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Abstract: Using a support vector machine requires to set two types of hyperparameters:
the soft margin parameter C and the parameters of the kernel. To perform this model
selection task, the method of choice is cross-validation. Its leave-one-out variant is known
to produce an estimator of the generalization error which is almost unbiased. Its major
drawback rests in its time requirement. To overcome this di�culty, several upper bounds
on the leave-one-out error of the pattern recognition SVM have been derived. Among those
bounds, the most popular one is probably the radius-margin bound. It applies to the hard
margin pattern recognition SVM, and by extension to the 2-norm SVM. In this report,
we introduce a quadratic loss M-SVM, the M-SVM2, as a direct extension of the 2-norm
SVM to the multi-class case. For this machine, a generalized radius-margin bound is then
established.
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Une SVM multi-classe à coût quadratique

Résumé : La mise en ÷uvre d'une machine à vecteurs support requiert la détermination
des valeurs de deux types d'hyper-paramètres : le paramètre de �marge douce� C et les
paramètres du noyau. Pour e�ectuer cette tâche de sélection de modèle, la méthode de choix
est la validation croisée. Sa variante �leave-one-out� est connue pour fournir un estimateur
de l'erreur en généralisation presque sans biais. Son défaut premier réside dans le temps de
calcul qu'elle nécessite. A�n de surmonter cette di�culté, plusieurs majorants de l'erreur
�leave-one-out� de la SVM calculant des dichotomies ont été proposés. La plus populaire de
ces bornes supérieures est probablement la borne �rayon-marge�. Elle s'applique à la version
à marge dure de la machine, et par extension à la variante dite �de norne 2�. Ce rapport
introduit une M-SVM �à coût quadratique�, la M-SVM2, comme une extension directe de
la SVM de norne 2 au cas multi-classe. Pour cette machine, une borne �rayon-marge�
généralisée est ensuite établie.

Mots-clés : M-SVM, sélection de modèle, erreur �leave-one-out�, borne �rayon-marge�.
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1 Introduction

Using a support vector machine (SVM) [2, 4] requires to set two types of hyperparameters:
the soft margin parameter C and the parameters of the kernel. To perform this model
selection task, several approaches are available (see for instance [9, 12]). The solution of
choice consists in applying a cross-validation procedure. Among those procedures, the leave-
one-out one appears especially attractive, since it is known to produce an estimator of the
generalization error which is almost unbiased [11]. The seamy side of things is that it is
highly time consuming. This is the reason why, in recent years, a number of upper bounds
on the leave-one-out error of pattern recognition SVMs have been proposed in literature (see
[3] for a survey). Among those bounds, the tightest one is the span bound [16]. However,
the results of Chapelle and co-workers presented in [3] show that another bound, the radius-
margin one [15], achieves equivalent performance for model selection while being far simpler
to compute. This is the reason why it is currently the most popular bound. It applies to the
hard margin machine and, by extension, to the 2-norm SVM (see for instance Chapter 7 in
[13]).

In this report, a multi-class extension of the 2-norm SVM is introduced. This machine,
named M-SVM2, is a quadratic loss multi-class SVM, i.e., a multi-class SVM (M-SVM) in
which the `1-norm on the vector of slack variables has been replaced with a quadratic form.
The standard M-SVM on which it is based is the one of Lee, Lin and Wahba [10]. As the
2-norm SVM, its training algorithm is equivalent to the training algorithm of a hard margin
machine obtained by a simple change of kernel. We then establish a generalized radius-
margin bound on the leave-one-out error of the hard margin version of the M-SVM of Lee,
Lin and Wahba.

The organization of this paper is as follows. Section 2 presents the multi-class SVMs, by
describing their common architecture and the general form taken by their di�erent training
algorithms. It focuses on the M-SVM of Lee, Lin and Wahba. In Section 3, the M-SVM2

is introduced as a particular case of quadratic loss M-SVM. Its connection with the hard
margin version of the M-SVM of Lee, Lin and Wahba is highlighted, as well as the fact that
it constitutes a multi-class generalization of the 2-norm SVM. Section 4 is devoted to the
formulation and proof of the corresponding multi-class radius-margin bound. At last, we
draw conclusions and outline our ongoing research in Section 5.
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2 Multi-Class SVMs

2.1 Formalization of the learning problem

We are interested here in multi-class pattern recognition problems. Formally, we consider
the case of Q-category classi�cation problems with 3 ≤ Q < ∞, but our results extend to
the case of dichotomies. Each object is represented by its description x ∈ X and the set
Y of the categories y can be identi�ed with the set of indexes of the categories: [[ 1, Q ]].
We assume that the link between objects and categories can be described by an unknown
probability measure P on the product space X×Y. The aim of the learning problem consists
in selecting in a set G of functions g = (gk)1≤k≤Q from X into RQ a function classifying
data in an optimal way. The criterion of optimality must be speci�ed. The function g
assigns x ∈ X to the category l if and only if gl(x) > maxk 6=l gk(x). In case of ex æquo,
x is assigned to a dummy category denoted by ∗. Let f be the decision function (from X
into Y

⋃
{∗}) associated with g. With these de�nitions at hand, the objective function to

be minimized is the probability of error P (f (X) 6= Y ). The optimization process, called
training, is based on empirical data. More precisely, we assume that there exists a random
pair (X, Y ) ∈ X × Y, distributed according to P , and we are provided with a m-sample
Dm = ((Xi, Yi))1≤i≤m of independent copies of (X, Y ).

There are two questions raised by such problems: how to properly choose the class of
functions G and how to determine the best candidate g∗ in this class, using only Dm. This
report addresses the �rst question, named model selection, in the particular case when the
model considered is a M-SVM. The second question, named function selection, is addressed
for instance in [8].

2.2 Architecture and training algorithms

M-SVMs, like all the SVMs, belong to the family of kernel machines. As such, they operate
on a class of functions induced by a positive semide�nite (Mercer) kernel. This calls for the
formulation of some de�nitions and propositions.

De�nition 1 (Positive semide�nite kernel) A positive semide�nite kernel κ on the set
X is a continuous and symmetric function κ : X 2 → R verifying:

∀n ∈ N∗, ∀ (xi)1≤i≤n ∈ X
n, ∀ (ai)1≤i≤n ∈ Rn,

n∑
i=1

n∑
j=1

aiajκ (xi, xj) ≥ 0.

De�nition 2 (Reproducing kernel Hilbert space [1]) Let (H, 〈·, ·〉H) be a Hilbert space
of functions on X (H ⊂ RX ). A function κ : X 2 → R is a reproducing kernel of H if and
only if:

1. ∀x ∈ X , κx = κ (x, ·) ∈ H;

2. ∀x ∈ X ,∀h ∈ H, 〈h, κx〉H = h(x) (reproducing property).
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A Hilbert space of functions which possesses a reproducing kernel is called a reproducing
kernel Hilbert space (RKHS).

Proposition 1 Let (Hκ, 〈·, ·〉Hκ) be a RKHS of functions on X with reproducing kernel κ.
Then, there exists a map Φ from X into a Hilbert space

(
EΦ(X ), 〈·, ·〉

)
such that:

∀ (x, x′) ∈ X 2, κ (x, x′) = 〈Φ (x) ,Φ (x′)〉. (1)

Φ is called a feature map and EΦ(X ) a feature space.

The connection between positive semide�nite kernels and RKHS is the following.

Proposition 2 If κ is a positive semide�nite kernel on X , then there exists a RKHS
(H, 〈·, ·〉H) of functions on X such that κ is a reproducing kernel of H.

Let κ be a positive semide�nite kernel on X and let (Hκ, 〈·, ·〉Hκ
) be the RKHS spanned

by κ. Let H̄ = (Hκ, 〈·, ·〉Hκ
)Q

and let H = ((Hκ, 〈·, ·〉Hκ
) + {1})Q

. By construction, H is
the class of vector-valued functions h = (hk)1≤k≤Q on X such that

h(·) =

(
mk∑
i=1

βikκ (xik, ·) + bk

)
1≤k≤Q

where the xik are elements of X , as well as the limits of these functions when the sets
{xik : 1 ≤ i ≤ mk} become dense in X in the norm induced by the dot product (see for
instance [17]). Due to Equation 1, H can be seen as a multivariate a�ne model on Φ (X ).
Functions h can then be rewritten as:

h(·) = (〈wk, ·〉+ bk)1≤k≤Q

where the vectors wk are elements of EΦ(X ). They are thus described by the pair (w,b)
with w = (wk)1≤k≤Q ∈ EQ

Φ(X ) and b = (bk)1≤k≤Q ∈ RQ. As a consequence, H̄ can be seen

as a multivariate linear model on Φ (X ), endowed with a norm ‖.‖H̄ given by:

∀h̄ ∈ H̄,
∥∥h̄∥∥H̄ =

√√√√ Q∑
k=1

‖wk‖2 = ‖w‖ ,

where ‖wk‖ =
√
〈wk, wk〉. With these de�nitions and propositions at hand, a generic

de�nition of the M-SVMs can be formulated as follows.

De�nition 3 (M-SVM, De�nition 42 in [8]) Let ((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])m
and

λ ∈ R∗
+. A Q-category M-SVM is a large margin discriminant model obtained by minimizing

over the hyperplane
∑Q

k=1 hk = 0 of H a penalized risk JM-SVM of the form:

JM-SVM (h) =
m∑

i=1

`M-SVM (yi, h (xi)) + λ
∥∥h̄∥∥2

H̄

where the data �t component involves a loss function `M-SVM which is convex.
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Three main models of M-SVMs can be found in literature. The oldest one is the model
of Weston and Watkins [19], which corresponds to the loss function `WW given by:

`WW(y, h(x)) =
∑
k 6=y

(1− hy(x) + hk(x))+ ,

where the hinge loss function (·)+ is the function max(0, ·). The second one is due to
Crammer and Singer [5] and corresponds to the loss function `CS given by:

`CS(y, h̄(x)) =
(

1− h̄y(x) + max
k 6=y

h̄k(x)
)

+

.

The most recent model is the one of Lee, Lin and Wahba [10] which corresponds to the loss
function `LLW given by:

`LLW (y, h(x)) =
∑
k 6=y

(
hk(x) +

1
Q− 1

)
+

. (2)

Among the three models, the M-SVM of Lee, Lin and Wahba is the only one that implements
asymptotically the Bayes decision rule. It is Fisher consistent [20, 14].

2.3 The M-SVM of Lee, Lin and Wahba

The substitution in De�nition 3 of `M-SVM with the expression of the loss function `LLW given
by Equation 2 provides us with the expressions of the quadratic programming (QP) problems
corresponding to the training algorithms of the hard margin and soft margin versions of the
M-SVM of Lee, Lin and Wahba.

Problem 1 (Hard margin M-SVM)

min
w,b

JHM (w,b)

s.t.


〈wk,Φ(xi)〉+ bk ≤ − 1

Q−1 , (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)∑Q
k=1 wk = 0∑Q
k=1 bk = 0

where

JHM (w,b) =
1
2

Q∑
k=1

‖wk‖2.

Problem 2 (Soft margin M-SVM)

min
w,b

JSM (w,b)
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s.t.


〈wk,Φ(xi)〉+ bk ≤ − 1

Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)∑Q

k=1 wk = 0∑Q
k=1 bk = 0

where

JSM (w,b) =
1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

∑
k 6=yi

ξik.

In Problem 2, the ξik are slack variables introduced in order to relax the constraints of
correct classi�cation. The coe�cient C, which characterizes the trade-o� between prediction
accuracy on the training set and smoothness of the solution, can be expressed in terms of the
regularization coe�cient λ as follows: C = (2λ)−1. It is called the soft margin parameter.
Instead of directly solving Problems 1 and 2, one usually solves their Wolfe dual [6]. We
now derive the dual problem of Problem 1. Giving the details of the implementation of the
Lagrangian duality will provide us with partial results which will prove useful in the sequel.

Let α = (αik)1≤i≤m,1≤k≤Q ∈ RQm
+ be the vector of Lagrange multipliers associated

with the constraints of good classi�cation. It is for convenience of notation that this vec-
tor is expressed with double subscript and that the dummy variables αiyi

, all equal to 0,
are introduced. Let δ ∈ EΦ(X ) be the Lagrange multiplier associated with the constraint∑Q

k=1 wk = 0 and β ∈ R the Lagrange multiplier associated with the constraint
∑Q

k=1 bk = 0.
The Lagrangian function of Problem 1 is given by:

L (w,b, α, β, δ) =

1
2

Q∑
k=1

‖wk‖2 − 〈δ,
Q∑

k=1

wk〉 − β

Q∑
k=1

bk +
m∑

i=1

Q∑
k=1

αik

(
〈wk,Φ(xi)〉+ bk +

1
Q− 1

)
. (3)

Setting the gradient of the Lagrangian function with respect to wk equal to the null vector
provides us with Q alternative expressions for the optimal value of vector δ:

δ∗ = w∗
k +

m∑
i=1

α∗ikΦ(xi), (1 ≤ k ≤ Q). (4)

Since by hypothesis,
∑Q

k=1 w∗
k = 0, summing over the index k provides us with the expression

of δ∗ as a function of dual variables only:

δ∗ =
1
Q

m∑
i=1

Q∑
k=1

α∗ikΦ(xi). (5)
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By substitution into (4), we get the expression of the vectors wk at the optimum:

w∗
k =

1
Q

m∑
i=1

Q∑
l=1

α∗ilΦ(xi)−
m∑

i=1

α∗ikΦ(xi), (1 ≤ k ≤ Q)

which can also be written as

w∗
k =

m∑
i=1

Q∑
l=1

α∗il

(
1
Q
− δk,l

)
Φ(xi), (1 ≤ k ≤ Q) (6)

where δ is the Kronecker symbol.
Let us now set the gradient of (3) with respect to b equal to the null vector. It comes:

β∗ =
m∑

i=1

α∗ik, (1 ≤ k ≤ Q)

and thus
m∑

i=1

Q∑
l=1

α∗il

(
1
Q
− δk,l

)
= 0, (1 ≤ k ≤ Q).

Given the constraint
∑Q

k=1 bk = 0, this implies that:

m∑
i=1

Q∑
k=1

α∗ikb∗k = β∗
Q∑

k=1

b∗k = 0. (7)

By application of (6),

Q∑
k=1

‖w∗
k‖

2 =
Q∑

k=1

〈
m∑

i=1

Q∑
l=1

α∗il

(
1
Q
− δk,l

)
Φ(xi),

m∑
j=1

Q∑
n=1

α∗jn

(
1
Q
− δk,n

)
Φ(xj)〉

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

α∗ilα
∗
jn〈Φ(xi),Φ(xj)〉

Q∑
k=1

(
1
Q
− δk,l

)(
1
Q
− δk,n

)

=
m∑

i=1

m∑
j=1

Q∑
l=1

Q∑
n=1

α∗ilα
∗
jn

(
δl,n −

1
Q

)
κ(xi, xj). (8)

Still by application of (6),

m∑
i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 =

m∑
i=1

Q∑
k=1

α∗ik〈
m∑

j=1

Q∑
l=1

α∗jl

(
1
Q
− δk,l

)
Φ(xj),Φ(xi)〉
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=
m∑

i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

α∗ikα∗jl

(
1
Q
− δk,l

)
κ(xi, xj). (9)

Combining (8) and (9) gives:

1
2

Q∑
k=1

‖w∗
k‖

2 +
m∑

i=1

Q∑
k=1

α∗ik〈w∗
k,Φ(xi)〉 = −1

2

Q∑
k=1

‖w∗
k‖

2

= −1
2

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

α∗ikα∗jl

(
δk,l −

1
Q

)
κ(xi, xj). (10)

In what follows, we use the notation en to designate the vector of Rn such that all its
components are equal to e. Let H be the matrix of MQm,Qm (R) of general term:

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).

With these notations at hand, reporting (7) and (10) in (3) provides us with the algebraic
expression of the Lagrangian function at the optimum:

L (α∗) = −1
2
α∗T Hα∗ +

1
Q− 1

1T
Qmα∗.

This eventually provides us with the Wolfe dual formulation of Problem 1:

Problem 3 (Hard margin M-SVM, dual formulation)

max
α

JLLW,d(α)

s.t.

{
αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)∑m

i=1

∑Q
l=1 αil

(
1
Q − δk,l

)
= 0, (1 ≤ k ≤ Q)

where

JLLW,d(α) = −1
2
αT Hα +

1
Q− 1

1T
Qmα,

with the general term of the Hessian matrix H being

hik,jl =
(

δk,l −
1
Q

)
κ(xi, xj).

Let the couple
(
w0,b0

)
denote the optimal solution of Problem 1 and equivalently, let

α0 =
(
α0

ik

)
1≤i≤m,1≤k≤Q

∈ RQm
+ be the optimal solution of Problem 3. According to (6), the

expression of w0
k is then:

w0
k =

m∑
i=1

Q∑
l=1

α0
il

(
1
Q
− δk,l

)
Φ(xi).
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2.4 Geometrical margins

From a geometrical point of view, the algorithms described above tend to construct a set
of hyperplanes {(wk, bk) : 1 ≤ k ≤ Q} that maximize globally the C2

Q margins between the
di�erents categories. If these margins are de�ned as in the bi-class case, their analytical
expression is more complex.

De�nition 4 (Geometrical margins, De�nition 7 in [7]) Let us consider a Q-category
M-SVM (a function of H) classifying the examples of its training set {(xi, yi) : 1 ≤ i ≤ m}
without error. γkl, its margin between categories k and l, is de�ned as the smallest distance
of a point either in k or l to the hyperplane separating those categories. Let us denote

dM-SVM = min
1≤k<l≤Q

{
min

[
min

i:yi=k
(hk(xi)− hl(xi)) , min

j:yj=l
(hl(xj)− hk(xj))

]}
and for 1 ≤ k < l ≤ Q, let dM-SVM,kl be:

dM-SVM,kl =
1

dM-SVM
min

[
min

i:yi=k
(hk(xi)− hl(xi)− dM-SVM) , min

j:yj=l
(hl(xj)− hk(xj)− dM-SVM)

]
.

Then we have:

γkl = dM-SVM
1 + dM-SVM,kl

‖wk − wl‖
.

Given the constraints of Problem 1, the expression of dM-SVM corresponding to the M-SVM
of Lee, Lin and Wahba is:

dLLW =
Q

Q− 1
.

Remark 1 The values of the parameters dM-SVM,kl (or dLLW,kl in the case of interest) are
known as soon as the pair

(
w0,b0

)
is known.

The connection between the geometrical margins and the penalizer of JM-SVM is given
by the following equation:

∑
k<l

‖wk − wl‖2 = Q

Q∑
k=1

‖wk‖2, (11)

the proof of which can for instance be found in Chapter 2 of [7]. We introduce now a result
needed in the proof of the master theorem of this report.

Proposition 3 For the hard margin M-SVM of Lee, Lin and Wahba, we have:

Q

(Q− 1)2
∑
k<l

(
1 + dLLW,kl

γkl

)2

=
Q∑

k=1

‖w0
k‖2 = α0T

Hα0 =
1

Q− 1
1T

Qmα0.
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Proof

• Q
(Q−1)2

∑
k<l

(
1+dLLW,kl

γkl

)2

=
∑Q

k=1 ‖w0
k‖2

This equation is a direct consequence of De�nition 4 and Equation 11.

•
∑Q

k=1 ‖w0
k‖2 = α0T

Hα0

This is a direct consequence of Equation 10 and the de�nition of matrix H.

� α0T
Hα0 = 1

Q−11T
Qmα0

One of the Kuhn-Tucker optimality conditions is:

α0
ik

(
〈w0

k,Φ(xi)〉+ b0
k +

1
Q− 1

)
= 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q),

and thus:
m∑

i=1

Q∑
k=1

α0
ik

(
〈w0

k,Φ(xi)〉+ b0
k +

1
Q− 1

)
= 0.

By application of (7), this simpli�es into

m∑
i=1

Q∑
k=1

α0
ik〈w0

k,Φ(xi)〉+
1

Q− 1
1T

Qmα0 = 0.

Since
m∑

i=1

Q∑
k=1

α0
ik〈w0

k,Φ(xi)〉 = −α0T
Hα0

is a direct consequence of (10), this concludes the proof.
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3 The M-SVM2

3.1 Quadratic loss multi-class SVMs: motivation and principle

The M-SVMs presented in Section 2.2 share a common feature with the standard pattern
recognition SVM: the contribution of the slack variables to their objective functions is linear.
Let ξ be the vector of these variables. In the cases of the M-SVMs of Weston and Watkins
and Lee, Lin and Wahba, we have ξ = (ξik)1≤i≤m,1≤k≤Q with (ξiyi)1≤i≤m = 0m, and in the

case of the model of Crammer and Singer, it is simply ξ = (ξi)1≤i≤m. In both cases, the
contribution to the objective function is C‖ξ‖1.

In the bi-class case, there exists a variant of the standard SVM which is known as the
2-norm SVM since for this machine, the empirical contribution to the objective function
is C‖ξ‖22. Its main advantage, underlined for instance in the Chapter 7 of [13], is that its
training algorithm can be expressed, after an appropriate change of kernel, as the training
algorithm of a hard margin machine. As a consequence, its leave-one-out error can be upper
bounded thanks to the radius-margin bound.

Unfortunately, a naive extension of the 2-norm SVM to the multi-class case, resulting
from substituting in the objective function of either of the three M-SVMs ‖ξ‖1 with ‖ξ‖22,
does not preserve this property. Section 2.4.1.4 of [7] gives detailed explanations about that
point. The strategy that we propose to exhibit interesting multi-class generalizations of
the 2-norm SVM consists in studying the class of quadratic loss M-SVMs, i.e., the class of
extensions of the M-SVMs such that the contribution of the slack variables is a quadratic
form:

CξT Mξ = C

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

mik,jlξikξjl

where M = (mik,jl)1≤i,j≤m,1≤k,l≤Q is a symmetric positive semide�nite matrix.

3.2 The M-SVM2 as a multi-class generalization of the 2-norm SVM

In this section, we establish that the idea introduced above provides us with a solution to
the problem of interest when the M-SVM used is the one of Lee, Lin and Wahba and the

general term of the matrix M is mik,jl =
(
δk,l − 1

Q

)
δi,j . The corresponding machine, named

M-SVM2, generalizes the 2-norm SVM to an arbitrary (but �nite) number of categories.

Problem 4 (M-SVM2)
min
w,b

JM-SVM2(w,b)

s.t.


〈wk,Φ(xi)〉+ bk ≤ − 1

Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)∑Q
k=1 wk = 0∑Q
k=1 bk = 0
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where

JM-SVM2(w,b) =
1
2

Q∑
k=1

‖wk‖2 + C

m∑
i=1

m∑
j=1

Q∑
k=1

Q∑
l=1

(
δk,l −

1
Q

)
δi,jξikξjl.

Note that as in the bi-class case, it is useless to introduce nonnegativity constraints for the
slack variables. The Lagrangian function associated with Problem 4 is thus

L (w,b, ξ, α, β, δ) =

1
2

Q∑
k=1

‖wk‖2 + CξT Mξ − 〈δ,
Q∑

k=1

wk〉 − β

Q∑
k=1

bk

+
m∑

i=1

Q∑
k=1

αik

(
〈wk,Φ(xi)〉+ bk +

1
Q− 1

− ξik

)
. (12)

Setting the gradient of L with respect to ξ equal to the null vector gives

2CMξ∗ = α∗ (13)

which has for immediate consequence that

Cξ∗T Mξ∗ − α∗T ξ∗ = −Cξ∗T Mξ∗. (14)

Using the same reasoning that we used to derive the objective function of Problem 3 and
(14), at the optimum, (12) simpli�es into:

L (ξ∗, α∗) = −1
2
α∗T Hα∗ − Cξ∗T Mξ∗ +

1
Q− 1

1T
Qmα∗. (15)

Besides, using (13),

α∗inα∗ip = 4C2

Q∑
k=1

(
δk,n −

1
Q

)
ξ∗ik

Q∑
l=1

(
δl,p −

1
Q

)
ξ∗il

and thus

α∗inα∗ip = 4C2

Q∑
k=1

Q∑
l=1

(
δk,nδl,p − (δk,n + δl,p)

1
Q

+
1

Q2

)
ξ∗ikξ∗il.

By a double summation over n and p, we have:

Q∑
n=1

Q∑
p=1

α∗inα∗ip

(
δn,p −

1
Q

)
= 4C2

Q∑
k=1

Q∑
l=1

ξ∗ikξ∗il

Q∑
n=1

Q∑
p=1

(
δk,nδl,p − (δk,n + δl,p)

1
Q

+
1

Q2

)(
δn,p −

1
Q

)
.
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Since
Q∑

n=1

Q∑
p=1

(
δk,nδl,p − (δk,n + δl,p)

1
Q

+
1

Q2

)(
δn,p −

1
Q

)
= δk,l −

1
Q

,

this simpli�es into

Q∑
n=1

Q∑
p=1

α∗inα∗ip

(
δn,p −

1
Q

)
= 4C2

Q∑
k=1

Q∑
l=1

(
δk,l −

1
Q

)
ξ∗ikξ∗il.

Finally, a double summation over i and j implies that

α∗T Mα∗ = 4C2ξ∗T Mξ∗.

A substitution into (15) provides us with:

L (α∗) = −1
2
α∗T

(
H +

1
2C

M

)
α∗ +

1
Q− 1

1T
Qmα∗.

As in the case of the hard margin version of the M-SVM of Lee, Lin and Wahba, setting the
gradient of (12) with respect to b equal to the null vector gives:

m∑
i=1

Q∑
l=1

α∗il

(
1
Q
− δk,l

)
= 0, (1 ≤ k ≤ Q).

Putting things together, we obtain the following expression for the dual problem of Prob-
lem 4:

Problem 5 (M-SVM2, dual formulation)

max
α

JM-SVM2,d(α)

s.t.

{
αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)∑m

i=1

∑Q
l=1 αil

(
1
Q − δk,l

)
= 0, (1 ≤ k ≤ Q)

where

JM-SVM2,d(α) = −1
2
αT

(
H +

1
2C

M

)
α +

1
Q− 1

1T
Qmα.

Due to the de�nitions of the matrices H and M , this is precisely Problem 3 with the
kernel κ replaced by a kernel κ′ such that:

κ′(xi, xj) = κ(xi, xj) +
1

2C
δi,j , (1 ≤ i, j ≤ m).

When Q = 2, the M-SVM of Lee, Lin and Wahba, like the two other ones, is equivalent
to the standard bi-class SVM (see for instance [7]). Furthermore, in that case, we get
ξT Mξ = 1

2‖ξ‖
2
2. The M-SVM2 is thus equivalent to the 2-norm SVM.
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4 Multi-Class Radius-Margin Bound on the Leave-One-

Out Error of the M-SVM2

To begin with, we must recall Vapnik's initial bi-class theorem (see Chapter 10 of [15]),
which is based on an intermediate result of central importance known as the �key lemma�.

4.1 Bi-class radius-margin bound

Lemma 1 (Bi-class key lemma) Let us consider a hard margin bi-class SVM on a do-
main X . Suppose that it is trained on a set dm = {(xi, yi) : 1 ≤ i ≤ m} of m couples of
X × {−1, 1} (the points of which it separates without error). Consider now the same ma-
chine, trained on dm \ {(xp, yp)}. If it makes an error on (xp, yp), then the inequality

α0
p ≥

1
D2

m

holds, where Dm is the diameter of the smallest sphere containing the images by the feature
map of the support vectors of the initial machine.

Theorem 1 (Bi-class radius-margin bound) Let γ be the geometrical margin of the
hard margin SVM de�ned in Lemma 1, when trained on dm. Let also Lm be the number
of errors resulting from applying a leave-one-out cross-validation procedure to this machine.
We have:

Lm ≤ D2
m

γ2
.

The multi-class radius-margin bound that we propose in this report is a direct general-
ization of the one proposed by Vapnik. The �rst step of the proof consists in establishing a
�multi-class key lemma�. This is the subject of the following subsection.

4.2 Multi-class key lemma

Lemma 2 (Multi-class key lemma) Let us consider a Q-category hard margin M-SVM
of Lee, Lin and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set.
Consider now the same machine trained on dm \{(xp, yp)}. If it makes an error on (xp, yp),
then the inequality

max
k∈[[ 1,Q ]]

α0
pk ≥

1
Q(Q− 1)D2

m

holds, where Dm is the diameter of the smallest sphere of the feature space containing the
set {Φ(xi) : 1 ≤ i ≤ m}.

Proof Let (wp,bp) be the couple characterizing the optimal hyperplanes when the machine
is trained on dm \ {(xp, yp)}. Let

αp = (αp
11, . . . , α

p
(p−1)Q, 0, . . . , 0, αp

(p+1)1, . . . , α
p
mQ)T
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be the corresponding vector of dual variables. αp belongs to RQm
+ , with

(
αp

pk

)
1≤k≤Q

= 0Q.

This representation is used to characterize directly the second M-SVM with respect to the
�rst one. Indeed, αp is an optimal solution of Problem 3 under the additional constraint
(αpk)1≤k≤Q = 0Q. Let us de�ne two more vectors in RQm

+ , λp = (λp
ik)1≤i≤m,1≤k≤Q and

µp = (µp
ik)1≤i≤m,1≤k≤Q. λp satis�es additional properties so that the vector α0 − λp is a

feasible solution of Problem 3 under the additional constraint that
(
α0

pk − λp
pk

)
1≤k≤Q

= 0Q,

i.e., α0 − λp satis�es the same constraints as αp. We have

∀i 6= p,∀k 6= yi, α0
ik − λp

ik ≥ 0 ⇐⇒ λp
ik ≤ α0

ik.

We deduce from the equality constraints of Problem 3 that:

∀k,

m∑
i=1

Q∑
l=1

(
α0

il − λp
il

)( 1
Q
− δk,l

)
= 0 ⇐⇒

m∑
i=1

Q∑
l=1

λp
il

(
1
Q
− δk,l

)
= 0.

To sum up, vector λp satis�es the following constraints:
∀k, λp

pk = α0
pk

∀i 6= p,∀k, 0 ≤ λp
ik ≤ α0

ik∑m
i=1

∑Q
l=1 λp

il

(
1
Q − δk,l

)
= 0, (1 ≤ k ≤ Q)

. (16)

The properties of vector µp are such that αp + K1µ
p satis�es the constraints of the same

problem, where K1 is a positive scalar the value of which will be speci�ed in the sequel. We
have thus:

∀i, αp
iyi

+ K1µ
p
iyi

= 0 ⇐⇒ µp
iyi

= 0.

Moreover, we have
∀i,∀k 6= yi, µp

ik ≥ 0 =⇒ αp
ik + K1µ

p
ik ≥ 0.

Finally,

m∑
i=1

Q∑
l=1

(αp
il + cµp

il)
(

1
Q
− δk,l

)
= 0 ⇐⇒

m∑
i=1

Q∑
l=1

µp
il

(
1
Q
− δk,l

)
= 0.

To sum up, vector µp satis�es the following constraints:
∀i, µp

iyi
= 0

∀i,∀k 6= yi, µp
ik ≥ 0∑m

i=1

∑Q
l=1 µp

il

(
1
Q − δk,l

)
= 0, (1 ≤ k ≤ Q)

. (17)

In the sequel, for the sake of simplicity, we write J in place of JLLW,d. By construction of
vectors λp and µp, we have J(α0 − λp) ≤ J(αp) and J (αp + K1µ

p) ≤ J(α0), and by way of
consequence,

J(α0)− J(α0 − λp) ≥ J(α0)− J(αp) ≥ J (αp + K1µ
p)− J(αp). (18)
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The expression of the �rst term is

J(α0)− J(α0 − λp) =
1
2
λpT Hλp +

(
−Hα0 +

1
Q− 1

1Qm

)T

λp. (19)

Given (6) and the de�nition of matrix H,(
−Hα0 +

1
Q− 1

1Qm

)T

λp =
m∑

i=1

∑
k 6=yi

(
〈w0

k,Φ(xi)〉+
1

Q− 1

)
λp

ik

=
m∑

i=1

∑
k 6=yi

(
h0

k (xi) +
1

Q− 1

)
λp

ik −
m∑

i=1

∑
k 6=yi

b0
kλp

ik. (20)

Due to the constraints of correct classi�cation and the nonnegativity of the components of
vector λp, the �rst double sum of the right-hand side of (20) is nonpositive. Furthermore,

making use of the equality constraints of (16) and
∑Q

k=1 b0
k = 0 gives:

m∑
i=1

Q∑
k=1

b0
kλp

ik =
Q∑

k=1

b0
k

m∑
i=1

λp
ik =

(
Q∑

k=1

b0
k

)(
m∑

i=1

Q∑
l=1

1
Q

λp
il

)
= 0.

Thus, (
−Hα0 +

1
Q− 1

1Qm

)T

λp ≤ 0.

A substitution into (19) provides us with the following upper bound on J(α0)− J(α0−λp):

J(α0)− J(α0 − λp) ≤ 1
2
λpT Hλp,

and equivalently, by de�nition of H,

J(α0)− J(α0 − λp) ≤ 1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

λp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

. (21)

We now turn to the right-hand side of (18). The line of reasoning already used for the
left-hand side gives:

J (αp + K1µ
p)− J(αp) =

K1

(
−Hαp +

1
Q− 1

1Qm

)T

µp − K2
1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

µp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

(22)

with (
−Hαp +

1
Q− 1

1Qm

)T

µp =
m∑

i=1

∑
k 6=yi

(
hp

k (xi) +
1

Q− 1

)
µp

ik. (23)
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By hypothesis, the M-SVM trained on dm \ {(xp, yp)} does not classify xp correctly. This
means that there exists n ∈ [[ 1, Q ]] \ {yp} such that hp

n (xp) ≥ 0. Let I be a mapping from
[[ 1, Q ]] \ {n} to [[ 1,m ]] \ {p} such that

∀k ∈ [[ 1, Q ]] \ {n} , αp
I(k)n > 0.

We know that such a mapping exists, otherwise, given the equality constraints of Problem 3,
vector αp would be equal to the null vector. For K2 ∈ R∗

+, let µp be the vector of RQm that
only di�ers from the null vector in the following way:{

µp
pn = K2

∀k ∈ [[ 1, Q ]] \ {n} , µp
I(k)k = K2

.

Obviously, this solution is feasible (satis�es the constraints 17). Indeed, 1
Q

∑m
i=1

∑Q
k=1 µp

ik =
K2 and

∑m
i=1 µp

ik = K2, (1 ≤ k ≤ Q). With this de�nition of vector µp, the right-hand side
of (23) simpli�es into:

K2

hp
n (xp) +

∑
k 6=n

hp
k

(
xI(k)

)
+

Q

Q− 1

 .

Vector µp has been speci�ed so as to make it possible to exhibit a nontrivial lower bound
on this last expression. By de�nition of n, hp

n (xp) ≥ 0. Furthermore, the Kuhn-Tucker
optimality conditions:

αp
ik

(
〈wp

k,Φ(xi)〉+ bp
k +

1
Q− 1

)
= 0, (1 ≤ i 6= p ≤ m), (1 ≤ k 6= yi ≤ Q)

imply that
(
hp

k

(
xI(k)

))
1≤k 6=n≤Q

= − 1
Q−11Q−1. As a consequence, a lower bound on the

right-hand side of (23) is provided by:

m∑
i=1

∑
k 6=yi

(
hp

k (xi) +
1

Q− 1

)
µp

ik ≥
K2

Q− 1
.

It springs from this bound and (22) that

J (αp + K1µ
p)− J(αp) ≥ K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

µp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

. (24)

Combining (18), (21) and (24) �nally gives:

1
2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

λp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

≥
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K1K2

Q− 1
− K2

1

2

Q∑
k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

µp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

. (25)

Let νp = (νp
ik)1≤i≤m,1≤k≤Q be the vector of RQm

+ such that µp = K2ν
p. The value of the

scalar K3 = K1K2 maximizing the right-hand side of (25) is:

K∗
3 =

1
Q−1∑Q

k=1

∥∥∥∑m
i=1

∑Q
l=1 νp

il

(
1
Q − δk,l

)
Φ(xi)

∥∥∥2 .

By substitution in (25), this means that:

(Q− 1)2
Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

λp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2 Q∑

k=1

∥∥∥∥∥
m∑

i=1

Q∑
l=1

νp
il

(
1
Q
− δk,l

)
Φ(xi)

∥∥∥∥∥
2

≥ 1.

For η in RQm, let K(η) = 1
Q

∑m
i=1

∑Q
k=1 ηp

ik. We have:

∥∥∥∥∥ 1
Q

m∑
i=1

Q∑
l=1

λp
ilΦ(xi)−

m∑
i=1

λp
ikΦ(xi)

∥∥∥∥∥
2

= K (λp)2 ‖conv1(Φ(xi))− conv2(Φ(xi))‖2

where conv1(Φ(xi)) and conv2(Φ(xi)) are two convex combinations of the Φ(xi). As a

consequence, ‖conv1(Φ(xi))− conv2(Φ(xi))‖2 can be bounded from above by D2
m. Since the

same reasoning applies to νp, we get:

(Q− 1)2Q2K (λp)2 K (νp)2D4
m ≥ 1. (26)

By construction, K (νp) = 1. We now construct a vector λp minimizing the objective
function K. First, note that due to the equality constraints satis�ed by this vector,

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik =

1
Q

m∑
i=1

Q∑
l=1

λp
il.

As a consequence,

∀(k, l) ∈ [[ 1, Q ]]2 ,

m∑
i=1

λp
ik =

m∑
i=1

λp
il.

This implies that:

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik ≥ max

l∈[[ 1,Q ]]
α0

pl.
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Obviously, both the box constraints in (16) and the nature of K call for the choice of small
values for the components λp

ik. Thus, there is a feasible solution λp∗ such that:

∀k ∈ [[ 1, Q ]] ,
m∑

i=1

λp
ik
∗ = max

l∈[[ 1,Q ]]
α0

pl.

This solution is such that K (λp∗) = maxk∈[[ 1,Q ]] α
0
pk. The substitution of the values of K (νp)

and K (λp∗) in (26) provides us with:(
max

k∈[[ 1,Q ]]
α0

pk

)2

≥ 1
(Q− 1)2Q2D4

m

.

Taking the square root of both sides concludes the proof of the lemma.

4.3 Multi-class radius-margin bound

Theorem 2 (Multi-class radius-margin bound) Let us consider a Q-category hard mar-
gin M-SVM of Lee, Lin and Wahba on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its
training set, Lm the number of errors resulting from applying a leave-one-out cross-validation
procedure to this machine, and Dm the diameter of the smallest sphere of the feature space
containing the set {Φ(xi) : 1 ≤ i ≤ m}. Then the following upper bound holds true:

Lm ≤ Q2D2
m

∑
k<l

(
1 + dLLW,kl

γkl

)2

.

Proof Lemma 2 exhibits a non trivial lower bound on maxk∈[[ 1,Q ]] α
0
pk when the machine

trained on the set dm \ {(xp, yp)} makes an error on (xp, yp), i.e., when (xp, yp) contributes
to Lm. As a consequence,

1T
Qmα0 ≥

m∑
i=1

max
k∈[[ 1,Q ]]

α0
ik ≥

Lm

Q(Q− 1)D2
m

. (27)

According to Proposition 3, 1T
Qmα0 = Q

Q−1

∑
k<l

(
1+dLLW,kl

γkl

)2

. A substitution in (27) thus

provides us with the result announced.
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5 Conclusions and Future Work

In this report, we have introduced a variant of the M-SVM of Lee, Lin and Wahba that
strictly generalizes to the multi-class case the 2-norm SVM. For this quadratic loss M-SVM,
named M-SVM2, we have then established a generalization of Vapnik's radius-margin bound.
We conjecture that this bound could be improved by a Q2 factor. As it is, it can already
be compared with those proposed in [18] for model selection. This, with a general study of
the quadratic loss M-SVMs, is the subject of an ongoing research.
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