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Overview

e Spectral analysis

— © Spectrogram (Fourier transform)

— @ Other spectral analyses (LPC, cepstra)

— © Spectral description of speech sounds

O Determining the fundamental frequency

* O Modifying the fundamental frequency — PSOLA

e @ Using resonators to synthesize speech:
formant synthesis

* @ Qualitative acoustics of the vocal tract
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Spectral analysis

* Obijective:
— Displaying the energy distribution of speech along time and
frequency

— Studying the acoustic properties of the speech sounds



O Specirogram

- The mathematic tool to study the distribution of energy
along frequency is the Fourier transform.
« Analogy with a geometrical system coordinate:

— The coordinates of P are given by the inner products of the base
vectors with the OP vector.
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— Using an appropriate base to decompose a signal.
This base is a base of functions since the object is not a scalar.



Spectrogram

*: Discrete Fourier Transform

27r
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X (K) = Zs(n)e time domain = frequency domain
_i%%y
s(n) is the speech signal, b (n) =¢e "Nis the ki base function, and
the dot product the inner product.

X(K) is thus the k" coordinate of the speech signal.
 Remarks:

— this is a discrete definition (the speech signal has been sampled
beforehand)

— N has to be chosen relevantly and this choice amounts to “cut”
abruptly a speech signal

— is the base appropriate? The signal should be periodic, a window
IS thus applied before.
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Spectrogram

The signal is windowed before applying the Fourier
transform N /91

Fu(@) = > w(n)s(n)e”"

where w is the frequency and w the window w(n) = 0 when
In| > N/2. w is usually an even window.

Impact of the window multiplication
— A convolution in the frequency domain:

x()*w(n) = 3 x(n—k)w(k)

— From a practical point of view: since F,(w) is observed instead of
F(w) windows as neutral as possible are used.



Windows used to compute specirograms

- Two Dirichlet kernels (the effect of the rectangular window) one with 16
points and the second with 8 points.

Modulus of two Dirichlet kernels 1. The hlgher the main peak the
smaller the effect of
convolution.

2. The sharper the main peak the
smaller the effect of

convolution.
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« Some classical windows (1024 samples in these examples, spectrum in dB):
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Rectangular %iangular Hamming
=.* The longer the window the sharper the first peak (or equivalently,the smaller the
e ")FFaCt of convolution)



The Hamming window
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 The original speech signal.

» The Hamming window,,

o w(n) =0.54 —0.46¢cos(2z —) with 0<n<N
e N

Or Hanning window

n
h w(n) =0.5(1—-cos(27 ——
() = 0.5(L-cos(27 ")
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* The windowed signal
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Practical implementation

- Sampling frequency between 10 and 22 kHz

« Running windows between 4 and 32 ms, shifted by half the duration
of windows:
— Small windows - wide band spectrograms
— Long windows - narrow band spectrograms
« Often, the signal is pre emphasized s’(n) = s(n) — a s(n-1) so as to
raise the contribution of high frequencies.

« Use of fast algorithms: Fast Fourier Transform (FFT)
« The log spectrum is displayed (20 IoglO|X(k)|)
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® Other speciral analyses

One difficulty faced with the Fourier transform:

— Both the source (the vibration of vocal folds) and the vocal
tract contributions are taken into account.

— A simple source — vocal tract model:
s(n) =h(n)*e(n)
the source e(n) and the vocal tract h(n) are convolved. The
vocal tract behaves as a filter applied onto the source signal.
— How can these two contributions be separated?
» Cepstral filtering: a transform which isolates both contributions

 Linear prediction: a filter model fitted on the speech signal

Despite their interest none of these methods is completely
satisfactory!



Cepstral smoothing
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1. Fourier transform to change from a convolution to a product

2. Logarithm (from a product to a sum)

Inverse Fourier transform (remains a sum but in the pseudo time

-3
domain)
4. Linear processing (removing the source contribution)

The signal contains (should contain) no more source contribution. Then it is
possible to come back to a smooth spectrum by applying a Fourier

transform.
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True envelope

» Objective: to get a smooth spectrum through the harmonics (perceived by
the ear).

« Idea: start from the cepstral smoothing and correct it iteratively by discarding
the spectral values below the smoothed spectrum.
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* S spectrum

« V@ = ¢ (cepstral smoothing)

EM = g(§ - S) where g(y) = max(y, 0)

555355i:° EM represents the spectrum above the cepstral smoothing
,,,,,,,, LOI’IC]E (1) represents the cepstral smoothing of the overrun.
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True envelope algorithm

1. initial solution

ED =y ep  cos (% mk) where e = IDFT(EM) and h,,, is the
liftering window
1. lterationi +1

Let V Dthe envelope obtained at the previous step, E®and £® the
overrun and smoothing of the overrun.

.y —p® 4 O

e  EWD = g(E®O - (14 a)E® where « is a acceleration coefficient
+ E®™D = pFT(h (IDFT(E®D)))

3. End or new iteration

Advantages:

1. No more energy variation
due to the window position
relative to the pitch period.

2. The spectrum fits harmonics.
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Mel Frequency Cepstral Coefficients

(MFCC)

The same principle but applied to a “perceptive” spectrum.
The perceptive spectrum is obtained via filtering the magnitude

spectrum with Mel filters
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The inverse Fourier transform is replaced by a discrete cosine

transform (DCT).

The MFCC are used in most of the automatic speech recognition

systems.



What do MFCC?

« Usually only MFCC coefficients are used without visualizing the
corresponding smoothed spectrum.

« Here the smoothlng |s dlsplayed

| I | | | | | |
32 filtres 32 f||tres 16 coef

High frequency integration:

the higher the frequency,
the stronger the smoothing.
| | | | il | — 8|0kH | |
32 filters, 16 coefs, filter output (left) smoothed spectrum (right) Phonetic details can be

| | | | | | | | | | | | | | :
24 filtres 128 filtres - 12 coef deleted (F3 I_S replaced by
spectral minimum).
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Linear prediction

« Origin: speech signal is not a random signal, successive
samples are correlated. Can this correlation be used to reduce
the amount of data?

« Principle: s(n) is represented as the sum of a linear combination
of previous samples and an error.

§(n)=>Y_ _as(n—k)

Coefficients are found by minimizing the error with the original
signal.

E = Y"(s(m) - §(m))’

« From a spectral point of view the approximation corresponds to

G
H(z) = 5
O 1—2 akZ
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Linear prediction corresponds an
implicit physical model = all
sounds which do not fit the
hypothesis cannot be approximated
correctly:
e nasal vowels and all the
nasalized sounds

e (Consonants
Other variants exist:
e Selective LPC (on a special
region)
e Perceptive LP (PLP) to mimic
the peripheral auditory system.



© Spectral description of speech sounds

* Articulation modes

— vocalic vibration of the vocal folds (voicing) and not too strong a
constriction

— fricative strong narrowing somewhere in the vocal tract creating a
frication noise

— occlusive partial or complete closure of the vocal tract, increase of
the pressure behind the constriction and then brutal release which
produces an explosion noise (burst).

* Place of articulation = location of the main constriction of the vocal tract:
pharynx, palate /k/, teeth /t/, lips /p/
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Cardinal vowels and consonants of French
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Effect of stops(CV)

Labialization lengthens the vocal tract and thus tends to lower
formant frequency at the consonant.

In general, bursts of /p/ are shorter than those of /t/.

In general, bursts of /k/are long.

F2 et F3 of central vowels get closer in the context of /k,g/
For back vowels there is often a peak in front of F2 for /k,qg/.

/t,d/ present a locus (called dental locus ) for F2 between 1500
and 2000 Hz. - strong transition for F2 in case of a back vowel.



Places of articulation of French stops

It/ Ik/

" Ipat,pRe/ pat,tab/ ky.ku!

llllllll ‘dotted, solid dotted, solid



O Pitch determination

« Remark: pitch is not FO (fundamental frequency):

e Set FO at 50 Hz and select the 13t , 25t gnd 29t
harmonics — gives a pitch at 334 Hz or 650 Hz.

* Probably some perceptual adjustments at voicing
onset when vocal folds do not vibrate at the target
FO.

« Language learning — pitch since the objective is use
perception.



Pitch determination algorithms

« General idea:
— Combine several FO determination algorithms

— Provide results together with a confidence
measure

« Available FO determination algorithms:
— spectral comb (Martin) — spectral
— Yin (Kawahara & De Cheveigné) — time
— Swipe (Camacho & Harris) — spectral



Avutocorrelation method

Autocorrelation method (temporal domain)

Calculation of the autocorrelation function

p(k) =D x(i)x(k +i)

k is a shift, @ is maximal when k is the FO period
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/N multiplication par 2 de FO

— Many technical problems (pitch doubling or halving, voicing decision..

require elaborated correction algorithms.

)



A spectral method (Martin)

* Intercorrelation between a narrowband spectrum and a spectral
comb

Comb superimposed onto the spectrum

N F /2
il MW\AW% (@)= [P(on0)F(@)o
| 0

l l ol
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A

Spectral comb.

I

Teeth have decreasing height to avoid finding F0O/2 instead of FO.
« A correction algorithm is required.

=:Loria



SWIPE (Camacho & Harris)

« Maximizing the difference between harmonics and valleys

10‘000 T“‘

Crlterlon to be maX|m|zed
N (o (k—l)f D)
k=1

f 1 1
Dn(”:z(f\x(f)\‘iX((“E)f)

« Similarly to the spectral comb teeth have not the same amplitude
1
but =P
« And other improvements (blurring the harmonics...)




Combining several pitch determination
algorithms

* FO from the algorithms presented above and with
several parameter setups in order to get all relevant
candidates

« Additional information to get the voicing
determination:

— Energy
— Mel cepstral coefficients

« Annotated speech corpora in terms of FO + corrupted
versions of these corpora to learn (DNN ?) FO
together with a confidence measure.

™



© PSOLA- modifying the fundamental
frequency

* Pitch Synchronous Overlap and Add :
— Proposed by Charpentier et al. in 1987

— Decomposition of the speech signal into
overlapping windows synchronized with FO

— Very simple from an algorithmic point of view (only
a sum and a division for every sample synthesized.

— Requires a speech database whose pitch marks
are known (detected automatically or manually).



Decomposing a speech signal into
overlapping windows

||||||||||||||||||||||||||||



Decomposing the signal into pitch synchronous
signhal windows

DAL,

Windowed signal. The
signal can be
reconstructed by
summing windowed
signals. Each window
ti'/has the same spectral

Dgl)r‘o erties as the
" Lorfgind'signal.

A hamming window
whose size is twice that of
a fundamental window.




Modification of the fundamental
frequency

Orlglnal pitch marks

OOV

The signal window selected is the closest from the

Target pitch marks. tajget pit\(‘:h mark j \' l

l l
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s LORAEfinally: summing and weighting.



Modifying the speech signal duration (slowing
down or speeding up)
Original pitch marks.

lF—0—|—e—|—e—

Virtual pitch marks corresponding to a duration multiplied by 1.4 (slowing

down).

Copying the window whose virtual pitch mark is the closest from the synthetic pitch

mark. o ) e + e 1 e 1 e o

‘\\ \}4.\(/ \J'A‘VVAVVA“,V‘”VV‘

s LORAEfinally: summing and weighting.



Summing and weighting

Unlike the classical OMA method weighing by Hamming windows has to be
taken into account explicitly since windows are not spaced from a quarter
of window size.

s(n) = S(n)
WeightingSum(n)

s(n) is the new signal, S(n) is the sum of windowed signals and
WeightingSum(n) is simply obtained by summing all the windows
contributing to the sample n.

Caution, it is not possible to space windows too much otherwise the signal
is not defined everywhere.



@O Using resonators to synthesize speech:
formant synthesis

» |dea: represent spectral maxima (formants) by second order
resonators.

* Specify the source parameters:
— Voiced source > vowels and other voiced sounds
— Noise source =2 unvoiced stops and fricatives

* Noise to be done to synthesize a speech

» Specify temporal evolution rules for these parameters and for all
phonetic contexts.

* Parameters should represent speech faithfully. ..

e This approach of synthesis is not used anymore but:

— this is a good example of speech analysis

— This is useful to generate speech stimuli and to analyze
pathological voices

™
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Resonator

e A resonator

y(n) = As(n)+By(n-1)+Cy(n-2)

where s(n) is the source signal and y(n) the syntheﬂ\c signal.
* |ts transfer function: H (z) —

-1 2
1-Bz " -Cz
where A, B et C are defined from the characteristics of
formants (resonance frequencies).

R _ 9a—7BuT F is the frequency and
B =2e COS(ZﬂFiT) B,, then formant
< C=—p % bandwidth.
. la=1-B-cC




Two useful reminders



Transform of a signal shifted in time

» -Z transform ]
G(w) = Zs(n k)z™" —Zs(m)z M) = 773 s(m)z™"
G(w) = z7“F(w)
. With the Fourier transform, z =¢e'“
TF(s(n—k), w) = e *TF(s(n), ®)
X s(n—k)(ejw) = e—iwkxs(n)(eja))
» And phase and its derivative with respect to
frequency: arg( X, (e'”)) = ak +arg( X, ("))

d arg( Xs(n—k)(ejw)) _ k n d arg( Xs(n)(eja)))
To do do




Transfer function of a resonator

y(n) = As(n)+By(n-1)+Cy(n-2)
Y(z)=AS(2)+Bz Y (2)+Cz7%Y (2)
Y(z2)(1-Bz ' -Cz %) = AS(2)

A
S(z
1-Bz'-Cz* (2)

* And more generally:
y(n) = a,y(n-k)+ > bs(n—k)
k=1 k=0

Y(z)=




The Klatt formant synthesizer

« Resonators in cascade

source R1 g R2 y R3 g R4 gy RS

* Resonators in parallel

source ——

 The parallel synthesizeris ite copy synthesis
because it is possible to synthesize vowels and consonants as

IIIIIIII



Transfer function of the synthesizer

* For the parallel branch:
H (z) =-D,xH(2)+ D, xH,(z) - Dy x H,(z) +...
1-B, -C,
1-B,z"-C,z7%)1-27)
 [For the cascade branch:
Hc(z) = Hl(Z) X HZ(Z) X HB(Z) X ...
 For the whole:

P(z) = (H.(2) + H,(2)) x3(2)

where S(z) is the spectrum of the source plus the lip
radiation.

with H,(z) =

™



And the source?

* Periodic signal = voiced source

Amplitude

en phase > < Close phase .

Time

« Create an artificial source signal (Rosenberg (1971)
source, used by Klatt and called KLglott88)

0<t<OT, __271A ., _ 272AV3
O,T, <t<T, 41,0

2 3
U,(t)=at"—bt® for
4T,0; ]

U,(t)=0 for
O, Is the open quotient and A, the amplitude of voicing.

°°°°°°° LOI’ONO'Se - fricatives, bursts, noise In high frequency

||||||||
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Another famous source: Liljencrants-Fant
(LF) model

g(t) = E,e” sin(a,t) 0<t<t,
_Ee oo Lgeen] st <ty

£ ta
LF glottal wave and LF derivative glottal wave
Uo : glottal wave
30 L s s e s i e s e e ot T B N R RS R R R ................................................................................................................... O =]
3 :
p=} 3
= :
= 20— T b
= :
=K :
10 e -
" Ep Tc ;
0] 0.005 0.015

Time (sec)

rivative glottal wa\}e
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Determination of the LF parameters (1/2)

Parameter | Description

E, Maximum of the negative derivative of the flow
R, Ratio of t, over t_.-t,

R, Ratio of t, over t.-t,

R, The ratio of half-period of FO over t,

* a, ¢ and wy have to be determined from R, R,and R,

—e(t, -t
1. Attime t, g equals E, and thus: El, = 1— g clkte)

Z%\Io Increase of the air flow during a period.



Determination of the LF parameters (2/2)

1. Newton by setting sat1/t,
after a glance on the function with Matlab

#, 1o
2. Is equivalent toj E(t)dt —( or:

j E(t)dt = j E(t)dt

qui est resolu une fois de plus avec Newton en partant de o = 0 (en faisant
attention que cette seconde solution peut ne pas avoir de solution).



Speech analysis - Conclusions

- Spectral analysis
— Results are obtained via a computation.
— Results are exact
— Results are relevant provided that relevant parameters have be
chosen correctly.
« Extraction of speech parameters (formants, FO...)
— Results are obtained via an algorithm

— Results may be erroneous depending on the reliability of the
algorithm and the quality of the speech signal

— Inspect data before further processing, determine parameters by
hand in some cases to get a first evaluation.



@ Acoustics of the vocal tract



Equations of acoustics

Assumptions:
* One dimensional plane propagation
- the vocal tract may be unfolded without changing solutions

Acoustic variables:
— Particule velocity v(¢, x)
— Volume velocity V(t,x) (V = vA)
— Sound pressure variation p(x,t) (P = Py + p)
— Density of air p
— Velocity of sound ¢
Geometry given by A(x, t)
Air is considered as an ideal gaz. This mearis that p and p are linked by:

P=Pot 3P
and their derivatives by:
dp 1o0p
at c% ot



Euler equation

= &
pressure — viscosity =
= b P(x + dx)A(x + dx)
PA(x) =3 —kv(x,t -
— <« <«
—_ <
—> <« N

« Sum of forces applied to a small volume of air at one time point:
9]
F = ——(AP)dx —
6x( )dx — kv(t, x)

 Derivative of the momentum:
mi(v) = A(x, t)p(x, t)@dx

« VIS a functlon of space and time. Hence dv = —dt + dx or equivalently
dv —_— _|_ B_vg or
i ac ot ' axar
el dv _dv dv

or101100 - _— _I_ v—
= Loria dt ot ' Vox



0 0 0
A(x,t)p(x,t) (a—: + va—Z) === (Ap) — kv

The sound pressure variation is about 1 Pa (<< atmospheric pressure)
Velocity 10-’ms-'at the hearing threshold
Classical simplifications:

— Ais constant in a uniform tube

— pis almostconstant p = p,

av . : e ov . .
— S Isvery small since velocity is small, and v_Is negligible

53



Equation of continuity

v(x)dt

\_>\\v(x + dx)dt
\

A(X) _— A(x + dx)

/

IR2222222

_>/

— <
dx

N

llllllll

—

Increase of mass within dt:
AX)p(x, t)v(x,t) —A(x +dx, t)p(x + dx, t)v(x + dx, t) =

0A ap v
_(ap(x; t)v(x, t) + aA(x)v(x, t) + aA(x)p(x, t)dxdt

ap

o is small and the second term is thus negligible. The flow of mass is thus:

O e 0+ 2% A0x) | ddt
po[ v, ) + 5 AGH) | dx

54




. % (Ap)dt dx is the variation of mass in the volume and thus

—p vix, t) + A X dth = A{) dt dx
0 ax ( ) ) a ( ) at( )
OI’ equivalel It|y:

0A dv B 0
—Po av(x, t) + a_xA(x) =57 (Ap)

3 equations and 3 unknowns, solving is thus possible...

IIIIIIII
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Properties of the wall

Vibration of the wall: my + by + k(y — yo) = p(x, t)S(x, t) with
A(x,t) = Ag(x, t) + y(x,t)Sy(x, t)

Dynamic vocal tract A = A(x, t) thus% # 0
Boundary conditions:
p(x = 0,t) = Psypgiottic
p(x = lips,t) =0
Nasal coupling: conservation of the airflow, continuity of the pressure

Radiation at lips: the sound perceived is not that at the very output of lips
Losses: due to viscosity and/or vibration of the vocal tract wall.
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Solving equations of acoustics

Finite difference equations (time and space)
Equivalence between acoustics and electricity.



Tubes forming the vocal tract

« Tube closed at one end and open at the

other:
— quarter wavelength resonator c
— resonance frequencies: (2n _ ]_) —
4L

L — Exercise: find resonance frequencies for L=17 cm
and ¢ = 350m/s
« Tube (almost close at both end)

— half-wavelength resonator C

V. SY—=a — Resonance frequencies: N —
T 2L c [a

— Helmholtz frequency at low frequency: 27\ IV

where Vis the volume of big tube, athe area and /
the length of the small tube (the neck).



Acoustic properties of vowels
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Exercises: vowel /i/

e 1, =9cm, |,= 6cm, A;= 8cm?, A,=1cm?
» calculate F1, F2, F3




Exercises: vowel /i/

e 1, =9cm, |,= 6cm, A;= 8cm?, A,=1cm?
» calculate F1, F2, F3

- C \F _ 340 \/ 0.00015 _ 310H
27 VIV 27 V1 0.06x0.0008x0.09

Helmholtz resonance
F, = 340
2x0.06

Half-wavelength front cavity

340

F, =
2x0.09
Half-wavelength pharynx cavity

= 2833Hz

—=1888Hz




Vowel /u/

* From /i/ to /u/

Half-wavelength mouth
cavity (front cavity)

/
[ 11-Ir”I|'II'
4000 .
' Mouth cavity by
s000) e continuity, but low
i frequenc
2000 L LR i / ’ y
sl i —/ resonance.
1000 /@'z" - Helmholtz
11 I|IIJ\|||.““ bhil i resonance of the
o || i :
I 7 front cavity.
5456
n]
+
-Sd5E
MI_ ERRRERARS pAnAEEAR orr pAnmEAEARN panma

EEEZE:LE:LOIiO_I_ Nothing to deduce from the
‘I;EE;'.’!.ZI:: F

<2 | Front— continuity.




Vowel /u/

* Mouth cavity

— Helmbholtz resonator:
A,=7cm?,|l,=5cm,I',=1,5cm,a,=1cm?
The frequency of the front cavity is 747
Hz.

* Pharynx cavity

— Helmholtz resonator: A;=8cm?,|,=8
cm,I’;=3 cm,a,=0.7cm?
The Helmholtz frequency of the front
cavity is 326 Hz.

— Half-wavelength 2125 Hz
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