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Abstract

Using a support vector machine (SVM) requires to set the values of two types of hyperparameters:
the soft margin parameter C and the parameters of the kernel. To perform this model selection task,
the method of choice is cross-validation. Its leave-one-out variant is known to produce an estimator of
the generalization error which is almost unbiased. Its major drawback rests in its time requirement.
To overcome this difficulty, several upper bounds on the leave-one-out error of the pattern recognition
SVM have been derived. Among those bounds, the most popular one is probably the radius-margin
bound. In this report, we establish a generalized radius-margin bound dedicated to the multi-class
SVM of Lee, Lin and Wahba.

Keywords: M-SVMs, model selection, leave-one-out error, radius-margin bound

1 Introduction

Using a SVM [3, 6] requires to set the values of two types of hyperparameters: the soft margin parameter
C and the parameters of the kernel. To perform this model selection task, several approaches are available
(see for instance [13, 16]). The solution of choice consists in applying a cross-validation procedure. Among
those procedures, the leave-one-out one appears especially attractive, since it is known to produce an
estimator of the generalization error which is almost unbiased [15]. The seamy side of things is that it
is highly time consuming. This is the reason why, in recent years, a number of upper bounds on the
leave-one-out error of the (standard) pattern recognition SVM have been proposed in literature (see [5]
for a survey). Among those bounds, the tightest one is the span bound [21]. However, the results of
Chapelle and co-workers presented in [5] show that another bound, the radius-margin one [20], achieves
equivalent performance for model selection while being far simpler to compute. This is the reason why
it is currently the most popular bound. In this report, we establish a generalized radius-margin bound
on the leave-one-out error of the hard margin version of the multi-class SVM (M-SVM) of Lee, Lin and
Wahba [14].

The organization of this paper is as follows. Section 2 presents the M-SVMs, by describing their
common architecture and the general form taken by their different training algorithms. Section 3 focuses
on the M-SVM of Lee, Lin and Wahba. Section 4 is devoted to the formulation and proof of the
corresponding multi-class radius-margin bound. At last, we draw conclusions and outline our ongoing
research in Section 5.

2 Multi-Class SVMs

Like the SVMs, the M-SVMs are large margin classifiers which are devised in the framework of Vapnik’s
statistical learning theory [20].

2.1 Formalization of the learning problem

We are interested here in multi-class pattern recognition problems. Formally, we consider the case of
Q-category classification problems with 3 ≤ Q < ∞, but our results extend to the case of dichotomies.
Each object is represented by its description x ∈ X and the set Y of the categories y can be identified
with the set of indexes of the categories: [[ 1, Q ]]. We assume that the link between objects and categories
can be described by an unknown probability measure P on the product space X × Y. The aim of the
learning problem consists in selecting in a set G of functions g = (gk)1≤k≤Q from X into RQ a function
classifying data in an optimal way. The criterion which is to be optimized must be specified. The function
g assigns x ∈ X to the category l if and only if gl(x) > maxk 6=l gk(x). In case of ex æquo, x is assigned
to a dummy category denoted by ∗. Let f be the decision function (from X into Y

⋃
{∗}) associated

with g. With these definitions at hand, the objective function to be minimized is the probability of error
P (f (X) 6= Y ). The optimization process, called training, is based on empirical data. More precisely, we
assume that there exists a random pair (X, Y ) ∈ X ×Y, distributed according to P , and we are provided
with a m-sample Dm = ((Xi, Yi))1≤i≤m of independent copies of (X, Y ).

There are two questions raised by such problems: how to properly choose the class of functions G
and how to determine the best candidate g∗ in this class, using only Dm. This report focuses on the
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first question, named model selection, in the particular case when the model considered is a M-SVM. The
second question, named function selection, is addressed for instance in [11].

2.2 Architecture and training algorithms

M-SVMs, like all the SVMs, belong to the family of kernel machines [17]. As such, they operate on a class
of functions induced by a positive semidefinite function/kernel. This calls for the formulation of some
definitions and basic results. For the sake of simplicity, we consider real-valued functions only, although
the general form of these definitions and results involves complex-valued functions.

Definition 1 (Positive semidefinite (positive type) function) A real-valued function κ on X 2 is
called a positive semidefinite function (or a positive type function) if it is symmetric and

∀n ∈ N∗, ∀ (xi)1≤i≤n ∈ X
n, ∀ (ai)1≤i≤n ∈ Rn,

n∑
i=1

n∑
j=1

aiajκ (xi, xj) ≥ 0.

Definition 2 (Reproducing kernel Hilbert space [2]) Let (H, 〈·, ·〉H) be a Hilbert space of real-valued
functions on X . A real-valued function κ on X 2 is a reproducing kernel of H if and only if

1. ∀x ∈ X , κx = κ (x, ·) ∈ H;

2. ∀x ∈ X ,∀h ∈ H, 〈h, κx〉H = h(x) (reproducing property).

A Hilbert space of real-valued functions which possesses a reproducing kernel is called a reproducing kernel
Hilbert space (RKHS) or a proper Hilbert space.

The connection between positive semidefinite functions and RKHSs is provided by the Moore-Aronszajn
theorem.

Theorem 1 (Moore-Aronszajn theorem [1]) Let κ be a real-valued positive semidefinite function on
X 2. There exists only one Hilbert space (H, 〈·, ·〉H) of real-valued functions on X with κ as reproducing
kernel. The subspace H0 of H spanned by the functions κx is dense in H and H is the set of functions
on X which are pointwise limits of Cauchy sequences in H0 with the inner product

〈h, h′〉H0 =
n∑

i=1

n′∑
j=1

aia
′
jκ

(
xi, x

′
j

)
where h =

∑n
i=1 aiκxi and h′ =

∑n′

j=1 a′jκx′
j
.

Proposition 1 Let κ be a real-valued positive semidefinite function on X 2. There exists a map Φ from
X into a Hilbert space

(
EΦ(X ), 〈·, ·〉

)
such that:

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x),Φ(x′)〉. (1)

In the sequel, such a map Φ will be called a feature map and EΦ(X ) a feature space. Taking advantage of
the fact that the value of the inner product is the same in all the feature spaces (since it only depends
on the choice of the kernel κ), we will also make the slight abuse of language consisting in calling Φ the
feature map and EΦ(X ) the feature space. Let κ be a real-valued positive semidefinite kernel on X 2 and let
(Hκ, 〈·, ·〉Hκ) be the RKHS spanned by κ. Let H̄ = (Hκ, 〈·, ·〉Hκ)Q and let H = ((Hκ, 〈·, ·〉Hκ) + {1})Q.
By construction, H is the class of vector-valued functions h = (hk)1≤k≤Q on X such that their component
functions are finite affine combinations of the form

hk(·) =
mk∑
i=1

βikκ (xik, ·) + bk

where the xik are elements of X (the βik and bk are scalars), as well as the limits of these functions as
the sets {xik : 1 ≤ i ≤ mk} become dense in X , in the norm induced by the inner product 〈·, ·〉Hκ (see

2



also [22]). Due to Equation 1, H can also be seen as a multivariate affine model on Φ (X ). Functions h
can then be rewritten as

h(·) = (〈wk, ·〉+ bk)1≤k≤Q

where the vectors wk are elements of EΦ(X ). They are thus described by the pair (w,b) with w =
(wk)1≤k≤Q ∈ EQ

Φ(X ) and b = (bk)1≤k≤Q ∈ RQ. As a consequence, H̄ can be seen as a multivariate linear
model on Φ (X ), endowed with a norm ‖ · ‖H̄ given by:

∀h̄ ∈ H̄,
∥∥h̄

∥∥
H̄ =

√√√√ Q∑
k=1

‖wk‖2 = ‖w‖ ,

where ‖wk‖ =
√
〈wk, wk〉. With these definitions, theorems and propositions at hand, a generic definition

of the M-SVMs can be formulated as follows.

Definition 3 (M-SVM, Definition 42 in [11]) Let ((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])m and λ ∈ R∗
+. A

Q-category M-SVM is a large margin discriminant model obtained by minimizing over the hyperplane∑Q
k=1 hk = 0 of H a penalized risk JM-SVM of the form:

JM-SVM (h) =
m∑

i=1

`M-SVM (yi, h (xi)) + λ
∥∥h̄

∥∥2

H̄

where the data fit component involves a loss function `M-SVM which is convex.

Definition 4 (Hard and soft margin M-SVM) If a M-SVM is trained subject to the constraint that
the data fit component is null (

∑m
i=1 `M-SVM (yi, h (xi)) = 0), it is called a hard margin M-SVM. Other-

wise, it is called a soft margin M-SVM.

Three main models of M-SVMs can be found in literature (see [10] for a survey). The oldest one is
the model of Weston and Watkins [23, 20, 4], which corresponds to the loss function `WW given by:

`WW(y, h(x)) =
∑
k 6=y

(1− hy(x) + hk(x))+ ,

where the hinge loss function (·)+ is the function max(0, ·). The second one is due to Crammer and
Singer [7] and corresponds to the loss function `CS given by:

`CS(y, h̄(x)) =
(

1− h̄y(x) + max
k 6=y

h̄k(x)
)

+

.

The most recent model is the one of Lee, Lin and Wahba [14], which corresponds to the loss function
`LLW given by:

`LLW (y, h(x)) =
∑
k 6=y

(
hk(x) +

1
Q− 1

)
+

. (2)

Among the three models, the M-SVM of Lee, Lin and Wahba is the only one that implements asymptot-
ically the Bayes decision rule. It is Fisher consistent [24, 19].

2.3 Geometrical margins

From a geometrical point of view, the algorithms described above select functions h∗ (sets of the form
{(w∗

k, b∗k) : 1 ≤ k ≤ Q}) associated with sets of separating hyperplanes that tend to maximize globally the(
Q
2

)
margins between the different categories. If these margins are defined as in the bi-class case, their

analytical expression is more complex.
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Definition 5 (Geometrical margins, Definition 7 in [10]) Let n be a positive integer and let dn =
{(xi, yi) : 1 ≤ i ≤ n} be a set of n examples (belonging to X × Y). If a function h in H classifies these
examples without error, then its margin between categories k and l (computed with respect to dn), γkl(h),
is defined as the smallest distance of a point of dn either in k or l to the hyperplane separating those
categories. Let us denote

d(h) = min
1≤k<l≤Q

{
min

[
min

i:yi=k
(hk(xi)− hl(xi)) , min

j:yj=l
(hl(xj)− hk(xj))

]}
and for 1 ≤ k < l ≤ Q, let dkl(h) be

dkl(h) =
1

d(h)
min

[
min

i:yi=k
(hk(xi)− hl(xi)) , min

j:yj=l
(hl(xj)− hk(xj))

]
− 1.

Then we have

γkl(h) = d(h)
1 + dkl(h)
‖wk − wl‖

.

Remark 1 By definition, if h ∈ H classifies the examples of dn without error, then

min
1≤k<l≤Q

dkl(h) = 0.

However, for the hard margin versions of the three main models of M-SVMs, the assumption that all the
values of the parameters dkl (h∗) are equal to 0 cannot be made a priori.

In the case of the M-SVMs (satisfying
∑Q

k=1 wk = 0), the connection between the geometrical margins
and the penalizer of JM-SVM is given by the following equation:

∑
k<l

‖wk − wl‖2 = Q

Q∑
k=1

‖wk‖2, (3)

the proof of which can for instance be found in Chapter 2 of [10].

3 The M-SVM of Lee, Lin and Wahba (LLW-M-SVM)

We now present in more detail the M-SVM for which the generalized radius-margin bound will be estab-
lished.

3.1 Training algorithms

The substitution in Definition 3 of `M-SVM with the expression of the loss function `LLW given by Equa-
tion 2 provides us with the expressions of the quadratic programming (QP) problems corresponding to the
training algorithms of the hard margin and soft margin versions of the M-SVM of Lee, Lin and Wahba.

Problem 1 (Hard margin M-SVM, primal formulation)

min
w,b

JHM (w,b)

s.t.


∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk,Φ(xi)〉+ bk ≤ − 1

Q−1∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JHM (w,b) =
1
2

Q∑
k=1

‖wk‖2.
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Problem 2 (Soft margin M-SVM, primal formulation)

min
w,b,ξ

JSM (w,b, ξ)

s.t.


∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , 〈wk,Φ(xi)〉+ bk ≤ − 1

Q−1 + ξik

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , ξik ≥ 0∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JSM (w,b, ξ) =
1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

∑
k 6=yi

ξik.

In Problem 2, the ξik are slack variables introduced in order to relax the constraints of correct clas-
sification. For convenience of notation, the vector ξ of these variables is represented as follows : ξ =
(ξik)1≤i≤m,1≤k≤Q ∈ RQm

+ . ξik is thus its component of index (i− 1)Q + k and the ξiyi are dummy vari-
ables, all equal to 0. Using the notation en to designate the vector of Rn such that all its components are
equal to e, we have thus (ξiyi)1≤i≤m = 0m. The coefficient C, which characterizes the trade-off between
prediction accuracy on the training set and smoothness of the solution, can be expressed in terms of
the regularization coefficient λ as follows: C = (2λ)−1. It is called the soft margin parameter. Instead
of directly solving Problems 1 and 2, one usually solves their Wolfe dual [8]. We now derive the dual
problem of Problem 2. Giving the details of the implementation of the Lagrangian duality will provide
us with partial results which will prove useful in the sequel.

Let α = (αik)1≤i≤m,1≤k≤Q ∈ RQm
+ be the vector of Lagrange multipliers associated with the con-

straints of good classification. Similarly, let β = (βik)1≤i≤m,1≤k≤Q ∈ RQm
+ be the vector of Lagrange

multipliers associated with the constraints of nonnegativity of the slack variables. These vectors are built
according to the same principle as vector ξ. Let γ ∈ EΦ(X ) be the Lagrange multiplier associated with the
constraint

∑Q
k=1 wk = 0 and δ ∈ R the Lagrange multiplier associated with the constraint

∑Q
k=1 bk = 0.

The Lagrangian function of Problem 2 is given by:

L (w,b, ξ, α, β, γ, δ) =

1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

Q∑
k=1

ξik +
m∑

i=1

Q∑
k=1

αik

(
〈wk,Φ(xi)〉+ bk +

1
Q− 1

− ξik

)
−

m∑
i=1

Q∑
k=1

βikξik

−〈γ,

Q∑
k=1

wk〉 − δ

Q∑
k=1

bk. (4)

Setting the gradient of L with respect to wk equal to the null vector provides us with Q alternative
expressions for the optimal value of vector γ:

∀k ∈ [[ 1, Q ]] , γ∗ = w∗
k +

m∑
i=1

α∗ikΦ(xi). (5)

Since by hypothesis,
∑Q

k=1 w∗
k = 0, summing over the index k provides us with the expression of γ∗ as a

function of dual variables only:

γ∗ =
1
Q

m∑
i=1

Q∑
k=1

α∗ikΦ(xi).

By substitution into (5), we get the expression of the vectors wk at the optimum:

∀k ∈ [[ 1, Q ]] , w∗
k =

m∑
i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ilΦ(xi), (6)

5



where δk,l is the Kronecker symbol.
Let us now set the gradient of L with respect to b equal to the null vector. We get

∀k ∈ [[ 1, Q ]] , δ∗ =
m∑

i=1

α∗ik

and thus

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗il = 0. (7)

Given the constraint
∑Q

k=1 bk = 0,

m∑
i=1

Q∑
k=1

α∗ikb∗k =
Q∑

k=1

b∗k

m∑
i=1

α∗ik = δ∗
Q∑

k=1

b∗k = 0. (8)

Setting the gradient of L with respect to ξ equal to the null vector gives:

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik + β∗ik = C. (9)

By application of (6),

Q∑
k=1

‖w∗
k‖

2 =
Q∑

k=1

〈
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ilΦ(xi),

m∑
j=1

Q∑
n=1

(
1
Q
− δk,n

)
α∗jnΦ(xj)〉

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

{
Q∑

k=1

(
1
Q
− δk,l

) (
1
Q
− δk,n

)}
α∗ilα

∗
jn〈Φ(xi),Φ(xj)〉

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

(
δl,n −

1
Q

)
α∗ilα

∗
jnκ(xi, xj). (10)

Still by application of (6),

m∑
i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 =

m∑
i=1

Q∑
k=1

α∗ik〈
m∑

j=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗jlΦ(xj),Φ(xi)〉

=
m∑

i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
1
Q
− δk,l

)
α∗ikα∗jlκ(xi, xj). (11)

Combining (10) and (11) gives:

1
2

Q∑
k=1

‖w∗
k‖

2 +
m∑

i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 = −1

2

Q∑
k=1

‖w∗
k‖

2

= −1
2

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
δk,l −

1
Q

)
α∗ikα∗jlκ(xi, xj). (12)

Extending to the case of matrices the double subscript notation used to designate the general terms of
the vectors α, β and ξ, let us define H as the matrix of MQm,Qm (R) of general term:

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).
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With these notations at hand, reporting (8), (9) and (12) in (4) provides us with an algebraic expression of
the Lagrangian function at the optimum where the primal variables have been eliminated. This provides
us in turn with the following expression for the objective function of the Wolfe dual of Problem 2:

JLLW,d (α) = −1
2
αT Hα +

1
Q− 1

1T
Qmα.

The constraints of this problem are derived from Equations 7 and 9. The Wolfe dual of Problem 2 is
thus:

Problem 3 (Soft margin M-SVM, dual formulation)

max
α

JLLW,d(α)

s.t.

{
∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , 0 ≤ αik ≤ C

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0

where
JLLW,d(α) = −1

2
αT Hα +

1
Q− 1

1T
Qmα,

with the general term of the Hessian matrix H being

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).

With slight modifications, the derivation above can be adapted to express the Wolfe dual of Problem 1.
This leads to:

Problem 4 (Hard margin M-SVM, dual formulation)

max
α

JLLW,d(α)

s.t.

{
∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , αik ≥ 0

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
αil = 0

.

3.2 Geometrical margins

The geometrical margins of the hard margin Q-category M-SVM of Lee, Lin and Wahba can be character-
ized thanks to three propositions among which the two last will prove useful to establish the radius-margin
bound.

Proposition 2 Let us consider a hard margin Q-category M-SVM of Lee, Lin and Wahba. Then,

d (h∗) ≥ Q

Q− 1
.

Proof First, note that if h ∈ H classifies the examples of the set {(xi, yi) : 1 ≤ i ≤ n} without error,
then d(h) = min1≤i≤n mink 6=yi (hyi(xi)− hk(xi)). By application of the formula giving `LLW,

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , h∗k (xi) ≤ − 1
Q− 1

.

Since
∑Q

k=1 h∗k = 0, this implies that

∀i ∈ [[ 1,m ]] , h∗yi
(xi) ≥ 1

and thus d (h∗) ≥ Q
Q−1 .
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Proposition 3 For the hard margin Q-category M-SVM of Lee, Lin and Wahba trained on {(xi, yi) : 1 ≤ i ≤ m},
in the non-trivial case when α∗ 6= 0, there exists a mapping I from [[ 1, Q ]] to [[ 1,m ]] such that

∀k ∈ [[ 1, Q ]] , h∗k
(
xI(k)

)
= − 1

Q− 1
.

Proof This proposition results readily from the Kuhn-Tucker optimality conditions and the form taken
by the constraints of Problem 4. Indeed, if α∗ 6= 0, then for all k, there exists at least one dual variable
α∗ik which is positive.

Proposition 4 For the hard margin Q-category M-SVM of Lee, Lin and Wahba, we have

d (h∗)2

Q

∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

=
Q∑

k=1

‖w∗
k‖2 = α∗T Hα∗ =

1
Q− 1

1T
Qmα∗.

Proof

• d(h∗)2

Q

∑
k<l

(
1+dkl(h

∗)
γkl(h∗)

)2

=
∑Q

k=1 ‖w∗
k‖2

This equation is a direct consequence of Definition 5 and Equation 3.

•
∑Q

k=1 ‖w∗
k‖2 = α∗T Hα∗

This is a direct consequence of Equation 12 and the definition of matrix H.

• α∗T Hα∗ = 1
Q−11T

Qmα∗

The general term of the gradient ∇JLLW,d (α∗) = −Hα∗ + 1
Q−11Qm is 〈w∗

k,Φ(xi)〉 + 1
Q−1 . Thus,

the Kuhn-Tucker optimality conditions imply that

m∑
i=1

Q∑
k=1

α∗ik

(
〈w∗

k,Φ(xi)〉+ b∗k +
1

Q− 1

)
= −α∗T Hα∗ +

1
Q− 1

1T
Qmα∗ +

m∑
i=1

Q∑
k=1

α∗ikb∗k = 0.

By application of Equation 8, the right-hand side of this equation simplifies into α∗T Hα∗ =
1

Q−11T
Qmα∗.

4 Multi-Class Radius-Margin Bound on the Leave-One-Out Er-
ror of the M-SVM

Like its bi-class counterpart, our multi-class radius-margin bound is based on a key lemma.

4.1 Multi-class key lemma

Lemma 1 (Multi-class key lemma) Let us consider a hard margin Q-category M-SVM of Lee, Lin
and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set. Consider now the same
machine trained on dm \ {(xp, yp)}. If it makes an error on (xp, yp), then the inequality

max
k∈[[ 1,Q ]]

α∗pk ≥
1

Q(Q− 1)D2
m

holds, where Dm is the diameter of the smallest sphere of the feature space containing the set {Φ(xi) : 1 ≤ i ≤ m}.
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Proof Let hp ∈ H be the optimal solution when the machine is trained on dm \ {(xp, yp)}. Accordingly,
let us denote by (wp,bp) the couple characterizing the optimal hyperplanes and by αp = (αp

ik) ∈ RQm
+

the corresponding vector of the dual variables, with
(
αp

pk

)
1≤k≤Q

= 0Q. This representation is used

in order to simplify the simultaneous handling of both M-SVMs. Indeed, αp is an optimal solution of
Problem 4 under the additional constraint (αpk)1≤k≤Q = 0Q. Let us define two more vectors in RQm

+ ,
λp = (λp

ik)
1≤i≤m,1≤k≤Q

and µp = (µp
ik)

1≤i≤m,1≤k≤Q
. λp exhibits additional properties so that the vector

α∗−λp is a feasible solution of Problem 4 under the additional constraint that
(
α∗pk − λp

pk

)
1≤k≤Q

= 0Q,

i.e., α∗ − λp satisfies the same constraints as αp. We have thus

∀i ∈ [[ 1,m ]] \ {p} ,∀k ∈ [[ 1, Q ]] \ {yi} , α∗ik − λp
ik ≥ 0 ⇐⇒ λp

ik ≤ α∗ik.

We deduce from the equality constraints of Problem 4 that:

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
(α∗il − λp

il) = 0 ⇐⇒
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

il = 0.

To sum up, vector λp satisfies the following constraints:
∀k ∈ [[ 1, Q ]] , λp

pk = α∗pk

∀i ∈ [[ 1,m ]] \ {p} ,∀k ∈ [[ 1, Q ]] \ {yi} , 0 ≤ λp
ik ≤ α∗ik

∀k ∈ [[ 1, Q− 1 ]] ,
∑m

i=1

∑Q
l=1

(
1
Q − δk,l

)
λp

il = 0
. (13)

Note that the domain defined by these constraints is a subset of the feasible set of Problem 4 (vector λp

is a feasible solution of Problem 4). The properties of vector µp are such that αp + K1µ
p satisfies the

same constraints as α∗, where K1 is a positive scalar the value of which will be specified in the sequel.
We have thus:

∀i ∈ [[ 1,m ]] , αp
iyi

+ K1µ
p
iyi

= 0 ⇐⇒ µp
iyi

= 0.

Moreover, we have

∀i ∈ [[ 1,m ]] ,∀k ∈ [[ 1, Q ]] \ {yi} , µp
ik ≥ 0 =⇒ αp

ik + K1µ
p
ik ≥ 0.

Finally,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
(αp

il + K1µ
p
il) = 0 ⇐⇒

m∑
i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

il = 0.

To sum up, vector µp is a feasible solution of Problem 4. In the sequel, for the sake of simplicity, we
write J in place of JLLW,d. By construction of vectors λp and µp, we have J(α∗ − λp) ≤ J(αp) and
J (αp + K1µ

p) ≤ J(α∗). Hence,

J(α∗)− J(α∗ − λp) ≥ J(α∗)− J(αp) ≥ J (αp + K1µ
p)− J(αp). (14)

The expression of the first term is

J(α∗)− J(α∗ − λp) =
1
2
λpT Hλp +∇J(α∗)T λp.

Since α∗ and λp are respectively an optimal and a feasible solution of Problem 4, then necessarily,

∇J(α∗)T λp ≤ 0.

This becomes obvious when one thinks about the principle of the Frank-Wolfe algorithm [9]. As a
consequence,

J(α∗)− J(α∗ − λp) ≤ 1
2
λpT Hλp

9



and equivalently, in view of Equations 6 and 10 (where α∗ has been replaced with λp), as well as the
definition of H,

J(α∗)− J(α∗ − λp) ≤ 1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

. (15)

We now turn to the right-hand side of (14). The line of reasoning already used for the left-hand side
gives:

J (αp + K1µ
p)− J(αp) = K1∇J(αp)T µp − K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (16)

By hypothesis, the M-SVM trained on dm\{(xp, yp)} does not classify xp correctly. This means that there
exists n ∈ [[ 1, Q ]] \ {yp} such that hp

n (xp) ≥ 0. Furthermore, αp is not an optimal solution of Problem 4.
Since µp is a feasible solution of the same problem, it can be built in such a way that ∇J(αp)T µp > 0 (it
defines a direction of ascent). These observations being made, neglecting the case αp = 0 as a degenerate
one, we apply Proposition 3 to build a vector µp with adequate properties. Thus, let I be a mapping
from [[ 1, Q ]] to [[ 1,m ]] \ {p} such that

∀k ∈ [[ 1, Q ]] , hp
k

(
xI(k)

)
= − 1

Q− 1
.

For K2 ∈ R∗
+, let µp be the vector of RQm

+ that only differs from the null vector in the following way:{
µp

pn = K2

∀k ∈ [[ 1, Q ]] \ {n} , µp
I(k)k = K2

.

Obviously, this solution satisfies the constraints of Problem 4. With this definition of vector µp, the inner
product ∇J(αp)T µp simplifies as follows:

∇J(αp)T µp =
m∑

i=1

Q∑
k=1

µp
ik

(
〈wp

k,Φ(xi)〉+
1

Q− 1

)

= K2

〈wp
n,Φ(xp)〉+

1
Q− 1

+
∑
k 6=n

(
〈wp

k,Φ
(
xI(k)

)
〉+

1
Q− 1

)
= K2

{
hp

n(xp) +
1

Q− 1
−

Q∑
k=1

bp
k

}
.

As a consequence,

∇J(αp)T µp ≥ K2

Q− 1
.

By substitution into Equation 16, we get

J (αp + K1µ
p)− J(αp) ≥ K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (17)

Combining (14), (15) and (17) finally gives

1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2

≥

K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
µp

ilΦ(xi)

∥∥∥∥∥
2

. (18)
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Let νp = (νp
ik)1≤i≤m,1≤k≤Q be the vector of RQm

+ such that µp = K2ν
p. The value of the scalar K = K1K2

maximizing the right-hand side of (18) is:

K∗ =
1

Q−1∑Q
k=1

∥∥∥∑m
i=1

∑Q
l=1

(
1
Q − δk,l

)
νp

ilΦ(xi)
∥∥∥2 .

By substitution in (18), this implies that

(Q− 1)2
Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
λp

ilΦ(xi)

∥∥∥∥∥
2 Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

(
1
Q
− δk,l

)
νp

ilΦ(xi)

∥∥∥∥∥
2

≥ 1.

For η = (ηik)1≤i≤m,1≤k≤Q ∈ RQm, let S(η) = 1
Q

∑m
i=1

∑Q
k=1 ηp

ik. Given the equality constraints satisfied
by vector λp, the quadratic form λpT Hλp can be rewritten as

Q∑
k=1

∥∥∥∥∥ 1
Q

m∑
i=1

Q∑
l=1

λp
ilΦ(xi)−

m∑
i=1

λp
ikΦ(xi)

∥∥∥∥∥
2

=

S (λp)2
Q∑

k=1

‖conv {Φ(xi) : 1 ≤ i ≤ m} − convk {Φ(xi) : 1 ≤ i ≤ m}‖2

where conv {Φ(xi) : 1 ≤ i ≤ m} and the convk {Φ(xi) : 1 ≤ i ≤ m} are convex combinations of the Φ(xi).
As a consequence,

∀k ∈ [[ 1, Q ]] , ‖conv {Φ(xi) : 1 ≤ i ≤ m} − convk {Φ(xi) : 1 ≤ i ≤ m}‖2 ≤ D2
m.

Since the same reasoning applies to νp, we get:

(Q− 1)2Q2S (λp)2 S (νp)2D4
m ≥ 1. (19)

By construction, S (νp) = 1. We now construct a vector λp minimizing the objective function S. First,
note that due to the equality constraints satisfied by this vector,

∀(k, l) ∈ [[ 1, Q ]]2 ,

m∑
i=1

λp
ik =

m∑
i=1

λp
il.

This implies that

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik ≥ max

l∈[[ 1,Q ]]
α∗pl

and thus
min
λp

S (λp) ≥ max
l∈[[ 1,Q ]]

α∗pl.

Obviously, the nature of the function S calls for the choice of minimal values for the components λp
ik,

which is coherent with the box constraints in (13). Thus, there exists a vector λp∗ which is a minimizer
of S subject to the set of constraints (13) such that

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp∗

ik = max
l∈[[ 1,Q ]]

α∗pl,

i.e., S
(
λp∗

)
= maxl∈[[ 1,Q ]] α

∗
pl. The substitution of the values of S (νp) and S

(
λp∗

)
in (19) provides us

with (
max

k∈[[ 1,Q ]]
α∗pk

)2

≥ 1
(Q− 1)2Q2D4

m

.

Taking the square root of both sides concludes the proof of the lemma.
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4.2 Multi-class radius-margin bound

The multi-class radius-margin bound is a direct consequence of Lemma 1.

Theorem 2 (Multi-class radius-margin bound) Let us consider a hard margin Q-category M-SVM
of Lee, Lin and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set, Lm the number
of errors resulting from applying a leave-one-out cross-validation procedure to this machine, and Dm the
diameter of the smallest sphere of the feature space containing the set {Φ(xi) : 1 ≤ i ≤ m}. Then, using
the notations of Definition 5, the following upper bound holds true:

Lm ≤ (Q− 1)2D2
md (h∗)2

∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

.

Proof Lemma 1 exhibits a non-trivial lower bound on maxk∈[[ 1,Q ]] α
∗
pk when the machine trained on the

set dm \ {(xp, yp)} makes an error on (xp, yp), i.e., when (xp, yp) contributes to Lm. As a consequence,

1T
Qmα∗ ≥

m∑
i=1

max
k∈[[ 1,Q ]]

α∗ik ≥
Lm

Q(Q− 1)D2
m

. (20)

According to Proposition 4,

1T
Qmα∗ =

Q− 1
Q

d (h∗)2
∑
k<l

(
1 + dkl (h∗)

γkl (h∗)

)2

.

A substitution in (20) thus provides us with the announced result.

5 Conclusions and Ongoing Research

In this report, we have established a generalization of Vapnik’s radius-margin bound dedicated to the
(hard margin) M-SVM of Lee, Lin and Wahba. In doing so, we have highlighted different features of the
M-SVMs which make their study intrinsically more difficult than the one of bi-class pattern recognition
SVMs. For instance, the formula expressing the geometrical margins as a function of the vector of dual
variables α∗ (Proposition 4) is far more complicated than its bi-class counterpart. This work, which
comes after our Vapnik-Chervonenkis theory of the large margin multi-category classifiers [11] and our
characterization of the Rademacher complexity of the M-SVMs [12], thus provides us with new arguments
suggesting that the study of multi-category classification should be tackled independently of the one of
dichotomy computation.

An open question of central importance is the possibility to use our bound to set the value of the soft
margin parameter C. This question can be reformulated as follows: is there a variant of the soft margin
M-SVM of Lee, Lin and Wahba such that its training algorithm is equivalent to the training algorithm
of a hard margin machine obtained by a simple change of kernel? In the bi-class case, it is well known
that the answer is positive, and the corresponding variant is the 2-norm SVM (see for instance Chapter 7
in [18]). Finding the answer in the multi-class case is the subject of an ongoing research, as well as the
derivation of radius-margin bounds suitable for the two other M-SVMs.
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