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Chapter 1

Introduction to
Audiovisual-to-articulatory inversion

Acoustic-to-articulatory inversion, or mapping, designates the recovery of either the vocal tract
area function, or of the shape and position of the articulators from the speech wave. The area
function is the cross-section of the vocal tract as a function of the distance from the glottis.
Hereafter, the term ”shape” is used whenever one would like to refer indiscriminately to param-
eters that describe the vocal tract area function, or articulatory postures and gestures.

Strict acoustic-to-articulatory inversion requires that the exact vocal tract shape that pro-
duced the observed acoustic data is recovered, rather than one of the many possible tract
morphologies that can produce the same acoustic data [1]. Many researchers in acoustic-
to-articulatory inversion have instead focused on estimating plausible tract shapes, that is,
cross-sections or postures that are compatible with human speech production. The distinc-
tion between actual and admissible tract shapes stems from the fact that the computation of
the tract cross-sections from acoustic data is a problem that may admit more than one solution.

The causes of this non-unicity are multiple. They include

• the existence of qualitatively different area functions that are characterized by the same
eigenfrequencies, when the wave propagation is loss-less [1];

• that the number of unknown morphological output parameters may exceed the available
acoustic input parameters;

• the inability to exactly recover duct shapes that reproduce the acoustic data.

The non-unicity problem differs in severity, however, according to whether the inversion in-
volves (i) the transfer function of the vocal tract, or only the formant frequencies;(ii) a model of
the human vocal tract, or an unconstrained area function and (iii) a loss-less or a lossy prop-
agation of the acoustic wave. Generally speaking, the non-unicity problem is worst when the
area function must be recovered from measured formant frequencies, and the wave propaga-
tion is assumed to be lossless. For this case, Mermelstein [2] has shown that the area function
is not unique, whatever the number of the formant frequencies that are given.
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1. INTRODUCTION TO AUDIOVISUAL-TO-ARTICULATORY INVERSION

A unique solution of the acoustic-to-area conversion problem, however, exists under the
following conditions [3]:

• The glottal excitation is a single unit pulse;

• the area function is a concatenation of identical cylindrical tubelets with arbitrarily large
cross-sections;

• the total length of the vocal tract is known a priori and equal to an integer multiple of the
lengths of the individual cylinders;

• all losses are resistive and concentrated at the glottal or labial end of the tract.

The concatenated-cylinder area function can then be determined by means of a linear re-
gression model that is fitted to the noise-free vocal tract impulse response. The condition is
that the order of the model is equal to the number of cylinders, which must be known a priori.
Obviously, human vocal tracts do not fulfill the assumptions of loss-less wave propagation or
single-unit pulse excitation. Also, the tract length is not known a priori. As a consequence, area
functions thus estimated from recorded speech signals are considered to be rough approxima-
tions at best, the anatomical plausibility of which is not guaranteed [4].

In practice, experimenters must decide on (i) the source of the data to build the knowledge
about the vocal tract shapes for different phonemes; (ii) on the model of the vocal tract that is
used for the inversion; (iii) the representation of the acoustic data; (iv) the inversion method;
(v) the constraints to use in order to alleviate the non-uniqueness of the mapping and finally
(vi) how to evaluate the performance. The aim of the following chapters of this inventory is to
describe how these choices may be made.

The articulatory data of the vocal tract can be collected using numerous techniques, and
since no technique is currently able to capture all aspects required for speech inversion, several
techniques must be used, as described in Chapter 2.

The vocal tract models that have been used range from articulatory sagittal-profile models
to unconstrained area function models. Sagittal profile models either include mimics of human
articulators or the principal components obtained by a statistical analysis of the sagittal profiles
of a human speaker. A heuristic is then used to turn the two-dimensional profile into a three-
dimensional duct, through which plane acoustic waves propagate. The different types of vocal
tract representations that can be and have been applied to articulatory inversion are described
in Chapter 3.

The acoustic data that is the input to the inversion method may be represented as for-
mant frequencies or whole-spectrum features. Examples of the latter are cepstral and linear-
predictive-coding coefficients. Formant frequencies offer a phonetically meaningful description
of vowel-like speech sounds. Formant-to-shape conversion has therefore been the preferred
option of those who advocate computational inverse mapping with a view to the study of the
link between speech signals and tract shapes. The different representations of acoustic data
are described in Chapter 4.

Acoustic-to-articulatory inversion algorithms that have been proposed may be divided
into several categories. The main distinction is between model-based and statistical meth-
ods. Model-based approaches, which use little articulatory data, were ruling until roughly 25

2 November 27, 2008 ASPI/2006/D1/v2.0
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years ago. When the computerized handling of large amounts of data became feasible and
computation-intensive data compression methods were developed that enabled the data to be
represented economically (e.g. [5] [6]), the the drift has been continual from model-based data-
poor to model-free data-rich methods in all areas of speech processing, including acoustic-to-
shape mapping.

In principle, the availability of large amounts of articulatory data recorded via imaging of the
vocal tract of a speaking subject, in conjunction with the corresponding acoustic data, would
enable discarding models altogether. Indeed, the combined acoustic and articulatory data
can be organized either in the framework of a codebook or compressed further by means of
deterministic or stochastic learning methods.

In practice, however, the amount of natural training data has often been so small that nat-
ural data had to be augmented or replaced by synthetic training data that are generated by
means of a vocal tract model. That is, articulatory or area function models are used to pro-
duce morphological-acoustic data pairs that are organized in the framework of codebooks or
compressed by means of automatic learning algorithms, as if the data were natural [7]. In one
study, the synthetic data was replaced by virtual data [6]. That is, from a set of acoustic data,
equivalent tract-shapes were recovered computationally and the resulting acoustic-geometric
data pairs compressed by means of artificial neural nets, as if the data were genuine.

Data-free methods rely on models exclusively. They fall into two categories according to
whether they use models in a forward (i.e. causal) or inverse direction. When used forwardly,
the model parameters are manipulated iteratively until the synthetic acoustic output agree with
the observed acoustic data. That is, the acoustic-to-shape transform is turned into a problem
of optimization or control. The alternative consists in inverting explicitly the link between mor-
phological and acoustic data in the framework of a model and use the ”backward” model as a
new model, the input of which is acoustic and the output morphologic.

One question relevant to the project at hand is whether the importance taken by data-driven
methods has lead to a genuine increase in performance. Given the lack of comparative studies,
the cursory evaluation of existing inverse transforms, and the scarceness of genuine data, this
question has no final answer yet.

Often, data-rich and data-free methods have been used in cascade. That is, raw or com-
pressed codebooks have been used to find tract shapes that roughly reproduce the observed
acoustic data; in a second stage these are refined by means of a data-free method until the
calculated and observed acoustic data agree as far as possible. Data-free methods have also
been used to discover the set of admissible tract morphologies that coexist with a single tract-
shape solution found by codebook lookup [5].

The different types of algorithms that may be employed for acoustic-to-articulatory inversion
are described in Chapter 5.

Constraints that need to be applied in acoustic-to-articulatory inversion are of two different
types. The role of the first type of constraints is to assure that the output represents articulatory
configurations that are anatomically possible for a speaker. The second type of constraints is
needed to attempt to find which articulatory position that actually produced the input speech
sound, since it can been shown that anatomically possible articulatory postures do not guar-
antee a unique solution [8]. Articulatory trade-offs are expected to exist in the case of speech

ASPI/2006/D1/v2.0 November 27, 2008 3



1. INTRODUCTION TO AUDIOVISUAL-TO-ARTICULATORY INVERSION

sounds that involve double articulations (e.g. rounded vowels). That is, quasi-identical speech
sounds can be produced with tract shapes that differ qualitatively. Examples of a human use of
that capacity are ventriloquist and bite-bloc or lip-tube speech.

Additional constraints are therefore necessary. In practice, these have been wide and var-
ied. Restrictions on tract shapes, which have been used in isolation or in combination include
the following:

• Overdetermination, that is, the number of acoustic cues exceeds the number of morpho-
logical parameters [9];

• Expansion of the log-area function by means of a small number of odd Fourier cosine
coefficients [2] [10];

• Imposing maximal and minimal tract cross-sections [11];

• Minimization of the distance between the recovered and a neutral tract shape [12];

• Maximization of the spatial smoothness of the computed area function [12];

• Keeping the vocal tract volume constant [13];

• Maximization of the smoothness of the temporal evolution of the shape parameters [14];

• Minimization of the temporal rate of change of the shape parameters [14];

• Minimization of ”muscle” work [15];

• Matching of output and radiation impedance [10];

• Maximization of radiated acoustic power [10].

These constraints permits to select a single solution among all the possible solutions that
are anatomically acceptable for a given speech sound. Generally speaking, however, the con-
straints are intuitively satisfying at best, but most lack a rigorous justification on the base of
human speech production.

It is indeed so that speaking is a secondary function of an apparatus the primary function of
which is breathing or biting, chewing and swallowing. The forces that are involved in the latter
are larger than the forces involved in speech production. One may therefore wonder whether
the minimization of distance, speed or acceleration are valid criteria for speech articulators
that are controlled by muscle forces that are feeble compared to those that are applied when
chewing or biting, for instance. Also, the movement of human limbs in general is not subject to
the restriction that the acceleration is minimal. The constraint rather is that the rate of change of
the acceleration (i.e. jerk) is small. A constraint of minimal jerk appears to apply to articulatory
movement [16].

Another viable type of constraint is to use available information of the speaker’s visible ar-
ticulators (lips and jaw) to limit the possible configurations of the invisible ones (tongue, velum,
larynx) [17–19]. This introduction of visual information, which transforms the problem into

4 November 27, 2008 ASPI/2006/D1/v2.0
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audiovisual-to-articulatory inversion is a key focus of the ASPI project. Constraints in general,
and facial information constraints in particular, are described in Chapter 5.

Evaluation of the performance of the mapping is a central concern to most studies in
speech-to-shape mapping, since they have mostly dealt with the inversion per se. The authors
disagree on the evaluation criteria, however. The reason is that different applications request
different criteria of performance. The main distinction appears to be between usages that ex-
plicitly request the computed shapes to be veridical because users expect to learn about human
speech production as such. Examples are in speech therapy, second language learning, aids
to the handicapped as well as computational imaging for phonetic purposes. Such evaluations
have been scarce and in practice, the evaluation of the truthfulness of computed shapes has
been quite elementary. Some studies have involved static vowel shapes, mainly Fant’s Russian
vowels, to judge if the recovered vocal tract shapes are plausible [2, 9, 10, 12, 15, 20–25]. A
minority of studies have involved metallic, rubber or numerical models.

A majority of applications focus on acoustic-to-tract mapping not as a substitute imaging
technique, but as a non-trivial transform of acoustic into morphological data. The expected
benefit is that the morphological data possess qualities that acoustic data lack, such as smooth
and slow evolution, or the property of further decomposability into constituents that are context-
independent. These are desirable properties in the framework of articulatory synthesis, speech
compression as well as automatic speech or speaker recognition. The criteria of success here
are that the speech-shape-speech transform is consistent and the evolution of the morpholog-
ical data smooth. Veridical reproductions of the tract shapes are of minor or no importance.
As a consequence, evaluation has not focused on the genuineness of the recovered shapes,
but on the agreement between observed and modeled acoustic data, or on informal listening
to resynthesized speech sounds. When the objective was automatic speech recognition, the
evaluation has involved rates of correct recognition.

The possible applications of successful acoustic-to-articulatory are numerous, but the
state-of-the-art in acoustic-to-articulatory is still one of research and development. That is,
only a small minority of published articles have reported on acoustic-to-tract mapping as an
instrument, the performance of which is taken for granted. Examples of studies that make
use of acoustic-to-area mapping as a tool are [26] [27] [28]. [27] reports on a device that is
commercially available. The duct shape, however, is not reclaimed from the speech signal, but
from the impulse response of the nasal and pharyngeal tracts.

A large majority of publications focus on acoustic-to-shape inversion as a topic of research
or experiment. To our knowledge, no tool that has been based on speech-to-shape inversion
has gone beyond demonstrator status. None has been widely accepted as industrial, clini-
cal or laboratory implement. Putative applications that have been cited, but not necessarily
implemented, are:

• Visual representation of speech for the totally or partially deaf [29];

• Speech therapy; investigation of articulatory control in speech disorders [15] [11];

• Articulatory feedback for second language learning [11] [7];

• Investigation of physiological processes involved in speech production, and of the link
between speech signal and vocal tract shape [5] [30];

ASPI/2006/D1/v2.0 November 27, 2008 5



1. INTRODUCTION TO AUDIOVISUAL-TO-ARTICULATORY INVERSION

• Replacement of imaging by computation in phonetic investigations to avoid exposure to
X-rays and the laborious task of (manual) image processing [7] [21] [31];

• Investigation of the challenge to the concept of ”place of articulation” posed by the ability
to produce the same low-frequency formants by different tract shapes [8];

• Investigation of the recovery by humans or machines of linguistic units from speech [31]
[32];

• Speech compression [33] [11];

• Improving speech quality of lossy coders by means of an articulatory model by imposing
smoothness constraints on the area function and its motion [20] [7] [14];

• Articulatory synthesis and low-bit rate synthesis of speech that would include tract-source
interaction [5] [34] [35];

• Facilitation of the control and training of speech synthesizers because of the ability to
interpolate articulatory trajectories, and the easy timing of transitions between speech
segments as well as of the onset and offset of turbulence noise [36] [37] [11];

• Facilitation of the design of rules for articulatory synthesis [9];

• Linear decomposition of morphological data further into components that are context-
independent [29] [38];

• Feature extraction for automatic speech recognition [5] [11] [39];

• Exploitation of the location of critical articulators to discard some hypotheses in the frame-
work of automatic speech recognition [7];

• Speech segmentation based on articulatory postures and movement [40];

• Establishment of a link between automatic speech recognition and speech synthesis [41];

• Automatic adaptation of a speech recognizer to the speaker via the adjustment of the total
tract length [38].

6 November 27, 2008 ASPI/2006/D1/v2.0



Chapter 2

Imaging & measurement of speakers’
vocal tract and face

The development of new speech inversion methods and their evaluation is tightly connected
to the availability of tools used for the imaging of the vocal tract. Thanks to technological ad-
vances, a wide variety of such tools are now available to measure the shape and movements
of the vocal tract, with increasing detail and accuracy. Historically, many techniques have been
used to gain knowledge about the vocal tract, including plaster casts of living or dead sub-
jects, fibrescobe filming, Computed Tomography, electropalatography, optopalatography etc.
This survey of measurement methods will concentrate on X-ray, X-ray microbeam, Ultrasound,
electromagnetic tracking and Magnetic Resonance Imaging, which are the most relevant for
the data required within the ASPI project. In addition, techniques for collecting data of the
speaker’s face, using optical tracking or video-based methods will be described, since the use
of visual constraints derived from the speaker’s face may provide important information to solve
the acoustic-to-articulatory inversion problem.

Ideally, the technique used to measure the movements of the vocal tract should:
(i) Cover the whole vocal tract with all the articulators and the face visible.
(ii) Give a time resolution sufficient for the tracking of the dynamics of the vocal tract.
(iii) Not involve any known health hazard for subjects,
(iv) Not perturb the natural articulation
(v) Not degrade the quality of the speech signal recorded together with images and
(vi) Be portable for field works outside laboratory.

Currently, no such method exists; all methods require the subject to produce the articula-
tions under more or less unnatural circumstances and no method measures the full 3D ge-
ometry and kinematics at the same time, as discussed below and summarized in Tab. 2.1.
The purpose of this survey is to inventory the techniques that could be used to collect acoustic-
articulatory data that are necessary for the development and evaluation of new speech inversion
methods.
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2. IMAGING & MEASUREMENT OF SPEAKERS’ VOCAL TRACT AND FACE

2.1 Vocal tract

2.1.1 Cineradiography, X-ray

Cineradiography has traditionally been the main information source on real-time movement in
the midsagittal plane, since it was used for the first time in the 1920’s ( [42]). The advantage of
X-ray imaging is that it provides real-time measurements of the entire two-dimensional tongue
contour in upright position. Modern digital X-ray equipment makes it possible to record 50
images per second with a spatial resolution of about 0.3 mm. A difficulty with X-rays is to
accurately identify the vocal tract structures in the images, as discussed in Section 2.4 and
exemplified in Fig. 2.1. To enhance the contrast in the images, subjects swallow a viscous
liquid that adheres to the tongue surface, to the floor of the mouth and to the lips. The accuracy
of the contours traced is of the order of 0.5 - 1 mm.

The importance of X-ray measurements in speech research is indicated by the extensive
bibliography compiled by Dart [43], listing 282 X-ray studies, done in a large number of lan-
guages, including, e.g., the influential studies by Fant [44–46].

The use of X-ray measurements has however been drastically reduced and restricted over
the last decades, as the hazards for the subjects became apparent. Recent developments
in digital X-ray technology have permitted to minimize the subjects’ exposure to radiation, by
using a prespecified pediatric program, by removing the image intensifier scattered-radiation
grid and by placing the subject’s eyes outside the imaging area. The absorbed dose in the
most exposed organ (parotis sin) is less than 4 mGy during a 20 second acquisition, with the
effective dose not exceeding 0.1 mSv (i.e. an amount corresponding to a tenth of the annual
natural background radiation), as in [47]. This means that X-ray measurements are viable again
for small corpora that can be used for assessment of a model or to measure specific details of

Tongue contours

Fillings

Figure 2.1:Example of X-ray image from the Munhall et al. database (film 55)
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an articulation. Other measurements are however required as a basis for modeling, where a
larger corpus is required.

2.1.2 X-ray microbeam

The ethical constraints of exposing subjects to X-rays for non-medical purposes still remain,
and the radiation dose has to be limited as much as possible. A possibility is to use the X-ray
microbeam technique [48, 49]. In X-ray microbeam, a very narrow beam of high-energy x-rays
is generated, and rapidly directed under high-speed computer control, to track the motions of
2-3 mm diameter gold or lead pellets glued to the tongue, jaw, lips, and soft palate. The main
advantage over traditional X-ray measurement, apart from the reduction in the radiation dose
for the subject, is that the amount of data is reduced from a continuous shadow to clearly de-
fined discrete points, facilitating the data processing. This of course means that information on
the remaining contour is lost, but it can to some extent be reconstructed through interpolation
and combination with other data sources, such as articulatory models based on X-rays [50] or
principal component analysis [51]. The X-ray microbeam technique has hence been successful
in characterizing anterior tongue movements, but its inherent limitations prevent imaging of the
tongue root and pharynx, which have important effects on the acoustic output. Other impor-
tant limitations of this technique, including the fact that it is rather expensive, invasive and not
portable, have restricted its use in speech research.

2.1.3 Electromagnetic articulography (EMA)

Another point-wise midsagittal measurement method is Electromagnetic Articulography (EMA),
which employs alternating magnetic fields instead of X-rays. EMA tracks midsagittal fleshpoints
movements by measuring induced current from receiver sensors moving in a magnetic field
[52] [53]. The magnetic field, generated at different frequencies by two to six transmitter coils,
induces an alternating signal in the receiver coils. Since the voltage of this signal is inversely
related to the distance between the transmitter and the receiver coil, a computer algorithm can
determine the location of the receiver coils as they move in space, based on the voltage.

Six receiver coils are commonly used for the measurements: two are placed on the upper
and lower lip, three coils on the tongue (approximately 8 mm, 20 mm and 52 mm from the tip of
the tongue, depending on speaker) and one on the base of low front incisors (to measure jaw
movement). A typical placement of EMA coils is shown in Fig. 2.6(a). In addition, two receiver
sensors, one on the base of the upper front incisor and one on bridge of the nose, are often
used as reference points for head-movement correction. Rotation and translation of the EMA
sensor data is performed to ensure that the two reference coils are coincident across all frames
for a given speaker. This removes any component of head movement from the data. A further
rotation is performed to align the occlusal plane (also called “bite plane”) with the x-axis and a
translation sets the origin at the position of the upper incisor reference coil.

The most important advantage of EMA is the high tracking rate, with sampling of articula-
tory data at 200 Hz. Another advantage is related to the ability of tracking multiple articulators
simultaneously. These two aspects make it possible to measure, with increasing accuracy, co-
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ordination among different articulators. Notice, however, that the accuracy of the data recorded
decreases away from the center of the triangle of the transmitter coils. Hoole [53], for instance,
reported an error of 0.67 mm +/- 0.42 for positions more than 6 cm away from the center (in
the midsagittal plane) and 0.2 mm +/- 0.13 for positions up to 6 cm. Another important aspect
concerning the reliability of EMA data is related to rotational misalignments. Articulatory data
can only be collected on the midsagittal plane and are thus subject to error as the articulators
rotate left-to-right [53].

Different EMA systems are available, including the the MIT system [52], the Botronic Move-
track system [54], and Carstens Articulograph (http://www.articulograph.de ). Carstens
AG100 is by far the most used system among speech researchers. It is comprised of (1) a
plastic helmet that subjects wear during data recordings (three transmitter coils are mounted
equidistant from one another on the helmet) (2) small receiver coils placed inside the mouth or
on the face and (3) an electronic unit connected to the computer.

One interference with the subject’s natural speech is the transmitter coil helmet and the
more recent AG500 [55] overcomes this by replacing the helmet by a ’cage’ on which six
transmitter coils are fastened. AG500 hence allows for free head movements and the sen-
sors can further be positioned outside the midsagittal plane and in all orientations. This means
that the EMA measurements have gone from being two-dimensional and point-wise to three-
dimensional, but still point-wise. The three-dimensional EMA system is still very much under de-
velopment and midsagittal EMA remains the standard articulography method. Two-dimensional
EMA has been used in a large number of studies to explore tongue movements [56–58].

2.1.4 Ultrasound echograph

Ultrasound can be used for either kinematic two-dimensional (at 30-200 Hz) or static three-
dimensional measurements. The technique employs a transducer probe containing piezoelec-
tric crystals, that change shape rapidly when subjected to an electric current. As the crystals
vibrate, high-frequency (5-40 MHz) sound waves are emitted, and conversely, when a sound
wave is absorbed by the crystal, it emits an electric current. This current can be used to recon-
struct a wedge-shaped image of the midsagittal slice of the tongue, as shown in Fig. 2.2.

The sound waves are reflected against boundaries where there is an important change in
density. This means that only the outer tongue body shape can be measured as the available
boundary is that between the tissue and the air. Parts where there is also air underneath, such
as the tongue tip, when it is lifted, or the palate, do not show up. The measurements are hence
often restricted to the tongue body as the tongue root is obscured by the hyoid bone.

A good introduction to the ultrasound technique, its theoretical principles and properties, is
given in [59], which was one of the first suggestions for using ultrasound in speech research.
Methodological and technical questions in using ultrasound for tongue measurements are also
addressed in [60], regarding the system setup, transducer placement and aspects such as peak
detection and measurement resolution. Ultrasound has been since been used in a number
of speech production studies, focused on two-dimensional cross-sectional movements e.g.,
[61–64] or the three-dimensional tongue shape [65, 65]. In the first type of study, the probed
is held in a fixed orientation during running speech, and in the latter, it is moved to different
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orientations during sustained phonation. The technique is currently in particular advocated
by Stone and colleagues [66, 67], who have designed both measurement set-ups and data
analysis software.

Data collection using Ultrasound is well suited for the imaging of the vocal tract and offers
many advantages. It involves no health risks for the subject. It offers a relatively high temporal
resolution: slices can be collected at video rates (30fps) for analogue systems and over 100
fps for digital ultrasound echographs. It is relatively inexpensive and portable, and subjects are
recorded in a natural, upright speaking situation. The lack of tongue tip data in the ultrasound
images can also be compensated for by using an electro-magnetic tracking system. The shape
of the hard palate can also be obtained by asking the subject to take a mouthful of water and
force it up into contact with the hard palate. Since the impedance difference between water and
tongue tissue is different from that between water and bone, the palate shape can be extracted.
However, to subsequently inserted the palate shape into the ultrasound images of the speech
production measurements requires that the head position is known during the experiment.

This issue of defining an absolute spatial reference in the signal is central in ultrasound
imaging. Knowing where the ultrasound image is in relation to the vocal tract is a very difficult
problem that must be solved. If one is interested in the shape of the tongue only, then measure-
ments in a jaw-centered system (i.e. the probe is allowed to move with the jaw) is sufficient.
To determine the exact location of the tongue within the vocal tract, however requires that the
position of the jaw is also known, One way to do this is to immobilize the head and the probe
using a specially designed system, such as the Head And Transducer Support HATS [67]. The
subject’s head is fixated in the HATS system and the transducer position is adjusted until the
best image possible of the tongue is obtained.

The recently developed Haskins Optically Corrected Ultrasound System (HOCUS) [68] does
not require immobilization. The system incorporates both ultrasound imaging of the tongue and
optical tracking of the position of the ultrasound probe relative to the head. The optical system
(Optotrak) tracks the location of external structures on the head and on the ultrasound probe in
three-dimensional space using infrared emitting diodes. The head, probe, and jaw are allowed
to move, but their motion is tracked and can therefore be used to correct the tongue measure-

Figure 2.2:Ultrasound image of the tongue, with the tip to the left.
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ment to a head-based coordinate frame. Different visible structures (such as the lips and jaw)
can also be tracked and complete measurements of the vocal tract during fairly unconstrained
speech are hence recorded. Stone and colleagues have developed software for the analysis of
ultrasound images, such as EdgeTrak, an automatic system for the extraction and tracking of
tongue contours [69] [70]. A few points on the tongue in the first image are chosen, and Ed-
geTrak then uses an active contour model to determine the location of the tongue edge in the
current and following images. Though this contour tracking system, currently used by scientists
in several institutions, is accurate enough for speech research, it still has some weaknesses.
For instance, since the ultrasound images are quite noisy and there are some unrelated high
contrast edges in the images, the gradient information is sometimes insufficient to extract edges
of interest. The tongue contour may also be interrupted in places.

2.1.5 Static Magnetic Resonance Imaging

Since Magnetic resonance imaging (MRI) was first used to analyze the vocal tract [71, 72], it
has grown to be the dominating method for measuring speech production three-dimensionally
in many different languages. The success during the past decades is based on image features
and quality and relative subject-friendliness

The basis for MRI is that the hydrogen atoms in the body can be aligned using a strong
induced magnetic field. A radio frequency pulse is directed towards the area of the body that
is to be examined and the proton of the hydrogen atoms absorbs energy that makes it spin in
a different direction. Using pulses of a specific frequency, the Larmour frequency, the protons
can be made to precess in a determined direction. Once the pulse is turned off, the protons
return to their natural alignment in the magnetic field, and in doing so they release the surplus
energy, which can be captured by the magnetic coil. The data of the energy release can then
be converted into a picture using Fourier transforms. Using gradient magnets that are turned
on and off very rapidly, the magnetic field can be altered in a small area, which means that MRI
is able to collect data in slices of 2-5 mm at any orientation, as exemplified in Fig. 2.3(a)-(b).
These features allow two-dimensional images of (approximately) two-dimensional arbitrarily
oriented slices to be collected and combined into detailed 3D images.

The images have good signal to noise ratio, are amenable to computerized 3D modeling,
and provide excellent structural differentiation. In addition, the tract (airway) area and volume
can be directly calculated. MRI is also subject-friendly in the sense that it has no known harmful
side effects and no ethical constraints need hence to be put on the amount of data that can be
collected. The technique has however several disadvantages for speech production measure-
ments, such as that the electromagnets produce high amplitude noise. The noise is caused
by the rising electrical current in the wires of the gradient magnets being opposed by the main
magnetic field and its amplitude is proportional to the strength of the main field. The noise make
simultaneous acoustic recordings difficult, although not impossible, if optical microphones are
used.

The most severe disadvantage of the technique is the prolonged acquisition time, during
which the subject must remain immobile, as even slight movements of the scanned body part
cause distorted images. When MRI first was used for speech measurements [73], 30 minutes
were required to obtain the full set of images for a given vocal tract configuration and the
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(a) Midsagittal (b) Coronal (c) Midsagittal real-time

Figure 2.3:MR Images at different orientations (a-b) and with different acquisition times.

subjects had to produce a sustained monotone for the 3.4 minutes it took to acquire each
image, breathing in briefly every 15 seconds. The technical advances, that allow the acquisition
of the entire vocal tract to be made with high image quality in around 30 seconds, is hence a
very important contributing factor to the success of the method. The acquisition times needed
are still decreasing and it is now possible to collect full 3D data in 5 seconds. However, the
images collected with such short acquisition times are often of low quality, and the standard
use of MRI in speech production measurements is for the study of artificially sustained speech
sounds. This sustaining may cause the articulations to be both hyperarticulated and more
difficult to hold for the subject [74]. The results may be a backward (i.e. a downward in the
supine position) movement of the tongue and a lack of velum control, as exemplified by the
blurring caused by movement of the velum in Fig. 2.3(a). It is hence important to keep the MRI
acquisition time as short as possible.

Another disadvantage is that the acquisition is made with the subject in supine position,
which may affect the articulation. Several MRI studies, including [75] [74], have noted a back-
ward displacement of the tongue caused by the supine position. Tiede et al. [76] found postural
effects between sitting and lying position in X-ray microbeam measurements and Engwall [74]
showed that the vocal tract became more constricted in the pharynx when the subject was fac-
ing upwards, as opposed to downwards, in the MRI acquisition. The static MRI images thus
have to be complemented with other measurements (e.g. EMMA, EPG, or X-ray) to correctly
replicate not only articulatory movements but also positions in running speech.

2.1.6 Dynamic MRI

The acquisition times for MRI have decreased drastically during the past years and methods
to image the moving vocal tract are emerging. One possibility is to use many repetitions of a
phoneme string and generate a real-time image sequence through post-processing [77–81].
As the articulation varies slightly between the repetitions, the reconstructed image sequence
show an aggregate of all the repeated articulations, rather than the true articulation, and this
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may lead to discontinuities in vocal tract shape over the sequence.

The large number of repetitions may introduce variability in the articulations and the devel-
opment of sensitive encoding systems or ultra fast Turbo Spin Echo, allowing to capture several
(4-24) images per second [82–84], is hence a great advance in dynamic MRI, as real-time cap-
turing of slowly produced sequences can be made with the technique. The MRI technique is
hence approaching a time resolution where many articulatory movements can be studied in
real time. The limit at 100 Hz, which is often considered as the lower limit for visual synthesis,
is however still far away, and other real-time measurements techniques will probably still be re-
quired. The image quality in real-time MR imaging is further far inferior to imaging of sustained
articulations with longer acquisition times, as shown by the comparison of Figs. 2.3 (a) and (c).

2.1.7 Summary of measurement techniques

For the sake of clarity, the different techniques described above are compared in Table 2.1.

EMA MRI Ultrasound X-ray X-ray microbeam
Time resolution 1 200 Hz 0-24 Hz 30-200 Hz 50 Hz 40-160 Hz

Whole V.T. No Yes No yes No
Tongue imaging Pellets Full-length Full-length Full-length Pellets

Tongue root No Yes No Yes No
Velum imaging Yes2 Yes No Yes Yes

3D No Yes No No No
Health hazard No No No Yes Yes

Natural art. Affected Yes3 Yes Yes Affected
Acoustic noise Low High Acceptable Low Acceptable

Head Mvt. Restricted4 Restricted Restricted5 Free Free
Portable No No Yes No No

Inexpensive No No Yes No No

Table 2.1: Comparison of vocal-tract shape recording techniques. Notes:1 It is sufficient to have 60
frames/s to observe muscular-force induced articulatory movements, while 1000 frames/s would be re-
quired to observe aerodynamic-force induced movements, such as those during consonantal release.2To
record velum position data using EMA or X-ray microbeam, a receiver or a pellet have to be attached to
the velum.3The supine position during MRI recording may affect the articulation. 4Head movement is
free using 3D EMA and restricted using a 2D system.5As was mentioned in text, head movement is free
using the Haskins Optically Corrected Ultrasound System (HOCUS).

Due to the limitations of the above measurements techniques, no single one is able to
fulfill the requirements for acoustic-articulatory measurements. A combination of MRI for three-
dimensional static measurements and combined ultrasound and electromagnetic tracking for
tongue movements will therefore be employed. In addition, already existing X-ray, X-ray mi-
crobeam and EMA data, available in research databases will be explored to provide additional
insights.
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2.2 Face

Measurements of the speaker’s face are important for articulatory inversion for two reasons.
Firstly, they give information about visible articulators that are directly involved in speech pro-
duction, i.e. the jaw and lips. Secondly, they can provide indirect information about articulators
that are invisible from the outside view through statistical relationships between the position of
these articulators and the appearance of the face.

The data of the face are of two types, shapes and movements. Shape data is most com-
monly collected using laser scanning or structured light range digitizers, to achieve a dense
map of the face. Movement data may be collected using either special optical motion track-
ing systems or video images (from one or two cameras). In order to evaluate the anatomical
changes occurring during speech, knowledge of the shape and size of the speaking face is re-
quired. While several systems have been already implemented that allow 2D visual features to
be automatically extracted from a video sequence [19,85] showing a talking face the extraction
of 3D visual features that could improve speech inversion still remains unexplored.

Modeling and measurements of the human face have wide applications ranging from med-
ical purposes [86, 87] to computer animation [88–90], from video surveillance to lip reading
systems, from video teleconferencing to virtual reality [91–94]. The issues that must be consid-
ered to model the face of a real person are: how realistic and accurate the obtained shape is,
how long it takes to get the result, how simple the equipment is and how much it costs.

2.2.1 Face shape measurements

To date, the most popular measurement technique is laser scanning [87,95], for example the
head scanner of Cyberware [96]. This systems normally scans the human face in about 30
seconds. The subject has to remain still while the scan platform moves a digitizing unit around
the head. The digitizer is composed of a light beam and video cameras to capture all details of
the object, colours included. With triangulation or interferometry methods, 3-D coordinates of
the scanned points can be quickly computed. These systems give a dense cloud of measured
points and are easy to use. The achieved accuracy is limited to 0.5 mm and smooth filters have
to be applied on the modeled surface because of its roughness. The long scanning period
contributes to the low precision as the subject cannot remain absolute immobile for so long.
These scanners are expensive and the data are usually noisy, requiring touch-ups by hand and
sometimes manual registration.

Another solution is offered by the structured light range digitizers [97,98] which are usu-
ally composed of a stripe projector and one or more CCD cameras. Several products based on
this technology are available (see www.eietronics.com , www.inspeck.com ).

Such a system is usually composed of a camera and a programmable projector. Defined
sequences of stripe images are projected onto the object during the acquisition. A time-space
coding of a sequence of n stripe images allows the differentiation of 2n different projection
directions. Given a calibrated projector and camera, the depth information can be computed
through triangulation using the acquired images. The system is simple to use and is practical
to install (only one camera and a projector). For these reasons it has gained importance in the
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industrial sector. The method is optimal for static objects. For complex objects such as the hu-
man face, multiple acquisitions from different directions and with different projection directions
are required. These can be used for face reconstruction with relatively inexpensive equipment
compared to laser scanners.

The accuracy of both systems is satisfactory for static objects. However, their acquisition
time ranges from a couple of seconds to half of a minute, depending on the size of the surface
to measure. Thus, a person must remain stationary during the measurement. Not only does
this place a burden on the subject, but it is also difficult to obtain stable measurement results.
In fact, even when the acquisition time is short, the person moves slightly unconsciously.

A different approach to face modeling uses images as source data. Various image-based
techniques have been developed. They can be distinguished by the type of used image data:
a single photograph, two orthogonal photographs, a set of images, video sequences or multi-
images acquired simultaneously.

Parametric face modeling techniques [88,99] start from a single photograph to generate
a complete 3-D model of the face. Exploiting the statistics of a large data set of 3-D face scans,
the face model is built by applying pattern classification methods. The results are impressively
realistic, however the accuracy of the reconstructed shape is low.

A number of researchers have proposed creating models from two orthogonal views [100].
Manual intervention is required for the modeling process by selecting feature points in the
images. It is basically a simplified method to produce realistic models of human faces. The
obtained shape does however not reproduce the real face precisely. To solve this problem,
some solutions [89] work in combination with range data acquired by laser scanners.

The multiple view based methods is another image-based method, which consists of
automatically extracting the contour of the head from a set of images acquired around the
person [101, 102]. The obtained data are combined to form a volumetric model of the head.
The set of images can be generated moving a single camera around the head or having the
camera fixed and the face turning. The systems are fast and completely automatic, however
the accuracy of the method is low.

2.2.2 Optical tracking systems: Qualisys and Optotrak

The Qualisys system (http://www.qualisys.se ) consists of 1 to 16 cameras, each emit-
ting a beam of infrared light. Small reflective markers are placed on the speaker’s face; a typical
placement is shown in Fig. 2.6(b). the camera flashes infra-red light and the markers reflect
it back to the camera. The system is able to register the 3D-coordinates for each marker at a
frame-rate of 60 to 1000 Hz.

Thirty or more markers can be used to register lip movements as well as other facial move-
ments such as chin, cheek, eyebrows and eyelids. Additional markers may be placed on the
chest to register head movements with respect to the torso. Subjects also wear a pair of spec-
tacles with four markers attached, used as a reference to be able to factor out head and body
movements when looking at the facial movements specifically.

Optotrak, which is an improved version of the older Watsmart, uses three line charged
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coupled device sensors that track target points defined by up to 512 miniature Infrared Emitting
Diodes. Each one of the three sensors consists of a cylindrical lens system and a signal
processing circuitry. All three measurements together determine the 3D location of the infrared
LED marker, which is calculated and displayed in real time. In speech research data, these
target markers are used to track the motion of the jaw, lips, cheeks, and eyebrows. Additional
markers, attached to a head rig, are used to define the head-based coordinate system.

The accuracy of Optotrak in the operating volume at 2 m is 0.1 mm in the x- and y- dimen-
sions, and 0.15 mm in depth, while the resolution is 0.01 mm. The maximum sampling rate
(marker frequency) is of 3500 Hz. This system is thus well suited to tracking lip and jaw motion
in 3D and examining relationship between them and head position.

The disadvantage of these two point tracking systems, is that only fleshpoints are tracked,
not the entire surface or volume. For rigid structures, such as the jaw, the entire structure can
however easily be reconstructed knowing the exact shape.

2.2.3 Video-based tracking

2.2.3.1 Monovision

Monovision video recordings, i.e., using a single camera, can be explored in mainly two angles,
either in profile or a full front view, with the latter being by far the most common for automatic
analysis of articulatory features. Most existing methods for extracting information from face
video rely on tracking the lip contours, which can be modeled using snake-like methods [103]
[104] or data driven principal component analysis (PCA) methods [105] [106] [107].

An alternative is to track the face as a whole and then extract the mouth region of the
image. The advantage is that this method is more robust, as the face is less deformable and
therefore easier to track. Once the lip region has been extracted, it is possible to either find
the lip contours [108] or represent the information of the mouth in terms of e.g., independent
components of the lip image [109] or binary articulatory mouth features [110]. Binary features
are robust for separation between a small set of words, but the independent components are
more suitable for inversion, as they include important information, such as shading indicating lip
protrusion, and visibility of the teeth and tongue, that is not present in the lip shape. Kjellstrom et
al. [109] indeed showed that the addition of monovideo images of the speaker’s face improved
the automatic estimation of the positions of four electromagnetic articulography coils placed
on the jaw and tongue with about 25% compared to the audio-only case. The inversion was
performed on 63 Swedish VCV words using a relevance vector machine (RVM), a non-linear
kernel-based regression technique.

2.2.3.2 Stereovision

Stereovision techniques allow to capture shape deformations in rapidly moving scenes. Given
two (or more) calibrated cameras and given two corresponding points in the images from the
two different cameras (i.e points that correspond to the same physical point), the 3D points
are built as the intersection of the two rays that pass though the optical centers and the im-
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age points. The key problem to be solved in stereovision is the matching stage where points
that correspond to the same physical 3D point must be identified in the two images based on
similar intensity or color. This problem is highly difficult and is often solved by imposing strong
assumptions on the scene such as lambertian material.

Figure 2.4:Paired left/right images for stereovision.

Figure 2.5:The first three principal components of the 3D reconstructedface.

In order to make the matching stage easier, markers can be glued or painted on the face as
shown in Figure 2.4. Similarly to optical tracking, this method only allows a sparse map of the
face to be obtained and is thus of limited interest for face reconstruction/modeling/synthesis.
However, the method allows to get temporal 3D reconstruction of the face and is widely used
to build dynamic models of the face with principal component analysis [111] [112] [113] [114].
As an example, Figure 2.5 illustrates the first three principal components of reconstructed 3D
face images.

Obtaining a dense map of the face from stereovision techniques is much more difficult.
Correlation techniques are widely used and have been successful in many studies. However,
these techniques use a fixed neighborhood to compare the intensity in the two images whereas
a surface patch may have different shapes in the two images due to projective effects. This
limitation may be alleviated by considering adaptive windows [115]. In addition, correlation can
only cope with affine changes of image intensities. As a result, classical reconstruction meth-
ods are not robust and false matchings are often present, especially at depth discontinuities
and in regions presenting near uniform texture. Considering the matching stage as a global
optimization problem has recently lead to significant improvements in stereo reconstruction.
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The stereo problem is then considered as the minimization of a cost functional that integrates
statistical similarity criteria and regularization constraints on the disparity map [116]. Despite
promising results, it still remains difficult to obtain automatically a dense reconstruction of a
speaking face, especially because imposing regularization constraints on the face movement
is difficult.

For these reasons, projected light patterns are often used, that display patterns on the face
to facilitate the recovery of a dense map (c.f. section 2.2.1).

A key limitation to the methods presented in section 2.2.1 is that they methods do not
capture motion, i.e. a point correspondences over time, making difficult to learn the dynamic of
the face. To overcome this problem, two main solutions have been developed:

• A morphable linear model of the face can be derived from a set of 3D face models. Then,
reconstruction for a particular talker can be achieved by fitting 2D featured (texture) or
3D features (issued from stereovision) against a generic parametric morphable model
[90, 93, 94, 117–119]. Reconstruction is then considered as a recognition problem. The
techniques are fully automatic but may perform poorly on face with unusual features or
other significant deviations from the normal.

• Using time varying structured light patterns projected on a face, algorithms that integrate
space and time consistency in a global optimization approach significantly improve the
quality and stability of the recovered depth map. In [120] [121], space time consistency is
achieved by assuming that disparity is nearly constant over a 3D space time window.

Despite continuous progress, obtaining dense maps of human faces with temporal coher-
ence using cameras is still a challenging problem. Many methods still need manual and often
tedious interaction processes. One of the fundamental challenges is to reduce (or to suppress)
manual intervention. The other challenge is to to have a cheap acquisition set-up and simplified
acquisition techniques, especially to reduce the calibration burden.

2.3 Existing Databases

Another important resource for speech production research is the existing databases of previ-
ously collected articulatory measurements. The information contained in the following databases
will be of great benefit to improve the knowledge of the acoustic-to-articulatory mapping and to
improve the existing acoustic/articulatory inversion methods.

2.3.1 X-ray movie films

Due to ethical concerns about the high radiation dosages necessary, X-ray imaging technology
is currently rarely employed. Therefore, it has become imperative to preserve those films that
were originally captured on the fragile medium of 35 mm film. This is addressed by the X-Ray
Film Database for Speech Research Project and by the IPS X-ray Database of Strasbourg.
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The X-Ray Film Database for Speech Research Project collaborative project by Dr. K.G.
Munhall (Queen’s University) and Drs. E. Vatikiotis-Bateson and Y. Tohkura (ATR Human Infor-
mation Processing Laboratories, Kyoto, Japan) was conceived to create a database that stores
a collection of high-quality copies of the original x-ray films in a durable format on a constant
angular velocity (CAV) format videodisc [122]. The aim is to make these images available to
the speech research community free of charge and to develop techniques for automated digital
processing of these images. The videodisc is available to researchers by contacting Dr. Kevin
Munhall (munhallk@psyc.queensu.ca).

This database contains a series of 25 X-ray movies for a total of 55 minutes, together with
the sound recordings. 24 of the 25 films are from the Université Laval and show 9 native
speakers of Canadian French and 5 native speakers of Canadian English reading phonetically
contrastive sentences [123]. The films have a temporal resolution of 50 frames per second, and
do not show the lower pharynx or larynx, but the hyoid bone is visible and the lips and velum
are clear in most of the 24 films. The 25th film was recorded at MIT and shows the entire vocal
tract and lips at 45 frames per second [124].

The Institut de Phonétique de Strasbourg has gathered more than 50 X-ray recordings,
including data from a large variety of languages, since the 1950’s. Researchers from the Institut
de Phonétique de Strasbourg, with the collaboration of the Institut de la Communication Parlée
de Grenoble, have recently undertaken the task of creating a database that stores this collection
of the original X-ray films in high-quality copies [125]. The aim is store these films in a durable
format and make them available for speech research community.

The database currently contains 4 movies that present over 2000 images. The X-ray data
focus on different phonetic issues in French: juncture, nasals, and coarticulation in VCV se-
quences. The database contains 3 kinds of digitized data: the cineradiographic data, acoustic
signals and hand-drawn sagittal contours of the vocal tract.

All files are phonetically labeled and stored on CD ROMs. The film database is available to
researchers by contacting the Institut de Phonétique de Strasbourg, the owner of the Database.

2.3.2 X-ray microbeam, University of Wisconsin

The database from the University of Wisconsin X-ray microbeam facility covers a relatively large
number of speakers (about 200 different speakers), and a rich, uniform inventory of utterances
and oral motor tasks, yielding a data-set more than 3200 tracking minutes. Speakers contribut-
ing to the database project were young adults from the campus of the University of Wisconsin-
Madison and surrounding cities. A majority of these speakers spoke an Upper Midwest dialect
of American English.

The database resource is intended to be sufficiently accurate and deep to withstand sta-
tistical scrutiny of variance, within and across speakers. This firstly requires that the task list
is sufficiently broad to encompass most of the range of motor and linguistic tasks a speaker
performs when talking. Secondly, the list must be sufficiently redundant to provide meaningful
estimates of intra-speaker variability, and thereby allow reliable inferences regarding speaker
intent, and control principles governing the speech act. Each speaker dataset contains: read-
ing of two prose passages (13%); counting and digit sequences (6%); oral motor tasks (8%);
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citation words, near-words, sounds and sound sequences (33%) and sentences (40%). The
sentences consist of 21 TIMIT sentences and 19 other sentences with varying numbers of
repetitions.

Eleven pellets were used, attached to the head (3 pellets, as reference markers), upper
and lower lips (1 pellet each), tongue surface (4 pellets), and mandible (2 pellets). Pellets were
glued to the tongue using Ketac, and to all other surfaces using Isodent (commercially-available
dental adhesives), and then anchored by light threads taped to the skin surface of the cheeks
and face.

Three types of time-series data were recorded for each speaker: (1) wide-band physiolog-
ical tracks; (2) videophotographic images, and, (3) low-band pellet position tracks. The wide-
band physiological tracks recorded the radiated sound pressure wave and a representation of
neck wall vibration overlying the thyroid lamina. The video images were recorded at 60 frames
per second to monitor the speakers’ positions in the microbeam image field, and can be useful
for understanding certain speaker movements that affect data accuracy. The image quality is
not high, however, and it is unlikely that the images are useful to extract visual information of
the speaker’s face. The spatial resolution of the pellet tracks is inversely proportional to the
distance of the image plane from the system pinhole. For database speakers, that distance
was typically on the order of 53 cm.

Each record subdirectory contains a collection of files representing the time series data.
In the typical case, 19 files are produced: one each for the sound pressure wave and neck
wall vibration; one each for the x- and y-coordinates of each of eight articulator pellets (i.e.,
16 files); and one representing a vector of explicit time stamps for the sixteen pellet-coordinate
histories [126]. The database is an open resource, available for unlimited inspection by other
speech scientists.

2.3.3 Multi-CHannel Articulatory database, University of Edinburgh

The MOCHA (Multi-CHannel Articulatory) database collected at Queen Margaret University
College, was developed to provide a resource for training speaker-independent continuous Au-
tomatic Speech Recognition systems and for general co-articulatory studies. The publicly avail-
able database (at http://www.cstr.ed.ac.uk/artic/mocha.html ) consists of simulta-
neous acoustic-articulatory data of 2 speakers of British English who read 460 phonetically rich
sentences, providing data on more than 10,000 phones per speaker [127]. The 460 sentences
comprise the 450 TIMIT sentences, designed to provide good phone pair coverage, along with
an extra 10 sentences which include phonetic pairs and contexts found in the Received Pro-
nunciation (RP) accent of British English. These were designed to include the main connected
speech processes in English (e.g., assimilations and weak forms) used for both training and
testing.

The MOCHA database offers a number of different parallel streams of acoustic and artic-
ulatory data. The acoustic data was recorded directly onto disk in a sound-damped studio
sampled at 16kHz and stored with 16-bit precision. The articulatory information includes elec-
tromagnetic articulograph (EMA), laryngograph, and electropalatograph (EPG) data. The EMA
data consists of x- and y-coordinates in the mid-sagittal plane for 7 points on the articulators,
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sampled every 2 ms. The EMA sensors were attached to the upper and lower lips, lower incisor
(jaw), tongue tip (5-10 mm from the tip), tongue blade (approximately 2-3 cm posterior to the
tongue tip sensor), tongue dorsum (approximately 2-3 cm posterior to the tongue blade sensor)
and velum. Subjects were screened for their ability to tolerate soft palate touching prior to the
recordings. The Laryngograph measures changes in the contact area of the vocal folds, provid-
ing pitch and voiced/voiceless information and was sampled at 16kHz. The electropalatograph
(EPG) provides information on tongue-palate contact at 62 normalized positions on the hard
palate, sampled every 5 ms. This includes lateral tongue contact information that is missing
from the EMA data.

In addition a SVHS video of front view of mouth area is also available.

2.3.4 Qualisys-Movetrack database, KTH

The Qualisys-Movetrack database at KTH consists of simultaneous recordings of the audio
signal, electromagnetic articulography (EMA) data of the tongue and optical tracked facial data
[128]. The recordings were made in a sound-proofed room, using a DAT tape recorder, the
electromagnetic articulograph Movetrack [54] for the tongue movements and the stereo-motion
capture system MacReflex from Qualisys for the face.

Six EMA receiver coils were used in the acquisition, as shown in Fig. 2.6(a). Three of them
were placed on the tongue, approximately 8, 20 and 52 mm from the tip, and one on the jaw.
The EMA coils on the upper lip and upper incisor were used to align the Qualisys and Movetrack
data sets. Fig. 2.6(b) shows the placement of the 25 small reflectors in the Qualisys system
that were used to capture the subject’s facial movements. An additional 3 markers were glued
to the Movetrack headmount to be able to adjust for head movements.

The subject was a female speaker of Swedish, judged as highly intelligible by hearing-
impaired listeners. The corpus consisted of 270 Swedish sentences, 138 VCV and VCCCV
words and 41 asymmetric C1V C2 words. The Swedish everyday sentences have been de-
veloped for audio-visual speech perception tests. They are independent of each other and

(a) Movetrack (b) Qualisys

Figure 2.6:Placement of EMA coils and Qualisys markers in the KTH Qualisys-Movetrack database.
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generally seven to nine syllables long (4-5 words). The VCV words were consonants and con-
sonant clusters in symmetric cardinal vowel context, while the CVC words consisted of long
and short vowels in words with C=[p,k,r].

The speech signal was sampled at 16 kHz, the EMA data at 200 Hz and the Qualisys data
at 60 Hz. To temporally align all data sets, the acoustics and the EMA data was resampled
to 60 Hz. The EMA data was aligned with the corresponding Qualisys lip and jaw markers to
create a coherent 3D data set of face and tongue movements.

The database contains both EMA data and parameter trajectories for a three-dimensional
tongue model, estimated from the EMA data. The 3D tongue model was derived from a statisti-
cal analysis of three-dimensional MR images of one Swedish subject producing a corpus of 13
vowels in isolation and 10 consonants in three symmetric VCV contexts [58]. The estimation of
the parameter trajectories for the jaw height (JH), dorsum raise (TD), body raise (TB), tip raise
(TT), tip advance (TA) and tongue width (TW) is described in detail in [128].

To summarize, the estimation is based on a fitting procedure to minimize an error function
that takes the goodness of fit between the model and data, the difference between the refer-
ence tongue volume and that generated by the parameter values and the parameter ranges
into account. The goodness of fit was calculated as the absolute difference between the po-
sitions of the real EMA coils and the corresponding virtual coils in the model. The benefit of
employing tongue model parameters rather than EMA coil positions is that the parameters have
an articulatory relevance and qualitative investigations may hence be made on the relationship
between articulations and acoustics.

2.4 Vocal tract image processing techniques

The processing and analysis of image data of the speaker’s vocal tract is very important for
the overall success of the project. For example, X-ray databases are an unequaled source of
information on articulatory movements, thanks to the good time resolution (between 25 and
50 fps) and the coverage of the entire vocal tract shape. The X-ray movies in the databases
described above represent a large amount of data that cannot be processed by hand. It is thus
interesting to develop techniques that could partially or totally process these data automatically.
Due to the difficulty of this task, few techniques have yet been proposed, despite the potential
interest. The difficulties lie in the image quality of analogue X-ray films and in the nature of X-ray
images that make them difficult to be processed even by a human expert, as shown in Fig. 2.1.
A first problem is that the tongue contour (the most important articulator) is often hidden by teeth
or dental fillings that are opaque to X-rays. A second is that since X-rays cross the head from
one side to the other, several contours will be superimposed in the two-dimensional image. The
tongue is thus not always represented by one contour in the midsagital plane, but by several,
as the tongue edges also appear. It should also be noted that the film that the image of Fig. 2.1
comes from is of high quality compared to other films in the database.

The desired accurate recovery of vocal tract shapes can be effectively done using image
segmentation techniques. The efficiency of the segmentation can be significantly improved by
applying some appropriate pre-processing steps, such as image smoothing and interpolation:
Image smoothing is needed to remove the noise and to simplify the image, eliminating the
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objects at certain scales (sizes). Image interpolation may also be needed, if the subsequent
analysis steps require a better image resolution than the one available (e.g. in the case of 3D
MR images or for the combination of data from MR and US images having different resolutions).

As we will present in the following, all the above tasks (image smoothing, interpolation and
segmentation) can be effectively approached using modern nonlinear multiscale techniques
from Image Analysis and Computer Vision based on Partial Differential Equations (PDEs) and
Mathematical Morphology. The use of PDEs introduces continuous models and offers better
and more intuitive mathematical modeling, connections with physics, better approximation to
the Euclidean geometry of the problem as well as high accuracy and stability of the corre-
sponding numerical algorithms. In addition, the nonlinear image smoothing and segmentation
can be also done using techniques of Mathematical Morphology, on which we comment briefly
at the end of this section.

2.4.1 Image Smoothing

Multiscale image analysis [129] has proved to be very useful in many computer vision appli-
cations. The first scale-spaces were linear and generated using Gaussian convolutions. As
Koenderink observed [130], such a Gaussian scale-space can be modeled via the homoge-
neous heat diffusion PDE (with initial condition the input image and the artificial time playing
the role of scale parameter). This approach has been significantly improved by various non-
linear modifications of the heat diffusion PDE, so that the diffusion respects the semantically
important image features. We will present some of the most important nonlinear diffusion PDE
methods. Perona and Malik [131] proposed the following nonlinear heat diffusion PDE:

∂u

∂t
= div (g(‖∇u‖)∇u) (2.1)

where ‖∇u‖ is a simple edge-strength measure and the diffusivity function g(r) is smooth and
decreasing, with g(0) = 1 and g(r → +∞) = 0. With such a choice of g(r), the diffusion
favors intraregion over interregion smoothing (i.e. the diffusion is reduced in strong edges). For
instance, a typical choice of g is g(r) = 1/(1 + (r/K)2), where K is an appropriate constant.
Two problems with the diffusion scheme (2.1) are the amplification of noise by the gradient and
sensitivity to initial conditions for certain choices of g. An improved model which overcomes
these problems was given by Alvarez et al. [132] and its general form is:

∂u

∂t
= g(‖∇Gσ ∗ u‖)

(
(1− h(‖∇u‖)) ∆u + h(‖∇u‖) ‖∇u‖ div

∇u

‖∇u‖

)
(2.2)

where Gσ is an isotropic 2D Gaussian of standard deviation σ, g(r) is a function with same
properties as before and h(r) is a smooth nondecreasing function, with h(r) = 0, if r ≤ e and
h(r) = 1, if r ≥ 2e, where e is an appropriate constant. Thus, away from image edges (where
‖∇u‖ is small), the diffusion is strong and isotropic, whereas near the edges, the diffusion
is reduced and smooths the level lines of the image. PDE methods can also arise from a
variational framework, by evolving the input image so that it minimizes a properly designed
functional. The most popular and well-studied functional is the Total Variation (TV), proposed
by Rudin et al. [133]:

TV [u] =

∫∫

Ω
‖∇u(x, y)‖ dxdy (2.3)
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The minimization of this functional leads to a PDE of the form (2.1), with g(r) = 1/r. Minimiz-
ing the TV functional does not penalize discontinuities, but only strong oscillations, therefore
the noise can be removed without blurring the edges. On the other hand, this model over-
smooths homogeneous regions and destroys parts of edges in images with significant noise.
In some more sophisticated PDE methods (e.g. [134]), the diffusion is not only nonlinear but
also anisotropic, i.e. it is driven by an image dependent anisotropic tensor. Tschumperlé and
Deriche [135] recently proposed one of the most effective methods of this kind. The method is
designed for the general case of vector-valued images and can be described by the following
set of coupled PDEs:

∂um

∂t
= trace

(
T

(
Jρ(∇u)

)
·D2um

)
, m = 1, .., N (2.4)

where N is the number of vector components of the image and D2um is the Hessian matrix of
the vector component um. Also, T is the diffusion tensor, given by:

T
(
Jρ(∇u)

)
=

1√
1 +N 2

w−w
T
− +

1

1 +N 2
w+w

T
+ (2.5)

where N =
√

λ+ + λ−, with λ− ≤ λ+ and w−,w+ being respectively the eigenvalues and the
unit eigenvectors of the structure tensor :

Jρ(∇u) = Gρ ∗
N∑

m=1

∇um (∇um)T (2.6)

The convolution with Gρ is done so that Jρ(∇u) takes also into account the neighborhood of
every point. The eigenvectors w− and w+ describe the orientation of minimum and maximum
vectorial variation of u and the eigenvalues λ− and λ+ describe measures of these variations
(the term N is an edge-strength predictor which effectively generalizes the norm ‖∇u‖). Thus,
the diffusion is strong and isotropic in homogeneous regions (small N ), but weak and mainly
oriented by image structures near the edges (big N ). Consequently, this method offers a more
reliable measure of local image variations as well as a more flexible and effective control on the
diffusion process. In terms of the medical images of the vocal tract which concern us here, this
method can efficiently apply the desired smoothing. It can remove the noise (even if the input
image is very noisy) but also maintain and enhance the boundaries of the vocal tract.

2.4.2 Image Interpolation

PDEs have been recently used also for the interpolation of images, leading to methods which
overcome the limitations of classical interpolators. Following a variational framework, Guichard
and Malgouyres [136] formulated the interpolation as an inverse problem. The continuous
solution of interpolation u(x, y) is constrained to satisfy the following reversibility condition:

z[i, j] = Q(s ∗ u) (2.7)

where z[i, j] is the discrete input image, Q(·) is a sampling operator and s(x, y) is an a priori
chosen smoothing kernel (e.g. the “mean kernel”). The condition (2.7) means that the decima-
tion of the interpolation solution u(x, y) should lead to the input image z[i, j]. The problem of
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finding u(x, y) in (2.7) is ill-posed and the set of its solutions forms a linear subspace (which will
be noted as Uz,s). Thus, the authors propose to choose as solution the image that minimizes
the TV (2.3) inside this subspace Uz,s. This minimization can be solved using a constrained
gradient descent, which leads to the following PDE:

∂u

∂t
= PU0,s

{
div

( ∇u

‖∇u‖

)}
(2.8)

supplemented with the initial condition that u(x, y, 0) is given by the zero-padding interpola-
tion (i.e. the element of Uz,s whose Fourier transform takes zero values outside the baseband).
PU0,s

{·} is the operator of orthogonal projection on the subspace U0,s. This method leads to
reconstructed images without blurring effects (as it allows discontinuities) and preserves one-
dimensional image structures, such as edges. On the other hand, it tends to oversmooth
homogeneous areas and it cannot always avoid some artifacts, such as staircase effects. Be-
lahmidi and Guichard [137] have further improved the above approach by developing a non-
linear anisotropic PDE, which performs adaptive smoothing quite similar to the Tschumperlé’s
model (2.4). They also took into account the reversibility condition (2.7), adding to the PDE a
reaction term so that the flow u(x, y, t) stays “close” to the subspace Uz,s. This method bal-
ances between linear zooming on homogeneous regions and anisotropic diffusion near edges,
combining the advantages of these two processes. Therefore, it leads to reconstructed edges
without blurring and with natural shape but also does not oversmooth homogeneous areas.

2.4.3 Image Segmentation

2.4.3.1 Snakes

Snakes or active contour models were proposed by Kass et al. [138] and are one of the most
important tools in computer vision. Active contours are based on deforming a given contour
enclosing an initial region, until it comes into alignment with the boundary of the image object
to be segmented. This is accomplished by minimizing a properly designed energy functional
of the contour, which should be at (local) minimum when the contour delineates the desired
object boundaries. Regularization of the contour is achieved by additional energy terms which
favor the smoothness of the curve and limit the bending effect. The energy minimization is
accomplished by steepest descent techniques, which lead to curve evolution governed by a
PDE. This model has been effectively used in many applications and leads to a quite fast algo-
rithm. On the other hand, the classical approach of snakes cannot directly deal with changes
in topology, i.e. even when needed, the evolving contour(s) cannot split or merge. Special ad
hoc procedures have been developed to overcome this limitation, but they are complicated and
heuristic. In addition, the snake functional is not intrinsic, as it depends on the arbitrary curve
parametrization. This is an undesirable property, since parameterizations are not related to the
curve geometry.

One of the first attempts to use Snakes to extract tongue contours was that of Tiede [139].
At first sight, the method is well suited for this purpose, but because other features are su-
perimposed on the tongue, tracking cannot be achieved alone with snake methods. Berger
and Laprie [140,141] thus proposed a tracking tool that combines Snakes and a motion based
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Figure 2.7:Example of tongue tracking in three consecutive frames using a combination of Snakes and
a motion based method.

method, in which the motion is estimated through the calculation of optical flow. Fig. 2.7 shows
an example of tracking for three consecutive images.

The operator outlines the tongue in the first image and supplies a rectangle containing a
motionless region (from the top of the image up to the dental fillings in the upper jaw). This
region is used during a pre-processing stage necessary to remove spurious image movements
and intensity variations between images.

2.4.3.2 Geodesic Active Contours

Caselles et. al [142] proposed Geometric Active Contour models to overcome the drawbacks
of classical Snakes. In the method, the PDE of the geometric curve evolution was directly
designed from a heuristic point of view. These models further developed in a variational frame-
work by Caselles et al. [143] and Kichenassamy et al. [144], leading to the Geodesic Active
Contours (GAC). In this model, the curve evolution is derived from the minimization of an en-
ergy functional, which is a geodesic in a Riemannian manifold, endowed with a metric induced
by image features. Therefore, in contrast to snake energy, this functional is not depending on
the curve parameters. This geodesic (weighted length) to be minimized is given by:

J [ ~C] =

∫ Len(~C)

0
g(||∇I( ~C(s))||)ds =

∫ 1

0
g(||∇I( ~C(q))||)︸ ︷︷ ︸

edge attraction

|| ~C ′(q)||︸ ︷︷ ︸
smoothness

dq (2.9)

where ~C(q) = (x(q), y(q)), q ∈ [0, 1] is a curve, s is the Euclidean arc length parameter, Len( ~C)
is the Euclidean length of ~C(q) and g is a smooth decreasing function s.t. g(0) = 1, g(r →∞) =
0. For instance, a typical choice of g is g(r) = 1/(1 + rn), with n = 1 or 2. The minimization of
this energy using steepest descent leads to a curve evolution. After the addition of a “balloon”
force to speed up convergence, this evolution finally becomes:

∂ ~C(t)

∂t
= (gκ) ~Ni︸ ︷︷ ︸

smoothness

− (∇g · ~Ni) ~Ni︸ ︷︷ ︸
edge attraction

− (gβ) ~Ni︸ ︷︷ ︸
balloon force

(2.10)

where κ is the curvature of the contour, ~Ni is the unit inward normal to the contour and β is a
constant specifying the strength of the balloon force. Depending on the sign of β, the balloon
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force acts as an erosion or as a dilation. The above geometric curve evolution is efficiently
implemented using level set methods [145]. The use of level sets has various advantages, with
more important that topological changes of the evolving curves (i.e. splitting or merging) are
automatically handled. In this theory, the evolving planar curve ~C(t) is represented as a level
line of a scalar embedding function u(x, y, t) defined on the whole image domain. The evolution
of the contour is done implicitly as we evolve u(x, y, t) under a suitable law. In the specific case
of GAC model, the curve evolution (2.10) can be described by the following level set function
PDE:

∂u(x, y, t)

∂t
=

(
div

(
g(‖∇I(x, y)‖) ∇u

‖∇u‖
)
− gβ

)
‖∇u‖ (2.11)

This GAC model shows an improved performance compared to Snakes model, as it is para-
metrization-independent and it can easily handle topological changes (due to level sets). On the
other hand, even GAC model has some important limitations, because it considers only local
information (based on the simple stopping factor g), without taking into advantage any prior
knowledge for the specific type of object we want to detect. In addition, a specific initialization
step is still necessary, where the initial curve should lie completely exterior or interior to the
object boundaries.

2.4.3.3 Incorporating Prior Information

The segmentation result can be significantly improved by incorporating prior knowledge for
the object to be detected, like shape knowledge. Such a prior knowledge can be effectively
incorporated in the framework of level sets, as for instance is done in [146], where it is used
feature based information and in [147–149] where shape cues are exploited. Consequently, for
the specific application of vocal tract image processing, the knowledge about the shape of the
vocal tract and of the other anatomical structures in its vicinity can be used from such methods
to improve the precision of the corresponding shape recovery.

An example of this is approached of Thimm and Luettin [150] that is based on a Canny edge
detector. A set of state images representing images for which the relevant contours have been
extracted and checked are used to guide the tracking algorithm. The front teeth, jaw and lips
are located and define a background image. The background images is then subtracted from
all other images, in order to enhance the tongue contour. As the consistency of contours along
time is a decisive help for human experts, a distance between contours in consecutive images
has been defined. The tracking thus incorporates two sources of information: the distance
between the set of contours detected and a state image and the consistency between the
contours obtained at t− 1 and t. In addition, this temporal consistency is applied in the forward
and backward directions in order to be more robust against fast tongue movements, i.e. when
the sampling period does not enable any temporal continuity between contours at time t and
t− 1 to be preserved.

A result obtained on one complete film can be seen at:
http://www.idiap.ch/machine_learning.php?project=64 .
The evaluation conducted by Thimm and Luettin shows that the contours of lips and tongue
have been successfully located in more than 98% of the frames with a sufficient precision.

Fontecave and Berthommier [151, 152] proposed to use a set of key images in which the
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tongue was extracted by hand to guide the extraction of unknown images. The guided extrac-
tion relies on the Euclidean distance in video features between the unknown and key images.
The discrete cosine transforms that represent the tongue contours are a set of 10 points (two
coordinates for the two points corresponding to the tongue apex and only the ordinate for the
other eight points). The tongue contour is reconstructed by applying a spline to connect the
10 points. Several improvements have been added to reduce the reconstruction error: video
and geometrical features have been filtered by a low-pass filter in order to keep only relevant
deformations and the indexation is carried out on a neighbourhood of three points to reduce
discontinuities.

The approach has been extended to all the speech articulators (lips, velum and tongue)
visible on X-ray images. One result is available on
http://www.icp.inpg.fr/ ˜ berthom/m2p/icslp06/tongue-lavals43.html .
The average error for the tongue is less than 9 pixels, which corresponds approximately to
3 mm. The manual processing of 100 key images (out of the 5673 images of the film) lasts
approximately 2 hours.

2.4.4 Morphological Methods

For image enhancement, multiscale analysis and the extraction of geometrical features, tech-
niques from mathematical morphology [153–157] can be used. This is a powerful, novel and
effective nonlinear methodology that is based on set and lattice theory and aims at the quanti-
tative description of the geometrical structure (e.g. shape, size) of images and visual objects.
Its mathematical background is based on lattice algebra, nonlinear filtering, integrated and
stochastic geometry. It offers powerful nonlinear multiscale analysis techniques that have the
advantages over linear multiscale approaches of edge preservation and precise size determi-
nation. It also provides powerful segmentation schemes based on the watershed transform and
similar approaches [158–160]. Mathematical morphology helps in developing object-oriented
nonlinear operators for image smoothing and simplification (e.g. the levelings [161]), object
marker detection for segmentation seeds, watershed segmentation using flooding-type grow-
ing based on contrast, size or mixed criteria [162], and region-based shape descriptors. In
addition, it combines well with the PDE approaches to smoothing and segmentation problems.
For example, multiscale morphology can be modeled and implemented using nonlinear PDEs
that are the same or very similar to the ones used for in several nonlinear scale-spaces and
geometric curve evolution schemes [163–165]. A promising approach is to further explore the
combination of Mathematical Morphology and PDEs used for multiscale analysis and curve
evolution. Geodesic curve evolution [143, 166] using level sets [167] can model object shape
deformations and detect/track multiple fronts and object-regions in face and vocal tract im-
ages and videos by propagating parameter-free active contours. A significant improvement in
the boundary detection and segmentation problems could result by combining the attractive
features of both approaches into one mixed approach, where the region-based morphology
approach offers good image simplification, region markers, and global segmentation whereas
the PDE-based contour evolution approach offers better localization and regularity of individual
region boundaries.
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2.5 Face image feature extraction techniques

We describe next Computer Vision techniques for the automatic extraction of articulatory visual
information from parametric models of shape and texture. They are applicable to both 2D and
3D modeling applications, but the discussion here is mostly confined to the 2D case.

Parametric models of shape and texture, such as Active Appearance Models [168], Active
Blobs [169], Morphable Models [170] and other similar techniques [171–173] are diverse tools
for object appearance modeling. Employing a number of parameters controlling shape and
texture variation, these models bring a novel image into registration with a reference template,
even in cases that the novel image is a deformed version of the template; imaging conditions
such as camera position and object illumination can also differ significantly between the tem-
plate and the novel image. It is notable that these models can represent shape and texture
variability in a whole class of objects, such as faces, and learn this variability during a training
phase. Such parametric models can be applied to both image synthesis and analysis prob-
lems. For example, they have been successfully utilized in applications such as object tracking
in video [169], face synthesis [170] and face recognition [174].

An important issue with parametric shape and texture models is to fit them to novel images
by minimizing the discrepancy between observed and synthesized appearances. This is a diffi-
cult optimization task and general-purpose optimization procedures such as stochastic gradient
descent [170] can be inefficient. A rather simple ad-hoc approach that works well in practice is
to assume that there is a linear relationship between the error image and the parameter incre-
ments; this mapping is learned in a precomputation phase and is used subsequently unaltered,
resulting to a very efficient class of algorithms, reviewed.

Parametric models of appearance are generative models which use a compact set of pa-
rameters to describe the manifold of shape and texture variation of images depicting a single
object or a class of objects.

2.5.1 Object Appearance Modeling

Typically the shape of the object is sampled at L landmarks, whose coordinates constitute a
shape vector s of length 2L in the two-dimensional case. We allow a particular instance of the
shape s to deviate from a mean shape s0 by letting s − s0 lie in a linear subspace spanned by
n eigenshapes si, yielding:

s = s0 +
n∑

i=1

pisi (2.12)

The modes of shape variation si can be statistically learned using a training set [168], computed
by modal analysis of the shape mesh [169], or, finally, selected a-priori to allow for modeling of
certain distortions [175]. Often these modes do not model scale and translation, in which cases
an explicit similarity transform St makes the model scale and translation invariant (St has 4 de-
grees of freedom t1:4 with the parameterization of [168,176]). The enhanced shape parameter
vector p̃ = [t1:4, p1:n]T with length 4 + n implicitly defines a dense continuous deformation field
W (x, p̃) that maps every point x on the reference object to its corresponding point on a novel
object, as follows: The deformation W (x, p̃), which usually is a thin-plate spline or a (piecewise)
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affine mapping, is determined by requiring that it maps each landmark in the reference shape
s0 to its corresponding landmark in s. The texture part of the appearance refers to the intensity
or color (other information channels can also be added) of the object in a shape-normalized
frame. Similarly to shape, allowable texture samples A(x) are generated by a linear model,
using a mean texture A0(x) and a set of m eigentextures Ai(x):

A = A0 +

m∑

i=1

λiAi, (2.13)

where we have used vector notation for textures; e.g. A0 denotes the mean texture image
raster-scanned into a vector with N entries, as many as the texture samples of the reference
object. The eigentexture images, among other things, compensate for illumination changes
[171] and model texture variability between different objects of the same class (e.g., faces)
[168,170]. For example, we show in Figure 2.8 the eigenshapes and eigentextures we obtained
by training a model on a person’s face. Texture gain and offset can be accounted for separately
by a simple texture transformation Tu(I) = (u1 + 1)I + u2. We gather all texture parameters in
an enhanced texture vector λ̃ = [u1:2, λ1:m]T with length 2 + m.

Figure 2.8:Upper row: Mean shapes0 and the first eigenshapessi. Bottom row: Mean textureA0 and the first
eigentexturesAi.

2.5.2 Model Fitting

A central issue with parametric appearance models is to find algorithms that efficiently and
accurately fit them to a novel image I, i.e. find the concatenated shape and texture parameters
q = [p̃T , λ̃T ]T with length n + m + 6 that minimize the discrepancy between the warped-back
normalized image texture Tu(I(W (p̃))) and the synthesized texture A. The error image E(q) is:

E(q) = Tu(I(W (p̃)))− (A0 +

m∑

i=1

λiAi) (2.14)
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Note that the shape warp W (p̃) denotes the full shape transform W (p̃) ≡ S(t) ◦W (p), namely
deformation followed by similarity (in that order). The mismatch is usually quantified by the Eu-
clidean norm ‖E(q)‖2 (sum of square differences) of the error image. Robust norms are nec-
essary when handling occlusion [172]. Minimizing this mismatch is a non-linear least-squares
problem on a high-dimensional space and general-purpose optimization techniques such as
stochastic gradient descent [170] can be slow. Most efficient techniques to solve the problem
require as input a good starting guess for the unknown parameters q and then iteratively update
them until a (local) minimum of the mismatch norm is reached. Utilizing an image pyramid and
working in a coarse-to-fine strategy increases the robustness of most methods. A popular gen-
eral technique for improving the parameter estimate is by using a first-order Taylor expansion
E(q + dq) ≈ E(q) + ∂E

∂q dq and then applying a Gauss-Newton type algorithm to compute an

additive increment by dq = −K(q)E(q), where K(q) = (∂E
∂q

T ∂E
∂q )−1 ∂E

∂q

T
[177]. However this

is computationally very expensive, since image gradients ∂I
∂x and warp Jacobians ∂W

∂p need to
be recomputed every step [178]. Although K(q) is not constant in general, a number of au-
thors make the assumption that there is a constant linear relationship between dq and E(q)
and compute it by multivariate analysis on the training set [168, 169, 175]. Despite its crude-
ness, this approach leads to very efficient algorithms which often demonstrate good accuracy.
However, as Baker and Matthews have noted [176, 178], the so-called forwards additive (FA)
class of algorithms just described is not the only viable parameter update strategy. They unified
previous work on forwards compositional (FC) [179] and inverse additive (IA) [171] parameter
update strategies in iterative image alignment algorithms and introduced the inverse compo-
sitional (IC) parameter update technique, where a warp parameter update dp̃ is computed to
update the warp W (p̃) compositionally by:

W (x, p̃)←W (x, p̃) ◦W (x, dp̃) ≡W (W−1(x, dp̃), p̃) (2.15)

They showed that, although the compositional parameter update (2.15) is obviously more costly
than the simple additive update p̃← p̃ + dp̃, each full step of the IC algorithm is overall cheaper
than in any alternative approach when texture variation is allowed, because it turns out that
most of the quantities involved do not change during the fitting procedure and thus can be
precomputed, as will be made clear in the sequel. In contrast, the IA method admits effi-
cient implementation only when a restricted class of warps is utilized (including global affine
warp) [171] and the FC method is not as efficient as the other two, since image gradients
need to be computed every step; see [178] for further details and [99] for an application of
the IC approach to 3D morphable model fitting. Baker et al . have introduced in a series of
papers [176,180,181] two algorithms that fall into the inverse compositional framework and are
particularly effective. It is notable that the parametric models discussed herein allow to com-
pute not only the parameters that best fit the data, but also the uncertainty in their values. We
can employ as uncertainty in the visual features the uncertainty in estimating the parameters
of the corresponding non-linear least squares problem [177, ch. 15]; plots of the corresponding
uncertainty in localizing the landmarks on the image for two example faces are illustrated in
Fig. 2.9. Accompanying the feature values with their corresponding error bars turns out to be
particularly important in multi-cue fusion tasks, when one needs to combine the visual cue with
other articulatory measurements and uncertain data should be properly discounted.
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Figure 2.9: Tracked face shape and feature point uncertainty.

2.5.3 Low-Dimensional Representation of the Mouth

Many methods in audiovisual signal processing rely on extracting the lip contours only [182–
186]. The lip contours are modeled using snake-like methods (c.f. section 2.4.3) or data-
driven Principal Component Analysis (PCA) methods [182, 184, 185]. An alternative is to not
explicitly estimate the shape, but rather the appearance. Saenko et al. [187] employ a cas-
cade of support vector machines that partition lip images according to speaking/non-speaking,
closed/narrow/medium/wide, rounded/unrounded, etc. This approach is very robust and en-
ables separation between a small set of spoken commands without the use of acoustic infor-
mation, but the coarse representation is unsuitable for visual-to-articulatory inversion.

A more viable representation for speech inversion is Independent or Principal Component
Analysis (ICA or PCA) of the lip images. The method first stabilizes the image by tracking the
head or the lip region, since non-rigid tracking of an articulated face inevitably introduces some
errors, due to image noise and necessary simplifications in the model compared to the real
face.

The subject’s mouth can be stabilized in the images by rigid tracking of the upper part of the
face, which usually displays less deformation than the mouth area. Under controlled lighting
conditions with the subject facing the camera, a template based 2D method is suitable.

The face pose yk in frame k can be described by the position, size and orientation of a
rectangle over the upper part of the face (above the mouth) in the image. The pattern within the
rectangle at frame k, fk, can be described using a template face pattern f0 and a probability
density function over pose yk. This density function is estimated in each frame k by iteratively
minimizing ||fk−f0

σf
|| using a particle filter [188,189]. In the first frame of the sequence, the pose

value is assumed to be normally distributed over the state-space, which corresponds to initially
searching over a wide range of possible poses.

A low-dimensional representation of the image part centered on the mouth can be learned,
based on a template image m0 with neutral lip pose, Fig. 2.10(a). The neutral template is sub-
tracted from each image mk, with the R, G and B bands subtracted separately. The difference
image can be represented as a column vector xk = mk −m0 of size d, with X = [x1, . . . , xN ],
where N is the number of images. A projection of these vectors onto a base C = [c1, . . . , cn],
where n ≤ N,n ≤ d can be expressed as X ≈ CV where V is a parameter matrix in the
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(a) m0 (b) P1 (c) P2 (d) P3 (e) P4 (f) P5 (g) P6 (h) P7 (i) P8 (j) P9

(k) I1 (l) I2 (m) I3 (n) I4 (o) I5 (p) I6 (q) I7 (r) I8 (s) I9

Figure 2.10:(a) Template image. (b-k) The first 9 principal components P1-9. (l-u) The first 10 indepen-
dent components I1-9.

subspace defined by C. The base C can be e.g., independent [190] or principal compo-
nents [182,184,185]

Using PCA, C is selected so that the columns represent the n largest principal components
(eigenvectors) of the data set, Fig. 2.10(b-j). In ICA, C is instead selected as the n most
informative statistically independent components of the dataset, Fig. 2.10(k-s).

Fig. 2.11 shows examples of reconstructions with these two types of component represen-
tations for an image of the Qualisys-Movetrack database. In general, ICA is regarded as a
better way of representing the lips for visual speech recognition than PCA, for three reasons.
Firstly, previous studies have shown ICA to outperform PCA as image representation for visual
speech recognition, face recognition and face expression recognition [191–193]. Secondly, the
ICA representation is better suited to manage shape difference due to speaker identity [193],
since ICA better models the statistical independence of shape differences due to identity and
differences due to articulation. Last, the independent component images (Fig. 2.10k-s) are
much more spatially concentrated than the principal component images (Fig. 2.10b-j), which
means that the representation of the components can be sparsified to speed up the compu-
tations. This is essential in a real-time speech recognition system. In the particular case of
Fig. 2.11, the PCA reconstruction is however superior, as the lip rounding is better preserved.

Parametric models of shape and texture, as described here, seem to be particularly effective
for articulatory visual feature extraction. They have already applied them with good success in
facial visual feature extraction for audiovisual speech recognition [85] and automated medical
image analysis; see [194] and the references therein for such applications. We strongly believe
that this framework can be particularly fruitful for the purposes of ASPI.

(a) Original[0ff] (b) 100 PC (c) 50 PC (d) 25 PC (e) 100 IC (f) 50 IC (g) 25 IC

Figure 2.11:(a) Original frame. (b-d) PCA reconstruction of the same frame. (e-h) ICA reconstruction
of the same frame.
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Chapter 3

Vocal tract representations

By definition, the output of any acoustic-to-articulatory inversion is a description of the vocal
tract shapes. The shapes of the human vocal tract are hopelessly complex and we need a
less complicated approximate representation, that is a vocal-tract model. From the birth of
speech communication science, researchers have been interested in the relationship between
vocal tract shapes and the acoustics, since it constitutes a main part of the observable speech
production chain. In order to study such relationships, researchers have needed a simple and
thus manageable description of tract shapes. Traditionally tract shapes have been described as
area functions or in articulatory models. In the former, the complicated 3D tract is represented
by an acoustically equivalent vocal tract area function that is defined by variations of the cross-
sectional area along the midline from the glottis to the lip opening. In articulatory models, the
vocal tract configuration is described by the state of the articulators, such as the position of the
lower jaw and of the tongue. In this section, we shall describe these two types of models.

3.1 Models of vocal tract area functions

The vocal tract area function is defined as the variation of the cross-sectional area along the
midline of the vocal tract from the glottis to the lip opening. In this representation, many de-
tails such as geometrically complicated cross-sectional shapes and a roughly perpendicular
bend between the oral and pharyngeal cavities are neglected. Nevertheless, such a simpli-
fied 1D description is acoustically valid for frequencies below 4 kHz, where the main mode of
the sound propagations is along the length of the vocal tract. In fact the majority of the vo-
cal tract calculations to obtain speech signals in the time domain and spectral characteristics
in the frequency domain employ this simplification with the area function. In a few advanced
studies, the vocal tract is described by 2D and 3D geometry in which the main purpose is to
gain better understanding of the fricative sound generation and sound propagations of fricative
consonants [195], the effect of wall impedance [196], the vocal tract bending [197] or air flow
velocity [198].

The description in terms of the area function was formulated to simplify calculations of
the vocal tract acoustics. It is common to make further simplification by approximating the
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continuously varying cross-section area by a piecewise step function where the length of each
section is fixed at 1 cm or less. Since the human vocal tract length is about 17 cm, we have
at least 17 variables specifying the area function. Instead of controlling these cross-section
variables, it is often desirable to be able to describe the area function with a small number of
parameters, which have some articulatory meaning like the tongue position, oral constriction
aperture, lip configuration, and so on.

3.1.1 Three-parameter models Xc, Ac, and l/A

About 50 years ago, Stevens & House [199] and Fant [200] proposed a model of area-function
having only three parameters, the oral constriction position as the distance Xc from the glottis
end, the constriction area Ac, and the length over area of the mouth-opening (l/A). The simplest
one proposed by Fant [200] is shown in Fig. 3.1. The total length of the model tract is 16 cm
(the larynx tube is neglected) that roughly corresponds to the length of adult male speakers. It
can be regarded as a 15 cm long oral and pharyngeal tube with fixed cross-sectional area of
8 cm2 that is constricted by the tongue-body at the middle section labeled A3, where the area
is Ac. Roughly speaking, Xc accounts for the effects of the front/back tongue movements and
Ac for those of the tongue height upon the area function. The geometry of the lip section is
specified by two variables, the length l and area A. Acoustically speaking however, these two
variables can compensate each other and the ratio l/A, which is proportional to the acoustic
mass of the opening, is used as the lip parameter. Since the length of the tongue section is
fixed at 5 cm, the length of the front and the back cavity is determined from the position Xc.

Figure 3.1:Three parameter model of vocal tract area function proposedby Fant [200].

Despite of its extreme simplicity, the model captures basic aspects of the articulatory config-
uration for vowels. In an improved version, the uniform tongue section at the middle is replaced
by a smooth parabolic function [199] or by a hyperbolic function [200] to represent more nat-
urally the effect of a rounded tongue-body shape on the vocal tract area function. In these
models, the Xc and Ac specify, respectively, the position of the most constricted position and
area.
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Using this kind of models, Stevens & House [199] and Fant [200] studied mapping from
articulatory configurations in terms of Ac, Xc, and l/A to frequencies of the first three to five
formants, which were presented as the famous nomograms (for example, in page 76-77 and
82-84 in [200]). These three parameters are sometimes still used to quantitatively characterize
the vocal tract geometry of vowels, which are derived from the observation of, for example,
X-ray or MRI data, or from a more sophisticated anthropological articulatory model.

Moreover, the nomograms are still referred in the literature when the articulatory-to-acoustic
mapping is the issue. It is not unreasonable to suspect that Stevens’ quantal nature of speech
[201] was inspired by such nomograms. Stevens asserts that the articulatory-to-acoustic map-
ping is not homogeneous. Instead, in some regions the acoustics is relatively stable against a
change in the value of an articulatory parameter and in other regions an abrupt change in the
acoustics can occur as the articulatory parameter varies slightly. Stable regions are therefore
favoured as target positions for vowels. Recently, phoneticians and phonologists have begun
to pay attention to this quantal theory to investigate the origin of sound inventory of different
languages. If the theory is correct, vowels situated in such a stable region could manifest one
(acoustics) to many (articulatory states) mapping relations, filling up an acoustics-to-articulatory
look-up table of an inversion method.

3.1.2 Distinctive region model (DRM)

As described above, the primary motivation of the three parameter models is that they specify
the vocal tract configurations with a minimum number of parameters that are interpretable in
phonetically relevant articulatory terms, such as tongue position and height, and lip shapes.
The Distinctive region model (DRM) was formulated with a completely different philosophy
[202]. Mrayati, Carré and Guerin sought the most efficient ways to modulate resonance, and
thus formant, frequencies by deforming a given acoustic tube. The formant modulation effi-
ciency is assured by a sensitivity function, which is defined as a ratio of a formant frequency
change over a small increase or decrease in cross-sectional area at a point along the length
of the tube. In the case of a uniform tube with one end closed (glottal end) and the other end
open (mouth opening), the sensitivity function of each formant can be analytically derived and
has the form of a cosine function.

Fig. 3.2 depicts sensitivity functions for the first three formants in a binary format considering
only the polarity. As the cross-sectional area increases slightly, the formant frequency also
increases in plus regions but decreases in minus regions and vice versa. The authors remarked
that if the acoustic tube is divided into the eight regions as indicated by the thin vertical lines in
Fig. 3.2, an area increase or a decrease would result in distinctive patterns of formant changes.
For example, an increase in the region A (a mouth opening) would results in an increase of
all the three formant frequencies. Interesting, a decrease in the cross-sectional area in the
opposite end of the tube, marked by Ā (at the glottal end), would result in the same formant
frequency changes. This is due to the reciprocity property of a close/open acoustic tube, which
holds for the pair of regions, such as A and Ā. The name of the model, DRM, therefore comes
from the fact that a change of the area in each of its regions produces distinctive formant
frequency changes.

Exploiting this acoustic property of DRM, the authors formulated a set of strategies to con-
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Figure 3.2:Eight distinctive regions along in a uniform acoustic tube as a neutral vocal tact. The left
end corresponds to the glottis and the right end to the lips. Achange in the area of each region results in
the distinctive formant pattern. (after [203])

trol formant transitions from one vowel to another [203]. It may seem superfluous to employ
eight degrees of freedom to specify the shapes of the vocal tract area functions, but the func-
tional degrees of freedom could be reduced by imposing the control strategies. Although this
combination works rather well as a speech production model, the benefit of DRM in the inverse
problem is not clear. A study appears to indicate an advantage of DRM in inversion in com-
parison with a uniformly divided eight-section model of the area function, as discussed latter in
Chapter 5.

3.2 Geometrical articulatory models

The vocal tract shapes are determined by maneuvering the articulators such as the lower jaw,
tongue, lips and larynx. It is then natural to build a model that can more directly describe the
articulatory processes during speech production by human.

As the first such an attempt, Coker & Fujimura [204] formulated an articulatory model de-
scribing vocal tract profiles combining simple geometrical elements. It had a circle representing
the tongue body that could move in the two-dimensional space delimited by a fixed outer circle
representing the palate and rear pharyngeal walls, which is called a ”circle-in-circle” model.
The profiles of the lip and larynx were added using combinations of straight lines to complete
the articulatory model. In the original version, the circular tongue was specified by the two pa-
rameters, front/back position and the height. So, its control parameters were quite similar to the
three parameter models of the vocal tract area functions. Its presentation was however closer
to the human vocal tract and more natural than the three parameter models of area functions.
In fact an elaborate version of this circle-in-circle model, including jaw parameter, was used
to calculate vowel-to-vowel formant transitions in a text-to-speech system that employed a for-
mant synthesizer [205]. To calculate the transitions of formant frequencies, the area function

38 November 27, 2008 ASPI/2006/D1/v2.0



Deliverable D1Technology inventory and specification of fields investigated IST Project IST-2005-021324

was successively derived from a time-varying configuration of the model.

Mermelstein [206] improved the circle-in-circle model by adding the jaw component and
other new features, such as parameters specifying the hyoid bone and the tongue apex position,
for studying speech production process. The model described the detailed vocal tract shapes
in the midsagittal plane by specifying the value of “a rather abundant set of variables”. In
practice, many variables were fixed constant values and therefore the actual number of control
parameters was often less than 10. The lower jaw is no doubt the most basic component in
human articulation system. It influences directly the tongue position, since the tongue sits on
the jaw, on lip shapes, and even on the larynx position [207]. In the original articulatory model
without the lower jaw as an explicit parameter (e.g., [204]), the effect of the jaw position is
implicitly included in the value of each parameter as the tongue front/back position and height,
lip tube, and larynx position in a redundant fashion. Since the study of the coordination among
different articulators is essential to understand the speech production mechanisms, the explicit
use of the jaw position as an independent control parameter is a necessary step forward in
articulatory modeling.

These models appear to be capable of describing vocal tract configurations for vowels and
consonants with a relatively small number of articulatory parameters. They have weakness in
two respects, however. In geometrical models, it is not evident how to specify the parame-
ter values. For example, the parameter values might be determined from vocal tract profiles
observed using midsagittal images from X-rays or MRI. The determination would require, how-
ever, a fitting procedure, manual or automatic, between model and data [208]. The parameter
values cannot be calculated from data in a straight forward way. Moreover, the models were
built in an ad-hoc manner based on the authors’ knowledge and good intuitions. It is therefore
not so simple to evaluate the adequacy of these models. These weaknesses make another
approach interesting, that of modeling based on analysis of articulatory data, which we shall
discuss in the following section.

3.3 Data-based articulatory models

In general, articulatory data, for example tongue profiles, are composed of a mass of apparently
unlawful curves. Such data however often contains a lot of redundancy. It is useful therefore to
perform a data reduction in the analysis so that the data are described by a set of orthogonal
or uncorrelated variables. If those variables were interpreted in articulatory terms, the concise
way of describing the raw data could be regarded as an articulatory model and the variables as
articulatory parameters.

3.3.1 Models based on Fourier Coefficients

Heinz and Stevens [209] were the first to analyze X-ray data with a semi-polar coordinate sys-
tem, i.e. consisting of a polar part covering the oral cavity and a Cartesian part for the pharyn-
geal region. The shape of the tongue profiles from the tip to the root was aligned with respect
to fixed anatomical landmarks visible in the X-ray pictures, such as the upper incisors. The co-
ordinate system was then placed on each of the aligned profiles and the shape was measured
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as a series of intersection points between the tongue contour and the coordinate grids. Each
tongue shape can therefore be represented by a vector that consists of the radius in the polar
system in the mouth region and the distance from the vertical axis of the Cartesian system
in the pharyngeal region. The sampled original contours can be recovered by the projection
of the corresponding vectors onto the semi-polar coordinates. The use of such a coordinate
system for measuring shapes on image data obtained using X-rays, MRI, and ultrasound has
now become a standard procedure.

Liljencrants [210] investigated static X-ray pictures during the production of 10 Swedish
vowels by two subjects and observed that tongue vectors plotted in function of the element
(coordinate) numbers were quite smooth, indicating that each vector is mainly composed low
spatial frequency components. This observation motivated his Fourier (coefficient) represen-
tation of the tongue vectors. To recreate the original tongue contours, the tongue vector is
resynthesized from the sine/cosine coefficients (equivalent to magnitude and phase) and then
projected on the semi-polar coordinate system. If N/2-1 pairs of coefficients were used (where
N is the size of the tongue vector), the recovery is error free. If some errors in the re-synthesis
are acceptable, higher-order coefficient pairs may be truncated. In fact, Liljencrants’ experiment
showed that one pair of the cosine and sine coefficients at the fundamental spatial frequency
can already describe the observed tongue vectors with an acceptable root mean square error.
With the two lowest coefficient pairs, the error is negligible.

The Fourier model hence provides a mathematically simple and elegant solution to describe
tongue contours with high efficiency, but the sine and cosine functions are difficult to interpret
in articulatory terms. As described in the following, factor analysis approaches provides an
articulatorily interpretable model with the elegance of Fourier model.

3.3.2 Models based on factor analysis

Harshman, Ladefoged, & Goldstein [211] analyzed tongue profiles of English vowels using a
procedure PARAFAC based on the principal component analysis (PCA). It identified two major
factors. As shown in Fig. 3.3, one factor accounts for a forward movement of the back of
the tongue concomitant with an upward fronting movement of the tongue blade. The second
factor accounts for a forward movement of the tongue root associated with the upward backing
movement of the tongue body. The directions of these two movements appear perpendicular
to each other, which is a consequence of the imposed orthogonal (or uncorrelated) nature
between factors. The observed tongue profiles are described by the weighted sum of these two
components. In this study however, the factor that accounts for the influence of the lower jaw
movement were not extracted from the tongue profile data.

Kiritani, Sekimoto, & Imagawa [212] explicitly treated the jaw factor in the analysis of the X-
ray microbeam data for Japanese vowels. In this study, the tongue deformations during vowel
sequences were measured by tracking four pellets glued to the tongue surface, i.e., a flesh
point measurements. The jaw and lip movements were also measured by tracking a pellet
fixed, respectively, on the lower incisors and on the lower lip. All the six pellets were aligned in
the midsagittal plane. Although the observation of jaw, tongue, and lip movements with these
six pellets appears under-sampled, this study has shown how a jaw-based articulatory model
could be formulated by a statistical analysis on articulatory data.
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Figure 3.3: The effects of the first two principal factors upon the tongueprofiles. The tracings show
the tongue position for a large positive (solid line) and a large negative (dashed line) factor value. The
dots in the arrows from positive to negative shape corresponds to the zero factor value, i.e. an average
(neutral) tongue contour. (after [211])

In the analysis, the measured jaw position in terms of x- and y-coordinates was first ap-
proximately described by a single number, i.e., jaw parameter J, using its projection on the
regression line that was calculated on the entire jaw position data of a given speaker. Second,
linear regression lines are determined between the jaw parameter and the x-coordinate value
(and y-coordinate value) of each of the six pellet positions, including the jaw pellet. The compo-
nent explained by each linear regression represents the jaw-dependent displacement on the x-
or y-coordinate of the observed pellet position. Third, these displacements are subtracted from
the corresponding six pellet positions. Finally, the residual displacements were analyzed by the
PCA. Fig. 3.4 illustrates the individual effects of the jaw factor J (determined by the regression
analysis) and of two principal factors, T1 and T2, upon those 4 tongue pellets. It is interesting
to note that the first principal factor T1 accounts for the front/back tongue-body movements and
the second factor T2 for deformations, bulging vs. flattening, of the tongue body. The effects of
the jaw parameter J and of T2 are somewhat similar In detail however, J affects the height of
the tongue, whereas T2 the front/back position.

Figure 3.4:The effects of the first three factors upon the tongue profiles. (after [212])

The main goal of those statistical analyses was to study speech production processes with
simpler and manageable representation than the raw articulatory data. Tongue deformation
during the production of vowels can thus be investigated by two principal components [211] or
by the jaw parameter and two principal factors [212]. These statistical models can be regarded
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as articulatory models as long as the effect of each factor on the tongue contours can be
interpreted in articulatory terms.

3.3.3 Vocal tract models based on X-ray data

Maeda [213] created a complete vocal tract model based on the factor analysis of X-ray data.
First for a set of isolated vowels in earlier versions and in later versions for a set of 10 short
natural French sentences [214]. The later versions actually consist of three models, for the
tongue, lips and larynx [215]. Since these three articulators can be assumed to be independent,
except that they are affected by the lower jaw position as mentioned before, they are analyzed
separately with the jaw position as a common factor. Here we cannot use classical PCA, since
it does not allow us to specify the measured jaw position as a factor. Maeda [213] employed
an arbitrary orthogonal factor analysis proposed by Overall [216], which is now refered to as
guided PCA. It operates on the correlation matrix derived from observations of variables, such
as the tongue vectors. The matrix is assumed to be the linear sum of correlation structures
and each structure is determined by a factor pattern that accounts for the first-order effect of a
cause, such as the jaw position, upon the observed variables. In this view, the PCA determines
the structures so that the maximum of variance is explained by each factor.

Let us explain how this analysis works with an example. Fig. 3.5 shows a typical method
to measure the shape of tongue contours applying the semi-polar coordinate system, which
is fixed relative to the head position. A set of the value of intersection points between the
coordinate grids and the contour (which is a vector) represents the contour shape. The figure
also shows how the jaw position is defined. The line connecting the upper and lower incisor tips
is projected to the straight line having an angle theta. This projection J is considered to be the
lower jaw position (or opening). The vocal tract state is represented by a vector that consists
of the tongue coordinates, J and the exterior tract walls. This kind of vectors is collected for all
frames in the X-ray data.

In this particular study, the angle theta was determined to maximize the influence of the J
parameter on the variance of tongue vectors, which turned out to be 65◦. Next the correlations
among all the variables, i.e., tongue vector elements plus J, are calculated to obtain a correla-
tion matrix. The correlations between the J and the tongue variables are then subtracted from
this original correlation matrix. This subtraction assures that the subsequent factors are uncor-
related [216]. The influence of the J opening on the tongue contour is depicted in Fig. 3.7a. J
explains nearly 30% of the variance, indicating an important contribution of the lower jaw upon
observed tongue shapes.

Fig. 3.6 shows how the other factors influence the variance, after the extraction of the effect
of the jaw position J. Two options are now available to identify tongue factors, standard [215] or
guided PCA [213]. Standard PCA results in a greater value of the variance explained by the first
three PCA components than the guided PCA. These three components, i.e., PCA determined
intrinsic tongue factors, could be interpreted, in order, as tongue front/back, tongue-dorsum
shape, and the tongue apex, based on their influence on the tongue contours.

For the arbitrary orthogonal factor analysis, the variance in the tongue shape instead de-
termines which variable that is chosen manually. In order to select the best tongue variable,

42 November 27, 2008 ASPI/2006/D1/v2.0



Deliverable D1Technology inventory and specification of fields investigated IST Project IST-2005-021324

Figure 3.5:Measurement of the form of vocal tract inner and outer contours using the semi-polar coor-
dinates and of the jaw parameter J.

the variance explained by each tongue variable, from the coordinate number from 1 to 15 (see
Fig. 3.5 for these numbers), is calculated. The result is shown by the curve connecting circles
in Fig. 3.6. The curve shows that the tongue variable at the coordinate 5 extracts the highest
variance, about 38%. The tongue variable at coordinate 5, therefore, is the second factor and
its influence is shown in Fig. 3.7b. Since the value at the coordinate 5 should be a reasonable
measure for the front/back position of the tongue, this factor is called the [front/back] factor.

Now, the correlation structure explained by this front/back factor is subtracted from the resid-
ual correlation matrix, resulting in a residual variance shown by the curves connected by filled
circles in Fig. 3.6. Note that the value at the coordinate 5 is absent, since its variance was
exhausted by the previous jaw and the front/back factors. The calculated variances show the
maximum value at the coordinate 9, which explains about 19% of the variance. Fig. 3.7c in-
dicates its effect on the tongue contour. This third factor appears to control the tongue-dorsal
shape, and can be called the tongue-dorsal factor. This factor is important for the production
of high-back vowels, such as /u/. The correlations explained by this third factor are subtracted
from the residual correlation matrix again.

As seen in the curves connected by the triangles in Fig. 3.6, the next factor (at coordinate
14) extracts about 9% of the variance. Fig. Fig:Maeda3d shows its effect on mainly the tongue
apex, and is therefore called the tongue-apex factor.

Note that these three intrinsic tongue factors explain 38+19+9=66% of the variance and
with the Jaw factor 96%. It is hence reasonable to stop the extraction procedure after the fourth
factor. Moreover, it can be stated that the jaw-based tongue contours can be best predicted
using the values of those three coordinates, coordinate 5 in the back of the tongue, coordinate
9 in the palatovelar region, and the coordinate 14 near the apex.

For the sake of simplicity, the lip opening is described by three variables: the minimum sep-
aration (distance) of the upper and lower lip (a lip tube height), the distance between the front
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Figure 3.6:Proportion of variances explained by assuming 15 tongue variables as factors (parameters):
tongue-body position in the open circles, tongue-body shape in the closed circles, and tongue apex
position in the triangles.

upper incisor and the minimum separation point (a lip tube length or lip protrusion), and the lip
tube width measured on frontal photographic images of the subject face. These variables are
predicted by the extrinsic jaw parameter and two intrinsic lip parameters, the height and protru-
sion. Only the lip-tube width, which is not visible in the midsagittal X-ray data are predicted by
the model derived by the factor analysis. In addition, the front and the back edges of the glottis
described by x- and y-coordinate values relative to the head are used to define the position of
the larynx and the one end of the vocal tract. The four variables are predicted by the extrinsic
jaw parameter and the intrinsic larynx height parameter. The derived articulatory model of the
complete vocal tract is shown in Fig. 3.8.

The output of the inversion in the form of an articulatory model, geometrical or statistical,
can be evaluated against articulatory data, if such was recorded together with the acoustics that
was the input to the inversion. However, if articulatory data does not exist for the sequence,
the evaluation has either to be based on general phonetic knowledge about the plausibility
of the estimated articulation, or on an analysis of the resulting acoustics, created through a
resynthesis that uses the articulatory model as input.

Speech synthesis is an important component to validate acoustic-to-articulatory inversion,
since a time domain acoustic simulation using a vocal tract model allows for acoustic compar-
isons between synthesized and the speaker’s actual acoustics. Experiences in vocal tract syn-
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Figure 3.7:Effects of the four factors upon tongue contours: Jaw factorin (A), tongue-body position
in (b), tongue-body shape in (c), and tongue-apex position in (d). In each plate, the symbols ’+’ and
’-’ indicate, respectively, the value of +1 and -1 in standardized units. The contour without the symbol
represents the averaged (or neutral) tongue contour.

thesis chould also help us formulate articulatory constraints in the inverse procedures. Since
the two-dimensional models describe only the vocal tract shapes in the midsagittal plane, it is
necessary to derive the corresponding area function for the resynthesis. In the next section,
this midsagittal-to-area conversion is be described.

3.4 Midsagittal-to-area conversion

In theory, the vocal tract acoustics, the waveform in the time domain and transfer ratio in the
frequency domain, can be calculated from its three-dimensional (3D) geometric description. So
far, the 3D calculations are not so successful, presumably due to the difficulty of specifying an
appropriate meshing of the complex 3D vocal tract for the application of a finite element method.
The 3D calculations suffer from excessively long computation times, often hours of calculation
for a 10 ms long speech signal. For these reasons, the conventional one-dimensional calcu-
lations with vocal tract area functions appears to still be the best alternative. Since the major
mode of the acoustic wave propagation is along the length of the vocal tact and higher modes,
such as transversal propagation, can be neglected in frequencies below 4 kHz and the area
fucntions calculations are hence valid.

With a vocal tract configuration described in the midsagittal plane, it is necessary to apply
a midsagittal-to-area conversion to derive the area function. The conversion uses the distance

ASPI/2006/D1/v2.0 November 27, 2008 45



3. VOCAL TRACT REPRESENTATIONS

Figure 3.8:Complete vocal tract profiles derived from an X-ray data derived articulatory model, showing
the effects of the jaw parameter.

along each coordinate gridline between the inner and outer contours. The inner contour con-
sists of the front laryngeal wall, tongue and lower lip, and the outer contour, corresponding
to the rear laryngeal and pharyngeal walls, soft and hard palate, and upper lip. These mea-
sured sagittal distances (or heights) d (cm) along the vocal tract from the glottis to the lips are
converted into areas A (cm2) assuming a power function [209]:

A = αdβ (3.1)

where α and β are parameters that vary depending on the position in a speaker dependent
fashion. If the vocal tract had a circular shape, the value of α would be π/4 and β=2. Since
the cross-sectional shape of the vocal tract is complicated and far from a circle, the values of
α and β must be empirically determined. Moreover, the actual cross sectional area can depart
from the power function scheme as the value of d becomes large [217,218]. Acoustically this is
not so critical however, because the formant frequencies become relatively insensitive to local
variations as the area becomes large.

The area function is defined by the accumulated distance between the centre point if the
vocal tract air passage at each gridline and the cross-sectional area at that gridline. If neces-
sary, the area function can be simplified by resampling the length (x-) axis at equally spaced
sample points. After such a simplification, the area function corresponds to a set of equal
length uniform tubes connected, for example circular, end-to-end. The uniform section length
is often chosen as 1 cm or less. This apparently gross approximation of the real vocal tract
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is valid in frequencies below 4 kHz where the effects of the tract bend and the shape of the
cross-sectional area can be neglected.

Even if the area-function representation is acoustically valid at low frequencies, some im-
provement is possible and sometimes necessary. In the above derivation of area function, the
implicit assumption is that the wave front of the acoustic propagations matches the semi-polar
grid lines, which is no guaranteed. In the case of a tube with a smooth 90◦ bend, the wave
front can be assumed to be perpendicular to the geometrical midline of the tube. Then it is
reasonable to consider that the wave front in the vocal tract is also perpendicular to the midline.
Cross-sectional areas determined along the coordinate grids can hence be corrected by the
cosine of the angle between each grid and the wave front at that grid.

From the above discussions, it might become clear that the use of the semi-polar coordi-
nates for deriving area function is motivated by the matter of convenience rather than by acous-
tic principles. The vocal tract midline and the height dimension, d, can instead be determined
by assuming a spherical wave front, i.e. a circular front in the midsagittal plane [219, 220]. In
this approach, a heuristic algorithm determines a series of circles that just fit between the inner
and outer contours of a vocal tract profile. The midline is obtained by connecting the center
of the circles along the tract length from the glottis to the lip opening. The height dimension is
determined either as the line between the two contact points on the circle with the inner and
outer contours or as the line segment passing the circle’s center and perpendicular to the mid-
line. This method does not use a coordinate system and the determined tract length tends to
be slightly shorter than that determined using a coordinate system. This seems to result in a
better match between calculated and measured formant frequencies, although this has to be
confirmed on a larger body of data.

Regardless of a method used, the sagittal-to-area conversion involves certain degrees of
incertitude. Then one might wonder why an articulatory model can produce vowels with a high
phonetic value from a converted area function. This can happen, we think, because errors in
the conversion can be compensated, at least in part, by adjusting the values of articulatory pa-
rameters. Further we suspect that human speakers must do similar adjustments in articulation
in order to compensate for individual differences in the vocal tract morphology. If this is the
case, it is not so unreasonable to use this imperfect sagittal-to-area conversion. In the inverse
problem, if the purpose is to recover the exact geometry of a subject tract configuration from
audiovisual speech however, it is necessary to devise an accurate conversion scheme for each
subject.

3.5 Time-varying areafunctions in vowel-consonant sequen ces

Up to this point, the description has focused on the representation of static sounds. In run-
ning speech, however, the articulators are moved asynchronously [221] when going from one
phoneme to another, causing the vocal tract cross-sections to vary in a specific spatiotemporal
organization. The areafunction is then instead specified by the cross-sectional area A(k, t) and
the length x(k, t) at the kth section at time t. In a phoneme sequence, the area function will
vary smoothly between the target area functions for the phonemes in the sequence.

For a vowel-consonant-vowel sequence, the target area functions can be represented as
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in Fig. 3.9. The target area function for consonants is a uniform tube (corresponding to a
neutral vowel) having a constriction formed with a single section kth constricted with a cross-
sectional area (Ac) close to zero [222]. The transition between the target area for section k is
schematically shown by the thick line in Fig. 3.10. The target area of the initial vowel (V1) is
specified at the onset (t0) and offset point (t1), indicated by the open circles. During the interval
t0 − t1, the section area is kept at the target value for vowel V1. The target of the consonant
is specified at its onset (t2) and the time varying area function in the transition from the V1
offset to the C onset is obtained by interpolating between the two targets with a cosine law. The
stationary consonant configuration remains up to its offset at t3 and then smoothly changes
with a cosine law to the V2 target at t4.

Figure 3.9:Target area functions in a vowel-consonant-vowel sequence, with a consonant constriction
at section k.

Fig. 3.10 shows the area variation at section k for a fricative and an unvoiced stop con-
sonant. The stop consonant is created with a slight modification of the fricative pattern. The
temporal pattern for the stops consists of closure and release frication, specified by two suc-
cessive target area functions. The temporal variation of the section corresponding to the stop
is shown by the dotted line. The total consonant duration is slightly longer than that of fricatives
and this lengthening is achieved by shortening of the transitions between vowel and consonant.

Just as consonant articulations are simplified, as described above, it would be possible to
use simplified area functions for vowels, such as two or four uniform tubes having different di-
ameters connected end to end. Although isolated vowels synthesized using these simplified
area function sound quite correct, the use as targets often resulted in a poorer sound quality
than that of realistic vowel target area functions such as those shown in Fig. 3.9. We sus-
pect that the simplified area functions having strong spatial discontinuities produce unrealistic
configurations and transitions when they are interpolated section by section. For this reason,
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Figure 3.10:Schematic representation of oral constriction area variations specified by the targets at the
”turning” points indicated by the markers. The variation ofconstriction section in V1-fricative-V2 is
indicated by the thick solid line with open circles. The dotted line with closed circles corresponds to
V1-stop-V2. The thin line with filled triangles indicates the variation of a slow time-varying component
of the glottis,Ag0, which is common for the two classes of consonants.

smooth area functions are preferable for vowel targets.

This area functions interpolation is an important advantage of a vocal tract synthesizer,
as compared to, e.g., a formant synthesizer, where vowels are characterized by only poles of
the transfer function, whereas consonants require poles and zeros [200] [223]. The interpola-
tion in the formant domain, thus, would become complicated, if one wishes to interpolate the
transitions between a consonant and a vowel by properly handling the appearance and dis-
apperance of poles and zeros. With time-dependent area functions, the vocal tract is nothing
but a smoothly time-varying acoustic tube that efficiently handles transitions between vowels
and consonants. The creation of fricative noise and stop bursts at the glottal and supra-glottal
constriction however needs special attention. The computational complexity makes an hon-
est aerodynamic simulation of airflow turbulence impractical for speech synthesis purpose and
a functional model of the noise generation is therefore often used, as described in the next
section.

3.6 Synthesis of fricatives

The functional model of noise generation is a band-pass filtered sequence of random numbers,
which is injected at the exit of the constriction or at one section downstream, depending on the
consonant. In the actual simulation, the noise injection is treated as the insertion of a dipole
noise pressure source in series [224], which gives a typical short-term noise-source spectrum
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as illustrated in Fig. 3.11. The original flat spectrum is shaped by a third-order highpass filter
and a first-order lowpass filter. The magnitude of noise must be modulated by the aerodynamic
condition.

Figure 3.11:A typical noise source spectrum.

In practice, the noise magnitude is determined by multiplying a weight (or a gain) which
varies as a function of the cross sectional area of the constriction and the airflow level. Either a
square law [223] or a cubic law [225] [226] can be used. The simpler square law is used in this
study. The gain, Nmag, is determined by the following relations:

Nmag ∝
Udc

2

A
or ∝ R2

e (3.2)

where Udc is a low frequency airflow in cm3/s, and A is the cross-sectional area of the
constriction in cm2. Re denotes the Reynolds number. Since the aerodynamic law specifies
only proportionality, the value of the scaling coefficient must be empirically determined.

Now in order to calculate the noise magnitude, it is necessary to have the value of the
airflow, Udc, inside the vocal tract. It can be calculated using a low frequency model [227,228],
where air flow is determined by the function of the sub-glottal air pressure, Ps and the cross-
sectional areas of the two major constrictions, one at the glottis (Ag) and the other in the supra-
glottal tract (Ac). The flow resistance at these constrictions can be approximated by the sum of
the Bernoulli kinetic resistance, Rb, and viscous resistance Rv. Rb is calculated as

Rb = (kbρ/A2)Udc,

where ρ is the density of air. The scaling coefficient, kb, depends on the cross-sectional
shape, being close to one for a circular duct and 1.42 for a rectangular [229]. The different
formulations of the viscous resistance per unit length are needed for the glottis and for the
supra-glottal constriction as:
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Rv = 12l2gµ/A3
g (for the glottis)

Rv = 8πµ/A2
c (for the supra-glottal constriction),

where lg is the length of the vocal folds and µ indicates the viscosity coefficient of the air.
Note that the Bernoulli resistance is a non-linear element because of its dependency on the
airflow level. Udc is therefore obtained by solving the following second-order equation:

kb(
1

A2
g

+ 1
A2

c
)U2

dc + (
12l2gxg

A3
g

+ 8πµxc

A2
c

Udc)− Ps,

where xg and xc are, respectively, the thickness of the vocal folds (i.e., the length of the
glottal section) and the length of the constriction section.

As a consequence, the noise magnitude can be automatically modulated depending only
on geometric variables of the vocal tract, as section length (xg and xc) and section area (Ag

and Ac) and on the subglottal air pressure, Ps. Only the value of the scaling coefficient for
Nmag remains to be determined. The value is empirically determined so that the level of the
synthesized frication noise relative to that of surrounding vowels is realistic.

3.6.1 Time variable glottal section

The glottal section is considered as a part of the vocal tract area function, but its time-varying
characteristics are quite different from the other sections of the vocal tract. The temporal in-
terpolation of targets, therefore, is differently treated for the area function and for the glottal
section.

The glottal section consists of slow and fast time-varying components. The muscular ad-
justments in the laryngeal system determine the slow adduction/abduction during consonant
production. When certain aerodynamic and biomechanical conditions are met, the vocal folds
vibrate, which is described by the fast pulsating oscillation of the glottal section in the simulation.
The area of the glottal section, Ag, therefore, is specified by the sum of the slow time-varying
area, Ag0, and the fast time-varying area, Agp.

The correct adjustment of Ag0 is important for the generation of the fricative noise. Roughly
speaking, the airflow Udc specifying noise magnitude remains equal along the entire vocal tract
including the glottis for a given instant. Since the noise magnitude is inversely proportional to
the cross-sectional area, Ag0 must be larger than the supra-glottal constriction area Ac for the
frication noise to dominate over the aspiration noise. The temporal pattern of Ag0 is determined
by specifying target values at onset and offset points. A typical example is shown by the thin
line in Fig. 3.10. During the stationary part of vowels, the value of Ag0 is kept at zero for the
synthesis with a male voice. The Ag0 can be adjusted to a non-zero value to mimic, for example,
a breathy quality of a female voice.

Vocal fold vibration can be simulated using a physical model, such as the two-mass model
of Ishizaka and Flanagan [229], but for the sake of computational simplicity, a descriptive glottal
pulse model is often used instead. Fant [230] originally described the glottal flow pulse in
volume velocity, but for area function modelling, it may be more convenient to use glottis area
variations. The pulse shapes in flow and in area are similar to each other, except that the flow
has a more skewed pulse shape due to the inertia of air mass [223]. The skewness is important
for the spectral characteristics of the voice source and it can be arbitrarily manipulated by
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adjusting the opening and closing quotients of glottal pulses. The pulse shape is determined
by three variables: the peak amplitude, Ap (cm2), duration of glottis opening, t1 (s) and of
closing duration, t2 (s). It is convenient to specify these durations by the quotients of the pitch
(fundamental) period, T0 (s). In a gross approximation, fixed value of quotients can be used,
sucg as t1 = 0.36T0 and t2 = 0.26T0, which seem appropriate for a male voice.

Using above defined variables, the glottal area-pulse within a pitch period is described as

Agp(t) =
Ap

2 (1cos(at)) for 0 ≤ t < t1 (opening quotient),
Agp(t) = Ap(1− b + bcos(a(t− t1))) for t1 ≤ t < t1 + t2 (closing quotient),
Agp(t) = 0 for t1 + t2 ≤ t < T0 (closed quotient),

where the coefficient a = π/t1 and b = 1/(−cos(πt2/t1)). During the opening quotient,
the glottal area increases smoothly without any discontinuity, which is described by the raised
cosine function. The glottis closes abruptly at the end of the closing quotient that corresponds
to the main excitation of the vocal tract. Since T0 is the inverse of the fundamental frequency,
F0 (Hz), the glottal pulse is determined by the function of only two variables, Ap and F0. In the
synthesis, the target values of these two variables at appropriate turning points are specified,
and their values at any given time are then calculated by linear interpolations.

Figure 3.12:Calculated airflow and speech signal for /asa/. Specified variations of the glottal area,Ag

(cm2), and the constriction area in the alveolar region,Ac (cm2), are shown in (a), the calculated airflow
(cm3/s) at the exit of the constriction in (b), and the radiated sound in arbitrary units in (c).

Fig. 3.12 illustrates the result of the synthesis of the sequence /asa/, as an example. A
uniform tube having the constriction section at 1 cm from the lips is used as the target for
the fricative /s/. Fig. 3.12a shows the temporal variations of the constriction section area
(Ac) and the glottal area (Ag) specified by target interpolations for /asa/. It should be noted
that the waveform is deformed because the y-axis is logarithmic to cover the large range of
area variations. The corresponding simulated airflow at the exit of constriction (Uc) and the
radiated sound are shown, respectively, in Fig. 3.12b and in Fig. 3.12c. During vowels, the
glottal pulses excite the vocal tract. In theory, noise is generated at the glottis during the open
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quotient of each voice period. Apparently this pitch-synchronized noise is weak and not visible
on the synthesized wave form in Fig. 3.12c. Toward /s/, the glottis opens up and Ac closes
down, thus Ac becomes smaller than Ag during the fricative. Consequently, frication noise is
generated at the exit of the constriction. It is interesting to note that two airflow peaks appear
during vowel-fricative-vowel transitions. This kind of a double peak is often observed in the
natural production of /s/ as shown in Fig. 3.13 The peaks coincide with the crossover points
between Ag and Ac. Just before the first crossover and just after the second crossover, the
aspiration noise at the glottis is dominant, thus the corresponding radiated noise has different
characteristics in comparison with the frication noise. This is seen in the spectrogram shown
in Fig. 3.14b as two distinctive noise bands which appear at transitions between vowel and
fricative. The spectrogram of natural token also exhibits such characteristic noise bands, as
shown in Fig. 3.14a, although the appearance is quite different from the synthetic version. The
synthetic token could be made closer to the natural one by adjusting the noise-source spectral
shape and the gain coefficient, Nmag.

Figure 3.13:Measured airflow during /fasa:d/ in Arabic, exhibiting a double peak around /s/ (after Yeou
and Maeda [231].

Figure 3.14:Spectrograms of /asa/: (a) natural token, and (b) synthetictoken which corresponds to that
shown in Figure3.12.
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Chapter 4

Acoustic representations

4.1 Representation of spectral parameters

Acoustical simulations of the vocal tract show that the first four formant frequencies are roughly
linearly distributed. For an average male speaker F1 is between 300Hz and 750Hz, F2 be-
tween 800 and 2000Hz, F3 between 2000 and 3000Hz and F4 between 3500Hz and 4000Hz.
Therefore, spectral analysis used for acoustic-to-articulatory inversion should present a good
frequency resolution up to 4000Hz.

4.1.1 Linear prediction of speech

The idea behind linear prediction to exploit the correlation between consecutive speech sam-
ples to reduce the amount of information necessary to represent a speech signal. The speech
signal s(n) is represented as a linear combination of p previous samples plus an error term

s(n) =

p∑

k=1

aks(n− k) + e (4.1)

Coefficients ak are determined by minimizing the prediction error e.

In addition to providing an efficient speech coding framework, linear prediction of speech
also corresponds to a simple speech production model, i.e. the convolution of an excitation by
an all pole filter whose transfer function is of the form

H(z) =
S(z)

U(z)
=

G

1−∑p
k=1 akz−k

(4.2)

where S(z), H(z) et U(z) are the z transforms of respectively the signal, the vocal tract filter
and the excitation.

There exist efficient methods (see [232]) to compute the ak coefficients. Using Eq.4.2,
Eq. 4.1 can be reformulated to relate to the excitation signal u(n) as

s(n) =

p∑

k=1

aks(n− k) + Gu(n)
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Figure 4.1: Narrow band Fourier transform and LPC spectra of/Ẽ/ (left) and /E/ (right)

Fig. 4.1 illustrates the weak and strong points of the linear prediction analysis. First, the
optimization process, i.e. minimizing the error term, tends to adjust spectral peaks at harmonics
which, of course, do not necessarily correspond to formant frequencies. Second, the underlying
all pole filter approach does not enable spectra of nasal vowels or more generally nasalized
sounds to be approximated correctly. As it clearly appears in Fig. 4.1 there is a strong spectral
mismatch between 2,000 and 4,000 Hz for the nasal vowel /Ẽ/ whereas there is a good fitting
between LPC peaks and spectral peaks of /E/. This default can be partly compensated by
increasing the prediction order with the risk of recovering many spurious peaks.

The strong point of the linear prediction analysis is that it has a good spectral resolution.
This is particularly important when two formants are close together (F1 and F2 of /u/, F2 and
F3 of /y/, F3 and F4 of /i/).

Selective linear prediction [4] is interesting because it enables the prediction to focus
on a part of the spectral domain. Solving Eq. 4.1 requires the calculation of autocorrelation
coefficients, i.e. Φn(i, k) =

∑
m sn(m − i)sn(m − k) where sn(m) = s(n + m). The underlying

idea of selective LPC is to compute autocorrelation coefficients from the magnitude spectrum
(see [233] pages 556 and following for instance). The main advantage is to get a better fitting
over the spectral domain to analyze (see Fig. 4.2).

Figure 4.2: Selective linear prediction applied to the interval [2000Hz, 7000Hz].

Another approach derived from linear prediction is the Line Spectrum Pair representation
(LSP) introduced by Itakura [234]. Line spectrum representation of linear prediction coefficients
is mainly used in speech coding and synthesis because their filter stability preservation property
enables quantization and interpolation.

The idea is to decompose the linear prediction polynomial A(z) = 1−∑p
k=1 akz

−k into two
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polynomials P (z) and Q(z)

P (z) = A(z) + z−(p+1)A(z−1)

= 1 +
∑p

k=1(ak + ap+1−k)z
−p + z−(p+1)

Q(z) = A(z)− z−(p+1)A(z−1)

= 1 +
∑p

k=1(ak − ap+1−k)z
−p − z−(p+1)

(4.3)

P (z) is a symmetric polynomial and Q(z) is an anti-symmetric polynomial such that A(z) =
P (z)+Q(z)

2 . Finding roots of these two polynomials relies on the use of Chebyshev polynomials
[235]. First, P (z) and Q(z) are transformed into Chebyshev polynomials. Then, roots of these
polynomials are calculated through numerical algorithms.

This representation has three main properties:

• All the roots of P (z) and Q(z) are on the unit circle.

• The roots of P (z) andQ(z) are interlaced.

• P (z) corresponds to the vocal tract with the glottis closed and Q(z) to one with the glottis
open.

LSPs have been used in a number of studies on the correlation between speech acoustics,
vocal tract configuration and facial data [17–19] and multimodal speech synthesis [236].

4.1.2 Cepstral smoothing

As acoustic-to-articulatory inversion focuses on the contribution of the vocal tract it is important
to get a spectral analysis that removes the effect of the speech source in the spectral represen-
tation. From this point of view cepstral smoothing is a very good candidate since its principle is
to separate source e(n) and vocal tract contributions h(n) of the speech signal s(n) supposed
to be the convolution of both: s(n) = e(n) ∗ h(n)

The principle of the cepstral analysis is a homomorphic processing that transforms the con-
volution into a simpler operation, i.e. a sum, that also clearly separates both contributions. The
application of an inverse Fourier transform to the log magnitude spectrum of speech separates
these two contributions quite well (see [232] for further details). The resulting vector is called
cepstral coefficients (see Fig. 4.3(c)). Low order cepstral coefficients represent the “slow” vari-
ations of the spectrum shape, i.e. vocal tract, and high order coefficients “fast” variations, i.e.
harmonics. A simple filtering, called liftering because it operates on cepstral coefficients, con-
sisting of keeping only the first coefficients (see Fig. 4.3(d)) allows the contribution of the vocal
tract to be isolated.

A further application of the Fourier transform enables a smooth spectrum to be obtained
(see Fig. 4.3(f)).

Unlike linear prediction coding the cepstral analysis does not impose any assumption about
the analytical form of the vocal tract filter. This constitutes its main advantage since all speech
sounds can be analyzed with the same parameters without adaptation.
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Figure 4.3: Defining cepstral coefficients for a speech signal, using cepstral smoothing, filtering and
Fourier Transforms

4.1.2.1 Improving the approximation of spectral peaks

Cepstral smoothing approximates the whole spectrum whereas peaks of harmonics should be
given a higher importance since their contribution to perception is larger than that of other
spectral parts. Imai and Abe [237] thus proposed a very interesting improvement that consists
of iterating the cepstral calculation on the part of the narrow band spectrum which is above the
cepstrally smoothed spectrum.

Let S be the narrow band spectrum,
V (1) = Ŝ (Ŝ is the cepstrally smoothed spectrum),
E(1) = g(S − Ŝ) where g(y) = if y > 0 then y else 0,
E(1) represents the positive difference of S above Ŝ,
Ê(1) is the cepstral smoothing of this difference (see Fig. 4.4) which is added to Ŝ so to move
the smoothed spectrum towards peaks.

The algorithm is based on iterations using an initial solution Ê(1) =
∑N−1

m=0 e
(1)
m hmcos( 2

N mk),
where N is the number of points of the Fourier transform, e(1) = IDFT (E(1)) and hm is the
liftering window.

For each iteration i + 1:
V (i+1) = V (i) + Ê(i)

E(i+1) = g(E(i) − (1 + α)Ê(i)) where α is an acceleration factor.
Ê(i+1) = DFT (h(IDFT (E(i+1))))
where V (i) is the envelope obtained at the previous iteration , E(i) and Ê(i) are the positive
difference and its smoothing.
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Figure 4.4: Principle of the true envelope calculation

Fig. 4.5 illustrates qualities of the true envelope compared to the simple cepstral smoothing.
First, as expected, the true envelope fits harmonics better, but it has other qualities as well:

• The energy of peaks is in good agreement with that of harmonics contrary to peaks of the
simple cepstral smoothing (one can note that the first peak of the cepstral smoothing is
below the second, what does not reflect the energy of the corresponding harmonics).

• The stability and relevancy of true envelope peaks, which mainly correspond to formants,
is better with true envelope than with default cepstral smoothing.

• The discrete cepstra method proposed by Gallas and Rodet [238] also approximates
spectral peaks. However, the discrete cepstra method requires the knowledge of spectral
peaks which thus have to be detected beforehand. The true envelope method prevents
errors due to the detection of spectral peaks. The disadvantage is a larger computational
cost since several iterations (six iterations are generally sufficient) are necessary, with
each iteration corresponding to two Fourier transforms.

Figure 4.5: Narrow band spectrum, cepstrally smoothed spectrum (below harmonics) and true envelope
(upper smoothed curve).
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4.1.2.2 Mel cepstral analysis and perceptual frequency sca les

As the perceptive contribution of energy depends on the frequency, Davis and Mermelstein
[239] proposed to apply a filtering that approaches the frequency resolution of the human au-
ditory system. They thus use the Mel scale

fMel =
1000

log2
log(1 +

fHz

1000
)

which gives approximately a linear frequency scale up to 1000 Hz and then a logarithmic scale,
and they designed a filterbank in this scale (Fig. 4.6(a)). These filters are applied to a narrow
band spectrum, then a discrete cosine transform (DCT) is applied to their outputs, denoted Xk:

MFCCi =
N∑

k=1

Xkcos[i(k −
1

2
)
π

N
]

The Mel cepstral coefficients MFCCi are very popular in automatic speech recognition be-
cause they give the best recognition rates for a wide range of applications. Generally, the
window is between 20 and 32 ms long, 24 Mel filters are applied and the first 12 Mel cepstral
coefficients are kept.
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(b) PLP critical bands

Figure 4.6: Mel filters and PLP critical bands (including thepreemphasis).

As several attempts of acoustic-to-articulatory inversion use the Mel cepstral analysis it is
important to get a better understanding of its properties with respect to the formant information
which is crucial for inversion.

The first point we will address is the effect of the frequency scale and corresponding filters
used to implement the perceptive scale. None of the perceptive filters (Mel and Bark) remove
harmonics in low frequencies, as shown in Fig. 4.7. The smoothing effect of Bark filters is
stronger than that of Mel filters because Mel filters are sharper at their maxima (a triangle
instead of a plateau), (c.f. Fig. 4.1.2.2). However, the harmonics are kept by the Bark scale up
to a higher frequency than by the Mel scale.
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Figure 4.7: Narrow band (left), Mel filtered (center) and Bark filtered (right) spectrogram for a female
speaker. In the upper row, the frequency unit is Herz, in the lower it is that of the analysis (respectively
Herz, Mel and Bark).

The second point concerns the frequency resolution of the MFCC analysis. In order to eval-
uate the nature of the spectral information provided by the MFCC analysis an inverse discrete
Fourier transform has been applied to Mel cepstra to obtain the corresponding spectrum. This
spectrum is not the information used by automatic speech recognition for instance but it enables
a clear evaluation of the formant structure and spectral information conveyed by MFCC.

The first column of Fig. 4.8 presents the effect of the number of filters. It turns out that
formants are kept even if the number of filters is as low as 20 for the vowel /E/ even if this would
not be true for a vowel for which the second and third formants are closer.

The middle column presents the effect of the number of coefficients kept. In order to limit
interferences with the number of filters a fairly high number of filters, i.e. 128, has been chosen
since it corresponds to a very small degradation of the spectral information. With 32 or even
16 coefficients the first three formants are still visible. However, with 12 coefficients, there are
three peaks left below 4kHz but with a valley instead of the third formant peak. The spectral
information is thus not relevant anymore, at least within the context of acoustic-to-articulatory
inversion. The third column presents the effect of the number of filters by keeping the number
of coefficients set to 16. One can see that, even with a fairly small number of filters, good
spectral information is kept. In short, the number of coefficients kept is the determining factor
of the spectral quality of the Mel cepstral analysis. Unlike automatic speech recognition where
the objective is to limit the amount of data necessary to build acoustical models of sounds,
acoustic-to-articulatory inversion thus requires a higher number of coefficients to be kept.
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Fig. 4.9 show the influence of the fundamental frequency on the Mel cepstral analysis.
Results are presented, on the one hand for 32 filters and 16 coefficients kept, and for 24 filters
and 12 coefficients kept on the other. The latter choice is very often used in automatic speech
recognition. Contrary to the case of the male speaker the harmonics of the female speaker
are not removed by Mel filters. Traces of harmonics indeed remain in spectrum of the female
speaker, particularly the second one, whatever the number (16 or 12) of coefficients (right
column). Globally, the spectral information is fairly less relevant than for the male speaker
spectrum where the first three formants can be seen very clearly. The definition of a strategy
for spectral analysis thus seems much more difficult because of the strong influence of the
higher fundamental frequency.

Figure 4.8: Effect of the number of Mel filters (left column),of the number of coefficients kept by the
liftering (middle column) and of the number of filters while keeping the number of coefficients constant
(right column). The curve below the MFCC smoothing is a narrow band Fourier transform over the same
32 ms window.

4.1.2.3 Perceptual linear prediction

Perceptual linear prediction was introduced by Hermansky [240] and consists of applying a
linear analysis to the output of a critical band filter bank. The expected advantage is that
copying the human auditory process gives rise to a spectral representation that is more robust
to speaker variability and captures relevant acoustic features. Mimicking the human auditory
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Figure 4.9: Application of Mel filters and Mel cepstral smoothing for a male (upper row) and a female
(lower row) speaker (vowel /i/).

process corresponds to the use of the Bark scale (Bark(f) = 6log((f/600) +
√

(f/600)2 + 1))
instead of Mel scale for Mel cepstral analysis, the application of an equal loudness preemphasis
and an intensity loudness power law (.1/3) in order to reduce the spectral amplitude of the critical
band output.

As for selective linear prediction, autocorrelation coefficients are obtained by applying an
inverse Fourier transform to the perceptual magnitude spectrum. This enables the calculation
of the linear prediction coefficients.

It should be noted that the preemphasis function used by Hermansky (E(ω) = (ω2 +
56.810106) ∗ ω4/((ω2 + 6.310106)2ω ∗ (ω2 + 0.3810109)) is actually very close to the traditional
preemphasis (obtained by the differentiation of the speech signal) use to boost the speech sig-
nal spectrum. Therefore, PLP spectra shown in the following figures have been obtained with
the traditional preemphasis.

Figs. 4.10 and 4.11 present the comparison between PLP and Mel cepstral smoothing for
the same number of coefficients. The prior spectral filtering analysis is the Bark critical filter
bank for PLP and the Mel filter bank for Mel cepstral analysis. Both analyzes capture almost the
same spectral information. However, the effect of the intensity conversion tends to remove all
spectral information above 2.5 kHz (making the spectral peaks disappear). It thus seems that
intensity conversion should not be used in the framework of acoustic-to-articulatory inversion.
Fig. 4.10 shows that the PLP (without intensity conversion) performs slightly better than the
Mel cepstral analysis. Indeed, the F3 formant is better approximated, and more generally the
spectrum below 4 kHz. Conversely, the Mel cepstral smoothing performs slightly better in high
frequencies.

Fig. 4.11 shows spectra obtained with these two analyzes for a higher F0 speech. PLP
favours low frequency spectral peaks, i.e. harmonics when F0 is high, more than Mel cepstral
smoothing with the same number of coefficients. The higher the FO, the more PLP captures
harmonics instead of formants, and therefore, the Mel cepstral smoothing seems more appro-
priate to perform acoustic-to-articulatory inversion.
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Figure 4.10: Comparison of Mel cepstral smoothing (24 bands, 12 coefficients), PLP (the prediction
order is 12) without intensity conversion and with intensity conversion (from left to right) for a vowel /a/
pronounced by a male speaker.

4.1.3 Vocal Tract Resonance Tracking

Vocal Tract Resonances can represent speech efficiently and compactly in an intuitive way.
Such a representation has been successfully exploited in various speech related areas such
as synthesis [241], recognition [242] or speech inversion [243]. Accurate Vocal Tract Reso-
nance tracking has been actively pursued by many researchers. Earlier efforts were based on
spectral analysis and spectral peak-picking techniques [244–246]. Vocal Tract Resonances, or
formants, largely coincide with prominences of the speech spectrum for non-nasalized vowels
and semivowels and they have been generally regarded as such by traditional tracking algo-
rithms. In cases, however, when the all-pole model for speech is not relevant, as with stops,
fricatives and nasals, vocal tract resonances may not be directly observable as spectral peaks.
This makes the tracking problem much more complex.

Deng et al. [247] propose a continuous-valued model for the resonances x (including the
resonance bandwidths) that incorporates additional prior information in the form of hidden
dynamics. Proper fusion with the observed speech acoustics is achieved in a Kalman filter-
ing/smoothing framework. The target-directed state equation is:

x(k + 1) = Φs(k)x(k) + [I − Φs(k)]us(k) + ws(k) (4.4)

where the state matrix Φs(k) and target vector us(k) are considered to be phone-independent
for simplicity. The target vector is a way to introduce prior nominal values for the resonances,
e.g. u = (500Hz, 1500Hz, 2500Hz, 80Hz, 120Hz, 150Hz) for three resonances, P = 3. The

Figure 4.11: Comparison of Mel cepstral smoothing (24 bands, 12 coefficients) and PLP (the prediction
order is 12) for a high F0 value.
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observation vector o includes LPC cepstrum coefficients. Based on an all-pole speech model,
these coefficients may be expressed as:

C(i) =

P∑

p=1

2

i
e−πi

bp

fs cos(2πi
fp

fs
), i = 1, . . . , I (4.5)

where fs is the sampling frequency and fp, bp are the frequency and bandwidth of the p-th
Vocal Tract Resonance. To account for errors due to zeros and additional poles beyond P , the
prediction residual µ and the zero-mean noise v(k) are introduced. The observation equation
is:

o(k) = C[x(k)] + µ + v(k) (4.6)

which, though highly nonlinear, can be piecewise linearized as is demonstrated in [247]. Vocal
Tract Resonance tracking is then achieved by an adaptive Kalman filter and smoother. The
prediction residual is updated online so that the observation model best fits the current speech
utterance. The overall algorithm is quite elegant and the results are promising. A similar obser-
vation model is used by Zheng and Hasegawa-Johnson in [248]. Phone-dependent information
is also incorporated in a mixture-state particle filter framework.

Togneri and Deng in [249] present an extended Kalman filtering framework to track Vocal
Tract Resonances from MFCC. The multivariate and nonlinear observation equation is imple-
mented by multiple switching MLP (multi-layer perceptron) neural networks. The parameters
of the model (including the MLP weights) are trained using the Expectation-Maximization algo-
rithm and formant estimates as given by a conventional formant tracker. The training process
is what mainly differentiates this approach from previous work by Deng and Ma [242]. In [250],
Deng et al. apply a discrete-value approach by quantizing the Vocal Tract Resonance space
and then use the Viterbi algorithm to find the optimal tracks.

Toledano et al. [251] extract candidate formants based on Linear Prediction analysis and
then find the best trajectories using properly initialized and trained phone HMMs. Context-
dependent phone HMMs and training initialization based on manual formant trajectory labeling
are found to give the most satisfactory results. Context-dependent phonemic information is also
exploited by Lee et al. in [252]. The idea is to first extract nominal formant trajectories based on
the phoneme sequence in the given speech utterance and then interpolating applying certain
coarticulation rules. Then candidate formants are estimated by linear prediction and dynamic
programming is used to find the cost-minimizing tracks. The minimized cost function mainly
penalizes divergence from the nominal values.

From a different viewpoint, Mustafa and Bruce [253] propose an algorithm mainly with noise
and speaker robustness in mind. It is based on the decomposition of speech into modulated
components [254]. The signal is first filtered by an adaptive bandpass filterbank including four
formant filters. Each of them consists of one pole at the corresponding formant frequency and
three zeros, one at each of the other three formant frequencies. If the energy at a certain band
is above a threshold and the previous frame is voiced then a single pole model is fitted to the
narrow band signal. The energy, voicing and gender detectors used are updated adaptively. In
case the current formant estimates are not judged as reliable, then moving average values are
used.

An interesting formant tracking algorithm is presented in [255] by Laprie. It extends earlier
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work by Laprie and Berger [256]. The main idea is to find the formant tracks by minimizing
a functional which guides the tracks to areas of high spectral density and further imposes
smoothness. This functional is as follows:

E(F ) = −
∫ tf

ti

Espec(t, F (t))dt + λ

∫ tf

ti

α|F ′(t)|2 + β|F ′′(t)|2dt (4.7)

The first term represents spectrogram energy along the formant track. The second term rep-
resents the track length and the curvature. For regular curves, this term should be small.
Certain ways are suggested to incorporate interdependency between formants so that each
formant won’t evolve independently and so, among others, the initialization stage will be sim-
ple enough. The first strategy given is called the spectrogram partition strategy and assigns
adaptively a spectrogram partition based on the current formant values. This partitioning is not
probability-based and it does not work well in case of nasalized sounds, when a formant does
not correspond to a spectral peak. Alternatively the repulsive track strategy may be applied
according to which a new (exponential) term is added to the energy functional for minimization.

E(F ) = −
∫ tf

ti

Espec(t, F (t))dt+µ
∑

n

Espec(t, Fn(t))exp−(Fn(t)−F (t)
sn

)2+λ

∫ tf

ti

α|F ′(t)|2+β|F ′′(t)|2dt

(4.8)
This term penalizes tracks that approach each other.

Alternative speech representations for formant tracking have been proposed in [257, 258].
In [257], Bozkurt et al. try to remove the effect of glottal source to the speech signal before
estimating the formants. They try to make the peaks of the spectrum that correspond to vocal
tract resonances more prominent. For this reason, they get the formant peaks on the differential
phase spectrum. This is the negative derivative of the phase of the chirp-z transform spectrum
of the signal. The chirp-z transform spectrum is actually estimated not on the unit circle but at
radius r. No other specific speech model is used, only peak-picking.

Potamianos and Maragos in [258] have proposed the so-called pyknogram to extract initial
formant candidates. In a Gabor multiband scheme, raw frequency and bandwidth measure-
ments are extracted from each filter as first and second spectral moments of the signals at the
output:

Fw =

∫ t0+T
t0

f(t)[a(t)]2dt
∫ t0+T
t0

[a(t)]2dt
, Bw =

∫ t0+T
t0

[(ȧ(t)/2π)2 + (f(t)− Fw)2[a(t)]2]dt
∫ t0+T
t0

[a(t)]2dt
(4.9)

where a(t) is the instantaneous amplitude and f(t) is the instantaneous frequency of the signal
at the output of a filter. These are frame-based estimates and may provide an alternative
speech representation, known as pyknogram and shown in Fig. 4.12.

By simple and robust thresholding only a limited number of these moments are kept, corre-
sponding to areas of high spectral density. These are considered to be raw formant estimates
and are shown in Fig. 4.12 superimposed on the pyknogram. The formant tracks that are de-
rived using these raw formants and a dynamic programming algorithm are also shown in Fig.
4.12. The algorithm is looking for four formant tracks in each utterance. Initially, the algorithm
proposed in [258] followed a rule-based approach to extract the final tracks, after [246]. Instead,
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Figure 4.12: Pyknogram of the utterance “Don’t ask me to carry an oily rag like that”, with superimposed
raw formants and formant tracks on the right.

to improve robustness, an alternative is proposed which is based on dynamic programming,
similar to [259].

To find the best set of trajectories for the formants through a trellis of candidate mappings,
see Fig. 4.13, the cost of mapping candidate frequencies to formants at each frame is mini-
mized over all analysis frames. Each node corresponds to a different mapping. The number of
nodes may be significantly reduced considering that each mapping has to satisfy certain rules,
namely F1 < F2 < . . . and (with values in Hz):

100 ≤ F1 ≤ 1500, 500 ≤ F2 ≤ 3500, 1000 ≤ F3 ≤ 4500, 2000 ≤ F4 ≤ 5000. (4.10)

There could also be times when a formant estimate is unreliable and so it would be better to
ignore it. To account for this, the null estimate ∅ is also considered as a possibility. So, for
example, in case there is a set {450, 1300, 3400} as raw formants for a certain frame, two of
the possible nodes in this frame would correspond to the quadruples {450, ∅, 1300, 3400} or
{450, 1300, 3400, ∅}.

The Dynamic Programming cost function that should be minimized is defined on the trellis
as:

C[t, n] = Clocal[t, n] + min
m
{Ctran[(t, n), (t− 1,m)] + C[t− 1,m]} (4.11)

where t is a frame index and n,m are node counters. Locally, formant estimates for which the
corresponding bandwidth estimates are big should be penalized. Further, cases in which the
formant estimates are closer to empirically predefined expected values Ef and have fewer null
estimates should be favoured. So, the local cost at each node is defined as:

Clocal[t, n] =
∑

i

αiB
2
w,i + βi|Fi − Ef{i}|/Ef {i}+ γiδFi,∅ (4.12)

The δFi,∅ in the last addend equals to unity if the formant estimate at the position i is null. It
equals to zero elsewhere. The expected formant values are Ef = {500, 1500, 2500, 3500}Hz.
For the transitions, big jumps between subsequent frames are penalized, and those involving
null estimates should be less favoured. The transition cost is therefore:

Ctran[(t, n), (t − 1,m)] =
∑

i

ǫi

(Fi(t, n) − Fi(t− 1,m)

Fspike

)2
+ ζi(δFi(t,n),∅ + δFi(t−1,m),∅) (4.13)
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Figure 4.13: Trellis including all the possible mappings ofraw formant estimates to the predefined
number of formant positions for which we would like to have reliable values. A dynamic programming
search in this trellis provides us the optimal formant tracks, based on the given raw formant estimates
and the cost function we have defined.

Fspike = 500Hz is the maximum jump allowed for the formant values in a track between subse-
quent frames. In Fig. 4.12, an example is shown of a set of formant trajectories derived using
the dynamic programming approach along with raw formant estimates from the multiband en-
ergy demodulation algorithm by [258].
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Chapter 5

Inversion Methods

5.1 Explicit inversion from acoustics to vocal shape

Mermelstein [2] studied the link between the eigenfrequencies and area function of a vocal
tract that is completely loss-less. He showed that if the log-area is band-limited so as to pre-
serve only 2n Fourier cosine series coefficients, the n low-frequency poles and zeros of the
admittance at the lips determine the cosine series coefficients exactly. The proof is formal for
shapes that are small perturbations of the uniform tract. The extension to any tract shape is
empirical. The series coefficients that cannot be determined via a measurement of the formant
frequencies were assumed to be zero.

The formant frequencies are the observable spectral effects of the eigenfrequencies of the
vocal tract, which correspond to the admittance poles, i.e. the frequencies for which a zero
acoustic pressure coexists with a finite volume velocity at the lips. The admittance zeros, i.e.
the frequencies for which a finite acoustic pressure coexists with a zero volume velocity cannot
be extracted from the speech signal, because they describe the closed-lips condition during
which no sound is emitted, e.g. [p]. Formant frequencies alone are therefore not enough to
determine the area function unless a priori values are assigned to the even coefficients of the
expansion of the cross-sections into a Fourier cosine series.

In an approach based on Mermelstein’s proposal [12, 20], the log-area function was devel-
oped into a truncated cosine series and the series coefficients that could not be determined via
formant frequencies were fixed so that the final shape was as close as possible to the uniform
vocal tract. Another method in the same vein was the use of the distinctive regions and modes
model, described in Section 3.1.2, for inverse mapping [10]. In another study, Yu [25] expanded
the anterior part of the area function only, so as to be able to constrain the epilaryngeal end of
the acoustic duct, to avoid anatomically unrealistic tract shapes.

A transfer-function to area transform that has played an equally seminal role as Mermel-
stein’s proposal is based on linear predictive analysis of speech, described in Section 4.1.1. It
has been shown that the regression coefficients can be mathematically turned into reflection
coefficients that have an interpretation in terms of an area function model made up of a con-
catenation of cylindrical tubelets. The number of reflection coefficients is equal to the number
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of regression coefficients. The cross-sections of the tubelets are determined algebraically from
the reflection coefficients, up to a multiplicative constant.

The conditions under which the area function can be recovered exactly from the prediction
coefficients were listed in the introduction, but in reality, human speech signals are not pro-
duced under conditions that enables recovery of the tract shape precisely and reliably by this
method. It is, however, the case that linear prediction-based transfer-function to area mapping
is one of the best known speech-to-shape transforms, which is explained in many text books.
Recently, Krstulovic has proposed an extension that enables computing concatenated-cylinder
area functions, the cylinders of which are of unequal lengths [260].

Hybrid methods that combine Mermelstein’s with speech-to-shape inversion via linear re-
gression of speech samples have been proposed by Wakita and Gray [261] and Mokhtari [262].
Wakita and Gray determine, in a first step, an area function via linear predictive analysis and
then compute, in a second step, the open-lips admittance zeros and closed-lips admittance
poles from the reclaimed shape. The virtual admittance zeros and poles are then used to
uniquely determine the shape of the loss-less Mermelstein log-area model.

Mokhtari developed a hybrid approach that involves a critical study of the contribution of
the formant bandwidths to the recovery of the area function via linear predictive coefficients.
The recovered area function was represented by means of the odd-numbered cosine and sine
terms. The sine coefficients are claimed to be closely related to the formant bandwidths and the
cosine coefficients to the formant frequencies. The computed shapes have been used as a tool
to study speaker-specific variability in speech sounds. The evaluation of the inversion method
per se consisted in a visual inspection of the agreement between observed and reclaimed static
vowel area functions.

The most often used general-purpose method for pseudo-inverting any matrix, which is not
square or the determinant of which is zero or nearly zero is based on singular value decompo-
sition [263]. Because, singular value decomposition is able to (pseudo)-invert linear relations
only, its application to formant-to-area mapping involves locally linearizing the causal link be-
tween parameters and eigenfrequency before pseudo-inverting to obtain the morphological
parameters as a function of eigenfrequencies.

Schoentgen and Ciocea [264] have shown that linear pseudo-inversion is a tool flexible
enough to enable solving the formant-to-area mapping problem for static as well as evolving
formant trajectories. The vocal tract model was a concatenation of cylindrical tubelets with
time-varying cross-section areas and lengths. The time increments of the tubelet parameters
have been obtained by inverting a linear algebraic system of equations that relate formant fre-
quency and tract parameter increments. The elements of the matrix are estimates of the partial
derivatives of the eigenfrequencies with reference to the model parameters. The increments
are then added to previous cross-sections and lengths to recover their motion. Because more
than one area function is compatible with the observed formant frequencies, pseudo-energy
constraints have been used to determine a unique solution. The agreement between observed
and model-generated formant frequencies has been better than 0.01 Hz. The method has
been evaluated by computing the similarities between observed and computed static as well as
evolving area functions [265].

Since the number of reasonably smooth area functions that agree with given acoustic data
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are numerous, due to the weak constraints imposed on area functions, it may be more efficient
to represent the vocal tract shape in a midsagittal articulatory model. It is, however, the case
that not even anatomically correct models give rise to unique solutions when the acoustic data
are the first few formant frequencies, which are the spectral cues that are phonetically meaning-
ful [8]. It is also an open problem whether the parameters of a midsagittal articulatory model can
be determined uniquely, once the area function is known exactly. The issue is not the heuristic
that turns the two-dimensional sagittal profile into a three-dimensional area function, because
the heuristic is selected so as to be invertible. The problem rather is whether articulators can
be positioned so that different postures give rise to (nearly) identical midsagittal cross-sections.
The answer presumably depends on the sophistication of the articulatory model and has, as far
as we know, not yet been investigated thoroughly. In practice, authors use either articulatory or
anatomically-constrained midsagittal profiles, or anatomically-constrained area functions. The
purpose of the use of models is to decrease the number of parameters that are free to vary and
constrain the parameters and their evolution to be anatomically and physiologically plausible.

5.2 Inversion-by-synthesis

As opposed to the ”explicit” inversion described in the previous section, ”implicit” inversion des-
ignates the iteration of synthesis model parameters until the observed and modeled acoustic
data agree. The causal link between shape and acoustic data is thus not inverted explicitly.
Instead, the model is assimilated to a plant the morphological input parameters of which are
manipulated so as to optimize the acoustic output. The output is considered optimal when it
agrees with the observed acoustic data. The acoustic data may be formant frequencies or
whole spectra. Additional constraints that are routinely used pertain to the spatial and tempo-
ral smoothness of the area function, as well as its distance from the neutral tract or its kinetic
pseudo-energy.

Two types of synthesizers may be used, based on an area function model or on an articula-
tory model, with the latter being more common.

An optimization-based transfer function to area conversion was developed by Flanagan,
Ishizaka and Shipley [14]. The area function model comprised six parameters and was able
to mimic the tract shapes of Russian vowels, obtained by X-rays [200]. The synthesizer was
based on a temporal simulation of the lossy wave propagation within the vocal tract, with a
two-mass model to simulate voicing, latent noise sources distributed along the vocal tract to
generate turbulence noise for fricatives and plosives and a nasal tract. The cost function was
the squared difference between the log-amplitude spectra over an analysis interval. Smooth
evolution of the parameters as well as rate-of-change constraints have also been imposed. A
difference between cepstral maxima is used to control the combined tension/mass parameter
of the two-mass model of the vocal folds.

The starting values for a multi-parameter optimization were fixed by measuring the mouth
area optically and changing the model parameters independently so as to minimize the cost
function, using neutral values for other parameters. The evaluation of the method was per-
formed by means of artificial shapes as well as an [ai] transition spoken by one of the authors.

An optimization-based transfer-function to articulatory model inversion, inspired by Flana-
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gan et al. was reported by Levinson and Schmidt [41]. It consists a midsagittal articulatory
model [266] instead of an area function model. The vocal tract model is lossy and comprises
spectral models of glottal source and radiation load. The cost function includes the distance be-
tween the log-magnitude of the model transfer function and the estimated spectral envelope of
the speech signal. The envelopes are extracted pitch-synchronously. The cost function is mini-
mized by means of a steepest-descent algorithm. The articulatory parameter array for which a
minimum is reached is the desired articulatory configuration.

When evaluating static synthetic vowels, the spectral agreement was typically 2 dB. When
tracking diphthongs, the spectral match was 3 dB, but some articulators occasionally tended to
”freeze” and the spectral matching was then performed by the other articulators in ”ventriloquist”
fashion.

In a similar spectral-to-articulatory inversion scheme [39, 267], the articulatory model in-
volved morphological mimics of the jaw, velum, pharynx, as well as a statistical tongue model,
inferred from X-ray data. The inversion was performed by means of a ”hill-climbing” optimizer
that minimizes the distance between observed and synthetic cepstra. In addition, the distances
between the reclaimed and neutral tract shapes, as well as between the previous and present
shapes have been minimized. The weights of the constraints were fixed manually.

The evaluation of the inversion method was based on a visual inspection of the agreement
between computed and observed static Japanese vowels as well as the smoothness of the
evolving parameter trajectories. One quantitative test has been the automatic recognition of
five Japanese vowels spoken by 15 speakers.

Later Shirai and Kobayashi [268] have compared inversion by means of optimization and
artificial neural nets [37]. They concluded that inversion based on a single feed-forward artificial
neural net is not suited to the task of spectral-to-articulatory inversion. This observation has
been confirmed by Rahim [6].

A formant-to-articulatory inversion method has been investigated by Sorokin [15]. The ar-
ticulatory model describes the vocal tract by means of the tabulated surfaces of the pharynx,
velum, hard palate, lips and tongue measured on X-ray film, as well as a 15-parameter model
of the midsagittal and frontal profiles.

The cost function involves a minimization of the ”muscle work”:

W (z) = ΣN
i=1ci(zi − z0

i )2,

in which N is the number of articulatory parameters, zi is the ith articulatory parameter, z0
i

its neutral position, and ci is the elastic resistance to a change of the articulatory parameter.
Sorokin obtained the values of ci through physiological experiments on the corresponding ar-
ticulatory organs. The value W (z) may be considered as the potential energy associated with
the problem. Formants were compared on a logarithmic scale, a choice which appears to be
perceptually inspired, and the distance between modeled and target formants was multiplied
by a weight that changes from low to high during optimization.

Sorokin argued that an optimizer must be used that only involves the coordinates of the
articulatory parameters, and not their rates of change. The optimizer stops once the distance
is smaller than a critical threshold, which is frequency-dependent. Also, for vowels, any cross-
section smaller than 0.3 cm2 was rejected, because audible turbulence noise is generated for
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smaller apertures.

The evaluation has been based on six Russian vowels [200] as well as on microbeam data of
a male and a female speaker producing [bVbVbV] sequences. When up to four formants were
used, formant frequency errors were typically a few percent, but could be as high as 20 percent.
The explanation of the imperfect fit between observed and modeled formants seemed to be the
optimizer, the manual initialization of which by means of the neutral tract shape appeared to
be inadequate. It was also shown that four reference formants did not have an advantage
over three. Sometimes the fourth formant made the fit worse because of measurement errors.
Similarly, the inclusion of the formant amplitudes led occasionally to a poorer match between
reclaimed and observed shapes.

Later, the same author has attempted to recover the tract shapes of a speaker producing
unvoiced Russian fricatives [269]. The optimization method and cost function have been sim-
ilar to those used previously. The formant frequencies have been replaced by whole-spectra,
however. The match between observed and computed spectra was expressed via the inter-
correlation coefficient [15]. The main conclusion has been that convergence to actual shapes
is only observed when the optimization has been initialized manually.

The judgment of the agreement between observed and recovered vowel tract shapes was
visual [15]. The shapes shown in the article demonstrate that the tongue profiles have not
been recovered exactly; other articulators have not been evaluated. Methods reported in [15]
and [269] have been evaluated on corpora larger than usual and they discuss the recovery of
original shapes.

Generally speaking, difficulties experienced by authors who have investigated acoustic-to-
shape inversion by optimization, have motivated the development of codebook-based methods,
described in Section 5.3. These enable homing in on all approximately acceptable tract shapes
or articulatory configurations for a set of observed acoustic data. The approximate shapes
can then be used to initialize an optimizer that refines the codebook entries until the modeled
and observed acoustic data agree [35] [34] [270]. Indeed, the main problem that confronts
inversion by optimization appears to be local minima. The heterogeneity of the cost functions
is a possible explanation.

5.3 Codebook methods

For a stationary vocal tract, the articulatory-acoustic mapping can be represented as a mul-
tidimensional function of a multidimensional argument: y = f(x), where x, y are vectors de-
scribing the vocal-tract shape and the resulting acoustic output, respectively. In this section, we
will review methods that exploit tables (also called codebooks) of precomputed couples (x,y)
organized in a way to easily recover several articulatory vectors from a given acoustic vector.

Acoustic-to-articulatory inversion using codebooks has been studied for a long time, and
the work of Atal et al. [5] constitutes to this regard a fundamental and remarkable work.
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5.3.1 Fundamentals

The work by Atal et al. [5] was the first to investigate the use of codebooks for inversion. Al-
though part of it is a little outdated (in particular the amount of data in the codebook) most of
the theoretical work is still valid, and is actually still used in recent works. In this subsection, we
will summarize the main results of this work and show how more recent studies derive from it.

5.3.1.1 Function inversion using codebooks

Inverting a multidimensional function using codebooks is conceptually simple. It consists of
calculating y = f(x) for a large number of different values of x, and of organizing the resulting
pairs y, x based on the vector y. Finding a value of x corresponding to a given y consists
simply of looking up the desired y in the data and obtaining the x associated with it. Some
further complications arise when one has to deal with ambiguities and interpolation.

Point ambiguities are simply handled by organizing the codebook depending on the values
of the y vectors: when two or more points in the x space produce identical, or nearly identical,
values of y, these values will be placed in the same “region”, or in neighboring regions.

Depending on the nature of the articulatory-to-acoustic function f , and particularly on the
number of dimensions in the articulatory and acoustic spaces, ambiguities of a continuous na-
ture may exist, that is, an entire subspace which maps onto a given acoustic point y. Those
regions in the x space which produce no change in y, are called fibers by Atal. A fiber thus
determines vocal tract shapes having identical acoustic properties. It is, in general, difficult to
treat ambiguities of nonlinear functions, and the articulatory-acoustic relationship is not neces-
sarily linear. However, if f is sufficiently well behaved to be linearized locally, the ambiguities
of the linearized function can be characterized and studied. Using computational methods to
extend the linarized regions in small steps, it is thus possible to systematically explore the entire
non-linear regions.

We denote m the dimension of the x space, and n the dimension of the y space. In the
vicinity of a point x0, y0 = f(x0) is approximated by y

y ≈ y0 + B(x− x0),

where B could be the Jacobian matrix of f , that is, the matrix of partial derivatives of f .
Specifically, if bij is the element at the ith row and the jth column of B, then

bij =
∂fi

∂xj
, i = 1, 2, . . . , n; j = 1, 2, . . . ,m,

could be the partial derivative of the ith component of the vector f(x) with respect to the jth

component of x. B is thus a n × m matrix. In practice, B is evaluated by approximating partial
derivatives with partial differences.
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5.3.1.2 Acoustic simulation

We describe here the method used by Atal et al. to compute acoustic parameters for a given
vocal tract shape. Formants were used to represent the speech signal because this leads to
an easy physical interpretability of the results.

The acoustic simulation itself is fairly classic: The vocal tract is regarded as a nonuniform
acoustic tube terminated by the glottis at one end and by lips at the other end. It is assumed
that:

• the vocal tract is excited at the glottis and the sound is radiated at lips,

• the vocal tract has no side branches or cavities,

• the cross-sectional dimensions of the vocal tract are small compared to a wavelength in
the frequency range of interest,

• only plane waves propagate in the vocal tract.

As usual, the numerical computation is simplified by approximating the continuously varying
area function by a series connection of a large number of uniform tubes. For plane-wave
propagation, pressure and volume velocity are continuous functions of the axial dimension in
the tube; the transmission matrix of the entire tube can thus be expressed as a product of such
matrices for each uniform section. Atal et al. also take into account five principal sources of
energy loss in the vocal tract: (i) viscous loss in a boundary layer at the surface of the tube, (ii)
heat conduction loss at the vocal tract walls, (iii) radiation loss at the mouth opening, (iv) energy
loss due to yielding of the vocal tract walls, and (v) energy loss at the glottis. The losses in the
tube are represented by lumped elements at the input of each uniform section.

Let F (s) be the velocity transfer function of the vocal tract at complex frequency s (s =
σ + jω), defined by the ratio of the volume velocity at the lips to the volume velocity supplied by
the glottal source, both defined as a function of the complex frequency variable s.

F (s) can be calculated for a given area function specified in terms of cross-sectional areas
and lengths of each uniform section. Then the formant frequency bandwidths are determined
by finding the poles of F (s) (i.e. the zeros of 1/F (s)).

5.3.1.3 Vocal tract models

There are many different ways of describing the vocal tract shape, the most straightforward
description being in terms of a number of cross-sectional areas specified at equidistant points
from glottis to lips. Such a description however is quite inefficient: if the area function of the
vocal tract is sampled every 0.5 cm, it means that 34 areas must be specified for a vocal tract
17 cm in length. A more meaningful way of describing the vocal tract is to specify the area
function in terms of a few articulatory variables representing positions of different articulators,
as described in Chapter 3. Atal et al. used an extension of the articulatory model of Stevens
and House [271] in which the area function is described by four articulatory variables.
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5.3.1.4 Experiments

The articulatory space was sampled along a four-dimensional grid. Compared to today’s stan-
dard, the resulting codebook was fairly small: the sampling used resulted in a total of 30720
different vocal tract configurations, for which the frequencies, bandwidths, and amplitudes of
the first five formants were computed. The y vector however only included the frequencies of
the first three of these formants.

To organize the data, the three-dimensional acoustic space was partitioned into ”cubes”
(parallelepipeds, actually) of equal volume. The coordinate axes corresponding to the first two
formants were divided into 50 Hz intervals while the axis for the third formant was divided into
100 Hz intervals. The data was then sorted into the cubes according to the frequencies of
the three formants. A ”cube” in general has many entries which are scattered due to the finite
quantization of the y space. Atal et al used an iterative procedure to move y from each point
to the center of the cube, exploiting the local linearity of the articulatory-to-acoustic function; all
of the corresponding points in the cube are thus modified to merge into a single point at the
center.

Atal et al. exploited these data in different ways; one of the most interesting result was the
study of the one-dimensional fibers for eight non-nasal vowels. It was the first illustration of the
non-uniqueness of the acoustic-to-articulatory mapping.

5.3.2 Codebook inversion of speech sequences

Among the many different approaches to the acoustic-to-articulatory inversion problem, most
of them, implicitly or explicitly, use codebooks. The work of Atal et al. [5] constitutes a starting
point, but unfortunately it did not study dynamic inversion, that is, the inversion of speech
sequences, but only isolated vowels.

Most recent approaches of “traditional” (that is, using an explicit codebook) dynamic inver-
sion proceed in 3 steps:

1. For each acoustic vector, a number of articulatory vectors are generated using a code-
book look-up procedure (see Fig. 5.1).

2. An initial articulatory trajectory is derived from these vectors using e.g. dynamic program-
ming and regularity constraints (see Fig. 5.2). This initial trajectory is a starting point for
further optimization: the selection of a trajectory from a whole discretized articulatory
space makes it easier to avoid local minima.

3. This trajectory is refined using e.g. optimization or variational regularization to obtain a
smooth trajectory with a better acoustic accuracy. The solution obtained can be much
smoother and acoustically faithful since the articulatory vectors are now able to vary in
the continuous articulatory space.

In some cases however, neural networks methods for instance, dynamic inversion can be
performed in a single step, depending on the data trained.
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Figure 5.1: Searching for articulatory points that can correspond to a speech spectrum. Table points
are represented at right and best fitting points are found outfrom the spectral information or from the
frequencies of the first three formant frequencies.
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Figure 5.2: Searching for the best articulatory trajectorythrough dynamic programming. Each column
gives articulatory points recovered from acoustic data at time t. M is the number of points in the articu-
latory table.T is the duration of the speech signal to invert. Arrows give a trajectory example.

A crucial preliminary stage is the construction of the acoustic-to-articulatory codebook which
consists of selecting a method for obtaining training vectors that adequately span both the
acoustic signal space and the articulatory parameter space. Many different methods have
been proposed to address this issue: interpolating from root shapes [272,273] or random sam-
pling [274], adaptive sampling [275], or training (either using neural networks [13, 276–279] or
hidden Markov models [280]).

Many of these approaches use articulatory synthesizers to build the codebook (generally
variations of Maeda’s [281] or Mermelstein [282]’s articulatory models), but some of these only
use the data obtained from acquisition (e.g. [278,283]).

In the case of methods based on articulatory models, a quantity of data only limited by
computational complexity can be used for training, but this data is dependent on the quality of
the articulatory synthesizer.

In the case of methods that only use data from acquisition, the limited quantity of data is
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generally a source of errors, since it does not span the whole acoustic space (and only a small
subset of the articulatory space), and it is generally not sufficient for a statistically significant
learning. We describe below several methods to build codebooks.

5.3.2.1 Step 1. Codebook construction

In [272], Larar and al. sample the articulatory space by a collection of “root” shapes repre-
senting the “most reasonable” articulatory regions for speech sounds. These root shapes were
selected by closely matching the geometry and formant data for all vowels, by matching certain
key features for consonant gestures, and three nasals were added. The articulatory space was
the space of parameters of Mermelstein articulatory model [282]. From those 20 root shapes,
the whole codebook was derived by sampling the straight lines from one root shape to another
in the articulatory space to make a codebook containing about 10,000 shapes. These shapes
were then clustered according to a measure of acoustic similarity based on LPC vectors.

In [273], a similar approach using “root shapes” is described, but with a different technique
for interpolation. Instead of using a simple linear interpolation within the articulatory space,
articulatory trajectories of diphones (vowel-consonant, consonant-consonant and vowel-vowel)
are derived using an articulatory synthesizer. The exact procedure is unclear; we assume
the transitions from one phone to another were constructed by interpolating the two target
area functions, and the corresponding articulatory vectors were then derived. The articulatory
vectors were added to the codebook only when the minimal cross-sectional area in the oral
cavity changed more than 2 %. The resulting codebook was further optimised by regrouping
articulatory vectors through linear approximation of the articulatory-to-acoustic relation.

5.3.2.1.1 Random sampling of the articulatory space In [274], Schroeter and al. used
a random sampling method in order to have a much better acoustic coverage than in [272].
Samples were chosen randomly within wide margins of the articulatory models parameters,
their acoustic images (represented as the first three formant frequencies) were computed, and
a pruning method discarded points that were too similar (i.e., close articulatory vectors that give
close acoustic images). Two different articulatory models were studied: Mermelstein [282] and
Coker [266]. Thanks to this method, Schroeter and al. obtained a codebook that covered the
acoustics of all the vowels and sonorants they studied, except one.

5.3.2.1.2 Neural networks Many different studies have attempted to use implicit codebooks
obtained through neural neural networks or HMM training. The main interest of these methods
is to accelerate the codebook look-up procedure. Different approaches have been adopted:
training the neural networks on data from acquisition (corpus based), or training the network on
data obtained from an articulatory model (articulatory model based), which are both problem-
atic. Other approaches have trained the models on data sequences from acquisition corpus to
avoid the problems of using articulatory models.
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5.3.2.1.3 Adaptive sampling In [275], Ouni & Laprie use an adaptive sampling of the pa-
rameter space of Maeda’s articulatory model. The articulatory space was explored recursively,
and the subdivision is guided by a local sampling of the acoustic-to-articulatory relationship to
check the local linearity of the relation: within an hypercube of the 7-D articulatory space, if
the relationship is not linear enough according to a criterion involving every vertex of the hy-
percube, all 128 half-size sub-hypercubes will be explored. This method allows a complete
description of the articulatory-to-acoustic relationship with a constant acoustic precision. For
fast codebook look-up procedure, the 3D acoustic space of the three first formants frequen-
cies is divided into cubes, and the articulatory hypercubes are ordered in the acoustic space
according to the values of their images. Note that an hypercube can be associated to several
different acoustic cubes. To generate actual inversion samples in a given hypercube, a partic-
ular sample is derived, and then the null space of the linear relation within this hypercube is
explored using the simplex algorithm. Typical codebooks using this method, e.g. the one used
in [284], contain more than 300,000 hypercubes, representing more than 4,000,000 pairs of
articulatory and acoustic vectors. The precision of the codebook is almost sufficient to recover
smooth trajectories directly from the codebook.

In several works, e.g. [273] and [285], the authors also use the local linearity of the relation
to reduce the size of the codebook by regrouping samples that fall within the linearity domain of
an articulatory vector. But these methods cannot guarantee, as [275] does, an homogeneous
sampling of the whole articulatory space.

5.3.2.2 Step 2. Construction of initial trajectories

To construct an initial articulatory trajectory from the points obtained from the codebook lookup
procedure, most studies penalize large “articulatory efforts”, that is, fast changes in the vocal
tract, and look for smoothly evolving articulatory trajectories under the constraint of matching
a given sequence of speech spectra. This is conveniently done with dynamic programming,
or even better with linear and non-linear filtering, like Kalman filtering or Ney’s algorithm. Al-
though diverse variations of these algorithms have been studied, almost all constraints used
in the optimization process are derivatives of two kinds of components: (i) constraints on the
acoustic vector in the codebook, to minimize the distance from the actual acoustic vector, and
(ii) constraints on the articulatory parameters (almost all constraints of this kind are derivatives
of articulatory trajectories efforts).

For instance, “muscle work criterion” was used for steady state segments in [11], as de-
scribed in Section 5.2. The same kind of constraint was used in [267], but articulatory param-
eters all had the same weight, as opposed to the formulation in [11]. Pseudo-kinetic energy
criteria have been used in [264], [275] and [286], where the two first studies also included a
pseudo-potential. In most modern works, the articulatory criterion mixes static (potential en-
ergy) and dynamic (velocity and acceleration) features with varying weights. In some works,
even the jerk (third order derivative of the position) has been used. Although these criteria are
sometimes quite sophisticated, they usually are impaired by the lack of quantitative knowledge
about the actual articulatory temporal behaviour.

More recently, other kinds of constraints have been investigated: in particular phonemic
or phonetic constraints, that is, constraints applied according to the phonemic context, e.g.,
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in [284] or [287]. Rough phonemic constraints are arguably already included within “root shapes
interpolation” codebooks, although they are too strong, since only artificial trajectories from the
codebook may be found in the inversed articulatory trajectories.

5.3.2.3 Step 3. Improvement of articulatory trajectories r ecovered

To improve the initial articulatory trajectories obtained from the previous step, which are gen-
erally rough and with some discontinuities, several methods have been proposed. In [274] an
optimization scheme, using a gradient descent algorithm, optimise’s the acoustic fit of the tra-
jectory to obtain a spectrum as close as possible to the original. In this case, the ultimate goal
was to use articulatory data for speech coding, so acoustic was the most important feature.

Most studies however, aim at recovering the most realistic articulatory trajectories possible,
while conserving a good acoustic fit. In that prospect, methods of variational regularization
have been used (e.g. [288]). In [275], the acoustic feature optimized was only the formant fre-
quencies, whereas in most works the acoustic criterion is stronger. For example, Schroeter and
Sondhi [286] use a complex cost function to evaluate the goodness of fit between the original
and the synthetic signals that has four components, the first being the likelihood-ratio distance
between the two LPC vectors corresponding to the original and the synthesized signals, the
second comparing the energy of the two signals, the third comparing the time derivative of
the glottal excitation; the fourth is a constraint on the articulatory vectors that penalizes high
variations of the parameters.

The constraints applied in this optimization step are usually stronger than in the previous
one, since the domain of available vectors is much greater, continuous (instead of the dis-
cretized space of the codebook values). The cost function minimized during this stage is usually
the same as before, although additional components may be added.

5.4 Statistical data-based methods

When simultaneous acoustic and articulatory data is available, it is possible to based the in-
version on statistical methods that ”learn” the quantitative association between the two types
of data. Several types of mapping functions have been investigated, from linear estimators to
more complex models based on HMM, as described in the following sections.

5.4.1 Linear estimation

With linear estimators, used e.g., in [17–19], unseen tongue data X is estimated from the
acoustic input Y as:

X̃ = T XY · Y (5.1)

The estimator T XY is defined from training data as
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T XY = X · Y T · (Y · Y T )−1 (5.2)

The N-by-6 matrix X usually consists of EMA coil positions or articulatory parameters for
each of the N time frames in the corpus. For the input data, LSP coefficients (described in
Section 4.1.1) have been commonly used, so that Y is a N-by-C matrix, where each row
contain the C LSP coefficients and the RMS amplitude (C=16 in all studies mentioned above).

The use of linear estimators has been most common in studies on the correlation between
acoustics, vocal tract configuration and the face, and the results are further described in Sec-
tion 5.5.

The articulatory-acoustic relation is however non-linear and a non-linear estimator, such as
a neural network [289] or a relevance vector machine [109], may hence be more suitable. The
differences between linear and these non-linear estimators are also described in Section 5.5.

5.4.2 Speech Inversion based on Hidden Markov Models

The HMM-Based Speech Production Model proposed in [290] allows the imposition of more
elaborate constraints to the dynamic behaviour of the articulatory parameters that are estimated
for given speech acoustics in a speech inversion setup. Its stochastic nature may also provide
a formal way to cope with possible data measurement errors or imperfect assumptions. This
model consists of phoneme-HMMs of articulatory parameters x and an articulatory-to-acoustic
mapping that transforms the articulatory parameters into the speech spectrum y for each HMM
state [290], as shown in Fig. 5.3. This mapping is approximated by the function y = Ajx + bj at
state j. The covariance of the approximation error is σwj

while its mean is zero. Each phoneme
HMM λ is defined as:

λ = {x̄j , σxj
, σwj

, Aj , bj, ȳj , σyj
, αij}, for all j (5.3)

Figure 5.3: HMM-based speech production model [290]
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Figure 5.4: Procedure for acoustic-to-articulatory inverse mapping with HMMs [290]

The mean acoustic and articulatory parameter vectors at each state are ȳj and x̄j while the
corresponding covariances are σyj

and σxj
. The transition probability from state i to j is αij .

Given a sequence of acoustic parameter vectors y and an HMM state sequence q, the
estimation of the articulatory parameter vector sequence x may be achieved by maximization
of the a posteriori probability (MAP):

P (x|y,q, λ) =
P (y|x,q, λ)P (x|q, λ)

P (y|q, λ)
∝ P (y|x,q, λ)P (x|q, λ) (5.4)

On a frame by frame basis, the desired parameter vector x̂ is derived as a properly weighted
sum of the mean articulatory vector at the current HMM state and the current vector x that
satisfies the relationship y = Ajx + bj. The weights are proportional to the relative reliability of
the two summands:

x̂ = (σ−1
x + AT

j σ−1
w Aj)

−1(σ−1
x x̄ + AT

j σ−1
w (y − bj)) (5.5)

The estimation process is demonstrated in the Fig. 5.4. To limit abrupt changes of the estimates
between subsequent frames the parameter vector may be enriched with the time derivatives
and accelerations of the articulatory features. Then, with minor modifications, the described
framework (MAP) may be applied to extract smooth articulatory parameters using the dynamic
features as well [290].

The optimal state sequence may be determined using the Viterbi algorithm, as in the con-
ventional acoustic HMMs [291]. The Gaussian observation probability distribution at each state
with respect to the observed acoustic parameter vector is characterized by the following mean
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and covariance:

ȳ = Aj x̄ + bj (5.6)

σy = AσxAT + σw (5.7)

Model training is performed using simultaneously obtained acoustic and articulatory data.
Maximum likelihood estimation is achieved by means of the Expectation-Maximization algo-
rithm. Firstly, the parameters ȳj, σyj

and αij are obtained. Then, given the estimated probability
γt(j) of the acoustic parameter vector being at state j at the moment t as well as x and y we
can determine the rest of the parameters by maximizing the a posteriori probability P (x|y,q, λ).
Details are given in [290].

Reported experiments on data acquired by three Japanese males demonstrate improved
performance of this HMM based speech inversion compared to two Codebook search methods,
with and without a dynamic programming procedure [292]. The HMMs used were 3-state left to
right diphone models. 873 diphone models plus an additional silence model were trained and
used for inversion. The average RMS error was 1.73 mm while for the two Codebook search
methods it was 2.35 mm and 2.95 mm, respectively.

5.4.2.1 Using Constrained HMMs

An alternative statistical approach for speech inversion is based on the so-called Constrained
HMMs and is presented in [293]. The constrained hidden Markov models address the modeling
of state dynamics by building some topology into the hidden state representation. The essential
idea is to constrain the transition parameters of a conventional HMM so that the discrete-valued
hidden state evolves in a structured way. The typical left-to-right constraints for the HMMs are a
special case of the constrained state topologies which in general can be high-dimensional and
allow omni-directional motion.

The definition of such an HMM involves the identification of each state of the hidden Markov
chain as a spatial cell in a fictitious topology space. One has to select the dimensionality d
for the space, the number of states M , the way these states will be packed (e.g., cubic) and
the side length l of this packing. Dimensionality and packing define a vector-valued function
x(m), m = 1 . . . M which gives the location of cell m in the packing. A constrained HMM in
three dimensions is shown in Fig. 5.5. The most important is to choose a proper neighbour-
hood rule in the topology space, that is define which states belong to the same neighbour-
hood. The transition matrix of the HMM is then fixed so that it allows only transitions between
neighbours. The non-zero transition probabilities may be set equally likely. The optimal state
sequence is estimated using Viterbi decoding while for the state occupation probabilities the
forward-backward algorithm is used. Constrained HMMs are trained in a similar way like the
conventional HMMs. The main difference is that the transition probabilities are not updated by
the Expectation Maximization algorithm.

Constrained HMMs may be applied to recover articulator movements from speech, as pre-
sented in detail in [293]. For training, simultaneous speech and articulatory data sequences
are necessary. Speech is represented by a sequence of short-time spectral feature vectors
(Line Spectral Frequencies). In the training phase, the idea is to learn the model parameters
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Figure 5.5: Constrained HMM for d=3, l=4, M=64 and cubic packing with an example state trajectory
and the corresponding transition matrix [293]

so that connected paths through the state space can generate the speech training data with
high likelihood. Model dimensionality and number of states are set using cross validation. After
learning, one may infer a continuous state trajectory from an utterance by first generating a
discrete state sequence mt using Viterbi decoding and then interpolating smoothly between
the positions x(mt) of each state. A single linear fit is then performed between these state
trajectories and the original movements of the articulators using the training data. For speech
inversion, first the continuous state trajectory of the constrained HMM is inferred for the test ut-
terance and then the single linear mapping is used to recover the exact articulator movements.
Promising results are presented in [293] where the presented approach compares favourably
to a Kalman based speech inversion technique using a global Linear Discrete State model.

5.5 Employing correlations between the face and vocal tract

Pure acoustic-to-articulatory inversion without constraints is theoretically impossible, due to the
many-to-one mapping of several articulatory configurations to one speech spectrum and the
fact that the system is under-determined with too few input parameters. The problem may to
some extent be resolved by postulating that the speaker tries to minimize the energy and/or the
articulatory distances or to maximize the smoothness of the movements. Another, more direct,
method is to increase the number of input parameters, by adding what is already known about
the articulation through other sources of information than the speech signal.

The most natural source of complementary information is to use data of the speaker’s face.
At the same time as the speech signal properties are defined by the configuration of the vocal
tract, this configuration is reflected in the face, as the shaping of the vocal tract is to a large
extent made by externally visible articulatory features, either directly, as the position of the jaw
and the lip shape, or indirectly, as the tongue movements deform the skin, e.g. at the cheeks,
through the muscle attachments.

Previous studies on the relation between the face, the vocal tract and the speech signal
have used three sources of information for the face movements: automatic 3D tracking of in-
frared sensors glued to the face [17–19,128,289], manual tracking of coloured markers in video
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images [294] or automatic tracking of facial features in video images [109].

Tracking of markers has the benefit that exact positions of the fleshpoints are given, for some
systems even in three dimensions, but automatic analysis of an unmarked face is certainly more
attractive for any application based on speech inversion, as the set-up is less complicated and
intrusive for the speaker. In addition, it may also make use of information on shading or the
visibility of the tongue tip, which is lost when tracking fleshpoints.

This section summarizes the results from previous studies on the relation between the face
and vocal tract motion. The methods used to track the face and vocal tract are not described in
any detail, as the methods as such have already been covered in section 2.

5.5.1 Does visual data help in the inversion?

Visual data does definitively improve the performance of the speech inversion, as indicated by
the mean correlation coefficients of the previous studies in Fig. 5.6.

As suggested in Table 5.1, the studies differ in important aspects in the setup or method,
reducing the validity of inter-study comparisons of correlation results. It is, on the other hand,
possible to make comparisons within each study, with respect to the type of uni- or bi-modal
input. Not only is the performance always better with the combined audiovisual input, these
previous studies even suggest that information from the face is more important than the speech
signal when trying to estimate the shape and position of the tongue. This conclusion holds
regardless of corpus, method used to perform the regression and the type of visual input data.

Yehia et al. [17] (A in Fig. 5.6) explained the high correlation between the face and tongue
movements by a functional coupling between the jaw and the tongue, i.e., that the two are
moved together, except for the decoupling when the tongue, and especially the tip, is positioned
independently of the jaw (typically for [l], which was observed to decrease the tongue motion

Figure 5.6: Mean correlation coefficientsρ̄AO (audio input only),ρ̄V O (visual only),ρ̄A2DV (audio and
2D visual data) and̄ρA3DV (audio and 3D visual data) for the different studies listed in Table5.1.
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Corpus Speakers/ Facial Vocal tract Estimation
Language data description method

[A] Yehia et al., 1998 [17]
2-5 sentences 2 3D 7 EMA coils: linear
repeated American, tracking tongue: 4, jaw: 1,

Japanese lips: 2
[B] Jiang et al., 2002 [18]

69 CVs 4 3D 5 EMA coils: linear
3 sentences American tracking tongue: 4, jaw: 1
repeated

[C] Engwall, 2005 [19]
138 VCVs 1 sparse 2D Articulatory linear
178 sentences Swedish tracking parameters
not repeated

[D] Engwall, 2006 [289]
138 VCVs 1 sparse 2D Articulatory ANN
178 sentences Swedish tracking parameters
not repeated

[E] Kjellström et al., 2006 [109]
63 VCVs 1 2D video 4 EMA coils: RVM
not repeated Swedish of lips tongue: 3, jaw: 1

Table 5.1: Previous studies on the correlation between the face, vocal tract and speech acoustics. The
first column indicates the labels used in Fig.5.6.

recovery). Similar results on the functional coupling were observed by Engwall & Beskow
[19,295].

Jiang et al. [18] (B in Fig. 5.6) on the other hand found that the lateral [l] was the best
recovered manner of articulation for three of their subjects (but worst for the fourth one) when
estimating the tongue from optical data, indicating that facial data can indeed capture tongue
movements that are independent of the jaw. A word of caution is nevertheless called for, as
both [17] and [18] used 4-5 repetitions of each syllable or phrase, which signifies that other
productions of exactly the same utterance were included in the training material and there is
hence a risk that the inversion is template-based rather than employing more general relations
between features.

All the studies [19,109,128,289,295] were based on the KTH Qualisys-Movetrack database
described in Section 2.3.4. The first four studies were based on motion capture data, while the
last used video image analysis of the speaker’s face.

Engwall [19] (C in Fig. 5.6) showed that while the full three-dimensional facial data improved
the performance the most, a very sparse visual input, consisting of the five measures describing
the horizontal position of the lip corner markers and the vertical position of the coils and the
upper and lower lips and the jaw were enough to make a 40% improvement in the correlation
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coefficients compared to the acoustic only input. Visual input describing a few selected features
of the lip shape is hence a sufficient addition to improve the inversion results substantially.
Study D in Fig. 5.6 that was based on the same data and conditions as C, but using a non-
linear estimation method with neural networks, shows a similar improvement, but from a higher
base-level.

The study by Kjellström et al. [109] (E in Fig. 5.6) further showed that the visual data need
not be perfectly tracked by a dedicated optical motion tracking system in order to make a large
improvement in the inversion results. Computer vision analysis of video images of the speaker’s
face gives a similar increase. The algorithm used was an Independent Component Analysis to
describe the image features (c.f. Section 2.5.3) and a kernel-based relevance vector machine
(RVM) to perform the regression between the vocal tract data and the face, acoustics or face
plus acoustics. Two techniques were tested to combine the two sources of information; early
fusion, in which the visual and acoustic data were merged before the regression, and late
fusion, in which regression was performed on the two channels separately, before merging.
The results for the A2DV case in Fig. 5.6 are for the late fusion, which was the better. The
difference between the results for early and late fusion is discussed in the next section.

5.5.2 In what way does visual data help?

The contribution of facial data to the inversion can be analyzed in two different manners, either
based on the regression results from facial data only or investigating the improvement when
visual data is added to acoustic input.

5.5.2.1 Face-to-vocal tract estimation

In the study by Yehia et al. [17], the vertical jaw movement was very well reconstructed from
the facial data (0.96 and 0.94 for the two subjects), and the level of correlation was almost
identical for the vertical and horizontal movements of the tongue body and tip (0.7-0.76 for
one subject, 0.9-0.91 for the other), except for the vertical movement of the tongue body for the
second subject, where the correlation was somewhat lower (0.82). Yehia et al. performed no in-
depth articulatory analysis of the correlation coefficients, but some additional information on the
estimation of different parts of the vocal tract may be gained from the tongue motion traces of
the estimated and measured tongue movement. The estimated tongue motion traces are more
neutral than the real, especially for the horizontal movement. For the vertical movement, the
estimation relies quite heavily on the strong relation between the jaw and tongue movements,
in particular for the tongue tip. It thus seems that the more neutral the articulation is, and the
more passive the tongue is, relative the jaw, the better will the estimation from facial motion
capture data be.

Jiang et al. [18] divided the analysis of correlation results into categories depending on the
place of articulation of the consonant to estimate, and the general finding over four speakers
was that the groups of palatals, palatoalveolars, alveolars and dentals were the best estimated,
even if the variation both on the levels and the rank between subjects was large. From the
correlation coefficients it thus appears that articulations with a front lingual constriction are the
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best reconstructed from facial data, which seems natural.

Engwall & Beskow [295] performed a similar investigation of the reconstruction of con-
sonants with different places of articulation based both on correlation coefficients and on an
articulatory analysis of tongue contours reconstructed from the real and estimated EMA coil
positions. Instead of looking at the mean correlation coefficients for each consonant, they an-
alyzed the reconstruction of different parts of the vocal tract. They found that the jaw position
was almost perfectly estimated for all consonant groups; that the tongue body reconstruction
was medium for all consonant groups except retroflexes, for which the estimation was poor;
that the face provided little information for the tongue dorsum (i.e., the velar arching of the back
part of the tongue), in general and especially for bilabials; that the tongue tip was quite well
reconstructed for all consonants; and that the tongue advance was very badly estimated for all
but bilabials.

When analyzing the tongue shapes, they concluded that the tongue tip position was well es-
timated for the majority of the alveolar stops and fricatives and retroflexes. On the other hand,
the closure or constriction was not correctly estimated for velar stops and palatal and velar frica-
tives, as the vocal tract remained too open. For the fricatives, the constriction sometimes ap-
peared, but too frontward. Moreover, the estimation of the lateral [l] was always unsuccessful,
as the linear estimation from motion capture data assumes that a lowered jaw is accompanied
by a low tongue tip, similar to the findings in [17]. The face did not give any information on the
tongue position for the bilabials, since the tongue position is unconstrained when the closure is
at the lips.

The face in itself clearly does not give sufficient information to recover the tongue contour
for velars and bilabials, but it does provide important information on the front parts of the tongue
for front articulations.

5.5.2.2 Audiovisual-to-vocal tract estimation

Engwall [19] made an extension of the work in [295] by investigating the combination of acous-
tic and sparse facial input data. The rank of the importance of the different facial measures
differed between VCV words and sentences. For the VCV words, the lip corners were the most
important (due to the importance of the lip rounding parameter in the corpus consisting of sym-
metric VCV words in [a, I, O] context), followed by the vertical positions of the upper and lower
lip, and, close behind, the vertical movement of the jaw. For the sentences the upper-lower lip
positions were the most beneficial, then the jaw and last the lip corners.

The facial measures provided the most information to recover the movements of the jaw and
of the tongue tip raising, while the audio contributed the most to the horizontal position of the
tongue tip. The largest increase gained by combining the two sources was for the front-back
movement of the tongue body and the velar arching of the tongue. When grouping the VCV
words depending on manner of consonant articulation, the largest increase when the facial
data was added was for fricatives (64%) followed by nasals (53%). The increase for stops
was significantly lower (29%) and for the approximant-tremulant group [l, j, h, r], the facial data
actually decreased the performance (-12%), mainly due to the fact that the combination of a
lowered jaw and a raised tongue tip for [l, r] goes against the general tendency in the corpus
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that the movement of the jaw and tongue tip are positively correlated.

The five facial measures improved the estimation of the tongue tip position significantly and
permitted to find e.g., alveolar closures. The estimation of manner of articulation was hence
improved, even if the place of articulation was not always recovered for post-alveolars. The
facial measures were unable to contribute to a better inversion of the tongue tip for articulations
for which it was positioned very independently of the jaw, as for [l, r] and to the dorsum part
of the tongue. It even occurred that the facial information contributed to a better estimation of
the tongue tip position, but at the same time made the dorsum part correspondence worse.
The facial information did nevertheless contribute more than (for VCVs) or as much as (for
sentences) the acoustic signal to a successful recovery of the back part of the tongue, contrary
to the commonly occurring statement that it is impossible to lip-read the back part of the tongue,
at least for humans.

The results in [109], where automatic analysis of video images of the same subject and
session was used, are similar. The audio-visual speech inversion outperformed both acoustic-
and visual-to-articulatory inversion, and the visual data contributed more than the acoustic
acoustic signal for all tongue coils, except for the horizontal position of the back-most tongue
coil.

Compared to the results using motion capture of the face, the reconstruction of the jaw
from the video images was not as perfect as from the 3D data, which is natural, since both
the horizontal and vertical jaw movement is given almost directly by motion capture data, but
must be estimated from the video. The horizontal movement is indicated only by changes
in shading and the vertical movement needs to be estimated from the shape and size of the
mouth opening rather than from an absolute position, since every image frame is centered on
the lips. The vertical tongue tip position was estimated better from video images than from
motion capture data, since the tongue tip is actually visible in some of the video images. For
the remaining tongue coil coordinates, the estimation from video images was only marginally
worse than that of the 3D motion capture, except for the back-most tongue coil. This is probably
due to information given by markers on other parts of the face or the fact that the jaw position
is almost perfectly estimated from the motion capture data. For all frames for which there is no
independent tongue movement with respect to the jaw, the perfect recovery of the jaw will give
a better estimation of the tongue.

The early fusion of audio and visual data was only marginally better than visual alone data,
but late fusion resulted in a substantially higher correlation, which is in accordance with influen-
tial theories on human speech perception (e.g. [296]) stating that humans process information
within each modality independently and then fuse the processed, rather than the raw, data.
When analyzing the tongue shapes, it was found that the late fusion was better than early
when the estimation from one of the modalities was close to the true shape and that the late
fusion failed more gracefully than the early. The early fusion was on the other hand better when
the estimation from both modalities failed or when one modality failed completely.

Engwall [289] compared linear and non-linear estimation of the tongue from acoustic and
audiovisual data, using correlation coefficients, RMS errors and confusion matrices based on
a articulatory classifier. The correlation coefficients and the RMS error indicate that the non-
linear estimation (a neural network) performed better than the linear estimation, but also that
the linear estimation gained more from adding visual features for VCV words, narrowing the gap
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between the two methods. For sentences, the advantage of the non-linear estimation prevailed
even when visual data was added.

To evaluate inversion results, an articulatory classifier was also proposed in [289]. It con-
sists of prototype tongue shapes for each articulation, defined based on the frames labeled
as belonging to the corresponding phoneme. The classifier was then employed to label every
frame in the input data stream based on the articulatory correspondence with the prototypes,
either regarding the entire tongue shape (vowels) or in the vicinity of the most constricted part
of the vocal tract (for consonants). Confusion matrices could hence be defined to analyze the
performance of the estimations, and they indicate that even if the overall levels of correctly
classified articulations or places of articulation were similar for audiovisual input, the linear and
non-linear estimations are quite different in terms of how they fail, both for acoustic only and
audiovisual inversion. For the audiovisual inversion, misclassifications of the non-linear estima-
tion tends to be closer in articulatory terms and the results were in particular better for alveolars
and retroflexes compared to the linear estimation.

For the linear estimation, the main improvements when adding visual data were that the
manner of articulation is better recovered for alveolars (e.g., [t]↔[s]) and the place of articula-
tion better recovered for fricatives and back consonants.

For the non-linear estimation, the largest improvements were for [l, C] and for the place of
articulation for the palatovelars [Ê, k], and a general redistribution of the misclassifications so
that they were closer to the true articulatory category.

5.5.3 Summary & Discussion

In conclusion, visual data of the speaker’s face is very important to recover the underlying con-
figuration of the vocal tract, and it should hence be exploited in articulatory inversion, whenever
it is possible. The studies summarized above indicate that the facial images are often even
more important than the acoustic signal. It should be acknowledged, however, that the vocal
tract configurations that were estimated in the above studies were represented by or recon-
structed from a number of EMA coils on the tongue surface and on the jaw. It is thus possible,
and even probable, that the acoustic signal is more important for other parts of the vocal tract,
e.g., the configuration in the pharynx, which is not captured by the EMA measurements.

It could further be argued that most of the above studies have investigated the correlation
on corpora containing speech material, e.g., VCV, CVC and CV, for which the correlation is very
strong between the position of the jaw (easily estimated from facial data) and the configuration
of the tongue. The two studies where sentences have been included in the corpus [19, 289]
nevertheless show a similar improvement for sentences when visual data is added.

An additional possible caveat is the representation of the acoustic signal as line spectrum
pairs. Though the LSP coefficients are considered to give a good representation of the acoustic
spectrum and in particular the formants, it has yet to be shown that LSPs are the best possible
representation for articulatory inversion. The representation might hence limit the contribution
of the acoustic signal, and rather than claiming that visual data is more important than acoustic
data, we wish to conclude that visual data is important in combination with the acoustic signal.
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The one study that has investigated early and late fusion suggests that late fusion is better
than early, as it gives more impact to a successful estimation from one of the modalities.

The most important contribution from the visual data is, quite naturally, for the estimation of
the jaw position and the lip shape, but also for the tongue tip for front articulations. Even if the
recovery of the back part of the tongue is less successful from visual data, it is often better than
from the acoustic data only. The combined audiovisual inversion is, almost, always better than
unimodal inversion. Problems may arise for articulations that do not correspond to the main
relation between the important features of the face and the tongue, which may lead to a worse
estimation if visual data is added. Noteworthy is, however, that such problems arise mainly for
a linear estimation, while non-linear estimations, using, e.g., neural networks, achieve better
results with audiovisual data even for these articulations. Non-linear estimation also seems to
fail more gracefully than a linear. The audiovisual speech inversion should therefore ideally be
performed with a non-linear estimation.
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Chapter 6

Specification of fields investigated

This chapter is intended to present the scientific fields that will be investigated in the ASPI
project. This presentation is brief because it refers to the technology inventory corresponding
to chapters 1 to 5. Moreover, other deliverables, i.e. D2.1 about inversion methods, D4.1 about
the design of the multimodal acquisition system and D5.1 give more details on the ongoing
work.

6.1 Development of inversion methods

6.1.1 Tools for inversion

These tools are intended to prepare inversion by either providing data (automatic formant track-
ing) or adapting the analyzing model. The adaptation of the analyzing model mainly consists of
modifying the geometrical dimensions of the articulatory model or the area function model. The
overall fit between the analyzing model and the vocal tract of the speaker is assessed through
the comparison of formant frequencies of synthesized speech and natural speech.

6.1.1.1 Automatic formant tracking

Although the objective is to perform audiovisual-to-articulatory inversion without the knowledge
of formants, automatic formant tracking is important because it enables a very precise evalua-
tion of inversion methods.

LORIA will improve formant tracking algorithms previously developed and make them avail-
able in order to build a formant database usable in the domain of acoustic-to-articulatory inver-
sion.

The ICCS-NTUA group will contribute to the improvement of formant tracking by incorporat-
ing results from its on-going work on nonlinear speech modeling and tracking algorithms based
on statistics and optimization. This work includes algorithms for detecting speech resonance
modulations and estimating their parameters.
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6.1.1.2 Speaker adaptation

Here, acoustical speaker adaptation designates the removal, or more precisely the attenuation,
of the geometrical discrepancies between the speaker who uttered speech signal to be inverted
and the analyzing model. An alternative is to perform speaker normalization by normalizing
formant frequencies.

Speaker normalization will use MRI images that are now being acquired. There are already
several normalization methods which often consist of adapting geometrical parameters of the
articulatory model. The work will be about the evaluation of these methods and whether they
need to be improved and how this can be achieved. The main issue will concern the recovery
of the third dimension and its role in the speaker adaptation.

6.1.2 Improvement of the analyzing acoustic simulation

The objective is to guarantee that the analyzing model is able to approximate speech sounds
correctly. Besides the synthesis itself, it is important to find out which are the main articulatory
and acoustic characteristics that have to be exploited for inversion. The work of LTCI will be
about the acoustic models of non-front sibilant fricatives.

In parallel, ICCS-NTUA will explore improvements to the analyzing model based on aeroa-
coustics and nonlinear speech production phenomena. This will be based on several exper-
imental and theoretical evidences that such nonlinear aerodynamic phenomena occur during
speech production and the development of signal processing systems that can approximate
such phenomena.

A work carried out before ASPI about the MRI observation of non-front sibilant fricatives, /s
and S/, produced by 7 French speakers showed that there are two speaker-dependent strategies
to make acoustic contrast between these consonants. It seems, moreover, that two simplified
vocal-tract models with the noise-source location as the third parameter underlie the apparent
inter-speaker variability, since these models can explain the observed spectral patterns of frica-
tives sounds produced by the those speakers. Finally, it is noted that these results would help
us to formulate an appropriate vocal-tract model to be recovered from speech signal using an
inverse method.

LTCI will thus address the issues described in Section 6.1.3.

6.1.3 Source of fricative sounds

Vocal vocal-tract configurations are recovered using an inverse method and we need to know
how to control the generation of the fricative source in synthesis applications. The source gen-
eration requires a precise coordination between the articulation of the tongue (recovered by
inversion) and the adduction/abduction of the larynx along a VCV sequence (not recovered by
inversion), where V is a vowel and C is a fricative consonant. We shall carry out experimental
studies observing the temporal relationships between open/closed phases of the glottis, the
tongue movement, and airflow, which is flowed by an acoustic and airflow simulation studies.
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The glottis and airflow can be observed by the instruments, respectively a photo-glottograph
and a pneumotachograph, already existing in our lab. The tongue movements will be observed
using a point-tracking device such as Aurora system. The knowledge gained from these ex-
periments allows us to control the larynx for a given A-to-A inversed time-varying vocal-tract
configuration along VCV sequences.

6.1.3.1 Tongue movements in VCV sequences

Using the Aurora system, LTCI shall study the contextual variation of tongue movements of
fricatives in VCV contexts. In the literature, fricatives are said to have a high coarticulatory
resistance, that is, they are resistant to the contextual influence of adjacent vowels. We feel
however, from our experience that the front sibilant /s/ might have such a high resistance, but
not non-front sibilant fricatives such as /S/. We want to assess these observations by our
own experiments. The result would be useful for the construction of experimental paradigm of
inversion and for the evaluation of inverse methods.

6.1.3.2 Comparison of tongue contours derived from US imagi ng and X-ray films

Midsagittal x-ray data often describe complete tongue contours from the apex to the root. This is
not the case in US imaging data, where the apex and tongue root regions are missing, although
in the ASPI project the lacking tongue apex is recovered by tracking a magnetic sensor placed
on the apex. The question here is whether the US derived tongue contours have sufficient
information to define the whole tongue contours. This is not an unreasonable question, since
we know from factor analysis that the tongue contour can be described, after subtracting the
effect of the lower jaw position, by only two factor components with a high accuracy. If the net
information content in tongue contours from X-rays and that from US imaging is identical or
very close to each other, it must be a way to recover the root region of tongue contours from
the US imaging data.

In addition, taking advantage of the superimposed point and US imaging data, it might
be interesting to compare the flesh-point data and imaged tongue contour data in terms of
kinematics. In the literature, it is said that the point data is superior in describing the kinematics
than the imaged tongue contour data. It might be so in principle, but as far as we know, this
claim is not validated by experiment. These two studies will be conducted by LTCI with a close
collaboration with LORIA.

6.1.4 Inversion methods

The overall objective is to study the feasibility of inversion. We will thus address the following
issues:

• Investigating the behavior of inversion, i.e. evaluating the shapes recovered from acous-
tic parameters according to the underlying analyzing model. Performing inversion with
formant data enables the behaviour of the inversion to be clearly separated from other
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factors, the properties of the spectral analysis for instance. The analyzing model can be
represented globally by a codebook, or locally by estimating the Jacobian matrix of the
articulatory to acoustic mapping at points visited by the inversion process.

• Elaboration of inversion methods that exploit spectral vectors like MFCC or LSP or alter-
natives (e.g., multiscale modulation-based) time-frequency speech representations and
represent the articulatory to acoustic mapping by means of stochastic or neural models.
Also, investigation of characteristics based on nonlinear speech modeling.

• Incorporation of constraints in order to reduce the under-determination of the inversion.
These constraints can supplement the analyzing model by checking the phonetic, dynam-
ical or anatomical consistency of inverse solutions. They can also provide articulatory
information directly through the observation of the speaker’s face.

6.1.4.1 Data-free formant-to-area mapping

The objective is to develop inverse mapping that obtains the shape parameters of a spectral
model of the vocal tract from the measured formant frequencies, without training data. One
reason for the focus on training data-free methods is the greater flexibility, because the switch
between models or between different types of acoustic data does not request the compilation of
a new code-book, which is time-consuming. Training data-free methods are therefore relevant
even when the goal is inversion by table look-up, because the suitability of acoustic data or
models for inverse mapping purposes can be evaluated before a final code-book is compiled.

The method that will be designed by ULB rests on the linearization of the relation between
formant frequencies and the area function parameters; the model is spectral, that is, its eigen-
frequencies are obtained directly from the tract parameters. No explicit model of the excitation
or radiation is involved. Losses that have a major influence on the eigenfrequencies are inserted
via geometric corrections to the vocal tract shape. The pseudo-inversion of the Jacobian matrix
obtains the model parameter increments from the observed formant frequency increments. The
parameter increments are added to the previous parameter values to obtain the present ones,
after which the procedure is reiterated.

The Jacobian matrix is not square and its determinant is not zero. Its inverse is therefore
replaced by its pseudo-inverse and the general solution is obtained by additional dynamic con-
straints with regard to position, speed, acceleration or jerk of the model parameters. Anatomical
constraints are inserted by forcing the vocal tract parameters to evolve within bounds.

6.1.4.2 Data-free spectrum-to-area mapping

The objective is to develop an inverse mapping that obtains the shape parameters of a tempo-
ral or spectral model of the vocal tract from measured linear predictive or cepstral coefficients,
without training data. The goal is to enable the spectral-to-shape inversion for arbitrary area
function models, including losses, as well as voiced and fricative sources. Spectral cues are
obtained algorithmically. They enable circumventing heuristics that obtain the formant frequen-
cies. At present, data-free spectral-to-shape inversion may be considered to be an unsolved
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problem, because existing methods either involve tract models that are over-idealized, or re-
quest prior table look-up.

The principle of the method proposed by ULB will rest on the linearization of the relation
between spectral cues and the area function parameters; the models are spectral or temporal.
Explicit models of the excitation or radiation are involved. Losses that have a major influence
on the eigenfrequencies and bandwidths are taken into account. The pseudo-inversion of the
Jacobian matrix obtains the model parameter increments from the observed spectral cue in-
crements. The parameter increments are added to the previous parameter values to obtain the
present values, after which the procedure is reiterated.

Similarly to the data-free formant-to-area mapping, anatomical constraints will be inserted.

6.1.4.3 Spectrum-to-articulatory and formant-to-articu latory mapping

The objective is to infer the parameters of articulatory models from acoustic data. The artic-
ulatory model is an articulatory-constrained area function model, or an articulatory model of
the two-dimensional sagittal profile of a speaker’s vocal tract. The purpose is to fix the area
function by means of a small number of parameters that may have an anatomical or phonetic
interpretation.

KTH, LORIA, ULB and ICCS-NTUA are involved in this task. They will investigate the inver-
sion of mainly vowels and fricatives from spectral data (MFCC or similar spectral vectors), LSP
(Line Spectral Pairs), or audio-visual features.

To achieve inversion, KTH, LORIA and ICCS-NTUA will investigate statistical learning meth-
ods.

KTH intends to investigate the influence of both different acoustic representations (e.g.,
MFCCs) and the learning method used. Previous results indicate that non-linear estimation
methods are more valid than linear, and the work will hence be pursued to optimize estimations
using e.g., multilayer perceptrons or mixed density networks.

LORIA will particularly study how the articulatory to acoustic mapping can be represented
by a statistical learning and how it can be exploited for inversion.

In the above context, ICCS-NTUA will explore statistical learning approaches based on
Hidden Markov Models.

6.1.5 Design and exploitation of constraints

The mapping from the articulatory space to the acoustical space is non-linear and many-
to-one, and a challenge in audiovisual-to-articulatory inversion is thus to reduce the under-
determination of the problem through the incorporation of constraints. We will investigate phys-
iological, phonetic and video constraints. Physiological constraints are put upon the physical
characteristics of the articulators and can generally be expressed in the form of derivative terms
that have to be minimized. Unlike other constraints they can be incorporated in the inversion
process directly and issues that we will investigate are about their minimization and their con-
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tributions to the inversion result.

KTH will continue to explore the constraints that geometric data of the face (3D motion cap-
ture of reflective markers on the face or video images) impose on the vocal tract configuration.

LORIA will investigate phonetic constraints derived from knowledge of the phonetic charac-
teristics of speech sounds, which enables the derivation of reasonable domains in the space of
articulatory parameters. Given the acoustical parameters of a speech sample (spectral vector
or formant frequencies) an ”ideal” articulatory domain can be derived. The space of acousti-
cal parameters is partitioned into sounds, using either speaker-specific data or generic. Then,
to each articulatory vector can be associated a phonetic score varying with the distance to
the ”ideal domain” associated with the corresponding sound. We will investigate whether pho-
netic constraints can be derived not only for vowels but also for consonants, and how these
constraints can be expressed with formants and spectral vectors.

Video constraints derived from visible articulators come from the observation of the speaker’s
face and give information about the position of lips and the lower jaw. This corresponds to two
or three articulatory parameters and this represents approximately one third of the global artic-
ulatory information. The constraints associated to visible articulators (when the speaker’s face
is visible) thus play a decisive role in the reduction of the under-determination of inversion. The
usefulness of extracted visual features is expected to be two-fold. They can help in the es-
tablishment of quantitative articulatory constraints (off-line processing of audiovisual datasets
while training the models) and can enhance auditory features for better interactive inversion
(on-line processing of videos during the working phase of the system).

LORIA will investigate the exploitation constraints derived from 3D measures of the speaker’s
face.

ICCS-NTUA will also focus on the algorithmic and numerical frameworks that enable the
incorporation of constraints, especially those of statistical pattern recognition/learning. Indeed,
throughout the proposed project, new multimodal datasets will be gathered and, along with ex-
isting datasets, will be systematically processed. This will allow application of modern statistical
inference techniques into the inversion problem. An important part of this research direction will
deal with the optimal fusion of the features obtained by the different modalities.

6.1.6 Processing Video Images to Derive Constraints

In the design of the visual front-end of the audiovisual-to-articulatory inversion system ICCS-
NTUA will address the following tasks:

• Active speaker’s face detection and tracking: The appearance of the speaker’s face con-
tains significant information related to the configuration of articulators and thus the system
must reliably locate and track it. Image pre-processing is usually required to suppress
noise and spurious details and enhance the image/video. Geometric multiscale analysis
(e.g., by means of morphological filters and/or partial differential equations-PDEs) is par-
ticularly effective in these tasks. At the same time, it respects the salient details of the
image. Some effort will also be spent on extending methods to the time dimension. Effi-
cient methods from computer vision will be utilized next for detecting the speaker’s face

98 November 27, 2008 ASPI/2006/D1/v2.0



Deliverable D1Technology inventory and specification of fields investigated IST Project IST-2005-021324

and tracking.

• Facial model fitting and visual features extraction: After the speaker’s face has been
detected, the position and dynamics of the visible articulators (mainly lips and jaw) must
be accurately captured. Face modeling has attracted significant research interest in the
scientific community and a multitude of methods have been proposed. We plan to test
the performance of both advanced active shape models as well as active appearance
models. The parameters describing the fitted face model, after appropriate dimensionality
reduction, will be used as articulatory visual features. In addition to extracting features
from the lips and jaw area, some effort will be spent on detecting and tracking the vocal
tract shape on data that provide such information.

6.2 Design, acquisition and processing of articulatory dat a

6.2.1 Defining acquisition protocols

KTH and LORIA will define acquisition protocols for all the imaging modalities used in the
project. The repeatability and, the quality of 3D and temporal data will receive a particular
attention. Ultrasound imaging will be used in order to evaluate the impact of the acquisition
conditions (supine or sitting position, real or silent production. . . ).

6.2.2 Acquisition of data

The content of the articulatory database will be defined by KTH and LORIA. The first objective
is to enable the development of a dynamic articulatory model as complete as possible for two
Swedish and two French speakers (if possible more speakers will be involved). The second
objective is to record an amount of dynamic data that enables the training and the evaluation of
inversion methods.

6.2.3 Exploitation and Processing of Databases

Recovery of geometric information regarding the articulators is both intrinsically interesting and
required in the ASPI project. This needs to be done both in existing X-ray data as well as in
images acquired using other modalities such as US or MRI. Efficient image processing and
computer vision techniques for enhancement, segmentation and tracking of medical images
need to be utilized or further developed. In this area, ICCS-NTUA will address the following
tasks:

• Part I: Image Pre-Processing and Enhancement:

De-noising,

Contrast Enhancement, Interpolation, and Multiscale Image Simplification
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Possible Methods:

Multiscale Morphological Operators,

Vision PDEs, Variational and Level set methods,

Multiband filtering

• Part II: Segmentation and Boundary Tracking:

Extract the shape of internal articulators from images.

Possible Methods: Active Contours, Morphological, and PDE methods.

Incorporation of Prior Knowledge.

Extensions: Boundary tracking in videos.

6.3 Multimodal acquisition technology

Beside more technical aspects, two issues will be addressed to enable the development of the
multimodal acquisition system.

6.3.1 Tongue tracking on ultrasound images

Recovery of geometric information regarding the tongue in US images is very important for
the overall success of the project. Recent image processing techniques for segmentation and
tracking of medical images will be utilized. It must be noted that some techniques used for
curve detection in X-ray images will also be used for curve tracking in other modalities as in US
images or MRI images.

LORIA will address this problem and there will be a cooperation with ICCS-NTUA on this
topic which is close to the processing of existing X-ray databases.

6.3.2 Fusing tongue tracking and other modalities to recove r the complete shape
of the tongue including the apex

As the various image/sensor devices are not referenced the same way, an important and difficult
task before combining the image/sensor modalities is to register all the data in order to express
them in a reference spatial and temporal frame.

LORIA will address the following aspects:

• the stereovision/US registration. We plan to register the two modalities by acquiring a
sequence of the head with the US transducer positioned under the chin. 3D markers will
be added on the handle in order to get the probe position in the video frame.
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• the sensor/stereovision registration. We plan to use several magnetic sensors (at least
four): two of them will be positioned on the tongue for articulatory modeling. The others
two will be positioned on the head. Registration can be achieved from these external
sensors whose position can be estimated both by the stereovision and the sensor system.
Another possible solution is to point out the markers that are drawn on the speaker’s head
with a sensor coil.

• stereovision/MRI registration. Due to the time needed for MRI acquisition, it is likely that
we will only acquire a thick sagittal slice of the head. As the skin can be easily extracted
from MRI, registration will be achieved using an Iterative Closest Point algorithm in order
to minimize the distance between the set of markers drawn on the head and the surface
of the skin extracted from the MRI data.

• speech alignment: dynamic programming will be used to align speech segment as de-
scribed in [69,70] for tongue reconstruction from ultrasound images.

The temporal synchronization of images, sound and magnetic sensors, which is a central issue
in the fusion, will exploit events that occur in several modalities and hardware solutions.
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T. Kohonen, K. Mäkisara and J. Kangas, Eds., pp. 371–376. Elsevier, 1991.

[14] J. Flanagan, K. Ishizaka, and K. Shipley, “Signal models for low bit-rate coding speech,”
Journal of the Acoustical Society of America, vol. 68, no. 3, pp. 780–791, March 1980.

[15] V. N. Sorokin, “Determination of vocal tract shape for vowels,” Speech Communication,
vol. 11, pp. 71–85, 1992.

[16] S. Tasko and J. R. Westbury, “Speed-curvature relations for speech-related articulatory
movement,” J. Phonetics, vol. 32, pp. 65–80, 2004.

[17] Hani Yehia, Philip E. Rubin, and Eric Vatikiotis-Bateson, “Quantitative association of
vocal-tract and facial behavior,” Speech Communication, vol. 26, no. 1–2, pp. 23–44,
1998.

[18] J. Jiang, J. Alwan, P. Keating, and L. Auer, E.and Bernstein, “On the relationship be-
tween face movements, tongue movements, and speech acoustics,” EURASIP Journal
on Applied Signal Processing, vol. 11, pp. 1174–1188, 2002.

[19] O. Engwall, “Introducing visual cues in acoustic-to-articulatory inversion,” in Proceedings
of Interspeech, 2005, pp. 3205–3208.

[20] H. Yehia and F. Itakura, “A method to combine acoustic and morphological constraints
in the speech production inverse problem,” Speech Communication, vol. 18, no. 2, pp.
151–174, 1996.

[21] H. Wakita and A. Gray, “Numerical determination of the lip impedance and vocal tract
area functions,” IEEE Transactions on Acoustics, Speech, Sig. Proc., vol. 23, 6, pp.
574–580, 1975.

[22] K. Shirai and M. Honda, “Estimation of articulatory motion from speech waves and its ap-
plication for automatic recognition,” in Spoken Language Generation and Understanding,
J. C. Simon, Ed. 1980, pp. 87–99, D. Reidel Publ. Co.

[23] P. Ladefoged, R. Harshman, L. Goldstein, and L. Rice, “Generating vocal tract shapes
from formant frequencies,” J. Acoust. Soc. Am, vol. 64, 4, pp. 1027–1035, 1978.

[24] M. M. Sondhi and J. R. Resnick, “The inverse problem for the vocal tract: numerical
methods, acoustical experiments, and speech synthesis,” J. Acoust. Soc. Am, vol. 73, 3,
pp. 985–1002, 1983.

[25] Z. Yu, “A method to determine the area function of speech based on perturbation theory,”
Speech Transmission Laboratory, QPSR, vol. 4, pp. 77–95, 1993.

104 November 27, 2008 ASPI/2006/D1/v2.0



Deliverable D1Technology inventory and specification of fields investigated IST Project IST-2005-021324

[26] D. Rossiter, D. M. Howard, and M. Downes, “A real-time LPC-based vocal tract area
display for voice development,” J. Voice, vol. 8, 4, pp. 314–319, 1994.

[27] I. Kamal, Acoustic reflectometry of the nose and pharynx, Brown Walker Press, Boca
Raton, Florida, USA, 2004.

[28] I. Gath and E. Yair, “Analysis of vocal tract parameters in Parkinsonian speech,” J.
Acoust. Soc. Am, vol. 84, 5, pp. 1628–1634, 1988.

[29] M. R. Schroeder, “Determination of the geometry of the human vocal tract by acoustic
measurements,” J. Acoust. Soc. Am, vol. 41, 2, pp. 1002–1010, 1967.

[30] Z. Yu and P. C. Ching, “Determination of vocal-tract shapes from formant frequen-
cies based on perturbation theory and interpolation method,” in IEEE-ICASSP, typed
manuscript, 1996.

[31] H. Fujisaki, S. Obata, and R. Tazaki, “Estimation of vocal tract area function from poles
of its transfer function,” in Annual Report of the Engineering Research Institute, Faculty
of Engineering, University of Tokyo, 1971, vol. 30, pp. 81–94.
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[75] P. Badin, G. Bailly, L. Revéret, M. Baciu, C. Segebarth, and C. Savariaux, “Three-
dimensional articulatory modelling of tongue, lips and face, based on MRI and video
images,” Journal of Phonetics, vol. 30, no. 3, pp. 533–553, 2002.

[76] M. Tiede, S. Masaki, and E. Vatikiotis-Bateson, “Contrasts in speech articulation ob-
served in sitting and supine condition,” in The 5th Speech Production Seminar: Model
and data, 2000, pp. 25–28.

[77] A-K. Foldvik, U. Kristiansen, and J. Kvaerness, “A time-evolving three-dimensional vocal
tract model by means of magnetic resonance imaging (MRI),” in Proc of Eurospeech93,
1993, pp. 557–558.

[78] M. Mohammad, E. Moore, J. Carter, C. Shadle, and S. Gunn, “Using MRI to image the
moving vocal tract during speech,” in Proc of Eurospeech97, 1997, pp. 2027–2030.

[79] C. Shadle, M. Mohammad, P. Jackson, and J. Carter, “Multi-planar dynamic magnetic
resonance imaging: New tools for speech research,” in Proc of ICPhS, 1999, pp. 623–
626.

[80] S. Masaki, M. K. Tiede, K. Honda, Y. Shimada, I. Fujimoto Y. Nakamura, and N. Ninomia,
“MRI-based speech production study using a synchronized sampling method,” Journal
of Acoustical Society of Japan, vol. 20, pp. 375–379, 1999.

[81] M. Stone, D. Dick, A. Douglas, E. Davis, and C. Ozturk, “Modelling the internal tongue us-
ing principal strains,” in Proc of the 5th Seminar on Speech Production: Models and Data
& CREST Workshop on Models of Speech Production: Motor Planning and Articulatory
Modelling, 2000, pp. 133–136.

[82] D. Demolin, M. George, V. Lecuit, T. Metens, A. Soquet, and H. Raeymaekers, “Coartic-
ulation and articulatory compensations studied by dynamic MRI,” in Proc of Eurospeech,
1997, pp. 43–46.
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