Protein Secondary Structure Prediction with Multi-Class Support Vector Machines

Yann Guermeur
LORIA - CNRS
http://www.loria.fr/~guermeur
Summer School NN2008
July 4, 2008

Overview

Protein secondary structure prediction

- Different levels of structural organization of the proteins
- A problem of central importance in structural biology
- Different measures of prediction accuracy

State of the art

- Choice of the predictors
- Building blocks and architecture of the main prediction methods

Overview

Implementation of multi-class SVMs

- Models implemented
- Training algorithm
- Dedicated RBF kernel
- Computation of the weighting vector θ
- Experimental results

Conclusions and future work

Basic notions about proteins

Definition

- Proteins: macromolecules made up of amino acids
- 20 amino acids, each of them represented by a letter (A, R, N, D, C, E, ..)

Hierarchical description of the conformation

- Primary structure (sequence of amino acids) \Longleftarrow sequencing
- Secondary structure (sequence of structural elements) \Longleftarrow circular dichroism
- Tertiary structure (three-dimensional structure) \Longleftarrow X-ray, NMR

Sequence or primary structure ($1.6 \cdot 10^{6}$ known sequences)
MEEKLKKAKIIFVVGGPGSGKGTQCEKIVQKYGYTHLSTC. . .

Secondary structure

Figure 1: Periodic structural elements: α helix (left) and β strands (right)
Tertiary structure ($2.7 \cdot 10^{4}$ known 3D structures)

A problem of central importance in structural biology

Biological context Functional exploitation of the data generated by the large-scale sequencing projects: rests on the availability of the 3D structure of the proteins.

1. Massive arrival of protein sequences (exponential growth of the databases)

Figure 2: Growth of the international bank TREMBL from 1996 until 2005
2. Experimental determination of the 3 D structure: highly labour-intensive task. . . when it can be done \Longrightarrow Necessity to switch from a biochemical approach to a predictive approach

Different measures of prediction accuracy

$Q_{3}:$ recognition rate at the residue level
Pearson's/Matthews' correlation coefficients (Matthews, 1975)

$$
C_{i}=\frac{p_{i} n_{i}-u_{i} o_{i}}{\sqrt{\left(p_{i}+u_{i}\right)\left(p_{i}+o_{i}\right)\left(n_{i}+u_{i}\right)\left(n_{i}+o_{i}\right)}}
$$

Root mean square deviation (r.m.s.d.)

$$
\sigma_{i}=\sqrt{\frac{1}{n_{s}} \sum_{j=1}^{j=n_{s}}\left(o b s_{i j}-\operatorname{pred}_{i j}\right)^{2}}
$$

Sov coefficients (Rost et al., 1994; Zemla et al., 1999)
$\operatorname{Sov}(\delta)=\frac{1}{n} \sum_{S_{1}}\left\{\frac{1}{n_{S_{2}}} \sum_{S_{2} / S_{1} \cap S_{2} \neq \emptyset} \frac{\min \left(\operatorname{end}\left(S_{1}\right), \operatorname{end}\left(S_{2}\right)\right)-\max \left(\operatorname{beg}\left(S_{1}\right), \operatorname{beg}\left(S_{2}\right)\right)+1+\delta}{\max \left(\operatorname{end}\left(S_{1}\right), \operatorname{end}\left(S_{2}\right)\right)-\min \left(\operatorname{beg}\left(S_{1}\right), \operatorname{beg}\left(S_{2}\right)\right)+1} \operatorname{len}\left(S_{1}\right)\right\}$

Choice of the predictors

Local approach of the prediction

- Basic principle: use of a window sliding on the sequence
- Incorporation of physico-chemical information (hydrophobicity, charge and bulk of the residues...)

Exploiting evolutionary information: processing multiple sequence alignments

- Computation of sequence profiles (Rost \& Sander, 1993; Jones, 1999;...)
- Combination of the predictions performed independently for each of the sequences of an alignment (Riis \& Krogh, 1996)

Building blocks and architecture of the main prediction methods

Main models used

- Neural networks: MLPs (Qian \& Sejnowski, 1988), BRNNs (Baldi et al., 1999)
- Hidden Markov models (Asai et al., 1993; Martin et al., 2005)
- Bi-class support vector machines (Hua \& Sun, 2001) and M-SVMs (Guermeur, 2000)

Basic architecture of a prediction method

- Two-level prediction: a structure-to-structure module post-processes the output of a sequence-to-structure module (Qian \& Sejnowski, $1988 \longrightarrow$)
- Use of ensemble methods involving up to hundreds of basic classifiers (Rost \& Sander, 1993; Petersen et al., 2000)
- Hierarchical architecture involving discriminant and generative models (Guermeur, 1997)

Three M-SVMs with different statistical properties

General formulation of the training algorithm

Problem 1

$$
\begin{gathered}
\min _{h \in \mathcal{H}}\left\{\phi_{M-S V M}\left(\left(\ell_{M-S V M}\left(y_{i}, h\left(x_{i}\right)\right)\right)_{1 \leq i \leq m}\right)+\lambda\|\bar{h}\|_{\overline{\mathcal{H}}}^{2}\right\} \\
\text { s.t. } \sum_{k=1}^{Q} h_{k}=0
\end{gathered}
$$

1. M-SVM of Weston and Watkins: $\left\{\begin{array}{l}\ell_{\mathrm{WW}}(y, h(x))=\sum_{k \neq y}\left(1-h_{y}(x)+h_{k}(x)\right)_{+} \\ \phi_{\mathrm{WW}}(t)=\|t\|_{1}\end{array}\right.$
2. M-SVM of Lee, Lin and Wahba: $\left\{\begin{array}{l}\ell_{\mathrm{LLW}}(y, h(x))=\sum_{k \neq y}\left(h_{k}(x)+\frac{1}{Q-1}\right)_{+} \\ \phi_{\mathrm{LLW}}=\phi_{\mathrm{WW}}\end{array}\right.$
3. M-SVM ${ }^{2}:\left\{\begin{array}{l}\ell_{\mathrm{M}_{-\mathrm{SVM}^{2}}=\ell_{\mathrm{LLW}}} \\ \phi_{{\mathrm{M}-\mathrm{SVM}^{2}}(t)=t^{T} M_{t} t=\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{k=1}^{Q} \sum_{l=1}^{Q}\left(\delta_{k, l}-\frac{1}{Q}\right) \delta_{i, j} t_{i k} t_{j l}}\end{array}\right.$

Frank-Wolfe algorithm (1956)

Problem 2 (General formulation of the problem considered)

$$
\begin{aligned}
& \min _{t} f(t) \\
& \text { s.t. }\left\{\begin{array}{l}
A t=b \\
t \geq 0
\end{array}\right.
\end{aligned}
$$

Two-step iterative method generating a sequence of feasible points $\left(t^{(n)}\right)$
(1) Solve the linear programming problem $L P\left(t^{(n)}\right)$ given by:

Problem 3

$$
\begin{aligned}
& \quad \min _{u}\left\{\nabla f\left(t^{(n)}\right)^{T} u\right\} \\
& \text { s.t. constraints of Problem 2 }
\end{aligned}
$$

(2) $u^{(n)}$: optimal solution of $L P\left(t^{(n)}\right) \cdot t^{(n+1)}$: chosen so as to minimize f on $\left[t^{(n)}, u^{(n)}\right]$.

Frank-Wolfe algorithm applied to the M-SVM of Weston and Watkins Expression of the LP problem
$\beta=\left(\beta_{i k}\right)_{1 \leq i \leq m, 1 \leq k \leq Q},\left(\beta_{i y_{i}}\right)_{1 \leq i \leq m}=0$
Problem 4 (Computation of $\beta^{(n)}$)

$$
\begin{gathered}
\min _{\beta}\left\{\alpha^{(n)^{T}} H_{W W} \beta-1_{Q m}^{T} \beta\right\} \\
\text { s.t. } \begin{cases}0 \leq \beta_{i k} \leq C, & (1 \leq i \leq m),\left(1 \leq k \neq y_{i} \leq Q\right) \\
\sum_{i=1}^{m} \sum_{l=1}^{Q}\left(\delta_{y_{i}, k}-\delta_{k, l}\right) \beta_{i l}=0, & (1 \leq k \leq Q-1)\end{cases}
\end{gathered}
$$

Coefficient of the optimal convex combination

$$
\begin{gathered}
\gamma^{(n)}=\underset{\gamma \in[0,1]}{\operatorname{argmin}} J_{d}\left((1-\gamma) \alpha^{(n)}+\gamma \beta^{(n)}\right) \\
\gamma^{(n)}=\min \left\{-\frac{\nabla J_{d}\left(\alpha^{(n)}\right)^{T}\left\{\beta^{(n)}-\alpha^{(n)}\right\}}{\left\{\beta^{(n)}-\alpha^{(n)}\right\}^{T} H_{\mathrm{WW}}\left\{\beta^{(n)}-\alpha^{(n)}\right\}}, 1\right\}
\end{gathered}
$$

Remark 1 Our implementation incorporates a decomposition method.

RBF kernel for protein sequence processing

Analytical expression (primary structure only) $\mathbf{x}=\left(x_{i}\right)_{-n \leq i \leq n}$: vector coding a polypeptide (content of a window of size $2 n+1$)

$$
\kappa_{\theta, D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sum_{i=-n}^{n} \theta_{i}^{2}\left\|x_{i}-x_{i}^{\prime}\right\|^{2}\right)
$$

Extension for multiple alignment processing

Straightforward: \mathbf{x} replaced with $\tilde{\mathbf{x}}=\left(\tilde{x}_{i}\right)_{-n \leq i \leq n}$ such that $\tilde{x}_{i}=\sum_{j=1}^{22} \theta_{i j} a_{j}$

$$
\left\langle\tilde{x}_{i}, \tilde{x}_{i}^{\prime}\right\rangle=\left\langle\sum_{j=1}^{22} \theta_{i j} a_{j}, \sum_{k=1}^{22} \theta_{i k}^{\prime} a_{k}\right\rangle=\sum_{j=1}^{22} \sum_{k=1}^{22} \theta_{i j} \theta_{i k}^{\prime}\left\langle a_{j}, a_{k}\right\rangle
$$

Taking into account the substitutions (matrix A)
Several standard similarity matrices S

G	2																			
P	1	3																		
D	0	0	2																	
E	0	-1	1	2																
A	0	- 1	0	1	2															
N	0	0	1	0	0	3														
Q	0	0	0	1	0	1	2													
S	0	0	0	0	1	0	0	2												
T	0	0	0	0	0	0	0	0	2											
K	0	0	0	0	0	1	0	0	0	2										
R	0	0	0	0	0	0	0	0	0	1	2									
H	0	0	0	0	0	0	0	0	0	0	0	2								
V	-1	- 1	-1	- 1	0	- 1	- 1	- 1	0	- 1	-1	-1	2							
I	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	1	2						
M	-1	- 1	-1	- 1	0	- 1	- 1	- 1	0	-1	- 1	- 1	0	0	2					
C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2				
L	-1	- 1	-1	- 1	0	- 1	- 1	- 1	0	-1	-1	- 1	1	0	2	0	2			
F	-1	-1	-1	-1	0	-1	-1	-1	0	-1	-1	-1	0	1	0	-1	0	2		
Y	-1	- 1	-1	- 1	- 1	- 1	- 1	- 1	- 1	-1	-1	-1	0	0	0	- 1	0	1	2	
W	-1	-1	-1	- 1	- 1	-1	-1	- 1	- 1	0	- 1	0	0	0	0	- 1	0	0	0	2
	G	P	D	E	A	N	Q	S	T	K	R	H	V	I	M	C	L	F	Y	W

Figure 3: Secondary structure similarity matrix (Levin et al., 1986)

Approximating S with a Gram matrix

- $A=\left(a_{i j}\right) \in \mathcal{M}_{22,22}(\mathbb{R}):$ (implicit) representations of the amino acids
- $G=A A^{T}$: matrix of dot products $=$ symmetric positive semidefinite approximation of S Let the diagonalization of S be given by:

$$
S=P D P^{-1}=P D P^{T}
$$

(P is orthogonal since S is symmetric).
Then

$$
A A^{T}=P D_{+} P^{T}
$$

where D_{+}is derived from D by setting to 0 the negative eigenvalues.
This leads to

$$
A=P \sqrt{D_{+}}
$$

Kernel alignment

Definition 1 (Kernel alignment, Cristianini et al., 2002) Let κ and κ^{\prime} be two measurable kernel functions defined on $\mathcal{T} \times \mathcal{T}$, where the space \mathcal{T} is endowed with a probability measure $P_{\mathcal{T}}$. The alignment between κ and $\kappa^{\prime}, A\left(\kappa, \kappa^{\prime}\right)$, is defined as follows:

$$
A\left(\kappa, \kappa^{\prime}\right)=\frac{\left\langle\kappa, \kappa^{\prime}\right\rangle}{\|\kappa\|\left\|\kappa^{\prime}\right\|}=\frac{\int_{\mathcal{T}^{2}} \kappa\left(t, t^{\prime}\right) \kappa^{\prime}\left(t, t^{\prime}\right) d P_{\mathcal{T}}(t) d P_{\mathcal{T}}\left(t^{\prime}\right)}{\sqrt{\int_{\mathcal{T}^{2}} \kappa\left(t, t^{\prime}\right)^{2} d P_{\mathcal{T}}(t) d P_{\mathcal{T}}\left(t^{\prime}\right)} \sqrt{\int_{\mathcal{T}^{2}} \kappa^{\prime}\left(t, t^{\prime}\right)^{2} d P_{\mathcal{T}}(t) d P_{\mathcal{T}}\left(t^{\prime}\right)}} .
$$

Definition 2 (Empirical kernel alignment, Cristianini et al., 2002) \mathcal{T}, κ and κ^{\prime} being defined as above, let $T^{n}=\left(T_{i}\right)_{1 \leq i \leq n}$ be a n-sample of independent random variables distributed according to $P_{\mathcal{T}}$. The empirical alignment of κ and κ^{\prime} with respect to T^{n} is the quantity:

$$
\hat{A}_{T^{n}}\left(G, G^{\prime}\right)=\frac{\left\langle G, G^{\prime}\right\rangle_{F}}{\|G\|_{F}\left\|G^{\prime}\right\|_{F}}
$$

where G and G^{\prime} respectively denote the Gram matrices associated with κ and κ^{\prime}, computed on T^{n}, and $\langle\cdot, \cdot\rangle_{F}$ denotes the Frobenius inner product between matrices, so that $\left\langle G, G^{\prime}\right\rangle_{F}=\sum_{i=1}^{n} \sum_{j=1}^{n} \kappa\left(T_{i}, T_{j}\right) \kappa^{\prime}\left(T_{i}, T_{j}\right) .\|\cdot\|_{F}$ represents the corresponding norm.

Kernel-target alignment

Tuning parameter θ using kernel-target alignment

The strategy to tune kernel parameters based on the principle of kernel alignment can be summarized as follows:

1. Select a theoretically ideal kernel k_{t}, hereafter called the target kernel, ideal in the sense that it leads to perfect classification. Practically, the Gram matrix of k_{t} should be computable.
2. Given a training set of labelled examples $z^{m}=\left\{\left(x_{i}, y_{i}\right): 1 \leq i \leq m\right\}$, choose θ^{*} satisfying:

$$
\theta^{*}=\underset{\theta \in \Theta}{\operatorname{argmax}} \hat{A}_{z^{m}}\left(G_{\theta}, G_{t}\right),
$$

where G_{θ} is the Gram matrix associated with the pair $\left(\kappa_{\theta}, z^{m}\right), G_{t}$ being the Gram matrix associated with the pair $\left(\kappa_{t}, z^{m}\right)$.

Choice of the target kernel

Bi-class case (Cristianini et al., 2002)

$$
\forall\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{2}, \kappa_{t}\left(x, x^{\prime}\right)=y y^{\prime}
$$

Multi-class case (Vert, 2002)

$$
\forall\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) \in(\mathcal{X} \times \mathcal{Y})^{2}, \kappa_{t}\left(x, x^{\prime}\right)=\left(-\frac{1}{Q-1}\right)^{1-\delta_{y, y^{\prime}}}
$$

Vector θ obtained

Training algorithm: stochastic gradient descent. Let $G_{\theta_{k}, D}^{\prime}=\left(\frac{\partial}{\partial \theta_{k}} k_{\theta, D}\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right)$.

$$
\forall k \in \llbracket-n, n \rrbracket, \quad \frac{\partial}{\partial \theta_{k}} \hat{A}_{z^{m}}\left(G_{\theta, D}, G_{t}\right)=\frac{\left\langle G_{\theta_{k}, D}^{\prime}, G_{t}\right\rangle_{F}}{\left\|G_{\theta, D}\right\|_{F}\left\|G_{t}\right\|_{F}}-\frac{\left\langle G_{\theta, D}, G_{t}\right\rangle_{F}\left\langle G_{\theta, D}, G_{\theta_{k}, D}^{\prime}\right\rangle_{F}}{\left\|G_{\theta, D}\right\|_{F}^{3}\left\|G_{t}\right\|_{F}}
$$

Experimental results

Data set: P1096 (sequence identity $<30 \%$). Size of the sliding window: 13.5 -fold cross-validation.

	MLP	M-SVM WW	M-SVM LLW	M-SVM 2
Q_{3}	66.0	66.9	66.7	66.7
C_{α}	0.50	0.52	0.51	0.51
C_{β}	0.41	0.42	0.40	0.41
C_{c}	0.45	0.46	0.46	0.46
Sov $^{S_{0}}$	55.7	56.0	56.2	56.1
Sov $_{\beta}$	57.7	59.5	62.2	60.1
Sov $_{c}$	49.4	51.7	46.7	51.2

Table 1: Prediction accuracy of a MLP and three M-SVMs measured on the base P1096 (268575 residues)

Conclusions and future work

Conclusions

- Incorporating SVMs and M-SVMs in the secondary structure prediction methods should improve the prediction accuracy.
- This task raises interesting problems for "kernel designers".
- Future should belong to hybrid methods integrating discriminant and generative models.

Future work

- Applying ensemble methods to combine several M-SVMs
- Applying M-SVMs to multiple alignments
- Post-processing the output of the M-SVMs with Hidden Markov Models (IHMM...)

