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Skills     : 
We are looking for master 2 students with good knowledge of  programming
languages (type  systems)  and  skills  in  Object  Oriented  programming
including Java. We also expect the student to have a good skills (and interest) in
complexity theory and type systems.

Background     : 
The  aim  of  Implicit  Complexity  is  to  design  criteria  (type  systems,  semantic
interpretations) to prove that programs belong to a given complexity class. The
goal is to obtain certificates providing upper bounds on the memory and time
needed by a program for a correct execution. A new implicit complexity analysis
based  on  a  type  system  for  imperative  and  object  oriented  languages  was
proposed in articles [1], [2] and [7]. This analysis is inspired by Data Ramification
techniques [3, 4] and by non-interference (control flow analysis) [5]. It ensures
that if a program can be typed and terminates, it will run in polynomial time (or in
a different context, polynomial space).

Objectives     :

The main objectives of the project are the following :

 Increase  the  number  of  programs  that  can  be  analyzed  using  program  transformation
techniques.

 Combine the complexity analysis with tools for showing the termination of imperative and
OO programs (for example, [6]).

 Increase the expressivity of the analyzed language (forks, threads, …).

 Explore the common cases in real world programs for which the analysis fails and correct (or
extend) the type system to capture them.
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