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SUMMARY

Vapnik’s statistical learning theory has mainly been developed for two types of problems: pattern
recognition (computation of dichotomies) and regression (estimation of real-valued functions). Only in
recent years has multi-class discriminant analysis been studied independently. Extending several standard
results, among which a famous theorem by Bartlett, we have derived distribution-free uniform strong laws
of large numbers devoted to multi-class large margin discriminant models. The capacity measure appearing
in the confidence interval, a covering number, has been bounded from above in terms of a new generalized
VC dimension. In this paper, the aforementioned theorems are applied to the architecture shared by all the
multi-class SVMs proposed so far, which provides us with a simple theoretical framework to study them,
compare their performance and design new machines. Copyright # 2005 John Wiley & Sons, Ltd.

KEY WORDS: multi-class support vector machines (M-SVMs); generalization error bounds; large margin
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1. INTRODUCTION

One of the pioneering contributions to the study of the generalization capabilities of infinite sets
of functions is the work of Vapnik and Chervonenkis [1] relating the consistency of the empirical
risk minimization (ERM) inductive principle to the finiteness of a simple combinatorial quantity
called the Vapnik–Chervonenkis dimension. Since then, the consistency of the ERM principle
has been analysed in various contexts [2, 3]. Concomitantly, many studies have been devoted to
deriving bounds on the expected risk (computing sample complexities), or implementing the
structural risk minimization (SRM) inductive principle [4]. Among the main contributions are
[5, 6]. However, the case of multi-class discrimination has seldom been studied independently
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[7, 8], although we pointed out in Reference [9] the fact that it is inappropriate to tackle it in the
straightforward manner, by plugging a generalized VC dimension as capacity measure in a
standard uniform convergence bound. In Reference [10], we have extended to the multi-class
case a lemma by Bartlett [6] expressing the sample complexity of pattern classification models in
terms of a margin-based covering number. In Reference [11], a generalized Sauer’s lemma has
been established to bound such covering numbers in terms of a new variant of the VC
dimension, the M-fat-shattering dimension. In this article, the corresponding guaranteed risk is
computed for the multi-class support vector machines (M-SVMs). By M-SVMs, we mean the
machines the architecture of which is a multivariate affine model, with as many hyperplanes as
there are categories, i.e. those which perform the discrimination task in one step. This excludes
all the standard decomposition schemes based on biclass SVMs. The reason for this restrictive
choice is that the capacity of these latter architectures can be studied thanks to straightforward
extensions of classical results [12]. Using our unifying framework makes it possible to justify a
posteriori the principle of the training algorithms, which can thus be simply cast in the
framework of the SRM inductive principle, compare performance and pave the way for the
specification of new machines. The organization of the paper is as follows. Section 2 briefly
summarizes our uniform convergence result. In Section 3, we explain the way the covering
numbers of interest can be bounded in terms of the corresponding M-fat-shattering dimension.
In Section 4, this bound is applied to the architecture shared by all the M-SVMs described in
literature. At last, Section 5 deals with alternative possibilities to compute sample complexities.

2. GUARANTEED RISK FOR MULTI-CLASS DISCRIMINANT MODELS

We consider the case of a Q-category pattern recognition problem, where Q53: Let X be the
space of description and C the set of categories. We make the assumption, standard in statistical
learning theory, that there is a joint probability distribution P; fixed but unknown, on X� C:
Our goal is to find, in a given set H of functions h ¼ ½hk� from X into RQ; a function with the
lowest ‘error rate’. The ‘error rate’ of a function h is the error rate or risk of the corresponding
discrimination function, obtained by assigning each pattern x to the category Ck in C satisfying:
hkðxÞ ¼ maxlhlðxÞ: This discriminant function, hereafter denoted by f ; must thus be as close as
possible to Bayes’ decision rule. In the common case where the outputs of the function selected
are estimates of the class posterior probabilities, which happens for instance when H is the set
of functions computed by a multi-layer perceptron and the training criterion has been
adequately chosen (see, for instance, Reference [13]), applying this decision function simply
amounts to implementing Bayes’ estimated decision rule. Hereafter, CðxiÞ will denote
indifferently the category of pattern xi; or the index of this category. y ¼ fyg will be the set
of canonical codings of the categories in f�1; 1gQ vectors. The uniform convergence result we
established is based on the following definitions.

Definition 1 (Expected risk)

The expected risk of a function f from X into C is the probability that f ðxÞ=CðxÞ for a labelled
example ðx;CðxÞÞ chosen randomly according to P; i.e.:

Rðf Þ ¼
Z
X�C

Iff ðxÞ=Cg dPðx;CÞ ð1Þ
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where the indicator function Iff ðxÞ=Cg is defined as follows: Iff ðxÞ=Cg ¼ 1 if f ðxÞ=C; Iff ðxÞ=Cg ¼ 0
otherwise.

Definition 2 (Empirical risk)

Let sm ¼ fðxi;CðxiÞÞg 2 ðX� CÞm: The empirical risk of f on sm is defined as

Rsm ðf Þ ¼
1

m
jfðxi;CðxiÞÞ 2 sm=f ðxiÞ=CðxiÞgj ð2Þ

As stated above, the expected risk (resp. empirical risk) of a function h from X to RQ is the
expected risk (resp. empirical risk) of the corresponding discriminant function f :

Definition 3 (e-cover or e-net)

Let ðE; rÞ be a pseudo-metric space, and Bðv; rÞ the closed ball of centre v and radius r in E: Let
H be a subset of E: An e-cover of H is a subset %HH of E such that

H �
[
v2 %HH

Bðv; eÞ

Definition 4 (Covering numbers)

Let ðE; rÞ be a pseudo-metric space. If H � E has an e-cover of finite cardinality, then its
covering number Nðe;H; rÞ is the smallest cardinality of its e-covers. If there is no such finite
cover, then the covering number is defined to be 1:

Definition 5

Let H be a set of functions from X into RQ: For a set s of points in X; define the pseudo-metric
dl1;l1ðsÞ on H as

8ðh; %hhÞ 2 H2; dl1;l1ðsÞðh; %hhÞ ¼ max
x2s

max
k2f1;...;Qg

jhkðxÞ � %hhkðxÞj

Definition 6 (Delta operator)

Let h ¼ ½hk� be a function from H: Define Dh ¼ ½Dhk�; ð14k4QÞ; as the function from X into
RQ given by

8k 2 f1; . . . ;Qg; DhkðxÞ ¼
1

2
hkðxÞ �max

l=k
hlðxÞ

� �

Extending a definition from Bartlett [6], we introduced in Reference [10] the following definition:

Definition 7 (Empirical margin risk)

The empirical risk with margin g 2 ð0; 1� of h on a set sm of size m is

Rg
sm
ðhÞ ¼

1

m
jfðxi;CðxiÞÞ 2 sm=DhCðxiÞðxiÞ5ggj

Copyright # 2005 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2005; 21:199–214

COMPARATIVE STUDY OF MULTI-CLASS SUPPORT VECTOR MACHINES 201



For g 2 ð0; 1�; let pg : R ! ½�g; g� be the piecewise-linear squashing function defined as

pgðxÞ ¼
g signðxÞ if jxj5g

x otherwise

(

8h 2 H; Dhg ¼ ½Dhgk� ¼ ½pg8Dhk�; ð14k4QÞ: DHg ¼ fDhg=h 2 Hg: Let N1;1ðe;DHg;mÞ ¼
maxsm2XmNðe;DHg; dl1;l1ðsmÞÞ: With these hypotheses and definitions at hand, extending Lemma
4 and Corollary 9 from Reference [6], as well as the basic lemma of Theorem 4.1 in Reference
[14], we established in Reference [11] (see also Reference [10]) the following theorem:

Theorem 1

Let sm be an m-sample of examples drawn independently from P:With probability at least 1� d;
for every value of g in ð0; 1�; the risk RðhÞ of a function h computed by a numerical Q-class
discriminant model H is bounded above by

RðhÞ4Rg
sm
ðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
lnð2N1;1ðg=4;DHg; 2mÞÞ þ ln

2

gd

� �� �s
þ

1

m
ð3Þ

3. COVERING NUMBERS AND EXTENDED FAT-SHATTERING/
GRAPH DIMENSION

In this section, the covering numbers of interest are bounded using the strategy advocated in
Reference [6]. The bound springs from the extension of several lemmas in Reference [3] to the
case of vector-valued functions. It involves an original capacity measure, the M-fat-shattering
dimension, which is concomitantly an extension of the fat-shattering dimension to the
multivariate case and a scale-sensitive variant of the graph dimension.

3.1. Definitions

To formulate the bound, and pave the way for the next section, we must first introduce some
definitions.

Definition 8 (Growth function [1])

Let F be a set of indicator (binary-valued) functions of a set X: Let PF be the function which
maps any set s of points in X to the number of dichotomies PFðsÞ computed on it by the
functions in F: Then, the growth function of F;GF; is the function from the non-negative
integers to the non-negative integers given by

GFðmÞ ¼ max
sm2Xm

PFðsmÞ
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Definition 9 (Vapnik–Chervonenkis (VC) dimension [1])

LetF be a set of indicator functions on a setX: A subset sm ofXm is said to be shattered byF if
PFðsmÞ ¼ 2m; i.e. if each dichotomy on sm is computed by a function ofF: The VC dimension of
F; VC-dimðFÞ; is the largest value of m such that GFðmÞ ¼ 2m; if this value is finite, of infinity
otherwise. If the VC dimension is finite, it is thus the size of the largest set of points shattered
by F:

Pollard’s pseudo-dimension extends the notion of VC dimension to the case of sets of real-
valued functions.

Definition 10 (Pollard’s pseudo-dimension [15, 16])

Let H be a set of real-valued functions on a set X: A subset sm ¼ fxig; ð14i4mÞ of X is said to
be P-shattered by H if there is a vector vb ¼ ½bi� 2 Rm such that, for each binary vector vy ¼
½yi� 2 f�1; 1gm; there is a function hy 2 H satisfying

8i 2 f1; . . . ;mg
hyðxiÞ � bi50 if yi ¼ 1

hyðxiÞ � bi50 if yi ¼ �1

(

The P-dimension ofH; P-dimðHÞ; is the maximal cardinality of a subset ofX P-shattered byH;
if it is finite, or infinity otherwise.

The fat-shattering dimension of Kearns and Schapire is a scale-sensitive version of the
pseudo-dimension.

Definition 11 (Fat-shattering dimension [17, 18])

Let H be a set of real-valued functions on a set X: For g > 0; a subset sm ¼ fxig; ð14i4mÞ of X
is said to be g-shattered by H if there is a vector vb ¼ ½bi� 2 Rm such that, for each binary vector
vy ¼ ½yi� 2 f�1; 1gm; there is a function hy 2 H satisfying

ðhyðxiÞ � biÞyi5g ð14i4mÞ

The vector vb is then said to witness the g-shattering of sm by H: The fat-shattering dimension of
the set H; fatH; is a function from the positive real numbers to the integers which maps a value
g to the size of the largest set g-shattered by functions of H; if this size is finite, or to infinity
otherwise.

We propose to extend this definition to the case of vector-valued functions in the following
manner.

Definition 12 (M-fat-shattering dimension)

Let H be a set of functions on a set X taking their values in RQ: For g > 0; a subset sm ¼ fxig;
ð14i4mÞ of X is said to be M-g-shattered by H if there is a vector vb ¼ ½bi� 2 Rm and a vector
vc ¼ ½ci� 2 f1; . . . ;Qgm such that, for each binary vector vy ¼ ½yi� 2 f�1; 1gm; there is a function
hy ¼ ½hyk�; ð14k4QÞ 2 H satisfying

ðhyci ðxiÞ � biÞyi5g; ð14i4mÞ

Copyright # 2005 John Wiley & Sons, Ltd. Appl. Stochastic Models Bus. Ind., 2005; 21:199–214

COMPARATIVE STUDY OF MULTI-CLASS SUPPORT VECTOR MACHINES 203



The couple ðvb; vcÞ is then said to witness the M-g-shattering of sm by H: The M-fat-shattering
dimension of the set H; M-fatH; is a function from the positive real numbers to the integers
which maps a value g to the size of the largest set M-g-shattered by functions of H; if this size is
finite, or to infinity otherwise.

In References [3, 19], the authors define the Vg dimension, denoted Vg-dim, as a simplified
variant of the fat-shattering dimension in which all the components of vector vb are required to
be equal. Taking our inspiration from this example, we introduce the uniform M-fat-shattering
dimension, which will prove useful in the subsequent computations.

Definition 13 (Uniform M-fat-shattering dimension)

Let H be a set of functions on a set X taking their values in RQ: For g > 0; the uniform M-fat-
shattering dimension of H; UM-fatH; is simply M-fatH in the case where the components of
vector vb are allowed to take only Q different values, one for each category. In other words, if
two components of the vector vc are equal, then the corresponding components of the vector vb
are also equal.

Bounding the M-fat-shattering dimension in terms of the uniform M-fat-shattering
dimension and conversely is easily performed thanks to the pigeonhole principle (see, for
instance, Reference [11, Lemma 6]).

As stated in the introduction of the section, the M-fat-shattering dimension can be seen
alternatively as a straightforward scale-sensitive extension of the graph dimension, introduced
independently in References [20, 21] (see also Reference [7]).

Definition 14 (Graph dimension)

Let F be a set of functions on a set X taking their values in a countable set. For any f 2 F; the
graph G of f is Gðf Þ ¼ fðx; f ðxÞÞ=x 2 Xg and the graph space of F is GðFÞ ¼ fGðf Þ=f 2 Fg:
Then the graph dimension ofF; G-dimðFÞ; is defined to be the VC dimension of the space GðFÞ:

In the context of our study, the most natural way to handle this dimension consists in
making use of the general scheme developed in Reference [2], which rests on the notion of C-
dimension.

Definition 15 (C-shattering)

Let F be a set of functions on a set X taking their values in the finite set f1; . . . ;Qg: Let C be a
family of mappings c from f1; . . . ;Qg into f�1; 1; *g; where * is thought of as a null element. A
subset sm ¼ fxig; ð14i4mÞ of X is said to be C-shattered by F if there is a mapping cm ¼
fcð1Þ; . . . ;cðmÞg in Cm such that for each vector vy of f�1; 1gm; there is a function fy in F
satisfying ½cð1Þ

8fyðx1Þ; . . . ;c
ðiÞ
8fyðxiÞ; . . . ;c

ðmÞ
8fyðxmÞ�

T ¼ vy:

Definition 16 (C-dimension)

LetF and C be defined as above. The C-dimension ofF; denoted byC-dimðFÞ; is the maximal
cardinality of a subset of X C-shattered by F; if it is finite, or infinity otherwise.
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When the functions inF have a finite range, the graph dimension appears as a particular case
of C-dimension, as can be seen with the following alternative definition.

Definition 17 (Graph dimension)

Let F be a defined as above. The graph dimension of F is the C-dimension of F in the
specific case where C is the set of Q mappings ck; ð14k4QÞ; such that ck takes the value 1
if its argument is equal to k; and the value �1 otherwise. Reformulated in the context of
multi-class discriminant analysis, the functions ck are the indicator functions of the
categories.

To understand the way the M-fat-shattering dimension can be seen as a scale-sensitive
extension of the graph dimension, suffice it to notice two things, which are expressed here, for
the sake of simplicity, and without loss of generality, in the restricted framework of multi-class
discriminant analysis. First, the functions f involved in the definition of the graph dimension
can be seen as the discriminant functions associated with the multivariate functions h; by
application of the ‘max rule’ defined in the beginning of Section 2. Second, the choice of the
vector vc plays in the case of the M-fat-shattering dimension the role played by the choice of the
set of mappings cm in the case of the graph dimension. To sum up, the M-fat-shattering
dimension is related to the fat-shattering dimension through the parameters g and vb; which deal
with the margin, whereas it is related to the graph dimension through the vector vc; which aims
at focusing, for each of the points considered, on the behaviour of one specific component of the
vector-valued function. From a computational point of view, the following theorem can be used
to reformulate the problem of bounding the M-fat-shattering dimension of a set of vector-
valued functions in terms of the fat-shattering dimensions of the sets of real-valued functions
corresponding to the components considered separately.

Theorem 2

Let H be a set of vector-valued functions h ¼ ½hk�; ð14k4QÞ; from a set X into RQ: Let Hk;
ð14k4QÞ; be the sets of real-valued functions hk corresponding to the different components of
the functions h: Then, for g > 0; the following bound holds true:

M-fatHðgÞ4
XQ
k¼1

fatHk
ðgÞ ð4Þ

Proof

Let sm ¼ fx1; . . . ;xi; . . . ;xmg be a subset of X of cardinality m ¼ M-fatHðgÞ M-g-shattered by
H: Let the couple ðvb; vcÞ witness thisM-g-shattering. Let mk be the number of components of vc
equal to k and let sðkÞ ¼ fxsð1Þ; . . . ;xsðiÞ; . . . ;xsðmkÞg be the corresponding set of examples in sm:
According to the definition of the M-fat-shattering dimension, for each binary vector vy ¼
½yi� 2 f�1; 1gm; there is a function hy ¼ ½hyk�; ð14k4QÞ 2 H satisfying

ðhyci ðxiÞ � biÞyi5g; ð14i4mÞ

and thus, more specifically

ðhykðxsðiÞÞ � bsðiÞÞysðiÞ5g; ð14i4mkÞ
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Since by construction all the real-valued functions hyk belong to Hk; it springs from Definition
11 thatHk g-shatters sðkÞ and, by way of consequence, mk4fatHk

ðgÞ: Summing over the index k
concludes the proof. &

In the case of discriminant analysis, the use of the max rule implies that the quantity of
interest is not the M-fat-shattering dimension of H; or Hg; but the (uniform) M-fat-shattering
dimension of DHg:

The following generalization of Sauer’s lemma was proved in Reference [11].

Theorem 3

Let H be a set of functions from X into RQ: For every value of g in (0,1] and every value of m
satisfying M-fatDHg ðg=8Þ52m; the following bound is true:

N1;1ðg=2;DHg; 2mÞ42ð2mQ9QÞd log2ð18emQ=dÞ ð5Þ

where d ¼ M-fatDHg ðg=8Þ:

From this theorem, it springs that the problem of bounding the covering numbers of interest
(appearing in the confidence interval of (3)), can actually be reduced to the problem of bounding
the M-fat-shattering dimension of DHg: Note that we have used the hypothesis that twice the
size of the sample available was superior to the extended VC dimension considered, in the sole
aim to highlight the fact that if this hypothesis is not satisfied, then different (simpler) results can
be derived, giving birth to tighter bounds.

4. BOUNDS ON ERROR EXPECTATION FOR M-SVMS

4.1. Pattern recognition SVMs

Support vector machines (SVMs) are learning systems which have been introduced by Vapnik
and co-workers [22, 23] as a non-linear extension of the maximal margin hyperplane [4].
Originally, they were designed to perform pattern recognition (compute dichotomies). In this
context, the principle on which they are based is very simple. First, the examples are mapped
into a high-dimensional Hilbert space called the feature space thanks to a non-linear transform,
usually denoted by F: Second, the maximal margin hyperplane is computed in that space, to
separate the two categories.

4.2. Architecture and training of the M-SVMs

The problem of performing multi-class discriminant analysis with SVMs was initially tackled
through decomposition schemes [14, 24, 25]. Only later came the multi-class SVMs obtained by
combining a multivariate affine model with the non-linear mapping F into the feature space.
Formally, the family H of functions h ¼ ½hk� computed by these machines is defined by

8k 2 f1; . . . ;Qg; hkðxÞ ¼ hwk;FðxÞi þ bk ð6Þ

As usual, the mapping F does not appear explicitly in the computations. Thanks to the ‘kernel
trick’, it is replaced with the reproducing kernel function K ; which computes the l2 dot product in
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the feature space, i.e.

8ðxð1Þ;xð2ÞÞ 2 X2; Kðxð1Þ; xð2ÞÞ ¼ hFðxð1ÞÞ;Fðxð2ÞÞi ð7Þ

Hence, the ‘linear part’ of each component of the model is a function of x belonging to a
reproducing kernel Hilbert space (RKHS) (see, for instance, References [26–28]). The kernel
satisfies Mercer’s conditions [29].

In its primal formulation, training thus consists in finding the values of the vectors wk and the
reals bk: This amounts to solving a quadratic programming (QP) problem. The different M-
SVMs published differ in the nature of this problem. For the sake of completeness, we detail
them below. The first multi-class SVM published was proposed independently and under
different forms by several teams (see, for instance, References [14, 30–32]).

Problem 1 (M-SVM1):

minh2H
1

2

PQ
k¼1 jjwkjj

2 þ C
Pm

i¼1

PQ
k¼1 xik

� �

s:t:
hwCðxiÞ � wk;FðxiÞi þ bCðxiÞ � bk51� xik ð14i4mÞ; ð14k=CðxiÞ4QÞ

xik50 ð14i4mÞ; ð14k=CðxiÞ4QÞ

(

A variant of this machine can be found in Reference [33]. The model described in Reference [34]
(see also Reference [35]), makes an original use of the empirical margin risk in the objective
function.

Problem 2 (M-SVM2):

minh2H
1

2

PQ
k¼1 jjwkjj2 þ C

Pm
i¼1 xi

� �

s:t: hwCðxiÞ � wk;FðxiÞi þ bCðxiÞ � bk þ dCðxiÞ;k51� xi; ð14i4mÞ; ð14k4QÞ

The bound on the generalization error provided is directly borrowed from a tree-based
decomposition approach called DAGSVM [12]. In References [36, 37], the machine is devised to
asymptotically implement the Bayes rule.

Problem 3 (M-SVM3):

minh2H
1

2

PQ
k¼1 jjwkjj

2 þ C
Pm

i¼1

PQ
k¼1 xik

� �

s:t:

hwk;FðxiÞi þ bk4� 1=ðQ� 1Þ þ xik ð14i4mÞ; ð14k=CðxiÞ4QÞ

xik50 ð14i4mÞ; ð14k=CðxiÞ4QÞPQ
k¼1 wk ¼ 0;

PQ
k¼1 bk ¼ 0

8>><
>>:

At last, we evaluated in References [38, 39], as ensemble method, an M-SVM the specification of
which resulted form our early works on uniform convergence bounds [10].
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Problem 4 (M-SVM4):

minh2H
1

2
t2 þ C

Pm
i¼1

PQ
k¼1 xik

� �

s:t:

jjwk � wl jj
24t2; ð14k5l4QÞ

Constraints of Problem 1PQ
k¼1 wk ¼ 0

8>><
>>:

For both theoretical and technical reasons, linked for instance to the use of the kernel trick, the
QP problems above are solved in their Wolfe dual form [40]. The corresponding representer
theorems all involve the same functional expression of the optimal solution. The parameters to
be optimized are the coefficients bi;k appearing in the following expansions:

8k 2 f1; . . . ;Qg; hkðkÞ ¼
Xm
i¼1

bi;kKðxi;xÞ þ bk ð8Þ

where the xi; ð14i4mÞ are the covariates of the points in the training set.

4.3. Motivations and hypotheses

In view of the summary made in the preceding subsection, the bound on the error expectation of
M-SVMs, the subject of the whole section, can be obtained by bounding the confidence interval
of Theorem 1 in the particular case of kernel machines taking their values in RQ: Owing to
Theorem 3, this can boil down to studying the behaviour of the corresponding M-fat-shattering
dimension as a function of the constraints on the parameters and the nature of the kernel. In
performing this task, our goal is primarily to study in a common framework the existing training
algorithms and make it possible to specify new ones, as an implementation of the (data-
dependent) SRM inductive principle [5]. With this aim in mind, we do not attempt to establish
the tightest possible bound, or even to present a single master theorem. We simply sketch a
straightforward pathway highlighting the dependence of the capacity measure on the penalty
terms appearing in the objective functions of the different training algorithms.

We make no specific hypothesis regarding the setX of covariates. On the contrary, the feature
space EFðXÞ is assumed to be a Hilbert space endowed with the l2 dot product. This standard
hypothesis is a prerequisite to compute linear boundaries. EFðXÞ can be infinite dimensional, so
that no restriction is induced on the nature of the kernel used, which can for instance be
Gaussian. Furthermore, FðXÞ is supposed to be bounded in EFðXÞ; which will be needed to
bound the M-fat-shattering dimension.

4.4. Uniform M-fat-shattering dimension of M-SVMs

The M-fat-shattering dimension has been defined as a straightforward extension of the fat-
shattering dimension to the multivariate case. As a consequence, its use is relevant for any kind
of model taking its values in RQ; not only discriminant ones. However, in the specific case of
multi-class supervised learning, the quantity of interest is primarily the difference between the
scores associated with the different labels. More precisely, the difference between the output
corresponding to the category of the example and the second highest output must be as large as
possible. Thus, the degree of freedom provided by the vector vb appearing in the definition of the
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fat-shattering dimension and its variants does not seem useful but to cope with pathological
situations, such as a sampling bias [37]. We do not address this type of problems here.
Consequently, in what follows, the study deals with the uniform M-fat-shattering dimension of
the M-SVMs, or more precisely the Vg dimension of the corresponding sets of functions DHk;
computed under the additional constraint vb ¼ 0: This is appropriate indeed, since the
adaptation of Theorem 3 to this specific situation rises no difficulty. For lack of place, details are
omitted here. For the sake of simplicity, we also consider a multivariate linear model instead of
the affine architecture described in Section 4.2. The connection between the capacities of these
two architectures is characterized in Reference [39], Theorem 5.

The following theorem provides us with the desired bound:

Theorem 4

Let H be the set of functions h computed by the linear variant of the M-SVM architecture
described in Section 4.2 (8k 2 f1; . . . ;Qg; bk ¼ 0). Suppose that FðXÞ is included in the ball of
radius LFðXÞ in EFðXÞ and that the vectors wk in (6) satisfy the constraint: max14k5l4Q jjwk �
wl jj24Lw: Then, for all couple ðg; eÞ such that 05e5g;

UM-fatDHg ðeÞ4Qm ð9Þ

where m is the largest integer satisfying

Qm

ðQ� 1Þ
ffiffiffiffi
m

p
þ Q�2

2
m
4

max14k5l4Q jjwk � wl jjLFðXÞ

e
ð10Þ

Proof

To get rid of the g parameter, one can make use of the following result, the proof of which is
trivial:

8ðg; eÞ=05e5g; UM-fatDHg ðeÞ4UM-fatDHðeÞ ð11Þ

With this intermediate result at hand, the rest of the proof is inspired form the proof of Theorem
4.6 in Reference [41] (see also Reference [19, Theorem 2]). More precisely, we make use of the
following lemma:

Lemma 1 (Lemma 4.3 in Reference [41])

Let sm ¼ fxig; ð14i4mÞ; be a set of vectors included in the ball of radius LX in a Hilbert space
EX: Then sm can be split into two subsets sþm and s�m such that

X
xi2sþm

xi �
X
xj2s�m

xj

������
������

������
������4

ffiffiffiffi
m

p
LX ð12Þ
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With the notations of Theorem 2, we define DHk as the set of functions Dhk such that h ¼ ½hl�;
ð14l4QÞ belongs to H: From Theorem 2, we obtain

UM-fatDHðeÞ4
XQ
k¼1

Ve-dimðDHkÞ ð13Þ

(fatDHk
ðeÞ is identically equal to Ve-dimðDHkÞ when vb ¼ 0).

Let sðkÞ ¼ fx1; . . . ;xi; . . . ;xmk
g be a subset of X of cardinality mk ¼ Ve-dimðDHkÞ; Ve-

shattered by DHk (with the bias equal to 0). According to Lemma 1, sðkÞ can be split into two
subsets sðkÞþ and sðkÞ� such that

X
xi2sðkÞ

þ

FðxiÞ �
X

xj2sðkÞ
�

FðxjÞ

������
������

������
������4

ffiffiffiffiffiffi
mk

p
LFðXÞ ð14Þ

Let mþ
k ¼ jsðkÞþj and m�

k ¼ jsðkÞ�j: Without loss of generality, we make the additional
hypothesis that mþ

k 5m�
k : Since sðkÞ is Ve-shattered by DHk; there exists a function h in H such

that DhkðxiÞ5e if xi belongs to sðkÞþ and DhkðxiÞ4� e otherwise. Let this function be defined by
the vectors wl ; ð14l4QÞ: By definition, we obtain

8xi 2 sðkÞþ; 8l 2 f1; . . . ;Qg\fkg; hwk � wl ;FðxiÞi52e ð15Þ

According to the pigeonhole principle, there is at least one index of category, say l; such that
there is a subset sðk; lÞ of sðkÞ� of cardinality mkl at least equal to dm�

k =ðQ� 1Þe and satisfying

8xi 2 sðk; lÞ; hwk � wl ;FðxiÞi4� 2e ð16Þ

Combining (15) and (16) gives

wk � wl ;
X

xi2sðkÞ
þ

FðxiÞ �
X

xj2sðk;lÞ

FðxjÞ

* +
52ðmþ

k þmklÞe ð17Þ

By the Cauchy–Schwarz inequality, (17) implies

2ðmþ
k þmklÞe4jjwk � wl jj

X
xi2sðkÞþ

FðxiÞ �
X

xj2sðk;lÞ

FðxjÞ

������
������

������
������ ð18Þ

The right-hand side of (18) can be bounded thanks to the triangular inequality

X
xi2sðkÞþ

FðxiÞ �
X

xj2sðk;lÞ

FðxjÞ

������
������

������
������ ¼

X
xi2sðkÞþ

FðxiÞ �
X

xj2sðkÞ
�

FðxjÞ þ
X

xj2sðkÞ
�

FðxjÞ �
X

xq2sðk;lÞ

FðxqÞ

������
������

������
������

4
X

xi2sðkÞ
þ

FðxiÞ �
X

xj2sðkÞ
�

FðxjÞ

������
������

������
������þ

X
xi2sðkÞ

�

FðxiÞ �
X

xj2sðk;lÞ

FðxjÞ

������
������

������
������

From (14), it springs that the first term of this last expression is bounded from above byffiffiffiffiffiffi
mk

p
LFðXÞ: Furthermore, keeping in mind that sðk; lÞ is a subset of sðkÞ� of cardinality mkl ; the

second term is trivially upperbounded by ðm�
k �mklÞLFðXÞ: Substituting the resulting upper

bound of jj
P

xi2sðkÞþ FðxiÞ �
P

xj2sðk;lÞ FðxjÞjj in (18) finally gives

2ðmþ
k þmklÞe4ð

ffiffiffiffiffiffi
mk

p
þm�

k �mklÞjjwk � wl jjLFðXÞ ð19Þ
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Since mk ¼ mþ
k þm�

k ; mþ
k 5m�

k and mkl5dm�
k =ðQ� 1Þe; (19) still implies

Qmk

ðQ� 1Þ
ffiffiffiffiffiffi
mk

p
þ ððQ� 2Þ=2Þmk

4
jjwk � wl jjLFðXÞ

e
ð20Þ

Since the left-hand side of (20) is an increasing function of mk; we have exhibited an upper
bound of Ve-dimðDHkÞ in terms of maxl=k jjwk � wl jj; LFðXÞ and e; which is non-trivial for large
enough values of e: Note further that the bound on the fat-shattering dimension of hyperplanes
established in Reference [41] appears as a special case of this inequality, in the degenerate case
where Q ¼ 2: Given the bound on Ve-dimðDHkÞ; the bound on UM-fatDHg ðeÞ then directly
results from (13) and (11). &

4.5. Discussion

Theorem 4 highlights the fact that the functional maxk5l jjwk � wl jj
2 (or alternatively

P
k5l jj

wk � wl jj
2Þ plays for M-SVMs a role similar to the one played by jjwjj2 for the standard binary

SVMs. This is satisfactory indeed, since both functions are convex. Their use as control term in
the objective function of the training procedure, as was done in References [32, 39], is thus once
more justified. In References [14, 30, 34, 36], the functional selected to perform the capacity
control is slightly different, since it is

PQ
k¼1 jjwkjj2; whereas in Reference [31], the authors used

instead
PQ

k5l jjwk � wl jj
2 þ

PQ
k¼1 jjwkjj

2: Can the theorems derived here justify these choices as
well? This is the case indeed. For instance, it was proved in Reference [39] (see also Reference
[33]) that the machines introduced in References [14, 30–32], in spite of their different
formulations, are utterly equivalent, since they all generate the same optimal solution, provided
the value of their soft margin parameter C is selected appropriately. Furthermore, variants of
Theorem 4 can easily be derived, to fit more precisely a given training algorithm (penalty term).
We have thus endowed all the M-SVMs published so far with a well founded theoretical
justification, which makes it possible to compare their performance on a sound basis.

5. ALTERNATIVE APPROACHES

In Sections 3 and 4, the guaranteed risk of interest has been studied according to a standard
strategy, which can be summarized as follows. First, express the confidence interval in terms of a
capacity measure (Theorem 1). Second, relate this capacity measure to an extended notion of
VC dimension, by means of a generalized Sauer’s lemma (Theorem 3). Third, characterize the
behaviour of this VC dimension as a function of the constraints on the model parameters
(Theorem 4). Recently, Williamson and co-workers have introduced an alternative approach in
Reference [42] (see also References [43–45]). It is based on functional analysis results on the
compactness of operators (see, for instance, Reference [46]). The covering numbers are
determined via the entropy numbers of a linear operator. The main advantage of this strategy
rests on the fact that it makes no use of a combinatorial dimension, and is thus more ‘direct’.
With fewer partial bounds, the confidence interval should a priori be tighter. We already built on
this work in Reference [10], to pave the way for a theoretical study of M-SVMs. A comparison
with the results of this paper is currently underway. A more diverging possibility consists in
deriving bounds based on data-dependent capacity measures such as the empirical VC entropy.
In this field, the most promising studies are probably those dealing with concentration
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inequalities, and especially References [47, 48]. More generally, the study of model selection
based on penalized empirical loss minimization, as presented for instance in Reference [49],
should also prove particularly fruitful.

6. CONCLUSIONS AND FUTURE WORK

This paper has described a pathway to bound the covering numbers of sets of vector-valued
functions used to perform multi-class discriminant analysis. The resulting bound, involving an
extended notion of fat-shattering dimension, has been applied to the architecture shared by the
different multi-class SVMs developed so far. This has enabled us to cast them into a unified
theoretical framework and highlight the part played by their penalty term. From there, one
could compare these machines, both theoretically and empirically, or put forward new
arguments to justify a posteriori the choice of the structure on which they are based, i.e. the
choice of their objective functions. Our results could also be used to design new machines.

Major benefits should result from deriving more direct bounds on the confidence interval of
M-SVMs. Indeed, reducing the number of steps should produce less conservative guaranteed
risks, telling us more about the precise behaviour of these machines. In that respect, significant
improvements should be expected from extending to the multi-class case the approaches listed in
the preceding section. These extensions, and the subsequent comparisons, are the subject of an
ongoing work.
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