
Type System for complexity analysis of Java programs.

Team : INRIA Project Carte

Laboratory : LORIA, Nancy

Advisors :

 Romain Péchoux (Romain.Pechoux@loria.fr), LORIA, Université de
Lorraine, Nancy, +33 3 83 59 20 41

 Emmanuel Hainry (Emmanuel.Hainry@loria.fr), LORIA, Université de
Lorraine, Nancy, +33 3 54 95 84 18

Skills :
We are looking for master 2 students with good knowledge of programming
languages (type systems) and skills in Object Oriented programming
including Java. We also expect the student to have a good skills (and interest) in
complexity theory and type systems.

Background :
The aim of Implicit Complexity is to design criteria (type systems, semantic
interpretations) to prove that programs belong to a given complexity class. The
goal is to obtain certificates providing upper bounds on the memory and time
needed by a program for a correct execution. A new implicit complexity analysis
based on a type system for imperative and object oriented languages was
proposed in articles [1], [2] and [7]. This analysis is inspired by Data Ramification
techniques [3, 4] and by non-interference (control flow analysis) [5]. It ensures
that if a program can be typed and terminates, it will run in polynomial time (or in
a different context, polynomial space).

Objectives :

The main objectives of the project are the following :

 Increase the number of programs that can be analyzed using program transformation
techniques.

 Combine the complexity analysis with tools for showing the termination of imperative and
OO programs (for example, [6]).

 Increase the expressivity of the analyzed language (forks, threads, …).

 Explore the common cases in real world programs for which the analysis fails and correct (or
extend) the type system to capture them.

References :
1. J.-Y. Marion: A Type System for Complexity Flow Analysis. LICS 2011: 123-132
2. J.-Y. Marion, R. Péchoux: Complexity Information Flow in a Multi-threaded Imperative

Language, TAMC 2014: 280-299
3. S. Bellantoni et S. Cook – « A new recursion-theoretic characterization of the poly-time

functions », Computational Complexity 2 (1992), p. 97–110.
4. D. Leivant et J.-Y. Marion – «Lambda calculus characterizations of poly-time », Fundamenta

Informaticae 19 (1993), no. 1,2, p. 167,184.
5. D. M. Volpano, C. E. Irvine, Geoffrey Smith: A Sound Type System for Secure Flow Analysis.

Journal of Computer Security 4(2/3): 167-188 (1996)
6. B. Cook, A. Podelski, A. Rybalchenko: Terminator: Beyond Safety. CAV 2006: 415-418
7. E. Hainry, R. Péchoux: Objects In Polynomial Time, APLAS 2015: 387-404

mailto:romain.pechoux@loria.fr
mailto:emmanuel.hainry@loria.fr

	Type System for complexity analysis of Java programs.

