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Guaranteed risk for large margin multi-ategory lassi�ers Theoretial frameworkHypotheses and goalsCharaterization of the problem- Study of the onnetion between objets x ∈ X and their ategories y ∈ Y = [[ 1, Q ]]- Hypothesis: existene of a X × Y-valued random pair (X,Y ) distributed aording to aprobability measure P- Problem: the joint probability measure P is unknownWhat is available- Dm = ((Xi, Yi))1≤i≤m : i.i.d. m-sample from (X,Y )- G: lass of funtions g, from X into R
Q (F : lass of deision rules f , from X into Y ⋃ {∗})

f(x) = argmax1≤k≤Q gk(x) or f(x) = ∗, in ase of ex æquoThe goal- ℓ, loss funtion: ℓ (y, g(x)) = 1l{gy(x)≤maxk 6=y gk(x)} (ℓ (y, f(x)) = 1l{f(x) 6=y})- Seletion of a funtion g∗ minimizing over G the risk
R(g) = E [ℓ (Y, g (X))] = P (f(X) 6= Y )
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Guaranteed risk for large margin multi-ategory lassi�ers Basi uniform onvergene resultMulti-lass margin and margin riskDe�nition 1 (Funtion M) Let M be the funtion from R
Q × [[ 1, Q ]] into R given by:

∀(v, k) ∈ R
Q × [[ 1, Q ]] , M(v, k) =

1

2

(

vk − max
l 6=k

vl

)

M(v, ·) = max1≤k≤QM(v, k)De�nition 2 (Multi-lass margin of g on the example (x, y))

∀(g, x, y) ∈ G × X × Y , M(g, x, y) = M (g(x), y)De�nition 3 (Operators ∆ and ∆∗) g = (gk)1≤k≤Q ∈ G- The funtion ∆g = (∆gk)1≤k≤Q, from X into R
Q, is given by:

∀x ∈ X , ∆g(x) = (M (g(x), k))1≤k≤Q- The funtion ∆∗g = (∆∗gk)1≤k≤Q, from X into R
Q, is given by:

∀x ∈ X , ∆∗g(x) = (sign (∆gk(x)) ·M (g(x), ·))1≤k≤QSummer Shool NN2008 5/55



Guaranteed risk for large margin multi-ategory lassi�ers Basi uniform onvergene resultMulti-lass margin and margin risk

∆# replaes ∆ and ∆∗ in the formulas that hold true for both operators (e.g.,

R(g) = E
[

1l{∆#gY (X)≤0}

])De�nition 4 (Margin risk) Let γ ∈ R
∗
+. The risk with margin γ of g is de�ned as:

Rγ(g) = E
[

1l{∆#gY (X)<γ}

]

=

∫

X×Y

1l{∆#gy(x)<γ}dP (x, y)Empirial risk with margin γ:
Rγ,m(g) =

1

m

m
∑

i=1

1l{∆#gYi
(Xi)<γ}Class of funtions of interest: ∆#

γ GFor ǫ ∈ R
∗
+, let πǫ : R → [−ǫ, ǫ] be the linear squashing funtion de�ned as:

πǫ(t) = sign(t) · min {|t| , ǫ}

∆#
γ g =

(

∆#
γ gk

)

1≤k≤Q
, ∆#

γ gk = πγ ◦ ∆#gk, ∆#
γ G =

{

∆#
γ g : g ∈ G

}
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Guaranteed risk for large margin multi-ategory lassi�ers Basi uniform onvergene resultCapaity measure of ∆#
γ G: overing numbers

Figure 1: ǫ-net and ǫ-over of a set E′ in a pseudo-metri spae (E, ρ)De�nition 5 (Covering numbers)

N (ǫ, E′, ρ): minimal number of open balls of radius ǫ needed to over E′ (or +∞)
N (p)(ǫ, E′, ρ): the ǫ-nets onsidered are inluded in E′ (proper to E′)
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Guaranteed risk for large margin multi-ategory lassi�ers Basi uniform onvergene result

Basi uniform onvergene resultClasses of indiator funtions

Theorem 1 (Guaranteed risk, Vapnik, 1998) Let F be a lass of indiator funtions on a set

X . Let N (F , (Xi)1≤i≤n

) be the number of di�erent funtions (dihotomies) that this lass animplement on (Xi)1≤i≤n and δ ∈ (0, 1). With probability at least 1− δ, the risk of any funtion f in

F is bounded from above as follows:
R(f) ≤ Rm(f) +

√

1

m

(

ln
(

EN
(

F , (Xi)1≤i≤2m

))

+ ln

(

4

δ

))

+
1

m
.

ln
(

EN
(

F , (Xi)1≤i≤2m

)) is the annealed entropy of F on the sample (Xi)1≤i≤2m.
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Guaranteed risk for large margin multi-ategory lassi�ers Basi uniform onvergene result

Basi uniform onvergene resultClasses of funtions G (taking values in R
Q)

De�nition 6 (Pseudo-metri dxn) Let n ∈ N
∗. For a sequene xn = (xi)1≤i≤n ∈ Xn, de�ne thepseudo-metri dxn on G as:

∀(g, g′) ∈ G2, dxn(g, g′) = max
1≤i≤n

‖g(xi) − g′(xi)‖∞ .For ǫ ∈ R
∗
+, let N (ǫ,G, n) = supxn∈Xn N (ǫ,G, dxn).Theorem 2 (Guaranteed risk) Let G be the lass of funtions that a large margin Q-ategorylassi�er on a domain X an implement. Let Γ ∈ R

∗
+ and δ ∈ (0, 1). With probability at least 1 − δ,for every value of γ in (0,Γ], the risk of any funtion g in G is bounded from above by:

R(g) ≤ Rγ,m(g) +

√

2

m

(

ln
(

2N (p)
(

γ/4,∆#
γ G, 2m

))

+ ln

(

2Γ

γδ

))

+
1

m
.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

Growth funtion

De�nition 7 (Growth funtion, Vapnik & Chervonenkis, 1971) Let F be a lass ofindiator funtions on a domain X . For n ∈ N
∗, let sXn = {xi : 1 ≤ i ≤ n} be a subset of X ofardinality n. Then, the growth funtion of F , ΠF , is de�ned by:

∀n ∈ N
∗, ΠF (n) = sup

sXn⊂X
N (F , sXn) .

Remark 1 Some authors use the alternative de�nition:
∀n ∈ N

∗, ΠF (n) = ln

(

sup
sXn⊂X

N (F , sXn)

)

.

Remark 2 In ontrast with the annealed entropy, the growth funtion is distribution-free.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

VC dimension

De�nition 8 (VC dimension, Vapnik & Chervonenkis, 1971) Let F be a lass of indiatorfuntions on a domain X . A subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be shattered by F if foreah vetor vy in {1, 1}n, there is a funtion fy in F satisfying

(fy (xi))1≤i≤n = vy.The VC dimension of F , denoted by VC-dim(F), is the maximal ardinality of a subset of Xshattered by F , if this ardinality is �nite. If no suh maximum exists, F is said to have in�niteVC dimension.
Remark 3 VC-dim(F) = d if and only if ΠF (d) = 2d and ΠF (d+ 1) < 2d+1.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

Ψ-dimensions

De�nition 9 (Ψ-dimensions, Ben-David et al., 1995) Let F be a lass of funtions on a set

X taking their values in the �nite set [[ 1, Q ]]. Let Ψ be a family of mappings ψ from [[ 1, Q ]] into

{−1, 1, ∗}, where ∗ is thought of as a null element. A subset sXn = {xi : 1 ≤ i ≤ n} of X is said tobe Ψ-shattered by F if there is a mapping ψn =
(

ψ(i)
)

1≤i≤n

in Ψn suh that for eah vetor vy in

{−1, 1}n, there is a funtion fy in F satisfying
(

ψ(i) ◦ fy(xi)
)

1≤i≤n
= vy.The Ψ-dimension of F , denoted by Ψ-dim(F), is the maximal ardinality of a subset of X

Ψ-shattered by F , if this ardinality is �nite. If no suh maximum exists, F is said to have in�nite

Ψ-dimension.Remark 4 Let F and Ψ be de�ned as above. Extending the de�nition of the VC dimension so thatit applies to lasses of funtions taking values in {−1, 1, ∗}, whih has no inidene in pratie, thefollowing proposition holds true:

Ψ-dim(F) = VC-dim ({(x, ψ) 7→ ψ ◦ f(x) : f ∈ F , ψ ∈ Ψ}) .
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

Main examples of Ψ-dimensions

De�nition 10 (Graph dimension, Dudley, 1987; Natarajan, 1989) Let F be a lass offuntions on a set X taking their values in [[ 1, Q ]]. The graph dimension of F , G-dim(F), is the

Ψ-dimension of F in the spei� ase where Ψ = {ψk : 1 ≤ k ≤ Q}, suh that ψk takes the value 1 ifits argument is equal to k and the value −1 otherwise. Reformulated in the ontext ofmulti-ategory lassi�ation, the funtions ψk are the indiator funtions of the ategories.De�nition 11 (Natarajan dimension, Natarajan, 1989) Let F be a lass of funtions on aset X taking their values in [[ 1, Q ]]. The Natarajan dimension of F , N-dim(F), is the Ψ-dimensionof F in the spei� ase where Ψ = {ψk,l : 1 ≤ k 6= l ≤ Q}, suh that ψk,l takes the value 1 if itsargument is equal to k, the value −1 if its argument is equal to l, and ∗ otherwise.

Remark 5 The de�nition of the graph dimension is inspired from the one-against-alldeomposition method whereas the de�nition of the Natarajan dimension is inspired from theone-against-one deomposition method.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

Fat-shattering or γ dimension

De�nition 12 (Fat-shattering dimension, Kearns & Shapire, 1994) Let G be a lass ofreal-valued funtions on a set X . For γ ∈ R
∗
+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be

γ-shattered by G if there is a vetor vb = (bi) in R
n suh that, for eah vetor vy = (yi) in {−1, 1}n,there is a funtion gy in G satisfying

∀i ∈ [[ 1, n ]] , yi (gy(xi) − bi) ≥ γ.The fat-shattering dimension with margin γ, or Pγ dimension, of the lass G, Pγ-dim (G), is themaximal ardinality of a subset of X γ-shattered by G, if this ardinality is �nite. If no suhmaximum exists, G is said to have in�nite Pγ dimension.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

γ-Ψ-dimensionsLet ∧ denote the onjuntion of two events.De�nition 13 (γ-Ψ-dimensions) Let G be a lass of funtions on a set X taking their values in

R
Q. Let Ψ be a family of mappings ψ from [[ 1, Q ]] into {−1, 1, ∗}. For γ ∈ R

∗
+, a subset

sXn = {xi : 1 ≤ i ≤ n} of X is said to be γ-Ψ-shattered (Ψ-shattered with margin γ) by ∆#G ifthere is a mapping ψn =
(

ψ(i)
)

1≤i≤n
in Ψn and a vetor vb = (bi) in R

n suh that, for eah vetor

vy = (yi) in {−1, 1}n, there is a funtion gy in G satisfying
∀i ∈ [[ 1, n ]] ,







if yi = 1, ∃k : ψ(i)(k) = 1 ∧ ∆#gy,k(xi) − bi ≥ γif yi = −1, ∃l : ψ(i)(l) = −1 ∧ ∆#gy,l(xi) + bi ≥ γ
.The γ-Ψ-dimension, or Ψ-dimension with margin γ, of ∆#G, denoted by Ψ-dim(∆#G, γ), is themaximal ardinality of a subset of X γ-Ψ-shattered by ∆#G, if this ardinality is �nite. If no suhmaximum exists, ∆#G is said to have in�nite γ-Ψ-dimension.This de�nition simpli�es into the one of the fat-shattering dimension when Q = 2.
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Guaranteed risk for large margin multi-ategory lassi�ers γ-Ψ-dimensions

Natarajan dimension with margin γDe�nition 14 (Natarajan dimension with margin γ) Let G be a lass of funtions on a set

X taking their values in R
Q. For γ ∈ R

∗
+, a subset sXn = {xi : 1 ≤ i ≤ n} of X is said to be

γ-N-shattered (N-shattered with margin γ) by ∆#G if there is a set

I(sXn) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n}of n ouples of distint indexes in [[ 1, Q ]] and a vetor vb = (bi) in R
n suh that, for eah vetor

vy = (yi) in {−1, 1}n, there is a funtion gy in G satisfying
∀i ∈ [[ 1, n ]] ,







if yi = 1, ∆#gy,i1(xi)(xi) − bi ≥ γif yi = −1, ∆#gy,i2(xi)(xi) + bi ≥ γ
.The Natarajan dimension with margin γ of the lass ∆#G, N-dim(∆#G, γ), is the maximalardinality of a subset of X γ-N-shattered by ∆#G, if this ardinality is �nite. If no suh maximumexists, ∆#G is said to have in�nite Natarajan dimension with margin γ.
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Guaranteed risk for large margin multi-ategory lassi�ers Generalized Sauer-Shelah lemma

Sauer-Shelah lemma(Classes of indiator funtions)

Lemma 1 (Vapnik & Chervonenkis, 1971; Sauer, 1972; Shelah, 1972) Let F be a lass ofindiator funtions on a set X and let ΠF be its growth funtion. If its VC dimension d is �nite,then for n ≥ d,

ΠF (n) ≤
d
∑

i=0

Ci
n <

(en

d

)dwhere e is the base of the natural logarithm.
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Guaranteed risk for large margin multi-ategory lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of funtions from X into [[ 1, Q ]]

Lemma 2 (Haussler & Long, 1995) Let F be a lass of funtions from X into [[ 1, Q ]] and let

ΠF be its growth funtion. If its Natarajan dimension d is �nite, then for n ≥ d,

ΠF (n) ≤
d
∑

i=0

Ci
n

(

C2
Q+1

)i
<

(

(Q+ 1)2en

2d

)d

.
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Guaranteed risk for large margin multi-ategory lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of real-valued funtions

Lemma 3 (Alon et al., 1997) Let G be a lass of funtions from X into [0, 1]. For every valueof ǫ in (0, 1] and every integer value of n satisfying n ≥ Pǫ/4-dim (G), the following bound is true:

N (ǫ,G, n) < 2

(

4n

ǫ2

)d log2(2en/(dǫ))

where d = Pǫ/4-dim (G).
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Guaranteed risk for large margin multi-ategory lassi�ers Generalized Sauer-Shelah lemma

Generalized Sauer-Shelah lemmaClasses of funtions from X into R
Q

Lemma 4 Let G be a lass of funtions from X into [−MG ,MG ]
Q. For every value of ǫ in (0,MG]and every integer value of n satisfying n ≥ N-dim (∆G, ǫ/6), the following bound is true:

N (p)(ǫ,∆∗G, n) < 2

(

n Q2(Q− 1)

⌊

3MG

ǫ

⌋2
)

l

d log2

“

enC2
Q

“

2
j

3MG
ǫ

k

−1
”

/d
”m

where d = N-dim (∆G, ǫ/6).The proof does not hold true anymore if the operator ∆∗ is replaed with the operator ∆.
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Guaranteed risk for large margin multi-ategory lassi�ers Nature and rate of onvergeneNature and rate of onvergeneTheorem 3 Let G be the lass of funtions from X into [−MG ,MG ]
Q that a large margin

Q-ategory lassi�er an implement. Let δ ∈ (0, 1). With probability at least 1 − δ, uniformly forevery value of γ in (0,MG], the risk of any funtion g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+

√

√

√

√

√

√

2

m






ln






4

(

2m Q2(Q− 1)

⌊

12MG

γ

⌋2
)

l

d log2

“

emQ(Q−1)
“

2
j

12MG
γ

k

−1
”

/d
”m




+ ln

(

2MG

γδ

)






+

1

mwhere d = N-dim (∆G, γ/24).

R(g) ≤ Rγ,m(g) + c ln (m)

√

d

mProposition 1 (Almost sure uniform onvergenes)
lim

m→+∞
sup
P

P

(

sup
n≥m

sup
g∈G

(R(g) −Rγ,n(g)) > ǫ

)

= 0 lim
m→+∞

sup
P

P

(

sup
n≥m

sup
g∈G

|Rγ(g) −Rγ,n(g)| > ǫ

)

= 0
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Multi-lass SVMs Multi-ategory lassi�ation with binary SVMs

Multi-ategory lassi�ation with binary SVMsOne-against-all method (Rifkin & Klautau, 2004)- Q SVMs: the k-th one distinguishes ategory k from the Q− 1 other ones- Deision rule: �winner-takes-all�One-against-one method/pairwise lassi�ation (Fürnkranz, 2002)- (Q2) SVMs: one for eah pair of lasses- Deision rule: �max-wins voting�Use of error orreting output odes (ECOC) (Allwein et al., 2000)- M = (mkl) ∈ MQ,N ({−1, 0, 1}): �oding matrix�- N SVMs: one for eah of the dihotomies de�ned by the olumns of M- Deision rule: omputation of a loss funtion
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Multi-lass SVMs Class of funtions implemented by the M-SVMs

Reproduing kernel Hilbert spaeLet X be a spae and (H, 〈·, ·〉H) a Hilbert spae of funtions on X (H ⊂ R
X ).De�nition 15 (Reproduing kernel, Aronszajn, 1950) Let κ be a funtion from X 2 into R.

∀x ∈ X , let κx be the funtion from X into R given by κx : t 7→ κ(x, t). κ is a reproduing kernel of

H if and only if:1. ∀x ∈ X , κx ∈ H;2. ∀x ∈ X , ∀h ∈ H, 〈h, κx〉H = h(x) (reproduing property).

De�nition 16 (Reproduing kernel Hilbert spae) If H possesses a reproduing kernel, it isalled a reproduing kernel Hilbert spae (RKHS) or a proper Hilbert spae.
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Multi-lass SVMs Class of funtions implemented by the M-SVMs

Positive semide�nite kernel and RKHS

De�nition 17 (Positive semide�nite (positive type) kernel) A funtion κ from X 2 into R isalled a positive semide�nite kernel (or a positive type kernel) if

∀n ∈ N
∗, ∀(ai)1≤i≤n ∈ R

n, ∀(xi)1≤i≤n ∈ Xn,
n
∑

i=1

n
∑

j=1

aiajκ (xi, xj) ≥ 0.

Theorem 4 (Moore-Aronszajn) Let κ be a positive semide�nite kernel on X 2. There existsonly one Hilbert spae (H, 〈·, ·〉H) of funtions on X with κ as reproduing kernel.
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Multi-lass SVMs Class of funtions implemented by the M-SVMs

Building a M-SVM starting from a kernelBasi lass of funtionsLet κ be a positive semide�nite kernel on X and let (Hκ, 〈·, ·〉Hκ
) be the orresponding RKHS.Let H̄ = (Hκ, 〈·, ·〉Hκ

)
Q and H = ((Hκ, 〈·, ·〉Hκ

) + {1})Q.
H: lass of funtions h = (hk)1≤k≤Q from X into R

Q suh that:
h(·) =

(

mk
∑

i=1

βikκ(xik, ·) + bk

)

1≤k≤Qwith {xik : 1 ≤ i ≤ mk} ⊂ X , (βik)1≤i≤mk
∈ R

mk and bk ∈ R, as well as the limits of thesefuntions when the sets {xik : 1 ≤ i ≤ mk} beome dense in X in the norm indued by the kernelClass of funtions implementedonvex subset of H (de�ned by onstraints on an a�ne subspae)
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Multi-lass SVMs Class of funtions implemented by the M-SVMs

Basi lass of funtionsAn a�ne model in the feature spaeTheorem 5 (Merer's theorem) For all Merer kernel κ, there exists a map Φ suh that:

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x),Φ(x′)〉where 〈·, ·〉 is the dot produt of the ℓ2 spae.
Φ is alled a feature map. Let Φ (X ) = {Φ (x) : x ∈ X}.A feature spae is any of the Hilbert spaes (EΦ(X ), 〈·, ·〉

) spanned by the Φ (X ).

=⇒ H an be seen as a lass of multivariate a�ne funtions on Φ (X )

h(·) = (〈wk, ·〉 + bk)1≤k≤Q

w = (wk)1≤k≤Q ∈ EQ
Φ(X ), b = (bk)1≤k≤Q ∈ R

Q
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Multi-lass SVMs Class of funtions implemented by the M-SVMs

Basi lass of funtionsPutting things the other way round: the �kernel trik�Norms on H̄ and EQ
Φ(X )

∥

∥h̄
∥

∥

H̄
=

√

√

√

√

Q
∑

k=1

∥

∥h̄k

∥

∥

2

Hκ
=

√

√

√

√

Q
∑

k=1

〈wk, wk〉 =

√

√

√

√

Q
∑

k=1

‖wk‖2 = ‖w‖

‖w‖∞ = max
1≤k≤Q

‖wk‖
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Multi-lass SVMs General formulation of the training algorithm

Q ≥ 3: multi-lass support vetor mahines

((xi, yi))1≤i≤m ∈ (X × [[ 1, Q ]])
m: training set

ℓM-SVM: onvex loss funtion (built around the hinge loss)M-SVM: solution of a onvex (quadrati) programming problemProblem 1

min
h∈H

{

m
∑

i=1

ℓM-SVM (yi, h(xi)) + λ‖h̄‖2
H̄

}

s.t. ∑Q
k=1 hk = 0Representer theoremThis theorem states that training (solving Problem 1) amounts to �nding the values of theoe�ients βik in

h(·) =

(

m
∑

i=1

βikκ(xi, ·) + bk

)

1≤k≤Q(the values of the �biases� bk are dedued by appliation of the Kuhn-Tuker onditions).Summer Shool NN2008 28/55



Multi-lass SVMs General formulation of the training algorithmA general framework that enompasses the bi-lass ase

((xi, yi))1≤i≤m ∈ (X × {−1, 1})m: training set

h = (h1, h2) = (h1,−h1), h̃(x) = h1(x) = ∆#h1(x) = 1
2 (〈w1 − w2,Φ (x)〉 + b1 − b2)

ℓSVM(y, h̃(x)) =
(

1 − yh̃(x)
)

+

(hinge loss)SVM: solution of a onvex (quadrati) programming problemProblem 2

min
h̃∈H̃

{

m
∑

i=1

ℓSVM (yi, h̃(xi)
)

+ λ
∥

∥

∥

¯̃
h
∥

∥

∥

2

Hκ

}

Representer theoremThis theorem states that training (solving Problem 2) amounts to �nding the values of theoe�ients βi in

h̃(·) =
m
∑

i=1

βiκ(xi, ·) + b(the value of the �bias� b is dedued by appliation of the Kuhn-Tuker onditions).Summer Shool NN2008 29/55



Multi-lass SVMs General formulation of the training algorithmHard margin M-SVMs and geometrial marginsGeometrial margins
dM-SVM = min

1≤k<l≤Q

{

min

[

min
i:yi=k

(hk(xi) − hl(xi)) , min
j:yj=l

(hl(xj) − hk(xj))

]}

∀(k, l), 1 ≤ k < l ≤ Q,

dM-SVM,kl =
1

dM-SVM min

[

min
i:yi=k

(hk(xi) − hl(xi) − dM-SVM) , min
j:yj=l

(hl(xj) − hk(xj) − dM-SVM)

]

∀(k, l), 1 ≤ k < l ≤ Q, γkl = dM-SVM 1 + dM-SVM,kl

‖wk − wl‖Connetion between the penalizer and the geometrial margins





∑

k<l

‖wk − wl‖2 = Q

Q
∑

k=1

‖wk‖2 −
∥

∥

∥

∥

∥

Q
∑

k=1

wk

∥

∥

∥

∥

∥

2


 ∧
Q
∑

k=1

wk = 0 =⇒

Q
∑

k=1

‖wk‖2 =
d2M-SVM

Q

∑

k<l

(

1 + dM-SVM,kl

γkl

)2
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Multi-lass SVMs Three main models of M-SVMs

M-SVM of Weston and WatkinsTraining algorithm - primal formulationProblem 3 (M-SVM1, Vapnik & Blanz, 1998; Weston & Watkins, 1998; . . . )

min
h∈H







1

2

Q
∑

k=1

‖wk‖2 + C

m
∑

i=1

∑

k 6=yi

ξik





s.t.


〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

Remark 6 The onstraint ∑Q
k=1 hk = 0 is impliit.
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Multi-lass SVMs Three main models of M-SVMsM-SVM of Weston and WatkinsTraining algorithm - dual formulation

αik: Lagrange multiplier orresponding to the onstraint 〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik

α = (αik)1≤i≤m,1≤k≤Q, (αiyi
)1≤i≤m = 0Problem 4 (M-SVM1)

min
α

{

1

2
αTHWWα− 1T

Qmα

}

s.t.


0 ≤ αik ≤ C, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑

i:yi=k

∑Q
l=1 αil −

∑m
i=1 αik = 0, (1 ≤ k ≤ Q− 1)

HWW =
((

δyi,yj
− δyi,l − δyj ,k + δk,l

)

κ(xi, xj)
)

1≤i,j≤m,1≤k,l≤Q

w∗
k =

∑

i:yi=k

Q
∑

l=1

α∗
ilΦ(xi) −

m
∑

i=1

α∗
ikΦ(xi) =

m
∑

i=1

Q
∑

l=1

(δyi,k − δk,l)α
∗
ilΦ(xi)
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Multi-lass SVMs Three main models of M-SVMs

M-SVM of Crammer and SingerTraining algorithm - primal formulationProblem 5 (M-SVM2, Crammer & Singer, 2001)
min
h̄∈H̄

{

1

2

Q
∑

k=1

‖wk‖2 + C
m
∑

i=1

ξi

}

s.t. 〈wyi
− wk,Φ(xi)〉 + δyi,k ≥ 1 − ξi, (1 ≤ i ≤ m), (1 ≤ k ≤ Q)

Remark 7 The onstraint ∑Q
k=1 h̄k = 0 is impliit.
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Multi-lass SVMs Three main models of M-SVMs

M-SVM of Crammer and SingerTraining algorithm - dual formulation
αik: Lagrange multiplier orresponding to the onstraint 〈wyi

− wk,Φ(xi)〉 + δyi,k ≥ 1 − ξi

α = (αik)1≤i≤m,1≤k≤Q, δ = (δyi,k)1≤i≤m,1≤k≤QProblem 6 (M-SVM2)

min
α

{

1

2
αTHWWα+ δTα

}

s.t.


αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k ≤ Q)
∑Q

k=1 αik = C, (1 ≤ i ≤ m)
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Multi-lass SVMs Three main models of M-SVMs

M-SVM of Lee, Lin and WahbaTraining algorithm - primal formulationProblem 7 (M-SVM3, Lee et al., 2004)
min
h∈H







1

2

Q
∑

k=1

‖wk‖2 + C

m
∑

i=1

∑

k 6=yi

ξik







s.t.






〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑Q

k=1 wk = 0,
∑Q

k=1 bk = 0Result of onsisteny (Zhang, 2004; Tewari & Bartlett, 2007)This M-SVM is the only one for whih training is Bayes/Fisher onsistent.
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Multi-lass SVMs Three main models of M-SVMsM-SVM of Lee, Lin and WahbaTraining algorithm - dual formulation

αik: Lagrange multiplier orresponding to the onstraint 〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik

α = (αik)1≤i≤m,1≤k≤Q, (αiyi
)1≤i≤m = 0Problem 8 (M-SVM3)

min
α

{

1

2
αTHLLWα− 1

Q− 1
1T

Qmα

}

s.t.


0 ≤ αik ≤ C, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1

(

1
Q − δk,l

)

αil = 0, (1 ≤ k ≤ Q− 1)

HLLW =

((

δk,l −
1

Q

)

κ(xi, xj)

)

1≤i,j≤m,1≤k,l≤Q

w∗
k =

m
∑

i=1

Q
∑

l=1

(

1

Q
− δk,l

)

α∗
ilΦ(xi)
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Multi-lass SVMs Some variants of the main modelsUse of di�erent norms on wProblem 9 (ℓ∞-norm M-SVM)
min
h∈H







1

2
t2 + C

m
∑

i=1

∑

k 6=yi

ξik







s.t.






〈wyi
− wk,Φ(xi)〉 + byi

− bk ≥ 1 − ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

‖wk‖ ≤ t, (1 ≤ k ≤ Q)

ℓ1-norm M-SVM (Wang et al., 2006)
κ (x, x′) = xTx′ (Φ = Id)Problem 10 (ℓ1-norm M-SVM)

min
h∈H

{

m
∑

i=1

ℓM-SVM (yi, h(xi))

}

s.t.


∑Q
k=1 ‖wk‖1 ≤ K

∑Q
k=1 hk = 0Summer Shool NN2008 37/55



Multi-lass SVMs Some variants of the main models

Use of a di�erent norm on ξ: quadrati loss M-SVMsDe�nition 18 (Quadrati loss M-SVM) A quadrati loss M-SVM is a M-SVM for whih theempirial term of the objetive funtion, ‖ξ‖1, is replaed by a quadrati form, ξTMξξ, where Mξ isa symmetri positive semide�nite matrix.

De�nition 19 (M-SVM2) Variant of the M-SVM of Lee, Lin and Wahba orresponding to

Mξ =

((

δk,l −
1

Q

)

δi,j

)

1≤i,j≤m,1≤k,l≤Q

.
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Multi-lass SVMs Some variants of the main modelsTraining algorithm of the M-SVM2Primal formulationProblem 11 (M-SVM2)
min
h∈H

{

1

2

Q
∑

k=1

‖wk‖2 + CξTMξξ

}

s.t.


〈wk,Φ(xi)〉 + bk ≤ − 1
Q−1 + ξik, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)

∑Q
k=1 wk = 0,

∑Q
k=1 bk = 0Dual formulationProblem 12 (M-SVM2)

min
α

{

1

2
αT

(

HLLW +
1

2C
Mξ

)

α− 1

Q− 1
1T

Qmα

}

s.t.


αik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1

(

1
Q − δk,l

)

αil = 0, (1 ≤ k ≤ Q− 1)
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Multi-lass SVMs Margins and support vetorsMargins and support vetors of a M-SVM
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x_
2

x_1Figure 2: 3 ategories linearly separable in R
2
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Multi-lass SVMs Margins and support vetorsMargins and support vetors of a M-SVM

Figure 3: Separating hyperplanes and soft margins of a linear M-SVM1Summer Shool NN2008 41/55



Multi-lass SVMs Margins and support vetors

C_1 / C_2
C_2 / C_3

x_1
x_2

x_3

Figure 4: 3 ategories non-linearly separable in R
3Summer Shool NN2008 42/55



Multi-lass SVMs Margins and support vetors

C_1 / C_2
C_1 / C_3
C_2 / C_3

x_1
x_2

x_3

Figure 5: Separating hyperplanes and support vetors of a linear M-SVM1
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Guaranteed risks for multi-lass SVMs Bounds on the overing numbers

Margin Natarajan dimension of the multi-lass SVMs

Theorem 6 Let H̄ be the lass of funtions that a Q-ategory M-SVM an implement under thehypothesis that Φ (X ) is inluded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that thevetor w satis�es ‖w‖∞ ≤ Λw and that b = 0. Then, for all ǫ ∈ R
∗
+,N-dim (∆H̄, ǫ

)

≤
(

Q

2

)(

ΛwΛΦ(X )

ǫ

)2

.

The proof- does not hold true anymore if the operator ∆ is replaed by the operator ∆∗;- alls for the use of the ℓ∞-norm instead of the ℓ2-norm (used by the penalizer);- rests diretly on the one-against-one deomposition sheme.
Q = 2 : Pǫ-dim (Hκ) ≤

(

ΛwΛΦ(X )

ǫ

)2
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Guaranteed risks for multi-lass SVMs Bounds on the overing numbers

From overing numbers to entropy numbers

De�nition 20 (Entropy numbers of a set) Let (E, ρ) be a pseudo-metri spae (or (E, ‖ · ‖E)a Banah spae) and E′ a bounded subset of E. Then, for n ∈ N
∗, the n-th entropy number of E′,

ǫn (E′), is:

ǫn (E′) = inf {ǫ > 0 : N (ǫ, E′, ρ) ≤ n} .

De�nition 21 (Entropy numbers of a bounded linear operator) Let (E, ‖ · ‖E) and

(F, ‖ · ‖F ) be two Banah spaes. Let L(E,F ) denote the Banah spae of all (bounded linear)operators from (E, ‖ · ‖E) into (F, ‖ · ‖F ) endowed with the norm:
∀S ∈ L(E,F ), ‖S‖ = supe∈E:‖e‖E=1 ‖S(e)‖F . The n-th entropy number of S is de�ned as

ǫn(S) = ǫn(S(UE)).
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Guaranteed risks for multi-lass SVMs Bounds on the overing numbers

From overing numbers to entropy numbers

De�nition 22 (Evaluation operator) For n ∈ N
∗, let xn ∈ Xn. The evaluation operator Sxn on

H̄ is de�ned as:
Sxn : H̄ −→ ℓQn

∞

h̄ = (wk)1≤k≤Q 7→ Sxn

(

h̄
)

= (〈wk,Φ(xi)〉)1≤i≤n, 1≤k≤QLet U be the unit ball of H̄ in the ℓ∞-norm (U =
{

h̄ ∈ H̄ : ‖w‖∞ ≤ 1
}). The onnetion between

N (ǫ,U , n) and the entropy numbers of Sxn is provided by the following proposition:Proposition 2 Let ǫ ∈ R
∗
+ and n ∈ N

∗.

sup
xn∈Xn

ǫp(Sxn) ≤ ǫ =⇒ N (ǫ,U , n) ≤ p.
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Guaranteed risks for multi-lass SVMs Bounds on the overing numbersUpper bound on the entropy numbersFinite-dimensional feature spae

Proposition 3 (Carl & Stephani, 1990) Let E and F be Banah spaes and S ∈ L (E,F ). If Sis of rank r, then for n ∈ N
∗,

ǫn(S) ≤ 4‖S‖n−1/r.

Theorem 7 Let H be the lass of funtions that a Q-ategory M-SVM an implement under thehypothesis that Φ (X ) is inluded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that thevetor w satis�es ‖w‖∞ ≤ Λw and b ∈ [−β, β]
Q. If the dimensionality of the spae EΦ(X ) is �niteand equal to d, then for all γ ∈ R

∗
+,

N (p) (γ/4,∆γH, 2m) ≤
(

2

⌈

8β

γ

⌉

+ 1

)Q

·
(

64ΛwΛΦ(X )

γ

)Qd

.

R(h) ≤ Rγ,m(h) +O

(

√

1

m

)
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Guaranteed risks for multi-lass SVMs Bounds on the overing numbersUpper bound on the entropy numbersIn�nite-dimensional feature spaeTheorem 8 (Maurey-Carl theorem, Carl & Stephani, 1990) Let H be a Hilbert spae and

S an operator belonging to L (ℓn1 , H) or L (H, ℓn∞). Then, for eah ouple of integers (k, n)satisfying 1 ≤ k ≤ n,
ek(S) ≤ c

(

1

k
log2

(

1 +
n

k

)

)1/2

‖S‖,where the dyadi entropy number ek(S) is equal to ǫ2k−1(S) and c is a universal onstant.Theorem 9 Let H be the lass of funtions that a Q-ategory M-SVM an implement under thehypothesis that Φ (X ) is inluded in the ball of radius ΛΦ(X ) about the origin in EΦ(X ), that thevetor w satis�es ‖w‖∞ ≤ Λw and b ∈ [−β, β]
Q. Then, for all γ ∈ R

∗
+,

N (p)(γ/4,∆γH, 2m) ≤
(

2

⌈

8β

γ

⌉

+ 1

)Q

· 2
16cΛwΛΦ(X)

γ

q

2Qm

ln(2)
−1
.

R(h) ≤ Rγ,m(h) +O

(√

1√
m

)
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Guaranteed risks for multi-lass SVMs Use of the Rademaher omplexityBasi probabilisti toolsDe�nition 23 (Rademaher average) For n ∈ N
∗, let A be a bounded set of vetors

a = (ai)1≤i≤n belonging to R
n and let (σi)1≤i≤n be a Rademaher sequene. The Rademaheraverage assoiated with A, Rn(A), is de�ned by:

Rn(A) = E sup
a∈A

1

n

∣

∣

∣

∣

∣

n
∑

i=1

σiai

∣

∣

∣

∣

∣

.Theorem 10 (Bounded di�erenes inequality, MDiarmid, 1989) Let (Ti)1≤i≤n be asequene of n independent random variables taking values in a set T . Let g be a funtion from T ninto R suh that there exists a sequene of nonnegative onstants (ci)1≤i≤n satisfying:

∀i ∈ [[ 1, n ]] , sup
(ti)1≤i≤n∈T n,t′i∈T

|g(t1, . . . , tn) − g(t1, . . . , ti−1, t
′
i, ti+1, . . . , tn)| ≤ ci.Then, for all τ ∈ R

∗
+, the random variable g (T1, . . . , Tn) satis�es:

P {g (T1, . . . , Tn) − Eg (T1, . . . , Tn) > τ} ≤ e−
2τ2

c

P {Eg (T1, . . . , Tn) − g (T1, . . . , Tn) > τ} ≤ e−
2τ2

cwhere c =
∑n

i=1 c
2
i .Summer Shool NN2008 49/55



Guaranteed risks for multi-lass SVMs Use of the Rademaher omplexity

Uniform onvergene resultConvexi�ed margin risk orresponding to the M-SVM of Crammer and Singer

R̃(h) = E
[

(1 − ∆hY (X))+
]

Theorem 11 Let H̄ be the lass of funtions that a Q-ategory M-SVM an implement under thehypothesis that Φ(X ) is inluded in the losed ball of radius ΛΦ(X ) about the origin in EΦ(X ), thatthe vetor w satis�es ‖w‖∞ ≤ Λw and b = 0. Let KH̄ = ΛwΛΦ(X ) + 1 and δ ∈ (0, 1). Withprobability at least 1 − δ, the risk of any funtion h̄ in H̄ is bounded from above by:

R
(

h̄
)

≤ R̃m

(

h̄
)

+
4√
m

+
4Q(Q− 1)Λw

m

√

√

√

√

m
∑

i=1

κ (Xi, Xi) +KH̄

√

ln
(

1
δ

)

2m
.

R
(

h̄
)

≤ R̃m

(

h̄
)

+O

(

√

1

m

)

Summer Shool NN2008 50/55



Model seletion for multi-lass SVMs Bounds on the leave-one-out error

Radius-margin bound

Theorem 12 (Vapnik, 1998) Let us onsider a hard margin bi-lass SVM. Let Lm be thenumber of errors that it makes in a leave-one-out ross-validation proedure and let γ = 1
‖w‖ denoteits geometrial margin. Then the following upper bound holds true:

Lm ≤ D2
m

γ2where Dm is the diameter of the smallest ball of the feature spae ontaining the support vetors.
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Model seletion for multi-lass SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Weston and Watkins

dWW = dCS = 1Theorem 13 Let us onsider a hard margin Q-ategory M-SVM of Weston and Watkins (orCrammer and Singer) on a domain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set, Lm thenumber of errors resulting from applying a leave-one-out ross-validation proedure to this mahine,and Dm the diameter of the smallest sphere of the feature spae ontaining the set

{Φ(xi) : 1 ≤ i ≤ m}. Then the following upper bound holds true:
Lm ≤ KCV

Q
D2

m

∑

k<l

(

1 + dWW,kl

γkl

)2

.

Constant KCV- The value of KCV is obtained by solving as many QP problems as there are support vetors.- For Q = 2, KCV = 2, and the bound redues itself to the bi-lass one.
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Model seletion for multi-lass SVMs Bounds on the leave-one-out error

Radius-margin bound for the M-SVM of Lee, Lin and Wahba

dLLW = Q
Q−1Theorem 14 Let us onsider a hard margin Q-ategory M-SVM of Lee, Lin and Wahba on adomain X . Let dm = {(xi, yi) : 1 ≤ i ≤ m} be its training set, Lm the number of errors resultingfrom applying a leave-one-out ross-validation proedure to this mahine, and Dm the diameter ofthe smallest sphere of the feature spae ontaining the set {Φ(xi) : 1 ≤ i ≤ m}. Then the followingupper bound holds true:

Lm ≤ Q2D2
m

∑

k<l

(

1 + dLLW,kl

γkl

)2

.This bound does not redue itself to the bi-lass one for Q = 2.
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Conlusions and open problems
ConlusionsCapaity measures of the lasses of funtions- The γ-Ψ-dimensions play for the M-SVMs (and the MLPs!) the same role as the fat-shatteringdimension for the bi-lass SVMs.- The urrent upper bounds on the overing numbers are suboptimal but in spei� ases.- If the use of the Rademaher omplexity urrently provides the sharpest bound, better bounds,adapted to the problem of interest, should result from implementing hybrid approahes.Guaranteed risks- These studies highlight the spei� harater of the multi-lass ase.- Model seletion should provide a touhstone to assess the di�erent guaranteed risks derived.
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Conlusions and open problems
Open problems and future workBounds on the risk of large margin multi-ategory lassi�ers- Computation of a bound on the universal onstant of the Maurey-Carl theorem- Use of Dudley's method of haining to improve the VC bound- Derivation of dediated PAC-Bayes bounds- . . .Model seletion for M-SVMs- Assessment of the guaranteed risks and radius-margin bounds to selet the value of the softmargin parameter C- Integration in the appliations implementing the M-SVMs of proedures hoosing automatiallythe values of the hyperparameters
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