∆#G, γ), is the maximal cardinality of a subset of X γ-Ψ-

shattered by ∆#G, if this cardinality is �nite. If no such maximum exists, ∆#G is said to have

in�nite γ-Ψ-dimension.

The margin Natarajan dimension is de�ned accordingly.

De�nition 12 (Natarajan dimension with margin γ) Let G be a class of functions on a

set X taking their values in RQ. For γ ∈ R∗+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said to

be γ-N-shattered by ∆#G if there is a set I(sXn) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n} of n pairs of

distinct indices in [[ 1, Q ]] and a vector vb = (bi) in Rn such that, for each vector vy = (yi) in

{−1, 1}n, there is a function gy in G satisfying

∀i ∈ [[ 1, n ]] ,

 if yi = 1, ∆#gy,i1(xi)(xi)− bi ≥ γ

if yi = −1, ∆#gy,i2(xi)(xi) + bi ≥ γ
.

The Natarajan dimension with margin γ of the class ∆#G, N-dim(∆#G, γ), is the maximal car-

dinality of a subset of X γ-N-shattered by ∆#G, if this cardinality is �nite. If no such maximum

exists, ∆#G is said to have in�nite Natarajan dimension with margin γ.

For this scale-sensitive Ψ-dimension, the connection with the covering number of interest, i.e.,

the generalized Sauer lemma, is the following one.

Theorem 2 (After Theorem 4 in Guermeur (2004)) Let G be a class of functions from X

into [−M,M ]Q. For every value of ε in (0,M ] and every integer value of n satisfying n ≥

N-dim (∆G, ε/6), the following bound is true:

N (p)(ε,∆∗G, n) < 2

(
n Q2(Q− 1)

⌊
3M
ε

⌋2
)dd log2(en(Q

2)(2b 3M
ε c−1)/d)e

where d = N-dim (∆G, ε/6).

This theorem is the main novelty in the revised version of Guermeur (2004). What makes it a

nontrivial Q-class extension of Lemma 3.5 in Alon et al. (1997) is the presence of both margin

operators. The reason why ∆∗ appears in the covering number instead of ∆ is the very principle

at the basis of all the variants of Sauer's lemma: each pair of functions separated with respect
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to the functional pseudo-metric used (here dxn) shatters (at least) one point in sXn . This is true

for ∆∗
γG, or more precisely its η-discretization, not for ∆γG (see Section 5.3 in Guermeur (2004)

for details). One can derive a variant of Theorem 2 involving N-dim (∆∗G, ε/6). However, this

alternative is of lesser interest, for reasons that will appear at the end of the following section.

4 Margin Natarajan dimension of the M-SVMs

We now give the sketch of the derivation of an upper bound on the margin Natarajan dimension

of interest when G is the class of functions implemented by the M-SVMs. These large margin

classi�ers are built around a positive type function (kernel) (Berlinet and Thomas-Agnan, 2004).

Let κ be such a kernel on X and
(
Hκ, 〈·, ·〉Hκ

)
the corresponding reproducing kernel Hilbert

space (RKHS). The existence and unicity of this space are ensured by the Moore-Aronszajn

theorem. According to the Mercer representation theorem, there exists (at least) a mapping Φ

on X satisfying:

∀
(
x, x′

)
∈ X 2, κ

(
x, x′

)
= 〈Φ (x) ,Φ

(
x′
)
〉, (1)

where 〈·, ·〉 is the dot product of the `2 space. �The� feature space traditionally designates

any of the Hilbert spaces
(
EΦ(X ), 〈·, ·〉

)
spanned by the Φ (X ). By de�nition of a RKHS, H =((

Hκ, 〈·, ·〉Hκ

)
+ {1}

)Q
is the class of functions h = (hk)1≤k≤Q from X into RQ of the form:

h(·) =

(
mk∑
i=1

βikκ (xik, ·) + bk

)
1≤k≤Q

where the xik are elements of X (the βik and bk are scalars), as well as the limits of these functions

as the sets {xik : 1 ≤ i ≤ mk} become dense in X , in the norm induced by the dot product. Due

to (1), H can also be seen as a multivariate a�ne model on Φ (X ). Functions h can then be

rewritten as:

h(·) = (〈wk, ·〉+ bk)1≤k≤Q

where the vectors wk are elements of EΦ(X ). They are thus described by the pair (w,b) with

w = (wk)1≤k≤Q and b = (bk)1≤k≤Q. Let H̄ stand for the product space HQ
κ . Its norm, ‖ · ‖H̄,

is given by
∥∥h̄∥∥H̄ =

√∑Q
k=1 ‖wk‖2 = ‖w‖. For convenience, EQ

Φ(X ) is endowed with a second

norm: ‖·‖∞. It is de�ned by ‖w‖∞ = max1≤k≤Q ‖wk‖. With these de�nitions at hand, a generic

de�nition of the M-SVMs can be formulated as follows.

De�nition 13 (M-SVM) Let ((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])m. A Q-category M-SVM is a

large margin discriminant model obtained by minimizing over the hyperplane
∑Q

k=1 hk = 0 of H
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an objective function J of the form:

J (h) =
m∑

i=1

`M-SVM (yi, h (xi)) + λ‖w‖2

where the data �t component, used in place of the empirical (margin) risk, involves a loss function

`M-SVM which is convex.

The three main models of M-SVMs are those of Weston and Watkins (1998), Crammer and

Singer (2001), and Lee et al. (2004). It springs from De�nition 13 that they only di�er in the

nature of `M-SVM. The speci�cation of this function is such that the introduction of the penalizer

‖w‖2 tends to maximize geometrical margins the de�nition of which is directly connected with

De�nition 1. Theorem 1 involves a covering number of ∆#
γ G whereas Theorem 2 involves the

covering numbers of ∆∗G, when G is a class of functions taking their values in a bounded set

of the form [−M,M ]Q. Furthermore, the class H̄ is easier to handle than the class H. These

observations call for the use of hypotheses regarding the volume occupied by data in EΦ(X ), the

introduction of constraints on (w,b), as well as the formulation of an intermediate result relating

the covering numbers of ∆∗
γH and ∆∗H̄ as a function of the aforementioned constraints. This

result is provided by the following lemma.

Lemma 1 (Lemmas 9 and 10 in Guermeur (2004)) Let H be the class of functions that a

Q-category M-SVM can implement under the constraint b ∈ [−β, β]Q. Let H̄ be the subset of H

corresponding to the functions satisfying b = 0. Let (γ, ε) ∈ R∗+2 and n ∈ N∗. Then

N (p)(ε,∆∗
γH, n) ≤

(
2
⌈
β

ε

⌉
+ 1
)Q

N (p)(ε/2,∆∗H̄, n). (2)

A �nal theorem then completes the construction of the guaranteed risk.

Theorem 3 (Theorem 5 in Guermeur (2004)) Let H̄ be the class of functions that a Q-

category M-SVM can implement under the hypothesis that Φ(X ) is included in the closed ball of

radius ΛΦ(X ) about the origin in EΦ(X ) and the constraints ‖w‖∞ ≤ Λw and b = 0. Then, for

any positive real value ε, the following bound holds true:

N-dim
(
∆H̄, ε

)
≤
(
Q

2

)(
ΛwΛΦ(X )

ε

)2

.

The proof combines the line of argument of the corresponding bi-class result, Theorem 4.6 in

Bartlett and Shawe-Taylor (1999), with the application of the pigeonhole principle. This involves

a generalization of Lemma 4.2 in Bartlett and Shawe-Taylor (1999) which can only be obtained for

the ∆ operator. This remark completes the discussion on the presence of both margin operators
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in Theorem 2. Putting things together, the control term of the guaranteed risk obtained decreases

with the size of the training sample as ln(m) ·m−1/2. This represents an improvement over the

rate obtained by Guermeur et al. (2005), namely m−1/4.

In short, what we have done so far is to derive a general purpose bound (Theorems 1 and

2), and dedicate it in the end to M-SVMs (Lemma 1 and Theorem 3). Obviously, improvements

should result from applying Dudley's method of chaining (Dudley, 1984), as well as optimizing

the choice of the pseudo-metrics and norms. In the following section, making full use of the fact

that M-SVMs are based on a RKHS, we obtain a sharper bound.

5 Bound on the risk of M-SVMs based on the Rademacher com-

plexity

The bound established in this section rests on the hypothesis and the constraints introduced in

the preceding section, plus the constraint b = 0 (we work with H̄). It is directly inspired from

bi-class results exposed in Sections 3 and 4 in Boucheron et al. (2005). We start by giving the

de�nition of the Rademacher complexity. For n ∈ N∗, a Bernoulli or Rademacher sequence σ

is a sequence (σi)1≤i≤n of i.i.d. Bernoulli random variables for which the common value of the

parameter p is 1
2 .

De�nition 14 (Rademacher complexity) Let F be a class of real-valued functions with do-

main T . For n ∈ N∗, let T = (Ti)1≤i≤n be a sequence of n i.i.d. random variables taking values

in T and let σ = (σi)1≤i≤n be a Rademacher sequence. The Rademacher complexity of F is

Rn (F) = EσT sup
f∈F

2
n

∣∣∣∣∣
n∑

i=1

σif (Ti)

∣∣∣∣∣ .
The use of the Rademacher complexity, and more generally Rademacher averages, is central in

many results in the theory of empirical processes. For those averages, a vast set of properties is

available, among which the contraction principle, which will prove useful in the sequel.

Theorem 4 (After Theorem 4.15 in Shawe-Taylor and Cristianini (2004)) F and n be-

ing de�ned as in De�nition 14, let φ : R −→ R be a function satisfying the Lipschitz condition

with constant Lφ such that φ(0) = 0. Then

Rn (φ ◦ F) ≤ 2LφRn (F) .

As in the case of Theorem 1, the derivation of the bound exposed in this section is based on the

de�nition of a new margin risk and the use of a concentration inequality. Taking our inspira-

tion from the loss function of the M-SVM of Crammer and Singer (2001), `M-SVM (y, h (x)) =
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(1− hy(x) + maxk 6=y hk(x))+, where (t)+ = max (0, t), we consider the following convexi�ed risk:

R̃(h) = E
[
(1−∆hY (X))+

]
.

R̃m(h) designates the corresponding empirical risk, measured on a m-sample. The concentration

inequality used here is the bounded di�erences inequality.

Theorem 5 (Bounded di�erences inequality (McDiarmid, 1989)) For n ∈ N∗, let (Ti)1≤i≤n

be a sequence of n independent random variables taking values in a set T . Let f be a function

from T n into R such that there exists a sequence of nonnegative constants (ci)1≤i≤n satisfying:

∀i ∈ [[ 1, n ]] , sup
(ti)1≤i≤n∈T n,t′i∈T

∣∣f(t1, . . . , tn)− f(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)

∣∣ ≤ ci.

Then, for any positive value of τ , the random variable f (T1, . . . , Tn) satis�es the following in-

equalities:

P {f (T1, . . . , Tn)− Ef (T1, . . . , Tn) > τ} ≤ e−
2τ2

c

and

P {Ef (T1, . . . , Tn)− f (T1, . . . , Tn) > τ} ≤ e−
2τ2

c

where c =
∑n

i=1 c
2
i .

These de�nitions and basic results being given, setting KH̄ = ΛwΛΦ(X ) + 1, we demonstrate the

following bound.

Theorem 6 Let H̄ be the class of functions that a Q-category M-SVM can implement under the

hypothesis that Φ(X ) is included in the closed ball of radius ΛΦ(X ) about the origin in EΦ(X ) and

the constraints ‖w‖∞ ≤ Λw and b = 0. Let δ ∈ (0, 1). With probability at least 1− δ, the risk of

any function h̄ in H̄ is bounded from above by:

R(h̄) ≤ R̃m(h̄) +
4√
m

+
4Q(Q− 1)ΛwΛΦ(X )√

m
+KH̄

√
ln
(

1
δ

)
2m

. (3)

Proof Since 1l{∆h̄Y (X)≤0} ≤
(
1−∆h̄Y (X)

)
+
, we have:

∀h̄ ∈ H̄, R(h̄) ≤ R̃(h̄).

Consequently,

∀h̄ ∈ H̄, R(h̄) ≤ R̃m(h̄) + sup
h̄′∈H̄

(
R̃(h̄′)− R̃m(h̄′)

)
. (4)

The rest of the proof consists in the computation of an upper bound on the supremum of the

empirical process appearing in (4). Let Z denote the random pair (X,Y ) and Zi its copies
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which constitute the m-sample Dm: Dm = (Zi)1≤i≤m. After simplifying notation this way, the

bounded di�erences inequality can be applied to the supremum of interest by setting n = m,

(Ti)1≤i≤n = Dm (i.e., Ti = Zi), and f (T1, . . . , Tn) = suph̄∈H̄

(
R̃(h̄)− R̃m(h̄)

)
. Due to the

hypotheses of Theorem 6, the functions h̄ of H̄, and thus the functions ∆h̄ of ∆H̄, take their

values in [−MH̄,MH̄]Q with MH̄ = ΛwΛΦ(X ). Consequently, the loss function associated with

the risk R̃ takes its values in the interval [0,KH̄]. One can thus choose the sequence (ci)1≤i≤m

in the following way: ∀i ∈ [[ 1,m ]] , ci = KH̄
m . Since we are only interested in computing an upper

bound on the supremum, it is the �rst inequality which is used. We then get the following result:

with probability at least 1− δ,

sup
h̄∈H̄

(
R̃(h̄)− R̃m(h̄)

)
≤ EDm sup

h̄∈H̄

(
R̃(h̄)− R̃m(h̄)

)
+KH̄

√
ln
(

1
δ

)
2m

. (5)

The introduction of a ghost sample D′
m = ((X ′

i, Y
′
i ))1≤i≤m = (Z ′i)1≤i≤m, exhibiting the same

properties as the initial sample Dm, and independent of this sample, makes it possible to apply a

symmetrization. Let R̃Dm(h̄) and R̃D′
m

(h̄) be the empirical margin risks respectively associated

with Dm and D′
m (we have thus R̃Dm(h̄) = R̃m(h̄)). Then,

EDm sup
h̄∈H̄

(
R̃(h̄)− R̃m(h̄)

)
= EDm sup

h̄∈H̄

(
ED′

m

[
R̃D′

m
(h̄)− R̃Dm(h̄)|Dm

])
.

Since the supremum is convex, applying Jensen's inequality gives:

EDm sup
h̄∈H̄

(
ED′

m

[
R̃D′

m
(h̄)− R̃Dm(h̄)|Dm

])
≤ ED2m sup

h̄∈H̄

(
R̃D′

m
(h̄)− R̃Dm(h̄)

)
,

where D2m denotes the concatenation of the samples Dm and D′
m. By substitution into (5), we

get:

sup
h̄∈H̄

(
R̃(h̄)− R̃m(h̄)

)
≤ ED2m sup

h̄∈H̄

(
R̃D′

m
(h̄)− R̃Dm(h̄)

)
+KH̄

√
ln
(

1
δ

)
2m

.

ED2m sup
h̄∈H̄

(
R̃D′

m
(h̄)− R̃Dm(h̄)

)
= ED2m

[
sup
h̄∈H̄

1
m

m∑
i=1

((
1−∆h̄Y ′

i

(
X ′

i

))
+
−
(
1−∆h̄Yi (Xi)

)
+

)]

≤ ED2m

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

((
1−∆h̄Y ′

i

(
X ′

i

))
+
−
(
1−∆h̄Yi (Xi)

)
+

)∣∣∣∣∣
]
.

At this level, the introduction of a weighting with Rademacher variables can be seen as the ap-

plication on D2m of a permutation belonging to the �swapping� subgroup of S2m, the symmetric

group of degree 2m. Since coordinate permutations preserve the product distribution P 2m, we

get:

ED2m sup
h̄∈H̄

(
R̃D′

m
(h̄)− R̃Dm(h̄)

)
≤ EσD2m

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi

((
1−∆h̄Y ′

i

(
X ′

i

))
+
−
(
1−∆h̄Yi (Xi)

)
+

)∣∣∣∣∣
]
.
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ED2m sup
h̄∈H̄

(
R̃D′

m
(h̄)− R̃Dm(h̄)

)
≤ 2EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi

(
1−∆h̄Yi (Xi)

)
+

∣∣∣∣∣
]
. (6)

For all h̄ ∈ H̄, let fh̄ be the real-value function de�ned on X × Y by:

∀(x, y) ∈ X × Y, fh̄(x, y) = 1−∆h̄y(x).

Let FH̄ =
{
fh̄ : h̄ ∈ H̄

}
. The right-hand side of (6) can be rewritten as follows

2EσDm

[
sup

fh̄∈FH̄

1
m

∣∣∣∣∣
m∑

i=1

σi (fh̄ (Xi, Yi))+

∣∣∣∣∣
]

= Rm

(
(FH̄)+

)
.

Since the function (·)+ satis�es the Lipschitz condition with constant 1, applying the contraction

principle gives:

EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi

(
1−∆h̄Yi (Xi)

)
+

∣∣∣∣∣
]
≤ 2EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi

(
1−∆h̄Yi (Xi)

)∣∣∣∣∣
]

≤ 2

(
Eσ

[
1
m

∣∣∣∣∣
m∑

i=1

σi

∣∣∣∣∣
]

+ EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣−
m∑

i=1

σi∆h̄Yi (Xi)

∣∣∣∣∣
])

≤ 2

(
1√
m

+ EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi∆h̄Yi (Xi)

∣∣∣∣∣
])

.

EσDm

[
sup
h̄∈H̄

∣∣∣∣∣
m∑

i=1

σi∆h̄Yi (Xi)

∣∣∣∣∣
]

= EσDm

[
sup
h̄∈H̄

∣∣∣∣∣
m∑

i=1

σi
1
2

(
h̄Yi (Xi)−max

k 6=Yi

h̄k (Xi)
)∣∣∣∣∣
]
.

The computations performed so far are not proper to M-SVMs but in the expression of the

constant KH̄. In the sequel, we make full use of the fact that the class H̄ is built around a

RKHS induced by the kernel κ. For n ∈ N∗, let zn = ((xi, yi))1≤i≤n ∈ (X × Y)n and let cat be

a mapping from H̄ × X × Y into [[ 1, Q ]]2 such that

∀
(
h̄, x, y

)
∈ H̄ × X × Y, cat

(
h̄, x, y

)
= (k, l) =⇒ (k = y) ∧ (l 6= y) ∧

(
h̄l (x) = max

p6=y
h̄p (x)

)
.

By construction of the mapping cat,

∀zm ∈ (X × Y)m ,
1
2

Eσ

[
sup
h̄∈H̄

∣∣∣∣∣
m∑

i=1

σi

(
h̄yi (xi)−max

k 6=yi

h̄k (xi)
)∣∣∣∣∣
]

≤ 1
2

Eσ

sup
h̄∈H̄

∣∣∣∣∣∣∣
∑
k 6=l

∑
i: cat(h̄,xi,yi)=(k,l)

σi

(
h̄k (xi)− h̄l (xi)

)∣∣∣∣∣∣∣
 .

Since the reproducing property implies that h̄k (xi)− h̄l (xi) = 〈h̄k − h̄l, κ (xi, ·)〉,

1
2

Eσ

[
sup
h̄∈H̄

∣∣∣∣∣
m∑

i=1

σi

(
h̄yi (xi)−max

k 6=yi

h̄k (xi)
)∣∣∣∣∣
]
≤ 1

2
Eσ

sup
h̄∈H̄

∑
k 6=l

∣∣∣∣∣∣∣
∑

i: cat(h̄,xi,yi)=(k,l)

σi〈h̄k − h̄l, κ (xi, ·)〉

∣∣∣∣∣∣∣
 .

(7)
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Due to the constraint ‖w‖∞ ≤ Λw, the Cauchy-Schwarz inequality provides us with the following

upper bound: ∀h̄ ∈ H̄, ∀(k, l) ∈ [[ 1, Q ]]2 , k 6= l,

1
2

∣∣∣∣∣∣∣
∑

i: cat(h̄,xi,yi)=(k,l)

σi〈h̄k − h̄l, κ (xi, ·)〉

∣∣∣∣∣∣∣ =
1
2

∣∣∣∣∣∣∣〈h̄k − h̄l,
∑

i: cat(h̄,xi,yi)=(k,l)

σiκ (xi, ·)〉

∣∣∣∣∣∣∣
≤ Λw

∥∥∥∥∥∥∥
∑

i: cat(h̄,xi,yi)=(k,l)

σiκ (xi, ·)

∥∥∥∥∥∥∥ .
Thus,

1
2

Eσ

sup
h̄∈H̄

∑
k 6=l

∣∣∣∣∣∣∣
∑

i: cat(h̄,xi,yi)=(k,l)

σi〈h̄k − h̄l, κ (xi, ·)〉

∣∣∣∣∣∣∣
 ≤ ΛwEσ

sup
h̄∈H̄

∑
k 6=l

∥∥∥∥∥∥∥
∑

i: cat(h̄,xi,yi)=(k,l)

σiκ (xi, ·)

∥∥∥∥∥∥∥
 .

Let Pm be the set of all mappings pm from [[ 1,m ]] into [[ 1, Q ]]2 such that for all value of i, the

pair pm(i) is always made up of two di�erent values.

ΛwEσ

sup
h̄∈H̄

∑
k 6=l

∥∥∥∥∥∥∥
∑

i: cat(h̄,xi,yi)=(k,l)

σiκ (xi, ·)

∥∥∥∥∥∥∥
 ≤ Λw

∑
k 6=l

Eσ

 sup
pm∈Pm

∥∥∥∥∥∥
∑

i: pm(i)=(k,l)

σiκ (xi, ·)

∥∥∥∥∥∥
 .
(8)

Consequently, to complete the derivation of the bound, it su�ces to �nd a uniform upper bound

on the expressions of the form:

Eσ

∥∥∥∥∥∑
i∈Im

σiκ (xi, ·)

∥∥∥∥∥ ,
where Im is a subset of [[ 1,m ]].

Eσ

∥∥∥∥∥∑
i∈Im

σiκ (xi, ·)

∥∥∥∥∥ = Eσ

〈∑
i∈Im

σiκ (xi, ·) ,
∑

j∈Im

σjκ (xj , ·)〉
1
2

 . (9)

By application of Jensen's inequality, the right-hand side of Equation 9 is bounded from above

as follows:

Eσ

〈∑
i∈Im

σiκ (xi, ·) ,
∑

j∈Im

σjκ (xj , ·)〉
1
2

 ≤
Eσ

∑
i∈Im

∑
j∈Im

σiσjκ (xi, xj)

 1
2

=

(∑
i∈Im

κ (xi, xi)

) 1
2

.

Since κ is a positive type function, κ (xi, xi) ≥ 0, and thus

∀Im ⊂ [[ 1,m ]] , Eσ

∥∥∥∥∥∑
i∈Im

σiκ (xi, ·)

∥∥∥∥∥ ≤
(∑

i∈Im

κ (xi, xi)

) 1
2

≤

(
m∑

i=1

κ (xi, xi)

) 1
2

≤ ΛΦ(X )

√
m.

13



(the proof of the partial result Eσ

[
1
m |
∑m

i=1 σi|
]
≤ 1√

m
we used earlier is exactly the same). To

sum up:

∀(k, l) ∈ [[ 1, Q ]]2 , k 6= l, Eσ

 sup
pm∈Pm

∥∥∥∥∥∥
∑

i: pm(i)=(k,l)

σiκ (xi, ·)

∥∥∥∥∥∥
 ≤ ΛΦ(X )

√
m.

By substitution in the right-hand side of (8), and then in the right-hand side of (7), we get

∀zm ∈ (X × Y)m ,
1
2

Eσ

[
sup
h̄∈H̄

∣∣∣∣∣
m∑

i=1

σi

(
h̄yi (xi)−max

k 6=yi

h̄k (xi)
)∣∣∣∣∣
]
≤ Q(Q− 1)ΛwΛΦ(X )

√
m

which implies that

EσDm

[
sup
h̄∈H̄

1
m

∣∣∣∣∣
m∑

i=1

σi∆h̄Yi (Xi)

∣∣∣∣∣
]
≤
Q(Q− 1)ΛwΛΦ(X )√

m
.

Gathering all the partial results produces the bound (3), which concludes the proof.

In this bound, the control term is a O
(
m−1/2

)
. We have thus gained a ln(m) factor compared

to the bound involving the margin Natarajan dimension.

6 Conclusions and ongoing research

A new class of generalized VC dimensions dedicated to large margin multi-category discriminant

models has been introduced: the γ-Ψ-dimensions. They can be seen either as multivariate ex-

tensions of the fat-shattering dimension or scale-sensitive Ψ-dimensions. Their �niteness (for all

positive values of the scale parameter γ) characterizes learnability for the classes of functions

considered. Their introduction thus bridges an important gap in the VC theory. Furthermore,

using the margin Natarajan dimension, we derived a bound on the risk of M-SVMs where the

control term decreases with the size of the training sample as ln(m) ·m−1/2. Although this guar-

anteed risk is tighter than the one established by Guermeur et al. (2005), the sharpest rate of

convergence we obtained for these machines resulted from using the Rademacher complexity. We

conjecture that this rate of convergence, in m−1/2, could also be attained using γ-Ψ-dimensions.

Thanks to Dudley's method of chaining (Dudley, 1984), the VC bound could obviously be im-

proved by a factor
√

ln(m). The di�culty thus consists in improving the generalized Sauer

Lemma (Theorem 2) in order to get rid of the remaining
√

ln(m) factor. This corresponds to

deriving an upper bound on the covering number of interest growing polynomially with m, to

replace the current mO(ln(m)). This could be possible since this dependence is precisely the one

of Sauer's (original) lemma. Obtaining these improvements is the subject of an ongoing research.
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