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Protein seondary struture predition Di�erent levels of strutural organization of the proteins

Basi notions about proteinsDe�nition- Proteins: maromoleules made up of amino aids- 20 amino aids, eah of them represented by a letter (A, R, N, D, C, E, . . . )Hierarhial desription of the onformation- Primary struture (sequene of amino aids) ⇐= sequening- Seondary struture (sequene of strutural elements) ⇐= irular dihroism- Tertiary struture (three-dimensional struture) ⇐= X-ray, NMR- . . .
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Protein seondary struture predition Di�erent levels of strutural organization of the proteinsSequene or primary struture (1.6 · 106 known sequenes)MEEKLKKAKIIFVVGGPGSGKGTQCEKIVQKYGYTHLSTC...Seondary struture
Figure 1: Periodi strutural elements: α helix (left) and β strands (right)Tertiary struture (2.7 · 104 known 3D strutures)
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Protein seondary struture predition A problem of entral importane in strutural biology

A problem of entral importane in strutural biologyBiologial ontext Funtional exploitation of the data generated by the large-sale sequeningprojets: rests on the availability of the 3D struture of the proteins.1. Massive arrival of protein sequenes (exponential growth of the databases)

Figure 2: Growth of the international bank TREMBL from 1996 until 20052. Experimental determination of the 3D struture: highly labour-intensive task. . . when it an bedone =⇒ Neessity to swith from a biohemial approah to a preditive approah
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Protein seondary struture predition Di�erent measures of predition aurayDi�erent measures of predition auray

Q3: reognition rate at the residue levelPearson's/Matthews' orrelation oe�ients (Matthews, 1975)
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State of the art Choie of the preditors

Choie of the preditorsLoal approah of the predition- Basi priniple: use of a window sliding on the sequene- Inorporation of physio-hemial information (hydrophobiity, harge and bulk of theresidues. . . )Exploiting evolutionary information: proessing multiple sequene alignments- Computation of sequene pro�les (Rost & Sander, 1993; Jones, 1999;. . . )- Combination of the preditions performed independently for eah of the sequenes of analignment (Riis & Krogh, 1996)
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State of the art Building bloks and arhiteture of the main predition methods

Building bloks and arhiteture of the main predition methodsMain models used- Neural networks: MLPs (Qian & Sejnowski, 1988), BRNNs (Baldi et al., 1999)- Hidden Markov models (Asai et al., 1993; Martin et al., 2005)- Bi-lass support vetor mahines (Hua & Sun, 2001) and M-SVMs (Guermeur, 2000)Basi arhiteture of a predition method- Two-level predition: a struture-to-struture module post-proesses the output of asequene-to-struture module (Qian & Sejnowski, 1988 −→)- Use of ensemble methods involving up to hundreds of basi lassi�ers (Rost & Sander, 1993;Petersen et al., 2000)- Hierarhial arhiteture involving disriminant and generative models (Guermeur, 1997)
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Implementation of multi-lass SVMs Models implemented

Three M-SVMs with di�erent statistial propertiesGeneral formulation of the training algorithmProblem 1
min
h∈H

{

φM-SVM ((ℓM-SVM (yi, h(xi)))1≤i≤m

)

+ λ‖h̄‖2
H̄

}s.t. ∑Q
k=1 hk = 0

1. M-SVM of Weston and Watkins: 


ℓWW(y, h(x)) =
∑

k 6=y (1 − hy(x) + hk(x))+

φWW(t) = ‖t‖12. M-SVM of Lee, Lin and Wahba: 


ℓLLW (y, h(x)) =
∑

k 6=y
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Q−1

)

+

φLLW = φWW3. M-SVM2: 
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Implementation of multi-lass SVMs Training algorithmFrank-Wolfe algorithm (1956)

Problem 2 (General formulation of the problem onsidered)

min
t

f(t)

s.t.


At = b

t ≥ 0Two-step iterative method generating a sequene of feasible points (t(n)
)(1) Solve the linear programming problem LP

(

t(n)
) given by:Problem 3

min
u

{

∇f
(

t(n)
)T

u

}

s.t. onstraints of Problem 2(2) u(n): optimal solution of LP (t(n)). t(n+1): hosen so as to minimize f on [t(n), u(n)
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Implementation of multi-lass SVMs Training algorithmFrank-Wolfe algorithm applied to the M-SVM of Weston and WatkinsExpression of the LP problem
β = (βik)1≤i≤m,1≤k≤Q, (βiyi

)1≤i≤m = 0Problem 4 (Computation of β(n))
min

β

{

α(n)T HWWβ − 1T
Qmβ

}

s.t.


0 ≤ βik ≤ C, (1 ≤ i ≤ m), (1 ≤ k 6= yi ≤ Q)
∑m

i=1

∑Q
l=1 (δyi,k − δk,l) βil = 0, (1 ≤ k ≤ Q − 1)Coe�ient of the optimal onvex ombination
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}

Remark 1 Our implementation inorporates a deomposition method.
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Implementation of multi-lass SVMs Dediated RBF kernel

RBF kernel for protein sequene proessingAnalytial expression (primary struture only)

x = (xi)−n≤i≤n: vetor oding a polypeptide (ontent of a window of size 2n + 1)

κθ,D (x,x′) = exp

(

−
n
∑
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i‖
2

)

Extension for multiple alignment proessingStraightforward: x replaed with x̃ = (x̃i)−n≤i≤n suh that x̃i =
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Implementation of multi-lass SVMs Dediated RBF kernelTaking into aount the substitutions (matrix A)Several standard similarity matries S
Figure 3: Seondary struture similarity matrix (Levin et al., 1986)Summer Shool NN2008 14/22



Implementation of multi-lass SVMs Dediated RBF kernel

Approximating S with a Gram matrix- A = (aij) ∈ M22,22(R): (impliit) representations of the amino aids- G = AAT : matrix of dot produts = symmetri positive semide�nite approximation of SLet the diagonalization of S be given by:
S = PDP−1 = PDPT(P is orthogonal sine S is symmetri).Then

AAT = PD+PTwhere D+ is derived from D by setting to 0 the negative eigenvalues.This leads to

A = P
√

D+.
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Implementation of multi-lass SVMs Computation of the weighting vetor θKernel alignmentDe�nition 1 (Kernel alignment, Cristianini et al., 2002) Let κ and κ′ be two measurablekernel funtions de�ned on T × T , where the spae T is endowed with a probability measure PT .The alignment between κ and κ′, A(κ, κ′), is de�ned as follows:

A(κ, κ′) =
〈κ, κ′〉

‖κ‖‖κ′‖
=

∫

T 2 κ(t, t′)κ′(t, t′)dPT (t)dPT (t′)
√

∫

T 2 κ(t, t′)2dPT (t)dPT (t′)
√

∫

T 2 κ′(t, t′)2dPT (t)dPT (t′)
.

De�nition 2 (Empirial kernel alignment, Cristianini et al., 2002) T , κ and κ′ beingde�ned as above, let Tn = (Ti)1≤i≤n be a n-sample of independent random variables distributedaording to PT . The empirial alignment of κ and κ′ with respet to Tn is the quantity:

ÂT n(G, G′) =
〈G, G′〉F

‖G‖F‖G′‖Fwhere G and G′ respetively denote the Gram matries assoiated with κ and κ′, omputed on Tn,and 〈·, ·〉F denotes the Frobenius inner produt between matries, so that
〈G, G′〉F =

∑n
i=1

∑n
j=1 κ (Ti, Tj)κ′ (Ti, Tj). ‖ · ‖F represents the orresponding norm.
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Implementation of multi-lass SVMs Computation of the weighting vetor θ

Kernel-target alignmentTuning parameter θ using kernel-target alignmentThe strategy to tune kernel parameters based on the priniple of kernel alignment an besummarized as follows:1. Selet a theoretially ideal kernel kt, hereafter alled the target kernel, ideal in the sense that itleads to perfet lassi�ation. Pratially, the Gram matrix of kt should be omputable.2. Given a training set of labelled examples zm = {(xi, yi) : 1 ≤ i ≤ m}, hoose θ∗ satisfying:

θ∗ = argmax
θ∈Θ

Âzm(Gθ, Gt),where Gθ is the Gram matrix assoiated with the pair (κθ, z
m), Gt being the Gram matrixassoiated with the pair (κt, z

m).
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Implementation of multi-lass SVMs Computation of the weighting vetor θChoie of the target kernelBi-lass ase (Cristianini et al., 2002)

∀ ((x, y), (x′, y′)) ∈ (X × Y)
2
, κt(x, x′) = yy′Multi-lass ase (Vert, 2002)

∀ ((x, y), (x′, y′)) ∈ (X × Y)
2
, κt(x, x′) =

(

−
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Q − 1

)1−δy,y′
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Implementation of multi-lass SVMs Computation of the weighting vetor θ

Vetor θ obtained
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Implementation of multi-lass SVMs Experimental results

Experimental resultsData set: P1096 (sequene identity < 30%). Size of the sliding window: 13. 5-fold ross-validation.MLP M-SVM WW M-SVM LLW M-SVM2

Q3 66.0 66.9 66.7 66.7

Cα 0.50 0.52 0.51 0.51

Cβ 0.41 0.42 0.40 0.41

Cc 0.45 0.46 0.46 0.46

Sov 55.7 56.0 56.2 56.1

Sovα 57.7 59.5 62.2 60.1

Sovβ 49.4 51.7 46.7 51.2

Sovc 57.8 58.4 58.7 58.0Table 1: Predition auray of a MLP and three M-SVMs measured on the base P1096 (268575residues)
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Conlusions and future work
Conlusions and future workConlusions- Inorporating SVMs and M-SVMs in the seondary struture predition methods shouldimprove the predition auray.- This task raises interesting problems for �kernel designers�.- Future should belong to hybrid methods integrating disriminant and generative models.Future work- Applying ensemble methods to ombine several M-SVMs- Applying M-SVMs to multiple alignments- Post-proessing the output of the M-SVMs with Hidden Markov Models (IHMM. . . )
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