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Overview

• Spectral analysis

–  Spectrogram (Fourier transform)

–  Other spectral analyses (LPC, cepstra)

–  Spectral description of speech sounds

•  Determining the fundamental frequency

• Modifying the fundamental frequency – PSOLA

•  Using resonators to synthesize speech:
formant synthesis

•  Qualitative acoustics of the vocal tract



Spectral analysis

• Objective:

– Displaying the energy distribution of speech along time and 

frequency

– Studying the acoustic properties of the speech sounds 



 Spectrogram

• The mathematic tool to study the distribution of energy 
along frequency is the Fourier transform.

• Analogy with a geometrical system coordinate:
– The coordinates of P are given by the inner products of the base 

vectors with the OP vector.

– Using an appropriate base to decompose a signal.
This base is a base of functions since the object is not a scalar.
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Here, the point P is 

represented by the three 

coordinates x1, x2 and x3.



Spectrogram

• Discrete Fourier Transform 

time domain  frequency domain

s(n) is the speech signal,                          is the kth base function, and 
the dot product the inner product. 
X(k) is thus the kth coordinate of the speech signal.

• Remarks: 
– this is a discrete definition (the speech signal has been sampled 

beforehand)

– N has to be chosen relevantly and this choice amounts to “cut” 
abruptly a speech signal

– is the base appropriate? The signal should be periodic, a window 
is thus applied before.
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Spectrogram

• The signal is windowed before applying the Fourier 
transform

• where  is the frequency and w the window w(n) = 0 when 
|n| > N/2. w is usually an even window.

• Impact of the window multiplication
– A convolution in the frequency domain:

– From a practical point of view: since Fw() is observed instead of 
F() windows as neutral as possible are used.







12/

2/

)()()(
N

Nn

nj

w ensnwF 







k

kwknxnwnx )()()(*)(



Windows used to compute spectrograms

• Two Dirichlet kernels (the effect of the rectangular window) one with 16 
points and the second with 8 points.

• Some classical windows (1024 samples in these examples, spectrum in dB):

• The longer the window the sharper the first peak (or equivalently,the smaller the 
effect of convolution)

Modulus of two Dirichlet kernels
1. The higher the main peak the 

smaller the effect of 

convolution.

2. The sharper the main peak the 

smaller the effect of 

convolution.

Rectangular Triangular Hamming



The Hamming window
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• The original speech signal.

• The Hamming window

with

Or Hanning window           

• The windowed signal
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Practical implementation

• Sampling frequency between 10 and 22 kHz

• Running windows between 4 and 32 ms, shifted by half the duration 

of windows:

– Small windows  wide band spectrograms

– Long windows  narrow band spectrograms

• Often, the signal is pre emphasized s’(n) = s(n) –  s(n-1) so as to 

raise the contribution of high frequencies.

• Use of fast algorithms: Fast Fourier Transform (FFT)

• The log spectrum is displayed (20 log10|X(k)|)

Female speaker, narrow and 

wide band spectra. 
Male speaker, narrow and wide 

band spectra. 



Examples

Wide band spectrograms (left: male, right: female)

Narrow  band spectrograms (left: male, right: female)
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 Other spectral analyses

• One difficulty faced with the Fourier transform:

– Both the source (the vibration of vocal folds) and the vocal 

tract contributions are taken into account.

– A simple source – vocal tract model:

the source e(n) and the vocal tract h(n) are convolved. The 

vocal tract behaves as a filter applied onto the source signal.

– How can these two contributions be separated?

• Cepstral filtering: a transform which isolates both contributions

• Linear prediction: a filter model fitted on the speech signal

Despite their interest none of these methods is completely 

satisfactory!
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Cepstral smoothing

1. Fourier transform to change from a convolution to a product 

2. Logarithm (from a product to a sum)

3. Inverse Fourier transform (remains a sum but in the pseudo time 

domain)

4. Linear processing (removing the source contribution)

The signal contains (should contain) no more source contribution. Then it is 

possible to come back to a smooth spectrum by applying a Fourier 

transform.
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Example

Speech signal

Spectrum (0 to )

Cepstral coefficients

Cepstral coefficients (all but the 1st)

Cepstral coefficients after liftering

Spectrum (0 to 2)

Spectrum (0 to ) and 

cepstrally smoothed spectrum

Cepstrally smoothed spectrum



True envelope
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True envelope algorithm

15

Advantages:

1. No more energy variation 

due to the window position 

relative to the pitch period.

2. The spectrum fits harmonics.

Narrow band spectrum, cepstral smoothing and true envelope.



Mel Frequency Cepstral Coefficients 

(MFCC)

• The same principle but applied to a “perceptive” spectrum.

• The perceptive spectrum is obtained via filtering the magnitude 
spectrum with Mel filters

• The inverse Fourier transform is replaced by a discrete cosine 
transform (DCT).

• The MFCC are used in most of the automatic speech recognition 
systems.



What do MFCC?

• Usually only MFCC coefficients are used without visualizing the 

corresponding smoothed spectrum.

• Here the smoothing is displayed.

32 filters, 16 coefs, filter output (left)   smoothed spectrum (right) 

24 filters, 12 coefs, filter output (left)   smoothed spectrum (right) 

High frequency integration: 

the higher the frequency, 

the stronger the smoothing.

Phonetic details can be 

deleted (F3 is replaced by 

spectral minimum).



Linear prediction

• Origin: speech signal is not a random signal, successive 

samples are correlated. Can this correlation be used to reduce 

the amount of data? 

• Principle: s(n) is represented as the sum of a linear combination 

of previous samples and an error. 

Coefficients are found by minimizing the error with the original 

signal.

• From a spectral point of view the approximation corresponds to
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Example

One example which fails /ε/̃

One example which succeeds /ε/

• Linear prediction corresponds an 
implicit physical model  all 
sounds which do not fit the 
hypothesis cannot be approximated 
correctly:

• nasal vowels and all the 
nasalized sounds

• Consonants

• Other variants exist:

• Selective LPC (on a special 
region)

• Perceptive LP (PLP) to mimic 
the peripheral auditory system.



Spectral description of speech sounds

• Articulation modes 

– vocalic  vibration of the vocal folds (voicing) and not too strong a 

constriction

– fricative strong narrowing somewhere in the vocal tract creating a 

frication noise

– occlusive partial or complete closure of the vocal tract, increase of 

the pressure behind the constriction and then brutal release which 

produces an explosion noise (burst).

• Place of articulation = location of the main constriction of the vocal tract: 

pharynx, palate /k/, teeth /t/, lips /p/

20



Cardinal vowels and consonants of French

21



vowels
backfront
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Effect of stops(CV)

• Labialization lengthens the vocal tract and thus tends to lower 
formant frequency at the consonant.

• In general, bursts of /p/ are shorter than those of /t/. 

• In general, bursts of /k/are long. 

• F2 et F3 of central vowels get closer in the context of /k,g/ 

• For back vowels there is often a peak in front of F2 for /k,g/.

• /t,d/ present a locus (called dental locus ) for F2 between 1500 
and 2000 Hz.  strong transition for F2 in case of a back vowel.



Places of articulation of French stops

/p/ /k//t/

/ky,ku//pat,tab/
dotted, solid

/pət,pRɛ/
dotted, solid



 Pitch determination

• Remark: pitch is not F0 (fundamental frequency):

• Set F0 at 50 Hz and select the 13th , 25th and 29th

harmonics → gives a pitch at 334 Hz or 650 Hz.

• Probably some perceptual adjustments at voicing 

onset when vocal folds do not vibrate at the target 

F0.

• Language learning → pitch since the objective is use 

perception.

25



Pitch determination algorithms

• General idea: 

– Combine several F0 determination algorithms

– Provide results together with a confidence 

measure

• Available F0 determination algorithms:

– spectral comb (Martin) – spectral

– Yin (Kawahara & De Cheveigné) – time

– Swipe (Camacho & Harris) – spectral

26



Autocorrelation method

• Autocorrelation method (temporal domain)

– Calculation of the autocorrelation function 

k is a shift, Φ is maximal when k is the F0 period

– Many technical problems (pitch doubling or halving, voicing decision…) 

require elaborated correction algorithms.
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A spectral method (Martin)

• Intercorrelation between a narrowband spectrum and a spectral 
comb

Teeth have decreasing height to avoid finding F0/2 instead of F0.

• A correction algorithm is required.

Comb superimposed onto the spectrum

Spectral comb.
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SWIPE (Camacho & Harris) 



Combining several pitch determination 

algorithms

• F0 from the algorithms presented above and with 

several  parameter setups in order to get all relevant 

candidates

• Additional information to get the voicing 

determination:

– Energy

– Mel cepstral coefficients

• Annotated speech corpora in terms of F0 + corrupted 

versions of these corpora to learn (DNN ?) F0 

together with a confidence measure.
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 PSOLA- modifying the fundamental 

frequency

• Pitch Synchronous Overlap and Add :

– Proposed by Charpentier  et al. in 1987

– Decomposition of the speech signal into 

overlapping windows synchronized with F0

– Very simple from an algorithmic point of view (only 

a sum and a division for every sample synthesized.

– Requires a speech database whose pitch marks 

are known (detected automatically or manually).



Decomposing a speech signal into 

overlapping windows

…
pitch marks

Requires a pitch marking algorithm.



Decomposing the signal into pitch synchronous 
signal windows

A hamming window 

whose size is twice that of 

a fundamental window. 

Windowed signal. The 

signal can be 

reconstructed by 

summing windowed 

signals. Each window 

has the same spectral 

properties as the 

original signal.



Modification of the fundamental 
frequency

Original pitch marks.

Target pitch marks. 

The signal window selected is the closest from the 

target pitch mark.

And finally: summing and weighting.



Modifying the speech signal duration (slowing 
down or speeding up)

Original pitch marks.

Virtual pitch marks corresponding to a duration multiplied by 1.4 (slowing 

down). 

 

     

Copying the window whose virtual pitch mark is the closest from the synthetic pitch 

mark. 

And finally: summing and weighting. 



Summing and weighting

• Unlike the classical OMA method weighing by Hamming windows has to be 
taken into account explicitly since windows are not spaced from a quarter 
of window size. 

s(n) is the new signal, S(n) is the sum of windowed signals and 
WeightingSum(n) is simply obtained by summing all the windows 
contributing to the sample n. 

• Caution, it is not possible to space windows too much otherwise the signal 
is not defined everywhere. 
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Using resonators to synthesize speech:

formant synthesis

• Idea: represent spectral maxima (formants) by second order 
resonators.

• Specify the source parameters:
– Voiced source  vowels and other voiced sounds
– Noise source   unvoiced stops and fricatives

• Noise to be done to synthesize a speech
• Specify temporal evolution rules for these parameters and for all 

phonetic contexts. 
• Parameters should represent speech faithfully. ..

• This approach of synthesis is not used anymore but:
– this is a good example of speech analysis 
– This is useful to generate speech stimuli and to analyze 

pathological voices



Resonance frequencies of vowels

l1 l2
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Resonator

• A resonator

where s(n)  is the source signal and  y(n) the synthetic signal.

• Its transfer function:  

where A, B et C are defined from the characteristics of 
formants (resonance frequencies). 
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Two useful reminders



Transform of a signal shifted in time
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• Z transform

• With the Fourier transform,

• And phase and its derivative with respect to 

frequency:
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Transfer function of a resonator
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The Klatt formant synthesizer

• Resonators in cascade

• Resonators in parallel

• The parallel  synthesizer is well suited to the copy synthesis 
because it is possible to synthesize vowels and consonants as 
well. 
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Transfer function of the synthesizer
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• For the parallel branch:

with

• For the cascade branch:

• For the whole:

where S(z) is the spectrum of the source plus the lip 
radiation.
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And the source?
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• Periodic signal  voiced source

• Create an artificial source signal (Rosenberg (1971) 

source, used by Klatt and called KLglott88)

Oq is the open quotient and  Av the amplitude of voicing.

• Noise  fricatives, bursts, noise in high frequency
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Another famous source: Liljencrants-Fant

(LF) model 
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Determination of the LF parameters (1/2)

• ,  and g have to be determined from Ra, Rk and Rg.

1. At time te g equals Ee and thus:

2. No increase of the air flow during a period. 

47

Parameter Description

Ee Maximum of the negative derivative of the flow

Ra Ratio of ta over tc-te

Rk Ratio of ta over tc-te

Rg The ratio of half-period of F0 over tp
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Determination of the LF parameters (2/2)

1. Newton by setting   at 1 / ta
after a glance on the function with Matlab

2. Is equivalent to                             or: 

qui est résolu une fois de plus avec Newton en partant de  = 0 (en faisant 

attention que cette seconde solution peut ne pas avoir de solution).
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Speech analysis - Conclusions

• Spectral analysis 

– Results are obtained via a computation. 

– Results are exact 

– Results are relevant provided that relevant parameters have be 

chosen correctly.

• Extraction of speech parameters (formants, F0…)

– Results are obtained via an algorithm

– Results may be erroneous depending on the reliability of the 

algorithm and the quality of the speech signal

– Inspect data before further processing, determine parameters by 

hand in some cases to get a first evaluation.



 Acoustics of the vocal tract



Equations of acoustics
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Euler equation

pressure viscosity
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Equation of continuity
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Properties of the wall
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Solving equations of acoustics

• Finite difference equations (time and space)

• Equivalence between acoustics and electricity.
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Tubes forming the vocal tract

• Tube closed at one end and open at the 
other:
– quarter wavelength resonator

– resonance frequencies: 

– Exercise: find resonance frequencies for L=17 cm 
and c = 350m/s

• Tube (almost close at both end)
– half-wavelength resonator

– Resonance frequencies: 

– Helmholtz frequency at low frequency:                 

where V is the volume of big tube, a the area and l 
the length of the small tube (the neck).
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Acoustic properties of vowels

l1 l2

A1 A2
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Exercises: vowel /i/

• l1 = 9cm, l2= 6cm, A1= 8cm2, A2=1cm2

• calculate F1, F2, F3
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Exercises: vowel /i/

• l1 = 9cm, l2= 6cm, A1= 8cm2, A2=1cm2

• calculate F1, F2, F3

Helmholtz resonance

Half-wavelength front cavity

Half-wavelength pharynx cavity
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Vowel /u/

• From /i/ to /u/

/u/

l2 l ’2l1 l‘’1

A2A1
a1 a2

≈

+

+

Back

Front

Half-wavelength mouth 

cavity (front cavity)

Mouth cavity by 

continuity, but low 

frequency 

resonance.

 Helmholtz 

resonance of the 

front cavity.

Nothing to deduce from the 

continuity.



Vowel /u/

• Mouth cavity 

– Helmholtz resonator: 

A2=7cm2,l2=5cm,l’2=1,5cm,a2=1cm2

The frequency of the front cavity is 747 

Hz. 

• Pharynx cavity 

– Helmholtz resonator: A1=8cm2,l1=8 

cm,l’1=3 cm,a1=0.7cm2

The Helmholtz frequency of the front 

cavity is 326 Hz.

– Half-wavelength  2125 Hz

/u/

l2 l ’2l1 l‘’1

A2A1
a1 a2

≈

+
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Back

Front


