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A New Scheme for Land Cover Classification
in Aerial Images: Combining Extended
Dependency Tree-HMM and Unsupervised
Segmentation

Mohamed El Yazid Boudaren and Abdel Belaı̈d

Abstract An important challenge to any image pixels classification system is to
correctly assign each pixel to its proper class without blurring edges delimiting
neighboring regions.

In this paper, we present an aerial image mapping approach that advantageously
combines unsupervised segmentation with a supervised Markov model based recog-
nition. The originality of the proposed system carries on three concepts: the intro-
duction of an auto-adaptive circular-like window size while applying our stochastic
classification to preserve region edges, the extension of the Dependency Tree–HMM
to permit the computation of likelihood probability on windows of different shapes
and sizes and a mechanism that checks the coherence of the indexing by integrat-
ing both segmentations results: from unsupervised over segmentation, regions are
assigned to the predominating class with a focus on inner region pixels. To validate
our approach, we achieved experiments on real world high resolution aerial images.
The obtained results outperform those obtained by supervised classification alone.

Keywords Land cover classification � hidden Markov model � aerial images

40.1 Introduction

Land Cover Classification (LCC) in high resolution aerial images is an important ap-
plication of remote sensed data. It consists of identifying the natural objects present
in a high resolution aerial image given a set of known patterns. In the most general
case of aerial images, when the image contains several regions of different patterns,
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the aim is to label each pixel with the corresponding texture. Evidently, the labeling
process subsumes image segmentation but besides segmenting the image to different
regions, it assigns each region to one of the natural objects patterns.

Achieving the classification at pixel level is a big issue in LCC problem. In fact,
it is easier to identify an image of a relatively big size than identifying a lonely
pixel. In fact, pixel-wise approaches for image classification are not usually suitable
to solve problems often found in remote sensing application [1, 2]. They result in a
disgusting salt and pepper effect.

Recent researches clearly show the advantages of integrating spatial dimension
to spectral features by using segmentation based classification methods and, hence,
focusing into image regions instead of pixels [3, 4].

More elaborated approaches use a family of Markov models to model the con-
textual interactions between labels. However, genuine 2D-Markov modeling of the
contextual information is a time consuming iterative process [5].

On the other hand, reasonable complexity approaches identify each pixel by tak-
ing into account its neighboring pixels, usually by computing a similarity measure
(likelihood probability for instance) on square windows centered at concerned pixels
[6]. The drawbacks of such approaches are the following:

� They adopt square windows which may introduce a bias toward rectangular
regions. Moreover, corner pixels are more distant than other pixels. Adopting
non-square windows is usually unaffordable due to the used model or measure
nature.

� The bigger is the window, the more likely the identification is correct. However,
adopting a too big window may penalize small regions. A tradeoff is gener-
ally made.

� Since a static window size is adopted, the window size is then too small to per-
form efficient classification for all image pixels and too high to preserve edges
since the classification of frontier pixels are biased through introduction of neigh-
borhood pixels.

In this paper, we propose a system that overcomes the previous difficulties by intro-
ducing the following:

� Segmentation is achieved through unsupervised segmentation which preserve re-
gion edges even if it provides an over-segmented image.

� Each region is identified through stochastic supervised classification.
� Likelihood probability may be computed on windows of different sizes and

shapes centered at considered pixels.
� To determine window size and shape, an auto-adaptive distance is computed

based on the considered pixel position towards region edges.
� To permit likelihood probability computation on non-rectangular windows, we

extended the Dependency Tree-hidden Markov model (DT-HMM) by allowing
four directional dependencies instead of two, and adopting the central pixel as
root instead of upper-left pixel when dealing with rectangular windows.
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The reminder of the paper is organized as follows: in Section 40.2, we introduce
our Extended Dependency Tree-HMM (EDT-HMM) that extends DT-HMM.
Section 40.3 describes our indexing scheme. Section 40.4 shows experimental
results. Conclusion and future works are given in Section 40.5.

40.2 Extended Dependency Tree-Hidden Markov Models

Markov models (Markov Random Fields, Hidden Markov Fields, Hidden Markov
Models, Hidden Markov Trees : : :) were extensively and successfully used for tex-
ture modeling and segmentation [7]. This is majorly due to their ability to model
contextual dependencies and noise absorption [8]. However, their performance de-
pends widely on the model architecture: genuine 2D-models yield better results but
exhibits much higher computational complexity [8]. In general, the more complex
is the model, the better are the performances.

Nevertheless, for computational complexity reasons, several approaches consider
linear models like HMM even if such a model is not suited for two-dimensional data
[10]. More elaborated approaches resort to 2D-models with simplifying assumption.
One simplifying assumption that provides good results with a linear complexity
is that assumed in DT-HMM [11, 12]: one site (pixel) may depend on either the
horizontal or vertical predecessor, but not on both the same time.

The extension of DT-HMM in this work is motivated by two reasons: the need
to compute likelihood probability on non-rectangular shaped windows of different
sizes and the need to adopt central pixel (to be labeled) as the dependency tree root
since the root shows more interactions with neighbors than other pixels do.

40.2.1 EDT-HMM Overview

Before describing our model principles, let us define the applicability conditions of
the EDT-HMM model on a window w with respect to root r .

The window w must fit the following condition:

� For each site s of w, s must have at least one neighbor v 2 Ns that belongs to
w and fulfills: kv; rk < ks; rk where N is the 4-neighborhood and k k is the
Euclidean distance.

Let w be a window verifying the condition above, and let r be the center of the
window and Yr D fys=s.i; j / 2 wg be the set of features vectors (RGB for instance)
of pixels inside w � Yr is then the observable process. Let X be the hidden process.
The likelihood probability is given by:

P.Yr=�/ D
X
X

P.Yr=X; �/P.X=�/ (40.1)
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Fig. 40.1 Examples of random dependency trees according to DT-HMM (left) and EDT-HMM
(right) formalisms

Unlike DT-HMM, where each pixel may have a predecessor chosen between two
directions, in the EDT-HMM modeling, a pixel s may have a predecessor v cho-
sen randomly from the 4-Neighborhood (up, down, right or left) and verifying the
Euclidean distance property. Note that, the neighborhood directions of all pixels of
w define a tree structure T like depicted in Fig. 40.1. We note T .s/ D v.

The likelihood probability to observe Yr given the parameters of the DT-HMM
� .�;A;B/ can be approximated as follows:

P.Yr=�/ �
X

T

P.Yr=T; �/

�
X

T

X
X

P.Yr=X; �/P.X=T; �/

�
X

T

X
X

(Y
s2w

P.ys=xs ; �/P.xs=T; �/

)
(40.2)

In this paper, we propose to evaluate the likelihood on a set of random dependency
trees � . The previous equation becomes:

P.Yr=�/ �
X
T2�

P.Yr=T; �/

�
X
T2�

X
X

P.Yr=X; �/P.X=T; �/

�
X
T2�

X
X

(Y
s2w

P.ys=xs ; �/P.xs=T; �/

)
(40.3)
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Thereafter, we remind the definition of the Model parameters �;A and B .

bi .O/ D P.ys D O=xs D i/ (40.4)

P.xs D j =xv D i; �/ D
�
�j if s D r
aij otherwise

(40.5)

where i; j D 1; ::N represent hidden states.
Note that aij only depends on i and j and not on the direction (horizontal or

vertical).
To compute the likelihood probability of Eq. (40.3), we define the backward

function ˇi .s/ representing the probability of observing the data contained in the
sub-tree of T with s as a root starting from the hidden state i .

ˇi .s/ D
8<
:
bi .ys/ if s is a leaf
bi .ys/

Q
T .v/Ds

aijˇj .v/ otherwise (40.6)

Note that the likelihood probability of Eq. (40.3) can be evaluated as follows for
each dependency tree T :

P.Yr=T; �/ D
NX

iD1

�iˇi .r/ (40.7)

This computation exhibits a reasonable complexity (linear with window size).
The extension of the DT-HMM only concerns likelihood probability computation

and Viterbi decoding whereas learning is performed the same way as in DT-HMM
context.

The Viterbi decoding process can be achieved in a similar way to the likelihood
probability computation. On the other hand, learning is performed via an iterative
way the same as for the DT-HMM model, since the parameters are the same:

� Initialize model parameters
� Choose a random dependency tree T as described above (respecting the

Euclidean distance constraint)
� Perform learning as in a linear framework (like in 1D-HMM)

40.3 Classification Scheme

To produce a class map of a given aerial image, we follow the scheme depicted in
Fig. 40.2. In the following paragraphs, we describe each step.
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Fig. 40.2 Classification scheme

40.3.1 Image Unsupervised Segmentation

Before classifying the image pixels, we need to perform an image unsupervised
segmentation that fits the following conditions:

� Image edges are preserved
� Pixels of the same region belong necessarily to the same natural object class,

i.e. we may have an over-segmentation but not under-segmentation

This step serves as a pre-processing one, and will guide the rest of steps of the
classification process.
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Fig. 40.3 A sample of high resolution aerial image (RGD 73–74, 2008) (left) and its correspond-
ing unsupervised segmentation (right)

One unsupervised segmentation that has been shown to provide good results
is the one produced by the EDISON system [13, 14] which we use in this work.
A sample of a high resolution aerial image (50 cm per pixel) and the corresponding
unsupervised segmentation via the EDISON system are provided in Fig. 40.3.

40.3.2 Window Size Computation

Since texture is not a local phenomenon, in order to classify a pixel s, we consider
it with its neighborhood. More explicitly, we will compute the likelihood of the data
inside a window centered at the pixel under consideration.

Let us denote ws such a window and Ys the data associated to that window. The
class �s of the central pixel s is the class that maximizes the likelihood probability:

�s
� D arg max

�2ƒ

P .Ys=�/ (40.8)

Most approaches adopt a square window of a fixed size for all pixels. A trade-off is
usually made so that the window is enough big to correctly classify the central pixel
and enough small to preserve the region edges.

In this work, we propose to dynamically compute the window size to allow our
system to deal with a maximum amount of information without distorting region
edges. The more the pixel to classify is far from the region boundary, the larger is the
window whereas edge pixels are classified without considering their neighborhood.

Hence, window size is chosen so that pixels within the window belong to the
same region according to an unsupervised over-segmentation of the image.
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Fig. 40.4 Window shape and size for different values of Rays : a-Rays
2 D 1; b-Rays

2 D 2;

c-Rays
2 D 4

Fig. 40.5 Impact of window size on the pre-classification accuracy. a-Rays
2 D 1; b-Rays

2 D 10,
c-auto-adaptative Rays

Window shape and size depend on a unique parameter Rays that represents the
maximum Euclidean distance between neighbors and central pixel s. Figure 40.4
shows samples of windows of different shapes and sizes.

This parameter is obtained from the pre-segmented image. Its value is the max-
imum value possible so that pixels within the window belong to the same region.
A comparative analysis of the window size impact on the accuracy of classification
of the aerial image of Fig. 40.3 is shown in Fig. 40.5.

40.3.3 Image Pre-classification

To assign a pixel to a class, we compute the likelihood probability of observing
the window centered on that pixel according to the EDT-HMM of each natural ob-
ject class. The pixel is then allocated to the class that maximizes this probability
(Fig. 40.5).
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The parameters of the EDT-HMM corresponding to each natural object class are
obtained after a learning process achieved on mono-class aerial images. To represent
each pixel, we used the classical RGB color space. To estimate the parameters of
the DT-HMM of each class, we achieve K-Means clustering on pixels of mono-
class image of the corresponding class to divide the image pixels on N sub-classes.
Subsequently, we obtain the parameters of N Gaussian functions. These parameters
serve as an initialization of our EDT-HMM. The final parameters of the model are
then obtained after an iterative process as described in the previous section.

40.3.4 Classification Correction

After the previous steps, the resulted class map suffers from the so called salt and
pepper phenomenon. This is majorly to the difficulty to distinguish between several
similar textures, especially for pixels near boundaries. To overcome this involved-
ness we propose to merge pixels of the same region (according to the unsupervised
segmentation) into the same natural object class with a focus on inner pixels of the
region, since those pixels were classified considering larger windows (Fig. 40.6).
Explicitly, each regionR is assigned the natural class that fits the following rule:

XR
� D arg max

X2ƒ

X
�sDX; s2R

size .ws/

Fig. 40.6 Image classification correction Original aerial image (left), class map (right)
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40.4 Experimentation

40.4.1 Data Overview

For our experimentation, we consider real world aerial images with a resolution of
50 cm per pixel (Fig. 40.6). The images were provided by La Régie de Gestion des
Données des pays de Savoie, France ([9]).

The pictures were taken in relatively good light conditions; however, some im-
ages suffer from presence of shadow in some parts.

40.4.2 Learning Database

Learning was performed on mono-class images. These images were carefully ex-
tracted from the aerial images of the same area of study (Fig. 40.7).

40.4.3 Mono-class Images Generation

To demonstrate the capacity of the DT-HMM to represent natural object textures, we
generate mono-class images using the corresponding DT-HMM and compare them
to images generated by 1D-HMM and GMM (Fig. 40.8).

40.4.4 Experimental Results

To evaluate the robustness of our aerial images pixels’ classification system, we
considered three types of test images:

� Mono-class images, for which the classifier is expected to assign all pixels to the
corresponding class (Fig. 40.9)

Fig. 40.7 Samples of learning images of classes: tree (left), snow (middle) and water (right)
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Fig. 40.8 Mono-class image generation of class Tree using: 1D-HMM (middle) and DT-HMM
(right)

Fig. 40.9 Mono-class image classification. Original aerial image (left), ground truth map (middle)
and class map (right)

Fig. 40.10 Classification result on mosaic image. Original aerial image (left), ground truth map
(middle) and class map (right)

� Mosaic images, assembled by combining different classes into regular boxes so
that we can easily produce a corresponding ground truth map (Fig. 40.10)

� Natural aerial images, for which we don’t have a precise ground truth map. Thus,
only a visual evaluation can be achieved in this case (Fig. 40.6)

To produce the unsupervised segmentation of areal images, we acknowledge the
use of EDISON system software [13, 14]. The obtained classification of the mosaic
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image is very similar to the corresponding ground truth. Notice that the shadow class
is not included in the ground truth map since we know to which class the shadowy
pixels belong.

40.5 Conclusion

In this paper, we proposed an approach that advantageously combines supervised
EDT-HMM modeling and unsupervised segmentation to classify land cover pixels.
Instead of achieving our classification using a static window size, we resorted to an
auto-adaptive window size depending on the position of pixel under consideration
towards region boundaries.

Overall, the experimental results show that our system produces satisfactory class
maps in a reasonable time given the linear complexity of the modeling. Note that
several textures are so similar to each other that it is sometimes very difficult even
for a human to distinguish between them.

As future work, we propose to apply EDT-HMM modeling to other kinds of
problems.
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