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Context: Quantum computation is a computing paradigm using qubits as the pri-
mary information unit and that is physically based on quantum mechanics. The standard
way of representing quantum programs is via quantum circuits [Deu89]. Quantum cir-
cuits however represent a fixed size computation and do not allow usual programming
techniques, thus yielding a quest for a high level quantum programming language, for
example [Sel04, GLR+13, DCM22]. One particularly interesting feature that is seeked
for those languages is quantim control [DC21]. With high level languages also comes
the need to manage the resources used by a program, in other words, controlling the
complexity. This is even more true in quantum computing where the number of qubits
in a quntum computer is severely limited, and their coherence is short-timed. The usual
quantum complexity class, FBQP, consists in Functions computing with Bounded-error
in Quantum Polynomial time.

In [DGMV19, DCM22] two λ-calculi are introduced to modelize the superposition
of qubits while allowing quantum control and a type system guarantees that terms
represent unitary transformations, hence correspond to legal quantum transformations.
Dual Light Affine Logic, presented in [BT09], is a type system for ensuring polynomial
time. Those have been used as inspiration to design a λ-calculus manipulating qubits
and only allowing programs in FBQP [DCHPS].

This language does not contain a fixpoint on types (aka inductive types). It is possible
to encode Church numerals or lists without this feature, but their definition is not linear.
On the other hand, inductive types make it possible to encode Scott numerals or lists
that are linear. It has been shown [BT10] that type fixpoint can be included in Dual
Light Affine Logic without losing the FP-soundness.

Objectives: The goal is to design a type system equipped with a type fixpoint for
a λ-calculus capturing FBQP. It will be crucial to use the type fixpoint to define lists
of qubits whose orthogonality will perfectly match with the orthogonality on the tensor
product of qubits.
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