
Inferring ε-nets of Finite Sets in a RKHS

Antoine Moniot, Isaure Chauvot de Beauchêne, and Yann Guermeur
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Abstract. We introduce a method to derive ε-nets of finite sets. It op-
erates in a reproducing kernel Hilbert space. Its principle combines two
well-known tools of empirical inference: the hierarchical agglomerative
clustering and the computation of minimum enclosing balls. It produces
ε-nets whose cardinalities are smaller than those obtained with state-of-
the-art methods.
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1 Introduction

The inference of sets of prototypes is an ubiquitous problem in applied research.
Such sets must satisfy two contradictory constraints: be representative and of
cardinality as small as possible. When the data set is included in a Hilbert space
(the criterion of fitness is a distance) and its cardinality is finite, then the prob-
lem reduces to that of the inference from a Gram matrix of an ε-net of minimum
cardinality. This theoretical framework is of particular interest, for instance, in
structural biology (use of rotamers [1]). Strangely enough, it still calls for the
specification of dedicated methods. This is the subject of this study. Without loss
of generality, it addresses the case when the dot product is provided by a kernel.
Finding an optimal solution, i.e., an ε-net whose cardinality is the corresponding
covering number, appears as a problem of combinatorial optimization which is
intractable in practice. However, feasible solutions can be derived at negligible
cost from the dendrograms produced by most of the major algorithms of hier-
archical agglomerative clustering (HAC). In that context, a double observation
can be made: the corresponding linkage functions are unevenly suited for the
task, and it is possible to exhibit a new criterion a priori superior. Our method
can be seen as a new HAC algorithm based on the computation of minimum
enclosing balls (MEBs). When compared with state-of-the-art HAC algorithms
on a classical benchmark, it produces uniformly the smallest ε-nets.

The organization of the paper is as follows. The problem is specified in Sec-
tion 2. Section 3 is devoted to the state of the art. Our method is introduced in
Section 4. Section 5 presents the experimental results. At last, we draw conclu-
sions in Section 6.
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2 Problem characterization

The problem of interest is a problem of computational geometry. It is formalized
as follows.

2.1 Theoretical framework

We first characterize the data available. They constitute a finite subset of a de-
scription space X . Let sXn = {xi : 1 6 i 6 n} denote this subset. A reproducing
kernel Hilbert space (RKHS) [2] is spanned from X by means of a real-valued
positive type function/kernel on X 2. Let κ denote this function and

(
Hκ, 〈·, ·〉Hκ

)
the corresponding RKHS. The canonical distance on Hκ, ρκ, satisfies :

∀ (x, x′) ∈ X 2, ρκ (κx, κx′) = ‖κx − κx′‖Hκ
=
√
κ (x, x) + κ (x′, x′)− 2κ (x, x′).

This algebraic framework being established, the knowledge source available for
inference can be defined as the Gram matrix K ∈ Mn,n (R) with entries ki,j =
κ (xi, xj). The hypothesis of a Hilbert space structure and the availability of the
matrixK are more than enough to tackle our problem of computational geometry
(which becomes as a result a problem of functional analysis). This problem
involves concepts whose introduction is usually attributed to Kolmogorov and
Tihomirov [3]. Without loss of generality, they are presented below for metric
spaces. (E , ρ) is such a space and E ′ is a subset of E which is totally bounded.

Definition 1 (ε-cover, ε-net and covering numbers).
For ε ∈ R∗+, an ε-cover of E ′ is a coverage of E ′ with open balls of radius

ε the centres of which belong to E. These centres form an ε-net of E ′. An in-
ternal/proper ε-net of E ′ is an ε-net of E ′ included in E ′. The covering number
N (ε, E ′, ρ) is the smallest cardinality of its ε-nets:

N (ε, E ′, ρ) = min {|E ′′| : (E ′′ ⊂ E) ∧ (∀e ∈ E ′, ρ (e, E ′′) < ε)} .

N int (ε, E ′, ρ) will designate a covering number of E ′ obtained by considering
internal ε-nets only. We have thus:

N int (ε, E ′, ρ) = min {|E ′′| : (E ′′ ⊂ E ′) ∧ (∀e ∈ E ′, ρ (e, E ′′) < ε)} .

The problem considered is the following one.

Problem 1. Given the matrixK and ε ∈ R∗+, find an ε-net C (ε) = {cj (ε) : 1 6 j 6 |C (ε)|}
of S = {κxi : 1 6 i 6 n} with cardinality |C (ε)| as close as possible toN (ε,S, ρκ).

2.2 Optimization problem

Problem 1 can be turned into a problem of optimization by means of the following
proposition, whose proof is straightforward.
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Proposition 1. The value of N (ε,S, ρκ) is N ∗ if and only if N ∗ is the mini-
mum natural number such that there exists a partition of S into N ∗ subsets and
for each subset, the radius of the MEB is inferior to ε.

In the sequel, P = {pk : 1 6 k 6 |P|} designates a partition of S into |P|
subsests pk. P (S) designates the set of all these partitions. For every pk ∈ P,
c (pk) is the centre of its MEB. Then, C (P) = {c (pk) : 1 6 k 6 |P|}. With this
proposition and notation at hand, an optimal solution to Problem 1, i.e., a
solution satisfying |C (ε)| = N (ε,S, ρκ), is obtained by solving Problem 2.

Problem 2.

min
P∈P(S)

|P|

s.t. ∀k ∈ J1; |P|K, max{i:κxi∈pk} ρκ (κxi , c (pk)) < ε.

Let P∗ denote an optimal solution to Problem 2. Then according to Propo-
sition 1, C (P∗) is an ε-net of S of minimal cardinality (|P∗| = N (ε,S, ρκ)), so
that an optimal solution to Problem 1 is obtained by setting C (ε) = C (P∗).
Unfortunately, Problem 2 is an intractable problem of combinatorial optimiza-
tion. To the best our knowledge, the only method available to solve it is the
exhaustive way, and the number of partitions of S, i.e., its Bell number Bn, is
bounded from below by:

Bn >

(
n− 1

2

)n−1
4

.

However, the study of Problem 2 remains enlightening to derive a method pro-
ducing (suboptimal) solutions to Problem 1. Indeed, there is a well-known family
of classification methods initially producing as many clusters as there are points
(trivial feasible solution to Problem 2) and iteratively merging clusters (produc-
ing partitions of smaller and smaller cardinality) according to a dissimilarity
measure: the family of HAC algorithms [4]. If one can be satisfied with a sub-
optimal solution to Problem 2, then these algorithms turn the problem into a
tractable one since the number of partitions considered is now upper bounded
by n. The question then becomes: how close to N (ε,S, ρκ) is the cardinality
of the smallest partition (closest to the root) associated with an ε-cover? Of
course, the answer depends on the nature of the dissimilarity measure (the link-
age dH). The following section discusses the connection between the linkages of
the HAC algorithms and the radii of the balls enclosing the sets constituting the
partitions.

3 State of the art

In this section, S1 and S2 stand for two subsets of S among the candidates to be
merged at some iteration of an HAC algorithm. As such, they are specific subsets
of S. We have seen that even though the HAC algorithms are not designed to infer
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ε-nets, they can all be used for that purpose. It suffices, for each of the nested
partitions, to compute the corresponding balls using the matrix K. Furthermore,
there exist HAC algorithms which exhibit the following property.

Property 1. The linkage function dH increases or keeps unchanged each time
two clusters are merged and there exists a function fH such that, for every pair
(S1,S2), r (S1

⋃
S2), the radius of the smallest ball enclosing S1

⋃
S2, is bounded

from above by fH (dH (S1,S2) , |S1| , |S2|).

Property 1 is of central importance since it introduces an explicit connection
between the partitions generated and ε-nets. Intuitively, the methods which have
it are all the more promising to produce small ε-nets as fH (dH (S1,S2) , |S1| , |S2|)
is a sharper upper bound on r (S1

⋃
S2). Practically, it makes it possible to pro-

duce a (non trivial) feasible solution to Problem 2 without computing any ball,
i.e., without using K (after the dendrogram has been produced). This amounts
to solving Problem 3.

Problem 3. Given an HAC algorithm, the dendrogram it produces for K and
ε ∈ R∗+, find among the partitions P for which it can be established that the set
C (P) is an ε-net of S, the partition closest to the root.

Consequently, when a function fH is available, a trade-off is to be found be-
tween accuracy and computational complexity. Indeed, solving Problem 3 pro-
vides us with a (low-cost) initial solution to Problem 2 that can a priori be
improved by exploiting K to compute the balls associated with partitions closer
to the root. On the other hand, these balls are obtained as the solution of a
quadratic programming problem (see Section 4.2).

These observations drive us into studying the main HAC algorithms [5] in
the light of Property 1. They are characterized (by means of their linkage) in
Table 1.

Table 1. Main HAC algorithms

Method Linkage dH
Average dA (S1,S2) = 1

|S1||S2|
∑

(κx,κx′)∈S1×S2
ρκ (κx, κx′)

Centroid dCe (S1,S2) = ρκ
(

1
|S1|

∑
κx∈S1 κx,

1
|S2|

∑
κx′∈S2

κx′
)

Complete dCo (S1,S2) = max
(κx,κx′)∈S1×S2

ρκ (κx, κx′)

Minimax dmM (S1,S2) = min
κx∈S1

⋃
S2

max
κx′∈S1

⋃
S2
ρκ (κx, κx′)

Single dS (S1,S2) = min
(κx,κx′)∈S1×S2

ρκ (κx, κx′)

We first note that one single function dH does not satisfy the monotonicity
condition of Property 1: dCe [6]. We thus restrict the study to the four other
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linkages. In the sequel, for each subset S ′ of S, diamκ (S ′) designates its diameter
with respect to the metric ρκ. The simplest function fH to exhibit is obtained
for the Minimax linkage. Indeed, since S1

⋃
S2 ⊂ conv (S1

⋃
S2),

∀ (S1,S2) , r
(
S1
⋃
S2
)

= min
κx∈conv(S1

⋃
S2)

max
κx′∈S1

⋃
S2
ρκ (κx, κx′)

6 dmM (S1,S2)

so that we can set:

∀ (S1,S2) , fmM (dmM (S1,S2) , |S1| , |S2|) = dmM (S1,S2) .

We now turn to the Complete linkage.

∀ (S1,S2) , r
(
S1
⋃
S2
)
6

1√
2

diamκ

(
S1
⋃
S2
)

(1)

=
1√
2

max
{κx,κx′}∈S1

⋃
S2
ρκ (κx, κx′)

=
1√
2

max
(κx,κx′ )∈S1×S2

ρκ (κx, κx′) (2)

=
1√
2
dCo (S1,S2) .

Inequality (1) is an application of Jung’s theorem. The transition to (2) (which
would be false if S1 and S2 were arbitrary subsets of S), springs from the “mono-
tonicity” of dCo. Consequently, we can set

∀ (S1,S2) , fCo (dCo (S1,S2) , |S1| , |S2|) =
1√
2
dCo (S1,S2) .

This bound is tight unless we can exploit some knowledge regarding the kernel,
for instance the dimensionality of the RKHS. As for the Average linkage, since
the corresponding sum can be bounded from below by the maximum, applying
exactly the same reasoning as for the Complete linkage produces:

∀ (S1,S2) , fA (dA (S1,S2) , |S1| , |S2|) =
|S1| |S2|√

2
dA (S1,S2) .

Regarding the Single linkage, the triangle inequality provides us with

∀ (S1,S2) , diamκ

(
S1
⋃
S2
)
6 diamκ (S1) + dS

(
S1
⋃
S2
)

+ diamκ (S2) .

As a consequence, one can prove by induction that

diamκ

(
S1
⋃
S2
)
6
(∣∣∣S1⋃S2∣∣∣− 1

)
dS (S1,S2) .

Then, another application of Jung’s theorem allows us to define the function fS
as:

∀ (S1,S2) , fS (dS (S1,S2) , |S1| , |S2|) =
|S1
⋃
S2| − 1√
2

dS (S1,S2) .
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Fig. 1. Dendrograms produced with four linkages: dmM , dCo, dA and dS . A cut at
the height of the dashed lines provides the corresponding solutions to Problem 3 (for
ε = 2.5). The resulting ε-covers are given below.

Figure 1 illustrates the solutions to Problem 3 obtained with the four linkage
functions (dmM , dCo, dA and dS) on a set of 8 points of the real line.

The solution of smallest cardinality (|P| = 3) is provided by the Minimax
linkage. This solution is optimal since 3 is also the value of the covering number.
Using K as an additional knowledge source to cut the dendrograms closer to the
root produces new mergings so that eventually, all four ε-covers have minimal
cardinality. Only one differs from the others: the one obtained with the Complete
linkage.

Looking at the functions fH , the Minimax linkage seems to be the best to
produce ε-nets of small cardinality. It is noticeable that by definition, its ε-
nets are internal, which represents an unnecessary restriction that could have
a negative effect on the cardinality of the ε-net retained (keeping in mind that
N (ε, E ′, ρ) 6 N int (ε, E ′, ρ)). These observations are at the origin of the specifi-
cation of our method, which is now introduced.

4 New method of inference

4.1 Definition

Our method for the empirical inference of ε-nets is basically the HAC algorithm
involving the radius linkage function:

∀ (S1,S2) , dR (S1,S2) = r
(
S1
⋃
S2
)
. (3)

The only difference is that the algorithm stops as soon as the candidate merging
(minimizing dR) produces a set whose MEB has a radius superior or equal to ε.
The prototypes, i.e., the centres of the balls associated with the smallest partition
reached, live in a RKHS which can be infinite dimensional (for instance if κ is
a radial basis function). However, this raises no difficulties thanks to the kernel
trick.
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4.2 Derivation of the prototypes

Since the prototypes are the centres of MEBs, each of them is obtained as the
solution of an instance of a unique convex quadratic programming (QP) problem.
The study of this problem provides us with their analytical expression (in the
RKHS). Let sXm be a subset of sXn of cardinality m. Without loss of generality,
its points are reindexed so that we can write sXm = {xi : 1 6 i 6 m}. Km ∈
Mm,m (R) is the corresponding Gram matrix and κm ∈ Rm+ is its first diagonal.
Then the QP problem is the following one:

Problem 4.
min

O∈Hκ,R2∈R+

R2

s.t. ∀i ∈ J1;mK, ρ2κ (O, κxi) 6 R2.

Problem 4 can be difficult to solve directly, especially if the RKHS is infinite
dimensional. However, the classical way to infer the values of the parameters
of a kernel method, the application of the Lagrangian duality, is available. The
dual takes the following form:

Problem 5.
min
α∈Rm

{
αTKmα− κTmα

}
s.t.

{
∀i ∈ J1;mK, αi > 0
1Tmα = 1

.

By noting (O∗, R∗2) the solution to the primal problem and α∗ the solution
to its dual, we deduce from the Kuhn-Tucker (KT) conditions the analytical
expression of the prototype of sXm :

O∗ =

m∑
i=1

α∗i κxi . (4)

Precisely, Equation (4) provides the location of the centre of the MEB of
sXm in its convex hull. With this formula at hand, the square distance between
a prototype and any point in Hκ (let it be in S or not) is

ρ2κ (O∗, κx) = ‖O∗‖2Hκ
+ ‖κx‖2Hκ

− 2〈O∗, κx〉Hκ

=

m∑
i=1

m∑
j=1

α∗iα
∗
jκ (xi, xj) + κ (x, x)− 2

m∑
i=1

α∗i κ (xi, x) .

As for the value of the radius
√
R∗2, since 1Tmα

∗ = 1, the KT complementary
conditions provide us with:

R∗2 =

m∑
i=1

α∗i ρ
2
κ (O∗, κxi) .
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4.3 Algorithmic implementation

The literature provides us with several exact algorithms to compute an MEB
(see [7] for a survey). Their time complexity is a O

(
m3
)
. However, they only ap-

ply to data sets living in a finite dimensional space (they solve Problem 4). This
is precisely to bypass this limitation that we solve the dual (Problem 5) instead.
It is the minimization of a quadratic form over the standard/probability sim-
plex. This property can be exploited by a classical QP method, the Frank-Wolfe
algorithm [8], which happens to be among the state-of-the-art “approximation
algorithms” for the computation of MEBs. At each iteration, the solution of the
linear programming problem is the vertex of the standard simplex whose index
is the one of the smallest component of the gradient. Furthermore, there is an
analytic expression for the optimal step size. Our implementation of the method
makes use of both features. In practice, for a value of the duality gap equal to
0.99, the time complexity observed is a O

(
m2
)
.

5 Experimental results

Our method is evaluated in the framework of a comparative study. The criterion
of assessment is the cardinality of the ε-nets generated. The methods of reference
are the four HAC algorithms of Section 3 which exhibit Property 1. Thus, the
study compares the efficacy (to produce small ε-nets) of the following linkage
functions: dR (given by Equation 3), dA, dCo, dmM and dS (gathered in Table 1).
Our method is implemented as described in Section 4. As for the algorithms from
the literature, the ε-nets are obtained by solving Problem 3 based on the values
returned by the corresponding functions fH .

The benchmark selected is one of those used by Bien and Tibshirani in [5]:
the Olivetti Faces data set1. It is made up of images of the faces of 40 different
individuals. For each individual, 10 images are provided. They are 8-bit grayscale
images of size 64×64. Thus, the data are vectors of R64·64. This space is endowed
with its canonical structure of Euclidean space. To sum up, the algorithms oper-
ate on the Gram matrix of sXn = {xi : 1 6 i 6 n} where n = 400. It is possible
to infer from this matrix noteworthy elements: the two closest images, the two
most distant images, the center of the MEB, and the images on its surface. Those
elements are represented in Fig 2.

Let d2,min = min16i<j6n d2(xi, xj). Then, d2,min, r (sXn), and diam (sXn)
can be used to restrict the study to the values of ε for which the derivation of an
ε-net is non trivial. Indeed, if ε < 1

2d2,min, then N (ε, sXn , d2) = n and we can
set C (ε) = sXn . Conversely, if ε > r (sXn), then N (ε, sXn , d2) = 1 and we can
set C (ε) = c (sXn) (centre of the MEB of sXn). At last, if ε > diam (sXn), then
N int (ε, sXn , d2) = 1 and we can set C (ε) equal to any singleton.

Consequently, the cardinalities of the ε-nets produced by the five algorithms
are computed for ε in the interval (0,diam (sXn)]. The corresponding curves are
gathered in Fig 3.

1 https://cs.nyu.edu/∼roweis/data.html

https://cs.nyu.edu/~roweis/data.html
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Fig. 2. Olivetti Faces dataset. (a) and (b): two closest images; (c) and (d): two most
distant images; (e): center of the MEB; (f): one image on the surface of the MEB.

Fig. 3. Cardinality of the ε-nets produced by HAC algorithms as a function of ε
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The new method is uniformly (for all values of ε) superior to the other four.
Focusing on the HAC algorithms from the literature, it is noteworthy that con-
trary to our intuition, the Complete linkage appears to be more efficient than
the Minimax linkage (at least for small values of ε). This phenomenon is the
subject of ongoing investigations. As expected, neither dA nor dS appears as an
appropriate choice.

6 Conclusions

A method to infer prototypes/ε-nets for finite subsets of a Hilbert space has been
introduced. It can be seen as a hierarchical agglomerative clustering algorithm
that operates in a reproducing kernel Hilbert space. Its linkage function takes in
input two clusters of a partition and returns the radius of the minimum ball en-
closing their union. The prototypes inferred can be easily handled in the RKHS,
even when this space is infinite dimensional. A comparative experimental study
involving the most challenging HAC algorithms from the literature suggests that
our method produces smaller ε-nets, i.e., behaves as required.

Our current work is two-fold. It consists in performing additional comparative
experiments and performing kernel engineering so as to dedicate the method to
different applications in structural biology [9].
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