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Abstract
A new kernel machine for multi-class pattern recognition is introduced: the
isotropic kernel machine. It is designed to make use of the isotropy of the class
conditional densities in the feature space. We provide theoretical guarantees
on its generalization error. This error is then assessed empirically, in the
framework of a comparative study.

AMS (2000) subject classification. Primary 62H30; Secondary 68Q32.
Keywords and phrases. Margin multi-category classifiers, kernel machines,
isotropy.

1 Introduction

The support vector machine (SVM), introduced by Cortes and Vapnik
(1995), is the first and main kernel machine (Schölkopf and Smola 2002) for
pattern classification. Over the last two decades, a great many multi-class
extensions (M-SVMs) have been introduced (see Guermeur, 2012; Dogan
et al., 2016 for a survey). They all share one basic feature: their deci-
sion boundaries are linear in the reproducing kernel Hilbert space (RKHS)
(Berlinet and Thomas-Agnan 2004) of the kernel. The underlying idea is
appealing: get the best of two worlds by combining the theoretical guaran-
tees attached to linear classifiers with the gain of capacity induced by the
kernelization. However, it is not without drawbacks, and recent studies have
highlighted the fact that neural networks (Anthony and Bartlett 1999) could
outperform kernel machines, for instance on classification tasks involving
data with a low-dimensional representation. The phenomenon is especially
noticeable when the descriptions are realizations of nearly isotropic ran-
dom vectors (see for instance Ghorbani et al., 2020). Fortunately, it remains
relevant to consider more complex decision boundaries in the RKHS. The
rationale for this statement is the efficiency of famous quadratic classifiers,
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such as (Fisher) quadratic discriminant analysis (QDA) (Hastie et al. 2008),
and their kernelized extensions (Wang et al. 2008).

This article introduces a new multi-class kernel machine which aims at
exploiting the isotropy of the class conditional distributions in the feature
space. The isotropic kernel machine (IKM) can be seen as a kernelized
extension of a linear classifier: the nearest centroid classifier (NCC). Like
the quadratic classifiers, its decision boundaries in the feature space are
nonlinear functions. Unlike them, its learning problem does not involve a
parametric model of the data. We provide theoretical guarantees on its gen-
eralization error. This error is then assessed empirically, in the framework
of a comparative study.

The paper is organized as follows. Section 2 is devoted to the definition
and characterization of the new machine. The guarantees on its risk are
provided in Section 3. Section 4 is devoted to the comparative study. At
last, we draw conclusions and outline our ongoing research in Section 5. To
make reading easier, all technical lemmas and proofs have been gathered in
appendix.

2 The Machine

The new classifier is devised in the following theoretical framework.
2.1 Theoretical Framework We consider C -category pattern classi-

fication problems in the most general framework for empirical inference:
agnostic learning (Kearns et al. 1994). Let X denote the description space
and Y the set of categories. Since no specific hypotheses are made regard-
ing the structure of Y, this set is identified with the set of indices of
the categories, i.e., the set of the integers ranging from 1 to C, hereafter
denoted by �1;C�. We denote by (X , AX ) and (Y, AY) the basic mea-
surable spaces and by AX ⊗ AY the tensor-product sigma-algebra on the
Cartesian product Z = X × Y. P is the unknown probability measure on
the measurable space (X × Y, AX ⊗ AY). Let Z = (X, Y ) be a random
pair distributed according to P. The only access to P is via the m-sample
Zm = (Zi)1�i�m = ((Xi, Yi))1�i�m made up of independent copies of Z (in
short Zm ∼ Pm).

A classifier is characterized by a triplet made up of a function class, a
decision rule and an inductive principle. We now introduce the new kernel
machine through the specification of the corresponding triplet.

2.2 Function Class and Decision Boundaries The architecture of the
new machine is devised to capture the isotropy of the class conditional densi-
ties so as to fit the data more accurately than the kernelized linear classifiers,
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while involving fewer parameters than the kernelized nonlinear classifiers.
In the sequel, κ is a real-valued positive type function/kernel (Berlinet and
Thomas-Agnan 2004) on X 2 and

(
Hκ, 〈·, ·〉Hκ

)
is its RKHS. Note that κ

needs not be isotropic (Genton 2001).
Definition 1 (Function classes Hp and H) Let κ be a kernel and p ∈
[1, 2]. The function class Hp is the class of all real-valued functions h on X
of the form

∀x ∈ X , h (x) = R − a ‖O − κx‖p
Hκ

,

where O ∈ Hκ, R ∈ R+ and a ∈ R
∗
+. Then, the function class at the basis

of a C -category IKM is the class H =
⋃

p∈[1,2] HC
p .

The dedication to the exploitation of isotropy rests on the fact that for
every function in H, the level surfaces of the component functions (associ-
ated with the different categories) are hyperspheres of the RKHS. All these
component functions are associated with the same value of p. The reason
for this simplification is two-fold. On the one hand, we could not identify a
(real-world) problem calling for a more general choice. On the other hand,
the restriction is highly beneficial to the capacity control.
Definition 2 (Decision rule) For every function h = (hk)1�k�C ∈ H, a
decision rule drh is specified in the following way:

∀x ∈ X ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∣∣
∣∣
∣
argmax
1�k�C

hk (x)

∣∣
∣∣
∣
= 1 =⇒ drh (x) = argmax

1�k�C
hk (x)

∣∣
∣
∣∣
argmax
1�k�C

hk (x)

∣∣
∣
∣∣
> 1 =⇒ drh (x) = ∗

where |·| returns the cardinality of its argument and ∗ stands for a dummy
category.

Definitions 1 and 2 make it clear that the IKM is a (kernelized) extension
of the NCC. Indeed, let the function h of H be characterized by p ∈ [1, 2],
the vectors OC = (Ok)1�k�C ∈ (Hκ)C , RC = (Rk)1�k�C ∈ (R+)C and

aC = (ak)1�k�C ∈
(
R

∗
+

)C . Then if X is included in a Euclidean space, a
function h implementing the NCC is given by p ∈ [1, 2],

OC =

⎛

⎝ 1
|Yk|

∑

{i: Yi=k}
Xi

⎞

⎠

1�k�C
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where Yk = {i : Yi = k}, RC = 0C and aC = 1C . When X ⊂ R
d, an

example of isotropic class conditional distributions for which the classifier
can produce the Bayes decision boundaries is the following one:

∀k ∈ �1;C�, fk (x) =
Γ
(

d
2

)

Γ (d)
1

2 (
√

πbk)
d

exp
(

−‖x − μk‖2
bk

)
, (1)

where Γ stands for Euler’s Gamma function. Then, denoting by {πk : 1 � k
� C} the set of prior probabilities, the boundary between categories k and
l computed by the Bayes classifier is given by:

‖x − μk‖2
bk

− ‖x − μl‖2
bl

= ln

(
πk

πl

(
bl

bk

)d
)

.

Consequently, setting K = min1�l�C ln
(

πl

bd
l

)
, the IKM will be optimal for

a linear kernel (Euclidean dot product), with p∗ = 1, O∗
C = (μk)1�k�C ,

R∗
C =
(
ln
(

πk

bd
k

)
− K
)

1�k�C
and a∗

C =
(
b−1
k

)
1�k�C

.

Let us now consider the case when the class conditional densities are
normal, and given by:

∀k ∈ �1;C�, fk (x) =
1

(√
2πσk

)d exp

(

−‖x − μk‖22
2σ2

k

)

. (2)

This time, the analytical expression of the optimal decision boundary
between categories k and l is:

‖x − μk‖22
2σ2

k

− ‖x − μl‖22
2σ2

l

= ln

(
πk

πl

(
σl

σk

)d
)

.

Consequently, setting K = min1�l�C ln
(

πl

σd
l

)
, the IKM will be optimal for

a linear kernel, with p∗ = 2, O∗
C = (μk)1�k�C , R∗

C =
(
ln
(

πk

σd
k

)
− K
)

1�k�C

and a∗
C =
((

2σ2
k

)−1
)

1�k�C
.

The meaning of the vector RC can appear more clearly if the class con-
ditional distributions have finite support. A good illustration is provided
by the following elementary situation, where the data live in R

2 and fol-
low truncated multivariate normal distributions whose supports are balls
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Bk centered on the corresponding means μk. To avoid degenerate situations,
their radii rk ars supposed to be large enough so that they intersect one
another. To simplify further, the prior probabilities and the standard devi-
ations σk are supposed to be all equal, to C−1 and 2− 1

2 respectively. As a
consequence, the basic density functions f̃k are given by:

∀k ∈ �1;C�, f̃k (x) =
1
π

exp
(
− ‖x − μk‖22

)
,

and denoting

∀k ∈ �1;C�, Zk =
∫

Bk

f̃k (x) dx,

their truncated variants fk take the form

∀k ∈ �1;C�,

{
fk (x) = 1

Zk
f̃k (x) if x ∈ Bk

fk (x) = 0 otherwise
.

Since the integrals Zk do not depend on the means μk, applying the trans-
form to polar coordinates produces:

∀k ∈ �1;C�, Zk =
1
π

∫ 2π

0

∫ rk

0

e−r2rdrdθ

=
[
−e−r2

]rk

0

= 1 − e−r2k .

As a consequence, the analytical expression of the optimal decision boundary
between categories k and l is:

‖x − μk‖22 − ‖x − μl‖22 = ln

(
1 − e−r2l

1 − e−r2k

)

.

Once more, the Bayes classifier is a function in the class H. It corresponds to
a linear kernel, with p∗ = 2, O∗

C = (μk)1�k�C , R∗
C =
(
ln
(

1−e−r2max

1−e−r2
k

))

1�k�C

and a∗
C = 1C . Not only are the values of the parameters R∗

k different from
the squares of the radii rk, but they even vary in the opposite way. Generally
speaking, there is no (direct) connections between the component functions
of the classifier and the corresponding minimum enclosing balls.
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2.3 Function Selection We have stated in introduction that the func-
tion selection does not rely on a parametric model of the distributions of
the populations. The inferential principle implemented to derive the classi-
fier from the data simply consists in minimizing a data-fit term based on
the notion of (analytical) margin. This calls for the selection of a margin
loss function. We use the parameterized truncated hinge loss, applied to
the margin functions, a choice that bears the advantage to ensure Fisher
consistency (see Section 3).
Definition 3 (Margin operatorρ) Let G be a class of functions from X
into R

C . Define ρ as an operator on G such that:

ρ : G −→ ρG
g �→ ρg

∀ (x, k) ∈ Z, ρg (x, k) =
1
2

(
gk (x) − max

l �=k
gl (x)

)
.

The function ρg is the margin function associated with g.
Definition 4 (Parameterized truncated hinge loss φ2,γ) For γ ∈ R

∗
+,

the parameterized truncated hinge loss φ2,γ is defined by:

∀t ∈ R, φ2,γ (t) = 1{t�0} +
(

1 − t

γ

)
1{t∈(0,γ]}.

With these definitions at hand, the learning problem can be defined as fol-
lows.
Definition 5 (Learning problem of the IKM) Let κ be a kernel and
H the function class associated with κ according to Definition 1. For zm =
(zi)1�i�m ∈ Zm γ ∈ R

∗
+ and λ ∈ R

∗
+, the C -category IKM associated with

κ, zm, γ and λ is obtained by solving the following optimization problem:
Problem 1

min
h∈H

{
m∑

i=1

φ2,γ ◦ ρh (zi) + λ ‖RC‖1

}

s.t. ∀k ∈ �1;C�, Ok ∈ conv ({κxi
: yi = k}) ,

where the function conv returns the convex hull of its argument.
Problem 1 is a nonconvex programming problem. To solve it, one can

make use of the fact that the parameterized truncated hinge loss is a differ-
ence of convex functions (Le Thi and Pham 2005). Its originality rests in the
constraints on the centers Ok, inspired by the idea to derive the classifier
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from the NCC. They also opportunely provide a representer theorem (for
the component functions). Let θm = (θi)1�i�m ∈ [0, 1]m be the vector of the
convex combinations, so that:

∀k ∈ �1;C�, Ok =
∑

{i:yi=k}
θiκxi

.

Then by application of the reproducing property,

hk (x) = Rk − ak〈Ok − κx, Ok − κx〉
p
2
Hκ

= Rk − ak

⎛

⎝
∑

{(i,j):yi=yj=k}
θiθjκ (xi, xj) − 2

∑

{i:yi=k}
θiκ (xi, x) + κ (x, x)

⎞

⎠

p
2

.

(3)

An equivalent but more tractable formulation of Problem 1 is obtained by
introduction of slack variables. This formulation is Problem 2.
Problem 2

min
h∈H,ξm=(ξi)1�i�m∈R

m
+

{‖ξm‖1 + λ ‖RC‖1}

s.t.

{
∀i ∈ �1;m�, max

{
0, 1

γ ρh (zi)
}

� 1 − ξi

∀k ∈ �1;C�, Ok ∈ conv ({κxi
: yi = k})

.

3 Guarantees on the Generalization Error

In this section, we establish an asymptotic property of the generalization
error, the Fisher consistency, and an upper bound on this quantity holding
(with high probability) for a finite value of the sample size m, a guaranteed
risk. Central in their formulations are the concepts of risk and margin risk,
that we define now.
Definition 6 (Risk and margin risk) Let G be a class of functions from
X into R

C . The expected risk of any function g ∈ G, L(g), is given by:

L (g) = E(X,Y )∼P

[
1{ρg(X,Y )�0}

]
= P (drg (X) �= Y ) .

Its empirical risk measured on the m-sample Zm is:

Lm (g) = EZ′∼Pm

[
1{ρg(Z′)�0}

]
=

1
m

m∑

i=1

1{ρg(Zi)�0}
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(where Pm is the empirical measure supported on Zm). Given a class of
margin loss functions φγ parameterized by γ ∈ (0, 1], for every (ordered)
pair (g, γ) ∈ G × (0, 1], the risk with margin γ of g, Lγ (g), is defined as:

Lγ (g) = EZ∼P [φγ ◦ ρg (Z)] .

Lγ,m (g) designates the corresponding empirical risk, measured on the m-
sample Zm:

Lγ,m (g) = EZ′∼Pm

[
φγ ◦ ρg

(
Z ′)] =

1
m

m∑

i=1

φγ ◦ ρg (Zi) .

The first property we establish is Fisher consistency (Liu 2007).
3.1 Fisher Consistency

Proposition 1 Let G be the class of all the functions from X into R
C . The

minimizer g∗ of E(X,Y ) [φ2,γ ◦ ρg (X, Y )] over G satisfies the following:

∀x ∈ X , ∃k (x) ∈ argmax
1�k�C

P (Y = k | X = x) : ρg∗ (x, k (x)) � γ.

The learning problem of the IKM (Problem 1) is an implementation of the
empirical risk minimization inductive principle, with a restriction corre-
sponding to the constraints on the points Ok. Thus, if the minimizer h∗

of the margin risk on H is such that for every k in �1;C�, the point O∗
k

belongs to the convex hull of the support of the distribution of category k
(the constraints do not affect the asymptotic behaviour), then Proposition 1
implies that the estimation error of the machine goes to zero as m goes
to infinity. Suppose further that the approximation error is null, which is
the case, for instance, if the class densities are given by Eqs. 1 or 2. Then
asymptotically, the function selection returns a function h∗ whose decision
rule is that of the Bayes classifier (its risk is minimal).

We now introduce the guaranteed risk.
3.2 Guaranteed Risk In order to derive the upper bound on the prob-

ability of error of the classifier, the following assumptions are made.
Hypothesis 1 The kernel κ is supposed to be such that supx∈X ‖κx‖Hκ

� 1
2 .

The norms of the centers O are bounded from above by the same value. At
last, the parameters R are bounded from above by 1.

The assumption on the norms of the functions κx is not restrictive since
it is always possible to standardize the kernel. Once this first assumption
made, then the second one is a consequence of the constraints of Problem 1.
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Combining them by means of Minkowski inequality implies that the term
‖O − κx‖p

Hκ
is always (for every value of p) upper bounded by 1.

The capacity measure involved in our guaranteed risk is a Rademacher
complexity (Bartlett and Mendelson 2002; Koltchinskii and Panchenko
2002).
Definition 7 (Rademacher complexity) Let (T , AT , PT ) be a probabil-
ity space and let T be a random variable distributed according to PT . For
n ∈ N

∗, let Tn = (Ti)1�i�n be an n-sample made up of independent copies
of T and let σn = (σi)1�i�n be a Rademacher sequence. Let F be a class of
real-valued functions with domain T . The empirical Rademacher complexity
of F given Tn is

R̂n (F) = Eσn

[

sup
f∈F

1
n

n∑

i=1

σif (Ti)

∣
∣∣
∣
∣
Tn

]

.

The Rademacher complexity of F is

Rn (F) = ETn∼P n
T

[
R̂n (F)

]
.

The basic supremum inequality involving a Rademacher complexity can
be seen as an application of Theorem 9.2 in Mohri et al. (2018).
Theorem 1 Let H be the class of functions given by Definition 1. For a
fixed γ ∈ (0, 1] and a fixed δ ∈ (0, 1), with Pm-probability at least 1 − δ,

sup
h∈H

(L (h) − Lγ,m (h)) � 2C

γ
Rm

⎛

⎝
⋃

p∈[1,2]

Hp

⎞

⎠+

√
ln
(
1
δ

)

2m
, (4)

where the margin loss function defining the empirical margin risk is the
parameterized truncated hinge loss (Definition 4).

With Theorem 1 at hand, deriving a guaranted risk for the IKM boils
down to bounding from above Rn

(⋃
p∈[1,2] Hp

)
. Handling the union over all

the possible values for p raises a difficulty, all the more since among these
values, only one can be treated with results from the literature: the value 2.
This problem is taken care of by two new lemmas that should be of interest
in their own right: a structural result on covering numbers, Lemma 4, and
an extension of Talagrand’s contraction lemma (see for instance Lemma 5.7
in Mohri et al., 2018), Lemma 7. This yields to the following bound.
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Lemma 1 Let the function classes Hp be those of Definition 1, under
Hypothesis 1. Suppose that there exists Λ > 0 such that suph∈Hp

a � Λ.
Then for n � 2,

Rn

⎛
⎝ ⋃

p∈[1,2]

Hp

⎞
⎠ � 1

2
√

n
+ 2Λ

(
log2 (n)

n

) 1
4

⎡
⎣1 +

K√
log2 (n)

√√√√ln

(
10

(
n

log2 (n)

) 1
4
)⎤
⎦ ,

(5)
where K = 138240.

The combination of Theorem 1 and Lemma 1 produces a guaranteed

risk whose convergence rate is a O

((
ln(m)

m

) 1
4

)
. The value of the exponent

is a function of the value of the lower endpoint of the interval in which p
takes its value. Precisely, should this endpoint be set to p0 ∈ (1, 2], then the
exponent would (improve to) become p0

4 . This behaviour can be exploited
to perform capacity control, for instance through the choice of the initial
feasible solution for Problem 1. Indeed, it suggests to use the (kernelized)
NCC with a specific value of p, the largest possible one: 2. Then, training
should be monitored so as to avoid considering lower values unless the pre-
diction accuracy requires it, in application of some kind of structural risk
minimization.

4 Comparative Study

In this study, the IKM is compared with four popular classifiers whose deci-
sion boundaries in the feature space are well characterized: the M-SVM
of Weston and Watkins (1998), hereafter referred to as the WW-M-SVM,
the kernel linear discriminant analysis (KFDA), the QDA and a multi-
layer perceptron (MLP). The WW-M-SVM is used with a Gaussian kernel.
Our implementation of this machine can be found at the following address:
https://members.loria.fr/YGuermeur, with our implementation of the MLP.
The KFDA is the one of the package in R (Yang et al. 2004) and the QDA
is the one of scikit-learn.

As for IKM, the algorithm used to solve Problem 2 rests on a heuristic.
For values of p and aC taken on a grid it alternately optimizes vector RC

while keeping vector OC , i.e., vector θm, fixed, and vice versa. The opti-
mization of RC relies on a linear problem and to optimize vector θm, the
principle of the sequential minimal optimization (Platt 1999) is applied. An
index k of category and two distinct indices i and j in �1;m� satisfying

https://members.loria.fr/YGuermeur
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yi = yj = k are chosen randomly. Then, the values of the components θi and
θj are optimized while the other ones remain unchanged.

A first group of experiments assesses the behaviour of the IKM when
the kernel is the Euclidean dot product (linear kernel). This kernel is then
replaced with a Gaussian kernel.

4.1 IKM with a Linear Kernel This study involves two artificial prob-
lems (for which the Bayes classifier is available). In both cases, all the prior
probabilities of the categories are equal (i.e., equal to 1/C).

The first problem is a two-dimensional binary classification problem:
the bullseye, or more precisely the half bullseye (so that the task could be
handled efficiently by all five classifiers considered). The class conditional
densities are provided by the following formula:

∀k ∈ {1, 2} , ∀x ∈ R+ × R, fk (x)

=
∫ π/2

−π/2

∫ +∞

0

exp
(
− (x1−r cos θ)2

2σ2
k

− (x2−r sin θ)2

2σ2
k

)

2π2σ2
k

r

λk
exp
(

− r2

2λk

)
drdθ.

We chose λ1 = 1, λ2 = 3 and σ1 = σ2 = 0.2. The decision boundary
produced by the IKM, a section of a branch of an hyperbola-like curve since
the value obtained for the exponent p is 1, is depicted in Fig. 1.

The second problem involves categories whose distributions are given
by Eq. 1 (generalized Laplace distributions - gLaplace). Two configurations
are considered. The first one corresponds to C = 2, d = 2, μT

1 = (0, 0),
μT
2 = (5, 5), and bT

2 = (1, 10). The second one is given by C = 3, d = 2,
μT
1 = (0, 0), μT

2 = (5, 5), μT
3 = (5, −5), and bT

3 = (1, 10, 3).
The recognition rates are reported in Table 1.
The performances of the IKM and the WW-M-SVM are similar, and

globally superior to those of the three other classifiers. According to the
two-sample proportion test, their superiority over the MLP on the third
data set is statistically significant with confidence exceeding 0.95. This is
noteworthy since the generalized Laplace distributions are isotropic.

4.2 IKM with a Gaussian Kernel The IKM with a Gaussian kernel
is assessed on nine data sets from the literature. Among those data sets,
six are from the UCI repository website 1: the ”SPECT Heart Data Set”
(SPECT), the ”Glass Identification Data Set” (glass), the ”Car Evaluation
Data Set” (car), the ”Arcene Data Set”, the ”MicroMass Data Set” and the
”LSVT Voice Rehabilitation Data Set” (LSVT). The ”Hipparcos-1 dataset”

1 https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Table 2: Evaluation of the IKM with a Gaussian kernel
data set C d IKM WW-M-SVM KFDA QDA MLP
SPECT 2 22 84.68 84.32 82.01 78.60 84.27
glass 6 9 68.72 68.40 62.77 26.23 55.14
hipparcos 14 22 82.20 82.32 78.83 70.96 80.55
car 4 6 98.47 98.84 83.63 3.75 91.49
Arcene 2 10000 77.00 74.00 56.00 51.00 63.00
MicroMass 20 1300 80.92 65.67 10.50 4.00 57.09
clean 2 168 97.26 96.84 56.52 61.99 74.16
USPS 10 256 90.80 89.10 87.00 29.1 89.70
LSVT 2 309 85.76 82.56 - 67.35 66.67

(hipparcos) is borrowed from the hipparcos-1 catalogue (ESA 1997) while
the ”Clean data set” (clean) was introduced in Vanschoren et al. (2014). The
USPS data set is a subset of size 1000 of the set introduced by Schölkopf
et al. (1997).

The recognition rates obtained by means of a five-fold cross-validation
are reported in Table 2.

The IKM yields similar results to those of the WW-M-SVM. Its perfor-
mance is all the better as the dimension of the data is larger. It is especially
by far the best classifier for the two data sets living in the highest dimen-
sional spaces: Arcene and MicroMass. This is all the more remarkable as
little effort has been spent so far on the optimization process.

5 Conclusions and Ongoing Research

A new kernel machine for pattern classification has been introduced: the
isotropic kernel machine. It aims at exploiting isotropy through a nonpara-
metric approach derived from the nearest centroid classifier. Its decision
boundaries are nonlinear in the reproducing kernel Hilbert space of the ker-
nel. We give a bound on its learning risk using new tools that should prove
interesting in their own right. The initial experimental results are promising.

Our ongoing research follows three directions. The first one is the deriva-
tion of sharper multi-class risk bounds. The second one is the design of
automatic methods for the choice of the hyperparameters: the kernel κ, the
margin parameter γ and the regularization coefficient λ. At last, the third
one is the optimization of the training algorithm.
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Appendix A: Proof of the Fisher Consistency

Proof By disintegration (see Lemma 1.2.1 in Dudley, 1984), there exists a
map x �→ P (· | x) from X into the set of all probability measures on Y
such that P is the joint distribution of (P (· | x))x∈X and of the marginal
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distribution PX of P on X . Consequently,

E(X,Y ) [φ2,γ ◦ ρg (X,Y )] =
∫

X×Y
φ2,γ ◦ ρg (x, y) dP (x, y)

=
∫

X

{
C∑

k=1

φ2,γ ◦ ρg (x, k) P (Y = k | X = x)

}

dPX (x)

= EX

[
C∑

k=1

φ2,γ ◦ ρg (X, k) P (Y = k | X)

]

,

from which it springs that

∀x ∈ X , g∗ ∈ argmin
g∈G

C∑

k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x) .

Given x ∈ X and g ∈ G, by definition of ρg, there is at most one value of k
in �1;C� such that ρg (x, k) > 0. Suppose that there is none. Then according
to Definition 4,

C∑

k=1

φ2,γ ◦ ρg (x, k) P (Y = k | X = x) =
C∑

k=1

P (Y = k | X = x)

= 1. (6)

Suppose on the contrary that there exists k∗ ∈ �1;C� such that ρg (x, k∗) >
0. Then

C∑
k=1

φ2,γ ◦ ρg (x, k)P (Y = k | X = x) = 1 + (φ2,γ ◦ ρg (x, k∗) − 1)P (Y = k∗ | X = x) (7)

< 1. (8)

By definition of G and g∗, it springs from Eqs. 6 and 8 that g∗ satisfies:

∀x ∈ X , ∃! k (x) ∈ �1;C� : ρg∗ (x, k (x)) > 0.

Furthermore, due to Eq. 7,

∀x ∈ X ,

{
k (x) ∈ argmax1�k�C P (Y = k | X = x)
ρg∗ (x, k (x)) � γ

,
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so that

C∑

k=1

φ2,γ ◦ ρg∗ (x, k)P (Y = k | X = x) = 1 − max
1�k�C

P (Y = k | X = x) .

Appendix B: Technical Lemmas

We have seen in Section 3.2 that in order to prove the guaranteed risk, it is
enough to prove Lemma 1. This proof makes use of technical lemmas with
are gathered in this appendix. They involve concepts which are defined first.

The concept of covering number (ε-entropy), as well as the underlying con-
cepts of ε-cover and ε-net, can be traced back to Kolmogorov and Tihomirov
(1961).
Definition 8 (ε-cover, ε-net, covering numbers, and ε-entropy) Let
(E , ρ) be a pseudo-metric space, E ′ ⊂ E and ε ∈ R

∗
+. An ε-cover of E ′ is a

coverage of E ′ with open balls of radius ε the centers of which belong to E .
These centers form an ε-net of E ′. An internal/proper ε-net of E ′ is an ε-net
of E ′ included in E ′. If E ′ has an ε-net of finite cardinality, then its covering
number N (ε, E ′, ρ) is the smallest cardinality of its ε-nets:

N
(
ε, E ′, ρ

)
= min

{∣∣E ′′∣∣ :
(
E ′′ ⊂ E

)
∧
(
∀e ∈ E ′, ρ

(
e, E ′′) < ε

)}
.

If there is no such finite net, then the covering number is defined to be
infinite. The corresponding binary logarithm, log2 (N (ε, E ′, ρ)), is called the
minimal ε-entropy of E ′, or simply the ε-entropy of E ′. N int (ε, E ′, ρ) will
designate a covering number of E ′ obtained by considering internal ε-nets
only. In the finite case, we have thus:

N int
(
ε, E ′, ρ

)
= min

{∣∣E ′′∣∣ :
(
E ′′ ⊂ E ′) ∧

(
∀e ∈ E ′, ρ

(
e, E ′′) < ε

)}
.

Definition 9 (Pseudo-distance dp,tn
) Let F be a class of real-valued func-

tions on T . For n ∈ N
∗, let tn = (ti)1�i�n ∈ T n. Then,

∀p ∈ [1,+∞) , ∀
(
f, f ′) ∈ F2, dp,tn

(
f, f ′) =

∥
∥f − f ′∥∥

Lp(μtn)
=

(
1

n

n∑

i=1

∣
∣f (ti) − f ′ (ti)

∣
∣p

) 1
p

and

∀
(
f, f ′) ∈ F2, d∞,tn

(
f, f ′) =

∥∥f − f ′∥∥
L∞(μtn)

= max
1�i�n

∣∣f (ti) − f ′ (ti)
∣∣ ,



Isotropic Kernel Machine

where μtn
denotes the uniform (counting) probability measure on {ti : 1 � i

� n}.
Definition 10 (Uniform covering numbers, Williamson et al., 2001)
Let F be a class of real-valued functions on T and F̄ ⊂ F . For p ∈ [1, +∞],
ε ∈ R

∗
+, and n ∈ N

∗, the uniform covering numbers Np

(
ε, F̄ , n

)
are defined

as follows:
Np

(
ε, F̄ , n

)
= sup

tn∈T n

N
(
ε, F̄ , dp,tn

)
.

We define accordingly the uniform covering numbers N int
p

(
ε, F̄ , n

)
as:

N int
p

(
ε, F̄ , n

)
= sup

tn∈T n

N int
(
ε, F̄ , dp,tn

)
.

Definition 11 (Fat-shattering dimension, Kearns and Schapire, 1994)
Let F be a class of real-valued functions on T . For γ ∈ R

∗
+, a subset sT n =

{ti : 1 � i � n} of T is said to be γ-shattered by F if there is a vector
bn = (bi)1�i�n ∈ R

n such that, for every vector sn = (si)1�i�n ∈ {−1, 1}n,
there is a function fsn

∈ F satisfying

∀i ∈ �1, n�, si (fsn
(ti) − bi) � γ.

The vector bn is called a witness to the γ-shattering. The fat-shattering
dimension at scale γ of the class F , γ-dim (F), is the maximal cardinality
of a subset of T γ-shattered by F , if such maximum exists. Otherwise, F is
said to have infinite fat-shattering dimension at scale γ.
Definition 12 For p ∈ [1, 2], the function class Fp is the set {fO,p : x �→ ‖O
−κx‖p

Hκ

}
satisfying Hypothesis 1.

Lemma 2 Let F be the class of constant functions on T whose values range
from 0 to MF . Then

∀n ∈ N
∗, Rn (F) � MF

2
√

n
.

Proof For every tn = (ti)1�i�n ∈ T n,

Eσn

[

sup
f∈F

1
n

n∑

i=1

σif (ti)

]

=
1
n
Eσn

[

MF1{
∑n

i=1 σi>0}

n∑

i=1

σi

]

=
MF
2n

Eσn

[∣∣
∣
∣∣

n∑

i=1

σi

∣∣
∣
∣∣

]

.
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Jensen’s inequality gives

Eσn

[∣∣
∣
∣
∣

n∑

i=1

σi

∣
∣
∣
∣
∣

]

�
√

n,

thus concluding the proof.
Lemma 3 Let F be a class of real-valued functions on T including the null
function and λ ∈ R

∗
+. Let Fλ = {αf : α ∈ (0, λ] , f ∈ F}. Then,

∀n ∈ N
∗, Rn (Fλ) � 2λRn (F) .

Proof For every tn = (ti)1�i�n ∈ T n,

Eσn

[

sup
f∈F ,α∈(0,λ]

n∑

i=1

σiαf (ti)

]

� λEσn

[

sup
f∈F

∣
∣∣
∣
∣

n∑

i=1

σif (ti)

∣
∣∣
∣
∣

]

.

Let (·)+ and (·)− denote respectively the positive and negative part func-
tions. Due to the subadditivity of the supremum,

Eσ n

[

sup
f∈F

∣
∣
∣
∣
∣

n∑

i=1

σif (ti)

∣
∣
∣
∣
∣

]

� Eσ n

⎡

⎣ sup
f∈F

(
n∑

i=1

σif (ti)

)

+

⎤

⎦ + Eσ n

⎡

⎣ sup
f∈F

(
n∑

i=1

σif (ti)

)

−

⎤

⎦ .

By symmetry, −σn has the same distribution as σn and (−·)− = (·)+. Thus,
the two expectations of the right-hand side are equal, with the consequence
that

Eσn

[

sup
f∈F

∣∣
∣
∣
∣

n∑

i=1

σif (ti)

∣
∣
∣∣
∣

]

� 2Eσn

⎡

⎣sup
f∈F

(
n∑

i=1

σif (ti)

)

+

⎤

⎦ .

To conclude the proof, it suffices to notice that since the class F includes the
null function, supf∈F (

∑n
i=1 σif (ti))+ = supf∈F

∑n
i=1 σif (ti) almost surely.

Lemma 4 Let the function classes Fp be those of Definition 12. For ε ∈
(0, 1], let φε be the function mapping k ∈ �1; �1

ε �� to 1 + 2k−1
2

⌈
1
ε

⌉−1. Then
for ε ∈ (0, 1], n ∈ N

∗ and xn = (xi)1�i�n ∈ X n,

N int

⎛

⎝ε,
⋃

p∈[1,2]

Fp, d2,xn

⎞

⎠ �
� 1

ε �∑

k=1

N int
( ε

2
, Fφε(k), d2,xn

)
. (9)
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Proof Let us consider any value p0 ∈ [1, 2]. Let k0 ∈ argmin1�k�� 1
ε � |p0 − φε

(k)| and δ = |p0 − φε (k0)|. Note that by construction, δ � ε
2 . Let Nφε(k0)

be a proper ε
2 -net of Fφε(k0) (with respect to the pseudo-metric d2,xn

). By
definition, for every O ∈ Hκ, there exists Ō ∈ Hκ such that the function
fŌ,φε(k0) belongs to Nφε(k0) and

d2,xn

(
fO,φε(k0), fŌ,φε(k0)

)
<

ε

2
.

Then

d2,xn

(
fO,p0 , fŌ,φε(k0)

)
� d2,xn

(
fO,p0 , fO,φε(k0)

)
+ d2,xn

(
fO,φε(k0), fŌ,φε(k0)

)

< d∞,xn

(
fO,p0 , fO,φε(k0)

)
+

ε

2
. (10)

Now, since Hypothesis 1 implies that max1�i�n ‖O − κxi
‖Hκ

� 1,

d∞,xn

(
fO,p0 , fO,φε(k0)

)
= max

1�i�n

∣
∣
∣‖O − κxi

‖p0
Hκ

− ‖O − κxi
‖φε(k0)
Hκ

∣
∣
∣

� max
t∈[0,1]

∣
∣∣tp0 − tφε(k0)

∣
∣∣ .

Let F be the function mapping t ∈ [0, 1] to
∣∣tp0 − tφε(k0)

∣∣. If δ > 0 (F is not

the null function), then its maximum is reached at t∗ =
(

min{p0,φε(k0)}
max{p0,φε(k0)}

) 1
δ .

Thus,

d∞,xn

(
fO,p0 , fO,φε(k0)

)
� F (t∗)

= tp0
∗

δ

φε (k0)
= t

φε(k0)
∗

δ

p0

< δ

� ε

2
. (11)

By substitution of Eqs. 11 into 10, d2,xn

(
fO,p0 , fŌ,φε(k0)

)
< ε, which implies

that Nφε(k0) is also an ε-net of Fp0 . Taking the union over the domain of p0,
i.e., [1, 2], establishes that

⋃
k∈�1;� 1

ε �� Nφε(k) is a proper ε-net of
⋃

p∈[1,2] Fp,
which concludes the proof.

The following lemma is implicit in the discussion following Definition 4.2
in Mendelson (2002).
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Lemma 5 Let F be a class of functions from T into [−MF , MF ] with MF ∈
R

∗
+. For every ε ∈ (0, MF ], if suptn∈T n R̂n (F) < ε for some n ∈ N

∗, then
ε-dim (F) < n.

Lemma 6 For every β ∈
[
1
2 , 1
]
and every triplet (u, v, w) ∈ (R+)3 such that

u � v and w > 0,

vβ − uβ � w + βw1− 1
β (v − u) .

Proof The result is obvious for β = 1. So, we prove it for β ∈
[
1
2 , 1
)

only.
The value of w minimizing the right-hand side is [(1 − β) (v − u)]β. Thus,
proving the lemma boils down to establishing that the function f mapping u

to
(

1
1−β

)1−β
(v − u)β−vβ+uβ is nonnegative on [0, v]. Taking the derivative,

it is easy to establish that f is increasing on
[
0, 1−β

2−β v
]

and decreasing on
[
1−β
2−β v, v

]
. Thus, minu∈[0,v] f (u) = min {f (0) , f (v)} = f (v) = 0.

Lemma 7 Let F be a class of real-valued functions on T . If Φ : R −→ R is
such that there exist LΦ ∈ R

∗
+ and c ∈ R satisfying:

∀ (u, v) ∈ R
2, |Φ (u) − Φ (v)| � LΦ |u − v| + c,

then

∀n ∈ N
∗, Rn (Φ ◦ F) � LΦRn (F) +

c

2
.

Proof The proof is basically the one of Talagrand’s contraction lemma. For
every tn = (ti)1�i�n ∈ T n,

R̂n (Φ ◦ F) = Eσn

[

sup
f∈F

1
n

n∑

i=1

σiΦ ◦ f (ti)

]

=
1
n
Eσn−1

[

Eσn

[

sup
f∈F

{un−1 (f) + σnΦ ◦ f (tn)}
]]

where un−1 (f) =
∑n−1

i=1 σiΦ ◦ f (ti). By definition of the supremum, for any
ε > 0, there exists (f+, f−) ∈ F2 such that

{
un−1 (f+) + Φ ◦ f+ (tn) � (1 − ε)

[
supf∈F {un−1 (f) + Φ ◦ f (tn)}

]

un−1 (f−) − Φ ◦ f− (tn) � (1 − ε)
[
supf∈F {un−1 (f) − Φ ◦ f (tn)}

] .
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Thus, for any ε > 0, by definition of Eσn
,

(1 − ε)Eσn

[

sup
f∈F

{un−1 (f) + σnΦ ◦ f (tn)}
]

= (1 − ε)

[
1
2

sup
f∈F

{un−1 (f) + Φ ◦ f (tn)} +
1
2

sup
f∈F

{un−1 (f) − Φ ◦ f (tn)}
]

� 1
2

(un−1 (f+) + Φ ◦ f+ (tn) + un−1 (f−) − Φ ◦ f− (tn)) .

Let s = sign (f+ (tn) − f− (tn)). Then, the previous inequality implies

(1 − ε)Eσn

[

sup
f∈F

{un−1 (f) + σnΦ ◦ f (tn)}
]

� 1
2

(un−1 (f+) + Φ ◦ f+ (tn) + un−1 (f−) − Φ ◦ f− (tn))

� 1
2

(un−1 (f+) + un−1 (f−) + sLΦ (f+ (tn) − f− (tn))) +
c

2
(by hypothesis)

=
1
2

(un−1 (f+) + sLΦf+ (tn)) +
1
2

(un−1 (f−) − sLΦf− (tn)) +
c

2

� 1
2

sup
f∈F

{un−1 (f) + sLΦf (tn)} +
1
2

sup
f∈F

{un−1 (f) − sLΦf (tn)} +
c

2

= Eσn

[

sup
f∈F

{un−1 (f) + σnLΦf (tn)}
]

+
c

2
.

Taking the limit for ε going to 0 produces:

Eσn

[

sup
f∈F

{un−1 (f) + σnΦ ◦ f (tn)}
]

� Eσn

[

sup
f∈F

{un−1 (f) + σnLΦf (tn)}
]

+
c

2
.

Iterating the process for i ∈ �1;n − 1� concludes the proof.
Lemma 8 For any p ∈ [1, 2], let Fp be the function class given by Defini-
tion 12. Then,

sup
xn∈X n

Eσn

[

sup
f∈Fp

1
n

n∑

i=1

σif (xi)

]

�
(

5
8
p

) p

2 1
n

p

4
. (12)

Proof We first resort to Lemma 7. Due to Lemma 6, this can be done with
Φ being the function mapping t to t

p

2 and LΦ = p
2K

p−2
p n

2−p

4 (so that c =



Y. Guermeur and N. Wicker

Kn− p

4 ). Then,

1

n
Eσ n

[
sup

f∈Fp

n∑
i=1

σi ‖O − κxi‖p
Hκ

]
� K

2

1

n
p
4
+

p

2
K

p−2
p

1

n
p+2
4

Eσ n

[
sup
f∈F2

n∑
i=1

σi ‖O − κxi‖2Hκ

]
.

(13)
We now bound the expectation in the right-hand side of Eq. 13.

Eσn

[

sup
f∈F2

n∑

i=1

σi ‖O − κxi
‖2Hκ

]

� Eσn

[

sup
f∈F2

n∑

i=1

σi ‖O‖2Hκ
+

n∑

i=1

σi ‖κxi
‖2Hκ

+ 2 sup
f∈F2

n∑

i=1

σi〈O, κxi
〉Hκ

]

(14)

� 1
8
√

n + 2Eσn

[

sup
f∈F2

n∑

i=1

σi〈O, κxi
〉Hκ

]

, (15)

where the first expectation of Eq. 14 has been upper bounded by means of
Lemma 2. The remaining expectation (in Eq. 15), associated with a class of
linear functions, can be bounded by means of the Cauchy-Schwarz inequality
and Jensen’s inequality.

Eσn

[

sup
f∈F2

n∑

i=1

σi〈O, κxi
〉Hκ

]

= Eσn

⎡

⎣ sup
f∈F2

〈

O,

n∑

i=1

σiκxi

〉

Hκ

⎤

⎦

� 1
2
Eσn

⎡

⎣

∥
∥∥
∥∥

n∑

i=1

σiκxi

∥
∥∥
∥∥
Hκ

⎤

⎦

� 1
4
√

n.

Putting things together gives:

Eσn

[

sup
f∈F2

n∑

i=1

σi ‖O − κxi
‖2Hκ

]

� 5
8
√

n.

Substituting this upper bound into Eq. 13 and setting K =
(
5
8p
) p

2 gives (12),
thus concluding the proof.
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Appendix C: Proof of Lemma 1

With the technical lemmas of Appendix B at hand, the proof of Lemma 1
is the following one.

Proof For every xn = (xi)1�i�n ∈ X n,

R̂n

⎛
⎝ ⋃

p∈[1,2]

Hp

⎞
⎠ = Eσ n

[
sup

h∈⋃
p∈[1,2] Hp

1

n

n∑
i=1

σih (xi)

]

� 1

n
Eσ n

[
sup

h∈⋃
p∈[1,2] Hp

n∑
i=1

σiR + sup
h∈⋃

p∈[1,2] Hp

n∑
i=1

σia ‖O − κxi‖p
Hκ

]

=
1

n
Eσ n

[
sup

R∈[0,1]

n∑
i=1

σiR

]
+

1

n
Eσ n

[
sup

h∈⋃
p∈[1,2] Hp

n∑
i=1

σia ‖O − κxi‖p
Hκ

]

=
1

n
Eσ n

[
sup

R∈[0,1]

n∑
i=1

σiR

]
+ R̂n

⎛
⎝
⎧⎨
⎩af : a ∈ (0, Λ] , f ∈

⋃
p∈[1,2]

Fp

⎫⎬
⎭

⎞
⎠ .

(16)

The first Rademacher complexity in the right-hand side of Eq. 16 can be
upper bounded thanks to Lemma 2, which gives:

1
n
Eσn

[

sup
R∈[0,1]

n∑

i=1

σiR

]

� 1
2
√

n
.

For the second Rademacher complexity, we make use of the monotonicity
of the Rademacher complexity with respect to the inclusion and Lemma 3.
Let F0 be the union of the function class

⋃
p∈[1,2] Fp and the null function.

R̂n

⎛

⎝

⎧
⎨

⎩
af : a ∈ (0, Λ] , f ∈

⋃

p∈[1,2]

Fp

⎫
⎬

⎭

⎞

⎠ � R̂n ({af : a ∈ (0, Λ] , f ∈ F0})

� 2ΛR̂n (F0) .

The union over all the values of p involved in the definition of the class F0

prevents us from upper bounding directly its Rademacher complexity. To
get around this difficulty, we resort to the standard approach, the use of
Dudley’s chaining method (Dudley 1967), precisely Theorem 9 in Guermeur
(2017). It states that if δ is a positive and decreasing function on N such
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that δ (0) � 1, then

∀N ∈ N
∗, R̂n (F0) � δ (N) + 2

N∑

j=1

(δ (j) + δ (j − 1))

√
ln (N int (δ (j) ,F0, d2,xn

))
n

.

(17)
Obviously, the covering numbers of F0 can be upper bounded by the cov-

ering numbers of
⋃

p∈[1,2] Fp plus one. To obtain an initial upper bound on
these latter quantities, a structural result is available: Lemma 4. In that way,
the problem of handling the union of all the classes Fp can be taken care
of, and the remaining problem boils down to upper bounding the covering
numbers of the classes Fp (considered independently). To that end, we apply
a combinatorial result: Theorem 1 in Mendelson and Vershynin (2003). This
gives

∀p ∈ [1, 2] , ∀ε ∈ (0, 1] , N int
2 (ε, Fp, n) �

(
5
ε

)12·( ε

24)-dim(Fp)

. (18)

The fat-shattering dimensions ε-dim (Fp) can be upper bounded in terms
of the corresponding Rademacher complexities by means of Lemma 5. Here
appears the point of introducing the metric entropies (by means of Dud-
ley’s chaining method) and applying a structural result on covering num-
bers (Lemma 4): even though we cannot upper bound R̂n (F0) directly, an
upper bound on the Rademacher complexities of the classes Fp is available:
Lemma 8. Thus, we obtain:

∀p ∈ [1, 2] , ∀ε ∈ (0, 1] , ε-dim (Fp) �
(

5
8
p

)2(1
ε

) 4
p

� 2
(

1
ε

)4

. (19)

Note that according to Mendelson’s terminology, the classes Fp have a poly-
nomial fat-shattering dimension with degree 4. This enables us to apply
Theorem 18 in Mendelson (2003) so as to express in advance the depen-

dence on n of our bound on Rn (F0): a O

((
ln(n)

n

) 1
4

)
. Applying in sequence

Inequalities Eqs. 9, 18 and 19 produces the bound on the metric entropies
of interest:

∀ε ∈ (0, 1] , log2
(
N int (ε, F0, d2,xn)

)
� log2

⎛
⎝N int

⎛
⎝ε,

⋃
p∈[1,2]

Fp, d2,xn

⎞
⎠+ 1

⎞
⎠
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� log2

(⌈
1

ε

⌉
max

p∈[1,2]
N int

( ε

2
, Fp, d2,xn

)
+ 1

)

� log2

(
2

⌈
1

ε

⌉)
+ 12 max

p∈[1,2]

( ε

48

)
-dim (Fp) log2

(
10

ε

)

� log2

(
2

⌈
1

ε

⌉)
+ 24

(
48

ε

)4

log2

(
10

ε

)

� 25

(
48

ε

)4

log2

(
10

ε

)
. (20)

This implies that

∀ε ∈ (0, 1] ,
√

ln (N int (ε, F0, d2,xn
)) � K

1
ε2

√

ln
(

10
ε

)
,

where K = 11520. A substitution of this bound into Eq. 17 gives:

∀N ∈ N
∗, R̂n (F0) � δ (N) +

2K√
n

N∑

j=1

δ (j) + δ (j − 1)
δ2 (j)

√

ln
(

10
δ (j)

)
.

Since the right-hand side does not depend on xn, the empirical Rademacher
complexity can be replaced with the Rademacher complexity. For N =
⌈
1
4 log2

(
n

log2(n)

)⌉
, let us set δ (j) =

(
log2(n)

n

) 1
4 2N−j . We then get

Rn (F0) �
(

log2 (n)
n

) 1
4

+
6K√

n

N∑

j=1

1
δ (j)

√

ln
(

10
δ (j)

)

�
(

log2 (n)
n

) 1
4

⎡

⎣1 +
6K

√
log2 (n)

√√
√
√ln

(

10
(

n

log2 (n)

) 1
4

)
N∑

j=1

2j−N

⎤

⎦

�
(

log2 (n)
n

) 1
4

⎡

⎣1 +
12K

√
log2 (n)

√√√
√ln

(

10
(

n

log2 (n)

) 1
4

)⎤

⎦ .

Collecting all terms gives:

Rn

⎛
⎝ ⋃

p∈[1,2]

Hp

⎞
⎠ � 1

2
√

n
+ 2Λ

(
log2 (n)

n

) 1
4

⎡
⎣1 +

12K√
log2 (n)

√√√√ln

(
10

(
n

log2 (n)

) 1
4
)⎤
⎦ ,

i.e., Eq. 5, thus concluding the proof.
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