
M-SVM2 user’s guide

Yann Guermeur

November 22, 2009

Contents

1 Introduction 3

2 Architecture of the software 3
2.1 Programs . 3
2.2 Linear programming solver 3
2.3 How to compile . 3

3 Solving multi-class problems 4
3.1 Three simple examples . 4
3.2 Structure of the files containing the data 4
3.3 Training the M-SVM . 4
3.4 Testing the M-SVM . 5
3.5 Stopping criterion . 6

4 General comments 7

2

1 Introduction

This software is an implementation of the multi-class SVM named M-SVM2

introduced in [7] (the paper can be found in the subdirectory Tech). It is
written in C ANSI, and thus can be used under the various releases of UNIX,
Linux, IRIX, etc. The training algorithm is a variant of the Frank-Wolfe
algorithm [5] which implements a decomposition strategy.

2 Architecture of the software

2.1 Programs

This application is made up of three main programs. train SVM performs
the training of the SVM, whereas eval SVM is used to test the model.
train SVM calls a software solving linear programming (LP) problems. This
sofware can be chosen by the user.

2.2 Linear programming solver

By default, the solver selected is lp solve, which has been developed by
M. Berkelaar and implements an algorithm described in [8]. It is released
under the LGPL license. However, since the exchanges between this solver
and the M-SVM2 are performed through files, the user can replace it with his
own favourite solver (HOPDM, CPLEX, etc.). This modular approach has
been implemented with the aim to make things as easy as possible for the
user. Obviously, integrating a LP solver in train SVM should significantly
speed up the application.

2.3 How to compile

train SVM and eval SVM can be compiled thanks to the commands:
compile train SVM and compile eval SVM

(the corresponding makefiles are in the subdirectory make).

lp solve can be found in the directory LP/lp solve 3.2. Suffice it to use
the command make in this directory in order to compile it. This produces
the binary executable file lp solve. Once it has been produced, this file
must be copied in the main directory, called Dev.

3

3 Solving multi-class problems

3.1 Three simple examples

A simple way to become familiar with the use of the software consists in
running it on the three examples provided. The first one corresponds to
the iris data set of Fisher, available at the UCI repository [1]. The second
one is a 3-class toy problem borrowed from [3]. The program to generate
the corresponding data and display it are located in the subdirectory Toy.
The third one is the three-Gaussian problem that illustrates [6]. In order to
select any of the three problems, it suffices to use the corresponding script,
either configure.iris, configure.toy or configure.gaussians. Once
this is done, the files Fichcom/train SVM.com and Fichcom/eval SVM.com
(see below) contain the appropriate parameters, and the file of dual vari-
ables is initialized with a feasible solution. Suffice it to use the command
execute train SVM to start training. While training is underway, the com-
mand execute eval SVM can be used to assess its progress and compute the
training and test performance.

3.2 Structure of the files containing the data

The files containing the data must be text files, with a specific structure.
We illustrate this structure on Elisseeff’s toy problem. The name of the
corresponding file is Data/toy.app.

1000 ←− number of points in the set
2 ←− number of components of the vectors coding the input data
0.781323 0.298303 1←− description of the first example: two compo-

nents of the input vector plus the label of the category, here 1.
...

3.3 Training the M-SVM

Training is initiated with the command
execute train SVM

In order to specify the nature of the problem to be solved, the file
Fichcom/train SVM.com

must preliminary be filled. It is made up of seven lines. Its structure, illus-
trated on the aforementioned toy problem, is as follows:

4

3 ←− number of categories for the problem
1 ←− nature of the kernel
100.0 ←− value of the soft margin parameter C
12 ←− size of the chunk (see the technical documentation)
Data/toy.app ←− name of the file where the training data is stored
Alpha/toy.alpha ←− name of the file containing the initial values of

the dual variables α
Alpha/toy.alpha ←− name of the file where the updated values of the

dual variables α are stored during training

Currently, only three types of kernels are implemented: a linear kernel, a
Gaussian kernel and a polynomial one. A value of 1 for the “nature of the
kernel” corresponds to a linear kernel (Euclidean inner product), whereas
a value of 2 corresponds to a Gaussian kernel and a value of 3 corresponds
to a polynomial kernel. The parameters, width of the Gaussian kernel and
degree of the polynomial kernel, can be changed by modifying adequately
the functions gaussian and polynomial in the file algebre.c. This file can
also be used to store the functions corresponding to the new kernels a user
could find useful to add. A feasible solution of the dual problem (which can
be used to initialize the vector of dual variables α) is the null vector. Care
must be taken to the fact that the dummy variables αiyi must always remain
equal to 0. During training, the following pieces of information are displayed:

*** Iteration: 100 ←− number of gradient ascent steps since the
beginning of training

Number of support vectors: 347 ←− number of training examples
for which at least one of the dual variables αik is positive (different from 0)

Quadratic term: 716.623906←− current value of the quadratic form
αT H̃α

Linear term: 3725.453030←− current value of the linear form 1
Q−11T

Qmα
Objective function: 3367.141077←− current value of the objective

function JM-SVM2,d(α) = −1
2αT H̃α + 1

Q−11T
Qmα.

3.4 Testing the M-SVM

Testing is initiated with the command
execute eval SVM

The structure of the file
Fichcom/eval SVM.com

5

containing the parameters used by the program eval SVM, is pretty similar
to the structure of the file Fichcom/train SVM.com. Here is an example,
corresponding once more to the toy problem:

3 ←− number of categories for the problem
1 ←− nature of the kernel
100.0 ←− value of the soft margin parameter C
Data/toy.app ←− name of the file where the training data is stored
Data/toy.test ←− name of the file where the test data is stored
Save alpha/toy.alpha←− name of the file where the values of the dual

variables α are read
Data/toy.outputs←− name of the file where the outputs of the M-SVM2

will be stored

3.5 Stopping criterion

In order not to slow down the training algorithm, no test is made in the pro-
gram train SVM regarding the satisfaction of optimality conditions: Kuhn-
Tucker conditions [4], value of the feasibility gap [2], etc. There is only
a constant named nb iter which limits the number of iterations (steps in
the gradient ascent). Its value can be set utterly arbitrarily. The program
eval SVM displays the values of several quantities characterizing the feasi-
bility of the current solution (vector α) and its convergence towards the
optimal solution α∗. The easiest way to derive a “cheap” stopping crite-
rion (early stopping, etc.) probably consists in making use of the values of
the components of the dual objective function (provided by train SVM): the
quadratic form αT H̃α and the linear form 1

Q−11T
Qmα. Indeed, let α(t) be the

feasible solution obtained after t steps of gradient ascent. We have:

lim
t−→+∞

1T
Qmα(t)

(Q− 1)α(t)T H̃α(t)
= 1.

Note that a difficulty springs from the fact that the curves of the two forms
as a function of t can intersect themselves before the optimum is attained.
Thus, the fact that the ratio above is equal to one is a necessary but not
sufficient condition of optimality. In practice, we always observed one sin-
gle intersection before the optimum was attained (disregarding the initial
situation α = 0).

6

4 General comments

This application is intended to be used for academic research purposes only.
It is intended to evolve frequently. Please, feel free to report any suggestion
you could have to improve the programs or this document to the following
address: Yann.Guermeur@loria.fr

Acknowledgments The principle of the algorithm implemented by this
software is due to A. Elisseeff. Thanks are also due to A. Iouditski for
interesting discussions on the subject.

References

[1] C.L. Blake and C.J. Merz. UCI repository of machine learning databases,
1998.

[2] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge Univer-
sity Press, Cambridge, 2000.

[3] A. Elisseeff. Etude de la complexité et contrôle de la capacité des systèmes
d’apprentissage : SVM multi-classe, réseaux de régularisation et réseaux
de neurones multicouches. PhD thesis, ENS Lyon, 2000. (in French).

[4] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons,
Chichester, second edition, 1987.

[5] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3:95–110, 1956.

[6] Y. Guermeur, M. Maumy, and F. Sur. Model selection for multi-class
SVMs. In ASMDA’05, pages 507–517, 2005.

[7] Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for
which a radius-margin bound applies. INFORMATICA, 2009. (submit-
ted).

[8] W. Orchard-Hays. Advanced Linear Programming Computing Tech-
niques. McGraw-Hill, 1968.

7

