
Machine learning for instance selection in SMT solving*

Daniel El Ouraoui*1, Pascal Fontaine1, and Cezary Kaliszyk2

1 University of Lorraine, CNRS, Inria, and LORIA, Nancy, France
{daniel.el-ouraoui,pascal.fontaine}@inria.fr

2 University of Innsbruck, Innsbruck, Austria
cezary.kaliszyk@uibk.ac.at

Abstract. SMT solvers are among the most suited tools for quantifier-free first-
order problems, and their support for quantified formulas has been improving
in recent years. To instantiate quantifiers, they rely on heuristic techniques that
generate thousands of instances, most of them useless. We propose to apply state-
of-the-art machine learning techniques as classifiers for instances on top of the in-
stantiation process. We show that such techniques can indeed decrease the num-
ber of generated useless instances and lead to more efficient SMT solving for
quantified problems.

1 Introduction

Satisfiability modulo theories (SMT) solvers are among the best backends for verifica-
tion tools and “hammers” in proof assistants. When proof obligations contain quanti-
fied formulas, SMT solvers rely on instantiation, replacing quantified subformulas by
sets of ground instances. Three main instantiation techniques exist: enumerative [18],
trigger-based [10], and conflict-based [19] instantiation. Among these, only conflict-
based instantiation computes instances that are guaranteed to be relevant. It is however
incomplete and has to be used in combination with other methods. Enumerative and
trigger-based techniques are highly heuristic and generate a large number of instances,
most of them useless. As a result, the search space of the solver explodes. Reducing
the number of instances could improve the solver’s efficiency and success rate within a
given time limit.

We propose an instantiation technique based on machine learning. A predictor over
the generated set of instances is trained on useful instances in previous runs of the SMT
solver. That predictor is in turn used to filter out irrelevant instances, and thus decrease
the number of instances given to the ground solver. The predictor is invoked after each
instantiation round to evaluate the potential usefulness of each generated instance. Sev-
eral strategies are then used to build a subset of potentially relevant instances that are
immediately added to the ground solver. We conducted our experiments in veriT [6], an
SMT solver that implements all three instantiation techniques described above. As the
predictor, we chose the XGBoost gradient boosting toolkit [8] with the binary classifi-
cation objective. This configuration has already been used successfully in the context
of first-order theorem proving [13, 17].

In this paper we describe how such an approach can be integrated inside an SMT-
solver to guide the instantiation process. Our experimental evaluation shows that the
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number of instances is significantly decreased by this approach. We furthermore show
that our prototype implementation leads to an increased amount of success on problems
from the SMT-LIB. A preliminary version of this work was presented at the AITP
workshop 2019 [5].

2 Preliminaries

The logic used in the context of SMT is many-sorted first-order logic with equality. We
assume the reader to be familiar with the notions of function, predicate, term, (quanti-
fied and ground) formula, literal, free variable, and substitution. The notations an and
a denote the tuple (a1, . . . , an) with n ≥ 0. We use the symbol = for syntactic equality
on terms and ' denotes a family of a equality predicate, one for each sort. We reserve
the names a, b, c, f, g, p for function symbols; x, y, z for variables in general; r, s, t, u
for terms; and ϕ,ψ for formulas. The symbol |= denotes the classical notion of entail-
ment. The notation t[x̄n] stands for a term whose free variables are included in the tuple
of distinct variables x̄n; t[s̄n] is the term obtained from t by a simultaneous substitution
of s̄n for x̄n. The symbol x denotes an integer (feature) vector, and notation x[i] stands
for the ith element of the vector.

3 Instantiation

3.1 A short introduction to SMT

Ground Solver

Conflict clauses

Boolean model

Theory solver SAT solverInstantiation
module

Instances

Assignment

Fig. 1: The classic SMT core architecture.

The core of an SMT solver (Fig. 1) is a propositional satisfiability (SAT) solver [4],
extended to more expressive logics with a theory solver (see [3] for more informa-
tion about SMT). The input formula is abstracted to a Boolean formula, given to the
SAT solver. The SAT solver provides a model for this Boolean abstraction, and the
corresponding literals are checked for satisfiability by the theory solver. Thanks to this
architecture, the theory solver only has to check the satisfiability of a conjunctive set of
literals, and not an arbitrary Boolean combination. If the set of literals is unsatisfiable,
the Boolean abstraction is refined through the addition of a propositional conflict clause
to the SAT solver, and the process repeats. If the set of literals is satisfiable, then the
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input formula is also satisfiable and a model can be output. If the theory is decidable,
the theory solver always terminates, and if we further assume that conflict clauses only
contain abstract Boolean variables from the input formula, the whole process eventu-
ally terminates, after the addition of a finite number of conflict clauses. If the formula
is unsatisfiable, a proof can be provided.

The above process describes the internals of an SMT solver for a decidable the-
ory and for quantifier-free problems. Quantified reasoning however requires additional
techniques.

3.2 Instantiation in SMT

Quantifier reasoning is handled by an additional layer (see left hand side of Fig. 1),
i.e., the instantiation module, on top of the ground SMT architecture described above.
The ground SMT solver only sees a quantifier-free abstraction of the input, that is, the
input where the quantified formulas are abstracted to new propositional formulas, after
Skolemization. In a few words, the instantiation module in SMT is simply based on the
foundational works of Skolem and Herbrand. The ground SMT core first produces a
ground first-order assignment where quantified formulas appear as propositions. Then,
the instantiation module provides instances of the quantified formulas with terms from
the Herbrand universe (i.e., all possible well-sorted ground terms in the formula’s signa-
ture). These instances will refine the ground abstraction of the formula, and the process
repeats. Formally, given a set of literals or ground assignment E, and a set of quanti-
fied formulas Q, the instantiation problem is to find a set of instances I of Q such that
E ∪ I |= ⊥. This is a semi-decidable problem in pure first-order logic with equality.
Many approaches have been developed to tackle this problem: enumerative [18], trigger
based [10] and conflict based instantiation [19].

Example 1. Consider the ground assignmentE = {¬P(a),¬R(b),R(a)} and the quan-
tified formula ∀x. P(x) ∨ ¬R(x). Instantiating the variable x with the Herbrand term a
provides the ground conflicting instance P(a) ∨ ¬R(a). •

Enumerative instantiation Thanks to the Herbrand Theorem, any quantified formula
∀x . ψ[x] can be seen as an infinite conjunction

∧
t ψ[t] over all Herbrand terms t of

appropriate sort; then the compactness Theorem states that there is always a finite un-
satisfiable subset for any unsatisfiable set of formulas. Thus, for completeness, it is
enough to blindly but fairly enumerate Herbrand instances to address the problem of
instantiation.

Trigger based instantiation Rather than blindly instantiate using arbitrary Herbrand
terms, this technique extracts sets of patterns (terms with free variables) from quan-
tified formulas. These patterns, a.k.a. triggers, are matched with ground terms be-
longing to E, and the corresponding instances are generated. For instance, consider
formula ∀x. f(g(x)) ' x. A suitable trigger is f(g(x)). With such a trigger, trig-
ger based instantiation would generate an instance with x 7→ c when matched with
E = {a ' f(b), b ' g(c)}. Several strategies have been developed to efficiently select
and match triggers [1, 10, 11].
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Conflicting based instantiation Reynolds et al. [19] introduced this technique to im-
prove the performance of SMT solvers on quantified unsatisfiable problems. This ap-
proach repeatedly considers each quantified formula ∀x. ϕ in Q and tries to find a
substitution σ for the set of variables x such that E |= ¬ϕσ. The Congruence Closure
with Free Variables (CCFV) algorithm is an improvement of this technique by Barbosa
et al. [2].

The veriT solver [6] implements the three aforementioned instantiation methods.
The following strategy is furthermore adopted:

i Try conflicting based instantiation;
ii if (i) fail, try trigger based instantiation;

iii if neither (i) and (ii) succeed, use enumerative based procedures.

The conflicting based procedures always produce good instances that contradict the
assignment set E. On the other hand, it can only find conflicts with one clause at a time.
In other words, if it is necessary to use two instances to contradict an assignment E,
finding those two instances is beyond the scope of the method. Completeness requires
using trigger and enumerative instantiation, but they are highly prolific and often lead
the ground solver into a large search tree by adding many new instances and terms,
some of them totally irrelevant.

3.3 The quest for good instances

Triggers and enumerative based instantiation are highly heuristic and generate a large
number of instances. If the number of instances grows, the number of ground assign-
ments and their size also grow. The task of instantiation may consequently be even
more complicated by this amount of irrelevant information. Cutting irrelevant instances
at the source might prevent this side effect, leading to improvements in efficiency and
number of solved problems. Since machine learning has been successfully applied in
many areas where a lot of data has to be sorted into relevant and irrelevant information,
it seems natural to use it in this context.

Supervised learning needs a set of clearly labeled examples on which to learn on. To
figure out if an instance is relevant — that is, if it is useful to solve the problem — the
proof produced by the solver can be inspected a posteriori. The veriT solver produces
fine grained proofs. It is easy to prune these proofs of the lemmas or instances that have
not been used to deduce the unsatisfiability. By inspecting a proof, it is thus easy to sort
out useful and useless instances.

By comparing the number of instances produced in a typical run of the solver and
the ones appearing in the pruned proof, we get that only 10% of the produced instances
are part of the pruned proof. In other words, on average, only 10% of the added formu-
las by the instantiation module are really useful. We want to train a machine learning
classifier, to be used on top of the instantiation module to filter out the useless instances.

Let us illustrate this on a simple problem — a simplified version of the SMT-LIB
benchmark UF/misc/set10.smt2 — that will also serve as a running example.
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Example 2. Consider the following set of axioms, where t,u,@,∈ are uninterpreted
symbols abstractly representing union, intersection, inclusion and membership predi-
cates. For readability, infix notations is used.

ϕ1 = ∀xyz . x ∈ y ∧ y @ z ⇒ x ∈ z
ϕ2 = ∀xy .¬(x @ y)⇒ ∃z . z ∈ x ∧ ¬(z ∈ y)

ϕ3 = ∀xyz . x ∈ (y t z) ' (x ∈ y ∨ x ∈ z)

Round Ei ϕi σ instances
σ2,1 x 7→ a, y 7→ c

1 {a @ c, b @ c, ¬((a t b) @ c)} ϕ2 σ2,2 x 7→ b, y 7→ c
σ2,3 x 7→ (a t b), y 7→ c

σ2,4 x 7→ a, y 7→ c
2 ϕ2 σ2,5 x 7→ b, y 7→ c

E1 ∪ {sk ∈ (a t b), ¬(sk ∈ c)} σ2,6 x 7→ (a t b), y 7→ c
ϕ3 σ3,1 x 7→ sk, y 7→ a, z 7→ b

3 E2 ∪ {¬(sk ∈ b), sk ∈ a} ϕ1 σ1,1 x 7→ sk, y 7→ a, z 7→ c

4 E2 ∪ {sk ∈ b, ¬(sk ∈ a)} ϕ1 σ1,2 x 7→ sk, y 7→ b, z 7→ c

Table 1: Instantiation rounds of E ∪Q

Let us further assume a set of ground literals E = {¬((a t b) @ c), a @ c, b @ c},
where a, b, c are constants symbols, and Q = {ϕ1, ϕ2, ϕ3}. We want to solve the in-
stantiation problem E ∪ I |= ⊥ where I is the set of ground instances of Q that should
be generated. The set E ∪ Q is trivially unsatisfiable, but this is already an interesting
case to analyze the general behavior of the solver. Table 1 enumerates the instantia-
tion rounds a typical SMT solver would follow. The set Ei represents an assignment
produced by the ground solver at the round i and ϕi the quantified formula from Q
instantiated using substitutions in column σ. The instances with substitutions σ1,1 and
σ1,2 are conflicting based, all others are either generated by trigger or enumeration
based instantiation. The instances associated to ϕ2 are formulas with one quantifier that
is Skolemized. The constant sk comes from the Skolemization of ϕ2 after instantiation
with σ2,3; for simplicity, we do not mention the other Skolem constants that are gen-
erated for the other (useless) instances. At the fourth instantiation round, the instance
sk ∈ b ∧ b @ c ⇒ sk ∈ c is generated, making the problem inconsistent at the ground
level.

Looking at the instances column on the right, we can observe that some instances
are redundant (e.g., σ2,4, σ2,5, σ2,6) or useless (e.g., σ2,1, σ2,2) to solve the problem. A
pruned proof would only contain instances σ2,3, σ3,1, σ1,2, σ1,1 (see Table 2). An ideal
solver would thus only instantiate the formulas in Table 2, and would avoid swamping
the ground solver with all the useless and redundant ones. It is easy to filter out redun-
dant instances. We next show how to train an extreme gradient boosted tree to recognize
and discard irrelevant instances. •
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Round Ei ϕi σ instances
1 {a @ c, b @ c, ¬((a t b) @ c)} ϕ2 σ2,3 x 7→ (a t b), y 7→ c

2 E1 ∪ {sk ∈ (a t b), ¬sk ∈ c} ϕ3 σ3,1 x 7→ sk, y 7→ a, z 7→ b

3 E2 ∪ {¬(sk ∈ b), sk ∈ a} ϕ1 σ1,1 x 7→ sk, y 7→ a, z 7→ c

4 E2 ∪ {sk ∈ b, ¬(sk ∈ a)} ϕ1 σ1,2 x 7→ sk, y 7→ b, z 7→ c

Table 2: Pruned instantiation rounds of E ∪Q

4 A machine learning approach for instantiation

Machine learning is progressively making its way into automated reasoning, notably
for first-order theorem proving [9, 12]. This work is, to our best knowledge, the first
to use machine learning for instantiation in SMT. To cope with this new application,
machine learning algorithms need to tackle a few challenges. First, the training data
is very imbalanced, since there are ten times more irrelevant instances than relevant
ones. Second, the machine learning method will have to learn from a small number of
examples — around one hundred thousands of examples extracted from a small set of
problems — the training set being reduced to the problems available in the SMT-LIB.
Third, the prediction should be inexpensive, so that it can be quickly applied to the large
number of generated instances.

Among the many available supervised machine learning algorithms, state-of-the-art
boosted decision trees meet these three requirements. We opted for the XGBoost [8]
“eXtreme Gradient Boosting tree” toolkit used with the binary classification objective,
which already proved helpful in [13, 17]. XGBoost is a highly scalable supervised ma-
chine learning algorithm with an open source implementation. We describe here how
XGBoost is trained in order to guide the instance selection inside our SMT solver veriT.

4.1 From SMT to machine learning

Traditional machine learning algorithms work on features, i.e., numeric values that
characterize the inputs. The role of the learning algorithm is essentially to identify and
classify regions of this space of features. The features are the crucial elements linking
the application to the machine learning algorithm. Applying such machine learning al-
gorithms to new applications thus boils down to adequately representing the knowledge
of the application using vectors of features in a Euclidean space and finding appropriate
parameters for the algoritms. The goal of the features is to provide a representation that
is as faithful as possible, to link the original application to the input of the machine
learning technique. Being faithful is not always possible, due to many technical rea-
sons. In that case, it is necessary to approximate the problem by featuring meaningful
quantities for the application, e.g., in our context, depth, size of terms, used symbols.

4.2 Designing features

Features have been considered in the context of theorem proving in some previous
work [15], in particular in combination with gradient boosted trees [17]. Our features
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are more specifically inspired from the ones used in ENIGMA [13] and RLCoP [14].
This section presents the encoding for terms, formulas and assignments into a feature
vector space, to be processed by the XGBoost algorithm.

The ground assignment in SMT solvers is a set of ground literals. Each term is
associated to a feature vector. Although the solver internally represents terms as di-
rected acyclic graphs, we use the tree representation for feature computation. Variables
are abstracted away by a placeholder constant (~ in the following), following [13].
Similarly Skolem constants are replaced by the placeholder �. For each sequence of
symbols from root to a leaf, we extract all directed paths of length one, two and three.
We refer to these paths as term walks. Sequences represent features and number of
occurrences are the values. For instance, the term f(a, b) results in the set of features
{f, a, b, (f, a), (f, b)}. The value for the feature f is 3 since f appears three times in the
path walks, whereas the value for (f, a) is 1.

@

t

x sk

c

@

t

~ �

c

Fig. 2: Tree representing the literal (x t sk) @ c

Example 3. Figure 2 shows the tree representation of the term (x t sk) @ c where x is
a variable and sk a Skolem symbol. The left-hand side tree is the original term and the
right-hand side tree is the processed tree, after replacing variables and Skolem constants
by their respective placeholders.

Example 4. Consider the term (x t sk) @ c from the previous example. The following
table shows the extracted features from this term with their value. The k row gives the
length of the term walks. The value is the number of times the sequence of symbols
appear in all term walks of length at most 3.

k 1 value 2 value 3 value
@ 5 (@,t) 2 (@,t,~) 1

features t 3 (@, c) 1 (@,t,�) 1
� 3 (t,~) 1
~ 2 (t,�) 1

4.3 Problem description

In order to transform such tuples of symbols into positions in the feature vector, we use
Vowpal Wabbit hashing [16]. Given the above characterization of terms by features,
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we will now use it in the statement of a machine learning problem inside the SMT
solver. The input of the predictor is a feature vector containing three parts (with dis-
joint features), for the quantified formula ψ[xn], the substitution xn 7→ tn generating
the instance of the quantified formula, and the ground assignment, i.e., a set of literals
l1, . . . , lm. For terms occurring in practice most features will be zero, since they do not
appear in the term walks. Therefore sparse vectors are suitable for feature representa-
tion.

The encoding of the state is fairly complete, but in practice, it is also too expensive
memory-wise. In order to decrease the amount of information, we do not use the full
quantified formula ψ[xn], but the triggers associated with the quantified formula. Fur-
thermore, rather than taking into account all terms in l1, . . . , lm, we only select the terms
that are equal or disequal, according to l1, . . . , lm, to one of the terms t1, . . . , tn.This
new state description allows us to generate a much smaller data set and considerably
reduce the size of the trees used in the trained XGBoost prediction models. With the
previous description, trees of depth 45 were necessary for decent results. With the re-
duced description, equivalently good results are obtained with trees of depth 20. On
average the reduced description decreases the size of the generated samples by a factor
between 50 and 100. As a side effect, much smaller training times are required.

The feature vectors also contain some extra abstract features such as size, depth,
number of Skolem constants, number of terms and number of triggers. More precisely,
for the terms in the substitution, for triggers, and for terms that are equal or disequal to
terms in the substitution, we also add their depth and size. For terms in the substitution
as well as for terms that are equal or disequal to them, there is a feature providing
the number of terms equal to them according to l1, . . . , lm. Finally, there are features
informing about the total number of triggers, the total number of Skolem constants, and
the maximal depth of the terms in the substitution.

Example 5. Consider the instance σ2,1 from Example 2. The quantified formula is ϕ2,
and the substitution is σ2,1 as represented by Table 3. There are no equalities in E2.
Thus, there are no other terms equal to a or c: the feature vector corresponding to
the literals only contains features for a and c, and the feature vector is represented
by Table 4. Notice that Table 3 and Table 4 differ by the ids of the features, since these
ids for the substitution part and for the literals part are disjoint. The sole trigger in ϕ2 is
¬(x @ y) as represented by Table 5. The feature vector thus contains all Tables 3–5, as
well as the abstract features mentioned above.

•

Example 6. To illustrate the features corresponding to literals, consider now the second
round of Example 2 above, with literals a ' sk and b 6' a now added to E2. The terms
equal to substituted terms yield the features in Table 7 because of the equality a ' sk.
Furthermore, there is now one disequality which produces the features in Table 7. The
trigger table is unchanged.

•
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n features value
1 a 1
2 c 1

Table 3: The substitution

n features value
3 a 1
4 c 1

Table 4: The equal terms

n features value
5 ~ 4
6 ¬ 3
7 @ 4
8 (¬,@) 2
9 (@,~) 2
10 (¬,@,~) 2

Table 5: The triggers

n features value
11 a 1
12 b 1

Table 6: The disequal terms

n features value
3 a 2
4 c 1
13 sk 1

Table 7: The equal terms

4.4 The right place and role for the predictor

The previous section explained how to turn the SMT instantiation problem into a ma-
chine learning problem, this section explains how to fit in the predictor inside the solver.

A random forest [7] is a set of decision trees. Each internal node of the decision
tree compares the value of a particular feature of the input to classify with a constant
stored in that node. Each leaf node contains a numeric contribution to the decision.
The output of the random forest applied to a sample is the sum of the values in the
leaves corresponding to that sample. The construction of the forest based on a set of
training examples is beyond the scope of this paper. XGBoost [8] allows for efficient
construction and evaluation of such forests with good prediction quality. To further
improve efficiency of the prediction, we choose to hard code the model (i.e., the forest
of binary decision trees) produced by the XGBoost algorithm by compiling it into an
efficient C program. Each tree of the original model is translated as an if-then-else
construction.

Evaluating usefulness Essentially, each node in the tree based model is a numeric com-
parison between a feature value x[i] and a given constant found by the algorithm during
the training. The computation for one tree is thus linear with respect to the maximal
depth of the tree, hence at most linear with respect to the size of the tree. We typically
choose 20 as the maximal depth of a tree. Thus, evaluating the prediction on such trees
will involve computing as many comparisons. Each tree Mi returns a score Mi(x)
which is a real value within the interval (−∞,∞). For the full prediction the results
associated to all trees need to be summed up. The sigmoid function to compute the
prediction from a forest of n decision trees for the feature vector x is

xgb_predict(x) =
1

1 + e−
∑

iMi(x)
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which returns a real value between 0 and 1 where 0 stands for a useless instance and 1
for a useful instance.

Triggering off machine learning A key point to successfully use the predictor is to
know its predicting limit. The XGBoost library associates a value to the importance
of each feature in the computed model. Given a feature vector, some features will be
present, and some will not. For instance, if a symbol does not appear neither in the
literal part, nor in the triggers, nor in the substitution, its corresponding feature will not
appear in the input of the predictor. It turns out experimentally that, if the values of the
feature importance for the features in a vector corresponding to an instance are low, the
prediction is of poor quality, and such instances should not be filtered out.

Given a feature vector x corresponding to an instance, we compute its importance
importance(x) as the average of all values of the importance of the features in the
vector. If this value is below a certain parameter λ, the prediction as computed with
xgb_predict(x) is considered to be uninformed, and the instance is not filtered out.
The prediction function that is actually used for filtering is

predict(x) = Mi

{
xgb_predict(x) if importance(x) ≥ λ
1 otherwise

where λ is a fudge factor equal to 80 times the number of Skolem constants in the
example experimentally determined to prodice good results.

Re-calibrating At each round of instantiation all produced instances are stored in a
queue, together with their score, computed as described above. The instances with a
score above 0.5 are added to the ground solver. The others are saved in memory, to be
reevaluated at the next round. It might happen that the prediction assigns low scores to
all instances. We observed that in that case, it is best to re-calibrate the selection filter,
and run the selection again. In practice, it works well to rescue all instances with a score
larger than

rescue_value(I) =

∣∣∣∣mean(I)−Kσ(I)

L

∣∣∣∣
where mean(I) and σ(I) are respectively the mean and standard deviation of the set
of scores of the instances, and K and L are two adjustable constants. In practice, we
use K = 0.26 and L = 10 if mean(I) < 0.1, and 1 otherwise. Algorithm 1 gives an
overview of the procedure. D is a global queue containing all instances that have been
generated but not yet selected for addition to the ground solver. We add all the formulas
if D is small (lines 2–3), otherwise the formulas with score above one half are added
(lines 4–6). The condition irrelevant(D) in the abstract algorithm 1 (line 2) is true
if the previous instantiation round did not produce any new instances and none of the
instances in D were selected. Re-calibration and rescuing of instances occur at lines
7–10. On line 11, all generated instances that have not been selected are added to D.

5 Evaluation

To evaluate the benefit of the techniques presented here, we first compare the gain
in the number of instances necessary to solve the problem. Then we study the time
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Algorithm 1: Instance selection
Input: Q set of quantified formulas
Output: S selected instances

1 I = D
2 if |D| < 100 ∨ irrelevant(D) then
3 I = I ∪ TriggerEnum(Q)

4 foreach ϕ ∈ I do
5 if predict(features(ϕ)) > 0.5 then
6 S = S ∪ {ϕ}

7 if S = ∅ then
8 foreach ϕ ∈ I do
9 if predict(features(ϕ)) > rescue_value(I) then

10 S = S ∪ {ϕ}

11 D = I \ S
12 return S

and success rates with a few variants of our implementation. Experiments have been
conducted in the SMT solver veriT, on machines with 2 Intel Xeon Gold 6130 with
16 cores/CPU and 192 GiB RAM. We ran our experiments using the benchmarks in
the UF category of the 2017 edition of the SMT-LIB, counting 7562 formulas (732
are labeled as satisfiable, 3316 unsatisfiable, and 3514 unknown). All the informa-
tion necessary to reproduce the experiments is available on the web page https:
//members.loria.fr/DElOuraoui/smtml.html.3

For all experiments we use a proof-producing version of veriT. In the learning
phase, we compare the full output proof with the proof pruned of irrelevant instances
to discriminate useful instances from unused ones. An instance produced in the run is
tagged as useful if it occurs in the pruned proof. The problems that only require con-
flict based instances in their proofs are not used in training. Since we essentially want to
filter out instances generated by trigger and enumerative based instantiation, we also ig-
nore the (useful) instances generated by conflicting based instantiation (which amount
to about 30% of the instances), for the remaining benchmarks. In the rest of the dis-
cussion here, we only consider numbers without conflicting instances. Around 90% of
the remaining instances are useless. In previous work [5], we under-sampled the useless
instances, in order to provide a training set with as many good instances as bad ones.
Here, we rather used the scale_pos_weight parameter provided by the XGBoost
library which automatically balances the data in the training process by using a different
learning rate for the positive examples (we are thankful to Jan Jakubův and Josef Urban
for recommending this parameter).

We first run veriT without learning assistance on all the formulas with a 60 seconds
time limit. Filtering out the formulas that are solved using conflicting instantiation only,
there remain 1865 formulas. This set is randomly divided into a training set (70% of

3 We will use Zenodo for the final version.

https://members.loria.fr/DElOuraoui/smtml.html
https://members.loria.fr/DElOuraoui/smtml.html
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the formulas) and a test set (30%). The version of veriT that uses the instance selection
algorithm trained on the formulas by the first run will be referred to as veriT(M).
Similarly, veriT(M2) is the version of veriT that uses the instance selection algorithm
with a model trained, this time, with the formulas solved by veriT(M). There are 1914
benchmarks used in the process. We also consider a portfolio strategy, veriT(M+M2),
using successively, veriT without learning, veriT(M2) and veriT(M) with one third of
the timeout for each component.

Fig. 3: Comparison of veriT configurations on UF SMT-LIB benchmarks

The numbers of generated instances for veriT (y-axis) and veriT(M) (x-axis) are
compared in Figure 3. The fewer instances generated, the better the solver is. Keep in
mind, however, that if a necessary instance is filtered out, the solver might be unable to
prove the formula. The left-hand side shows the results of the solvers on the entire data
set (training and test), whereas the right-hand side shows the results only on the test set.
In both plots, a cluster of points is forming along the line corresponding to the equation
f(x) = 2x. On average, instance selection allows the solver to find proofs with about
half the number of instances, that is, the number of useless instances is decreased by a
factor of two. These results show that our approach is suitable to substantially reduce
the number of useless instances. We now show that it also allows the solver to prove
more formulas.

Table 9 gives the number of problems solved within a given amount of time (30, 60,
120, and 180 seconds) for the different versions of veriT described above. As a base of
comparison, we also provide the results using the state-of-the-art theorem prover Vam-
pire. We used version 4.2.2 with the SMT-COMP mode option and without the Z3 SMT
solver, since the experiments do not involve theory reasoning.4 The conclusion is here
that a trained solver with machine learning is better than the core solver. Comparison

4 Note to the reviewers: our experiments with CVC4 exhibit results below Vampire. We plan to
contact the CVC4 and Vampire teams so that the lines in Table 9 corresponding to those two
mainstream provers are perfectly fair in the final version.
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with other solvers is for information only; incidentally, using a trained SMT solver for
the SMT-COMP competition would be dishonest.

Finally the rows labeled “portfolio” report on a portfolio strategy, using veriT with
various configurations (as used in SMT-COMP), with and without the trained solvers in
the portfolio. Learning on the problem successfully solved does indeed allow to solve
more problems.

30s 60s 120s 180s
veriT 2892 2906 2922 2927
veriT(M) 2904 2915 2925 2936
veriT(M2) 2914 2927 2936 2942
veriT(M+M2) 2934 2957 2968 2971
veriT + portfolio 3176 3211 3226 3232
veriT(M+M2) + portfolio 3184 3240 3307 3317
Vampire smtcomp mode 3274 3286 3297 3319

Table 9: Results on the benchmarks in the UF category of the SMT-LIB.

Table 10 shows the gain and loss with respect to the number of solved problems. For
instance, veriT(M) solves 40 problems that veriT does not solve, whereas veriT solves
32 problems that veriT(M) does not. Remember that the 40 problems are problems
that have not been used to train veriT(M), since only the problems solved by veriT are
used to train veriT(M). Using a portfolio is a way to mitigate the fact that tempering
the instantiation algorithm will inevitably have negative effects for some formulas.

veriT veriT(M) veriT(M2) veriT(M+M2)

veriT 0 32 27 5
veriT(M) 40 0 32 2
veriT(M2) 46 43 0 7

veriT(M+M2) 66 55 49 0
Table 10: Comparative results on the UF SMT-LIB category, with 60 seconds timeout.

6 Conclusion

We have presented a method to combine instantiation techniques with machine learning
for instance filtering in SMT solvers. A significant part of our feature representation
uses elements of the syntax, which means that the technique would not work well when
training on some set of problems and then using the solver on problems coming from a
completely different area. However, our experiments demonstrate that machine learning



14 El Ouraoui, Fontaine and Kaliszyk

techniques can be used successfully to train a solver to improve itself on a coherent set
of problems.

Future works involve improving the features: first experiments show that our way to
compute the integers associated to features (using hashes) induces quite a lot of clashes,
and fixing this leads to better results. Our features are currently quite dependent on
the syntax of formulas: with features that are more independent of the syntax, training
might prove advantageous also for formulas very different from the training set. Finally,
we here investigated one kind of learning technique: other state-of-the-art techniques
remain to be tried on this application.
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