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On Weight-Prioritized Multitask Control
of Humanoid Robots

Karim Bouyarmane , Member, IEEE, and Abderrahmane Kheddar , Senior Member, IEEE

Abstract—We propose a formal analysis with some the-
oretical properties of weight-prioritized multitask inverse-
dynamics-like control of humanoid robots, being a case of
redundant “manipulators” with a nonactuated free-floating
base and multiple unilateral frictional contacts with the envi-
ronment. The controller builds on a weighted-sum scalariza-
tion of a multiobjective optimization problem under equality
and inequality constraints, which appears as a straightfor-
ward solution to account for state and control input viabil-
ity constraint characteristic of humanoid robots that were
usually absent from early existing pseudoinverse and null-
space projection-based prioritized multitask approaches.
We argue that our formulation is indeed well founded and
justified from a theoretical standpoint, and we propose an
analysis of some stability properties of the approach. Lya-
punov stability is demonstrated for the closed-loop dynam-
ical system that we analytically derive in the unconstrained
multiobjective optimization case. Stability in terms of solu-
tion existence, uniqueness, continuity, and robustness to
perturbations is then formally demonstrated for the con-
strained quadratic program.

Index Terms—Lyapunov’s indirect method, multiobjective
optimization, multitask control, quadratic-program (QP) sta-
bility.

I. INTRODUCTION

A PPLYING early control methods developed for (indus-
trial) manipulators [1], [2] to humanoid robots, e.g.,

inverse dynamics control, operational or task function space
control, etc., raises a number of challenging problems [3]–[6].
Typical such problems include simultaneous resolution of
redundancy and underactuation or actuation through friction-
cone-constrained unilateral contact forces. Although each of
these problems has already been extensively studied in the
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context of industrial manipulators or various general cases (e.g.,
handling redundancy in [7] and [8], underactuation in [9] and
[10], contacts constraints in [11]–[14], bounds on control inputs
in [15], and references therein), the specificity of a humanoid
robot is that it features and interleaves them all at once and,
thus, renders the solutions that were proposed for each of these
problems taken in a separate setting largely inapplicable in a
unified control framework.

We tackle these combined structural problems in a simple
formulation, in which we make the nonequivocal distinction
between the two notions of constraints and tasks, a distinction
that we believe should be made by/in any humanoid control law
design at large. Constraints are inherent to the well-posedness
of the problem, as failing to satisfy them results in a physi-
cally or mathematically ill-posed problem. These are the physics
laws (Newton–Euler equations or Lagrange equations, Coulomb
laws) and the safety and structural limits (torque saturation, joint
angle and velocity limits, and collision and obstacle avoidance).
Tasks, on the other hand, allow for more tolerance in their fulfill-
ment and necessitate a certain degree of “compliance” in their
execution. Failing to realize them does not result in a mathe-
matical or physical law violation. Since tasks come one way or
another from planning (offline or real time), then it should be
the role of the planner, not the controller, to ensure that the tasks
are consistent and realizable [16].

Another important aspect in which humanoids differ essen-
tially from industrial manipulators is their novel context of ap-
plications. An industrial manipulator is confined to a structured,
known, and uncertainty-free environment. It is thus conceivable
that, in that setting, tasks are seen as constraints that should be
realized perfectly, more so if the manipulator had been specif-
ically designed for the task at hand. Humanoids, even when
targeted to manufacturing,1 are neither customized to achieve a
particular task nor do they evolve in a structured environment
that was exclusively designed for their operations. As such, tasks
shall have the flexibility to be set as constraints or as objectives
to be realized at best given their actual structural constraints and
the uncertain state of their environment.

In this paper, we have taken a step back from what we al-
ready extensively achieve in experimental humanoid robotics.
First, we adapt in an original way, different from the recursive
null-space projection approach, the inverse dynamics control
principles to general multitask systems and to the “humanoid
type of manipulator” in particular accounting for its redundant,
underactuated, and constrained nature (e.g., walking stability).
Second, we assess the foundations from a control theoretical
perspective of such control schemes. This constitues our novel
contribution with respect to the existing work.
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II. MAIN RESULTS AND STRUCTURE OF THIS PAPER

In Section III-A, we cast the problem of multitask control as a
multiobjective optimization problem. Proposition 1 explores the
one-task control case and its exact realization if unconstrained.
When there are multiple tasks competing with each other, their
exact realization cannot be guaranteed anymore, but under the
conditions in Section III-B, we can approach the realization of
a desired task at a given precision. Proposition 2 explores the
meaning and consequences of not realizing exactly a desired
task but approaching it at the given precision. We show that this
results in a uniformly ultimately bounded (UUB) task error that
converges to zero in some circumstances.

In Section III-B, we recall for the unfamiliar reader some
main results from the multiobjective optimization literature that
drive our reasoning (see Theorems 1–7). We then derive results
under which Proposition 2 is applicable, namely Corollary 2: if
a task is realizable exactly (when considered alone), then when
put in competition with the other tasks, there exists a set of
weights that makes it realizable at any desired precision.

In Section IV, we study the unconstrained dynamical sys-
tem’s ordinary differential equation (ODE) that results from
the weighted-sum scalarization of the multiobjective optimiza-
tion, as formulated in Section III. The main result is Propo-
sition 4, which characterizes the equilibrium point and gives
necessary and sufficient conditions for its exponential stability.
The methodology followed in the proof of Proposition 4 is first
introduced for the simpler one-task setting in Proposition 3.

In Section V, we consider the multitask control problem of a
humanoid robot. Proposition 5 allows us to position the problem
within the context of the framework developed in Section III-B
(thanks to results borrowed from Theorems 9 and 10). In this
section, we consider the full constrained humanoid problem and
formulate it as a linearly constrained quadratic program (QP).
The results in Propositions 6–9 and Corollary 5 then give us
conditions for the well-posedness, robustness to perturbations,
and continuity of the solution of that QP.

Note: We label “Theorem” any result that we borrow from
the literature and “Proposition,” “Corollary,” and “Lemma” re-
sults that we propose as contribution. We also borrow all the
“Definitions” from the literature, as we do not redefine any of
the literature terminology.

III. MULTITASK CONTROL AS A MULTIOBJECTIVE

OPTIMIZATION PROBLEM

A. General Concepts

Let us recall some concepts of multiobjective optimization
(also known as multicriteria optimization, multiple-criteria de-
cision making, and vector optimization [17], [18]) and demon-
strate some useful properties in our context of multitask control.

Multiobjective optimization studies the problem

“min
x∈X

”f(x) = (f1(x), . . . , fp(x)) (1)

where the min operator is put between quotation marks to em-
phasize that it is dependent on some specific optimality notion
for vector values to be defined. The f1,2,··· ,p functions are scalar
functions and X is the feasible space (e.g., as defined by a set
of constraints on x). A solution x∗ ∈ X of (1) is called an effi-
cient (or Pareto-optimal) solution if there is no x ∈ X such that

f(x) ≤ f(x∗). The notation y1 ≤ y2 denotes the component-
wise order in Rp .

Definition 1 (Componentwise order [17, Definition 2.1, p.
24]): Let y1 and y2 be two vectors of Rp . y2 is said
to be dominated2 by y1 , and we denote y1 ≤ y2 , if
∀k ∈ {1, . . . , p} y1

k ≤ y2
k and y1 �= y2 , i.e., at least one

inequality holds strictly ∃i ∈ {1, . . . , p} y1
i < y2

i .
This notion of componentwise order is to be clearly distin-

guished from the weak and strict componentwise orders that we
also use in the developments to follow.

Definition 2 (Weak componentwise order [17, Definition
2.24, p. 38]): y2 is said to be weakly dominated by y1 , and we
denote y1 � y2 , if ∀k ∈ {1, . . . , p} y1

k ≤ y2
k .

Definition 3 (Strict componentwise order [17, Definition
2.24, p. 38]): y2 is said to be strictly dominated by y1 , and we

denote y1 < y2 , if ∀k ∈ {1, . . . , p} y1
k < y2

k .
Let Y = f(X ) ⊂ Rp denote the image of the feasible set.

If x∗ is an efficient solution of (1), then its image y∗ = f(x∗)
is called a nondominated point of Y . The set of all efficient
solutions of (1) is denoted XE , and the set of all nondominated
points of Y is denoted YN (sometimes referred to as the Pareto-
optimal front). We denote

yI =
(

min
x∈X

f1(x), . . . ,min
x∈X

fp(x)
)

(2)

the so-called ideal point. In general, the ideal point is not real-
izable, i.e., yI �∈ Y , in that case any point in YN can be seen
as a nonimprovable compromise solution of (1) (note that if,
however, yI ∈ Y , then YN reduces to the singleton {yI }, i.e.,
yI ∈ Y ⇔ YN = {yI }).

In a context of multitask control with p tasks, each task τk
(k ∈ {1, . . . , p}) is defined through a forward kinematics func-
tion gk : Rn → Rnk , mapping the n-dimensional generalized
coordinates of the system q to the nk -dimensional value of the
task τk = gk (q) (n ≥ nk ). A task is associated with a planned
reference trajectory t �→ τ rk (t) and an objective attractor behav-
ior to realize exponential tracking of the reference trajectory. In
the case of a humanoid robot system as will be considered in
Section V, the tasks τk of interest are of vector relative degree 2.
This is due to the fact that they explicitly depend only on the
configuration variable q (and not on the velocity q̇), and that the
dynamics model of the robot is of second order (see Section V).
Hence, we consider throughout this paper tasks of vector rela-
tive degree 2. Denoting the task error ek = τk − τ rk , the attractor
behavior takes the form

ëk +Dk ėk + Pkek = 0 (3)

where the matrices (Pk ,Dk ) are so that ( 0 Ink−Pk −Dk
) is stable

(i.e., has all its eigenvalues with negative real parts).
More generally, denoting the task error state-space variable

ηk = ( ekėk ), we study tasks for which the reference behavior is

of the form η̇k = Akηk , where Ak ∈ R2nk ×2nk is any stable
matrix. However, some results of this paper are stated under the
assumption of the negative definiteness of Ak +AT

k ; we recall
that this is a sufficient condition for Ak to be stable [19].

2Note the nonintuitive use of the “dominated by” terminology. y2 is domi-
nated by y1 in the sense that y2 is less optimal than y1 , thus dominated by y1

in the optimality characteristic.
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For convenience of notation, the behavior (3) can also be
written in the form

τ̈k − τ̈ dk = 0 (4)

with the desired task acceleration τ̈ dk = τ̈ rk −Dk ėk − Pkek . If
the constraints of the robot make it impossible to achieve perfect
realization of τ̈ dk , then one might want to realize this behavior
“at best” in the following sense:

min
x∈X

‖τ̈k − τ̈ dk ‖2 (5)

where x denotes a control decision variable and x ∈ X its
constraints. As we will see later (see Section V), the partic-
ular choice of the square norm ‖.‖2 allows us to formulate
the problem as a linearly constrained QP and use algorithms
that are dedicated to this class of optimization problems. Let
Jk = ∂ gk/∂ q ∈ Rnk ×n denote the Jacobian matrix of the task
τk = gk (q). Here and henceforth, we suppose that gk is continu-
ously differentiable so that Jk exists and is continuous (which is
always the case for a large class of robotic systems in practice).
In the simplest case, where x = q̈ and X = Rn , we can easily
show the following.

Proposition 1: If Jk is full row rank, then (5) ⇔ (4).
Proof: The first-order optimality condition for (5) is

∂ ‖τ̈k − τ̈ dk ‖2

∂ q̈
= 0 (6)

⇔ ∂ (τ̈k − τ̈ dk )
∂ q̈

T

(τ̈k − τ̈ dk ) + (τ̈k − τ̈ dk )T
∂ (τ̈k − τ̈ dk )

∂ q̈
= 0

(7)

⇔ 2
∂ (τ̈k − τ̈ dk )

∂ q̈

T

(τ̈k − τ̈ dk ) = 0. (8)

Since τ̇k = Jk q̇ and τ̈k = Jk q̈ + J̇k q̇, we have ∂ τ̈k/∂ q̈ = Jk
(tasks of vector relative degree two). On the other hand,
∂ τ̈ dk /∂ q̈ = 0. Hence

(8) ⇔ 2JTk (τ̈k − τ̈ dk ) = 0. (9)

By the rank-nullity theorem, dim ker JTk = nk − rankJTk =
nk − rankJk ; since rankJk = nk , then dim kerJkT = 0,
which means kerJTk = {0}; the desired equivalence thus fol-
lows from (9). �

In the more general case, we can state the following.
Definition 4 (see [20], [21], [22, Definition 4.6, p. 169]):

The solutions of a system χ̇ = ϕ(χ, t) are said to be UUB if
there exists b > 0 and c > 0 such that, for every 0 < a < c,
there exists T (a, b) > 0 such that

‖χ(0)‖ < a ⇒ ∀t ≥ T (a, b), ‖χ(t)‖ < b. (10)

b is called an ultimate bound of the solutions. If a can be arbi-
trarily large, i.e., if there exists b > 0 such that for every a > 0
there exists T (a, b) > 0 such that (10) holds, then the solutions
are said to be globally UUB with ultimate bound b.

Let μ(Ak ) denote the logarithmic norm ofAk associated with
the vector norm ‖.‖.

Definition 5 (see [23]): The logarithmic norm associated
with the vector norm ‖.‖ in R2nk and its subordinate matrix

norm ‖.‖ in R2nk ×2nk is defined as

μ(Ak ) = lim
h→0+

‖I + hAk‖ − 1
h

. (11)

It can be shown [24] that μ(Ak ) = λmax
[ 1

2 (Ak +AT
k )
]
, the

maximum eigenvalue of 1
2 (Ak +AT

k ).
Proposition 2: IfAk +AT

k is negative definite, then, for any
ε > 0, the differential inequality

‖τ̈k − τ̈ dk ‖2 < ε (12)

results in ηk (t) globally UUB. Moreover, for any t �→ ε(t) > 0
such that ε(t) = O

(
e2 μ(Ak )t

)
, the differential inequality

‖τ̈k − τ̈ dk ‖2 < ε(t) (13)

implies, for every initial condition ηk (0),

ηk (t) −−−−→
t→+∞ 0. (14)

Proof: The inequality (12) can be rewritten as

‖η̇k −Akηk‖ =
∥∥∥∥
(

0
τ̈k − τ̈ dk

)∥∥∥∥ = ‖τ̈k − τ̈ dk ‖ <
√
ε (15)

which is equivalent to

η̇k = Akηk + ζ(t) (16)

with ‖ζ(t)‖ < √
ε. From the properties of the logarithmic norm,

it can be shown [23] that (16) implies

‖ηk (t)‖ ≤ etμ(Ak )‖ηk (0)‖ +
∫ t

0
e(t−θ)μ(Ak )‖ζ(θ)‖dθ (17)

≤ etμ(Ak )‖ηk (0)‖ +
∫ t

0
e(t−θ)μ(Ak )√εdθ (18)

=
(
‖ηk (0)‖ +

√
ε

μ(Ak )

)
etμ(Ak ) −

√
ε

μ(Ak )
. (19)

Let δ > 0. We show that ηk (t) is globally UUB with ultimate
bound −

√
ε

μ(Ak ) + δ. So let a > 0. From (19), ‖ηk (0)‖ < a im-
plies that

‖ηk (t)‖ <
(
a+

√
ε

μ(Ak )

)
etμ(Ak ) −

√
ε

μ(Ak )
. (20)

We also have μ(Ak ) = λmax
[ 1

2 (Ak +AT
k )
]
. Since Ak +AT

k

is negative definite, μ(Ak ) < 0, and hence, the right-hand side
of (20) goes to −

√
ε

μ(Ak ) as t goes to +∞. Therefore, there exists

T (a, δ) such that∀t ≥ T (a, δ) : ‖ηk (t)‖ < −
√
ε

μ(Ak ) + δ, and we
can conclude that ηk (t) is globally UUB with ultimate bound
−

√
ε

μ(Ak ) + δ.

In the case of (13) with ε(t) = O
(
e2 μ(Ak )t

)
, there exists

M > 0 such that ε(t) < Me2 μ(Ak )t , so∫ t

0
e(t−θ)μ(Ak )

√
ε(θ)dθ ≤

∫ t

0
e(t−θ)μ(Ak )Meθμ(Ak )dθ (21)

= Mtetμ(Ak ) . (22)

Hence, (17) implies

‖ηk (t)‖ ≤
(
‖ηk (0)‖ +Mt

)
etμ(Ak ) . (23)
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Since μ(Ak ) < 0, the right-hand side of (23) goes to 0 as t goes
to +∞, and therefore, limt→+∞ ηk (t) = 0. �

Following this train of thought, it appears now that the mul-
titask problem can indeed be written as a multiobjective opti-
mization problem as introduced earlier in this section

“min
x∈X

”f(x) = (‖τ̈1 − τ̈ d1 ‖2 , . . . , ‖τ̈p − τ̈ dp ‖2). (24)

We, thus, provide in the following a complete characterization
of all the efficient solutions of this problem.

B. Characterization of the Efficient Solutions

It can be shown that, to a certain extent that is precisely
defined hereafter, all the efficient solutions of the multiobjective
optimization problem (1) can be obtained by solving single-
objective problems of the form

min
x∈X

p∑
k=1

wkfk (x). (25)

The problem (25) is called a weighted-sum scalarization of the
problem (1). Different results on the completeness of the char-
acterization of the solutions of (1) can be obtained depending
on whether we consider the nonidentically null scalar weights
wk of (25) as only nonnegative or as (strictly) positive (i.e.,
whether 0 ≤ w or 0 < w using the componentwise order nota-
tions of Section III-A). Let us denote the set of optimal points
in Y that are spanned by the problems (25) in these two cases,
respectively, as

S0(Y) =

{
y∗ ∈ Y |

p∑
k=1

wky
∗
k = min

y∈Y

p∑
k=1

wkyk , 0 ≤ w

}

(26)

S(Y) =

{
y∗ ∈ Y |

p∑
k=1

wky
∗
k = min

y∈Y

p∑
k=1

wkyk , 0 < w

}
.

(27)

We need a few more definitions to complete those already
introduced in Section III-A. A solution x∗ ∈ X is said to be a
weakly efficient solution of (1) if f(x∗) is weakly nondominated
inY , that is, if there is nox ∈ X such that f(x) < f(x∗). The set
of all weakly nondominated points in Y is then denoted YwN .

Theorem 1 (see [17, Th. 3.4, p. 69]): S0(Y) ⊂ YwN .
For the converse inclusion, we need the following definition.
Definition 6 (see [17, Definition 3.1, p. 67] and [25,

Definition 3.1, p. 329]): A set Y is said to be Rp
�-convex if

Y + Rp
� is convex. Rp

� = {y ∈ Rp | 0 � y} is the nonnegative
orthant.

Theorem 2 (see [17, Th. 3.5, p. 69]): If Y is Rp
�-convex,

then S0(Y) = YwN .
Thus, we can see that under the conditions of Theorem 2, all

weakly nondominated solutions of a multiobjective optimization
problem can be obtained by weighted-sum scalarizations with
nonnegative weights. In our coming formulation of multitask
control, we need the weights to be positive for the sake of
stability. Thus, we need stronger results, characterizing S(Y)
rather than S0(Y).

Theorem 3 (see [17, Th. 3.6, p. 70]): S(Y) ⊂ YN .

Unfortunately, the inclusion in Theorem 3 is too large, and
the converse inclusion does not hold in general. In fact, it can
be shown that the positive weights will only yield a set of the
so-called properly efficient solutions.

Definition 7 (see [26, Definition, p. 618]): A solution x∗ ∈
X is called properly efficient if it is efficient and ∃M >
0 s.t. ∀x ∈ X , ∀i ∈ {1, . . . , p} : fi(x) < fi(x∗) ⇒ ∃j ∈
{1, . . . , p}\{i} s.t. fj (x∗) < fj (x) and

fi(x∗) − fi(x)
fj (x) − fj (x∗)

≤M.

In that case, the point f(x∗) is said to be properly nondominated
in Y , and the set of all properly nondominated points of Y is
denoted YpN .

Using Definition 7, a tighter inclusion than that of Theorem 3
can be obtained.

Theorem 4 (see [26, Th. 1]): S(Y) ⊂ YpN .
The converse inclusion of Theorem 4 holds.
Theorem 5 (see [17, Th. 3.13, p. 74]): If Y is Rp

�-convex,

then S(Y) = YpN .
Theorem 5 shows that only the properly efficient solutions

of (1) can be attained with positive weights, and that this is the
best we can achieve exactly. However, the following theorem,
due to Hartley [27], allows us to approximate any efficient solu-
tion with positive-weight scalarization, which will prove useful
in our application.

Definition 8 (see [18, Definition 3.2.4, p. 52]): A set Y is
said to be Rp

�-closed if Y + Rp
� is closed.

Theorem 6 (see [27, Th. 5.5]): If Y is nonempty, Rp
�-

convex and Rp
�-closed, then YN ⊂ cl (S(Y)).

Theorem 6 is a powerful tool that allows us to perform our
desired approximation. Before applying it, we will need the
following lemma.

Lemma 1: There is always at least one efficient solution of
problem (1) that exactly realizes a given component of the ideal
point yI (2), i.e., ∀k ∈ {1, . . . , p} ∃y ∈ YN s.t. yk = yIk .

Proof: Let k be a given index in {1, . . . , p}. Let X ′ denote
the set X ′ = {x ∈ X | fk (x) = yIk}, let f ′ : X ′ → Rp−1 such
that f ′(x) = (f1(x), . . . , fk−1(x), fk+1(x), . . . , fp(x)), and let
y′ be any nondominated point of Y′ = f ′(X ′). Then, it is clear
that y such that yk = yIk and yi = y′i for i �= k satisfies the
desired result. �

Now, we state the following corollary, supposing in the re-
mainder of this section that the conditions of Theorem 6 are
satisfied.

Corollary 1: For any ε > 0 and any index k, there exists a
set of positive weights 0 < w such that fk (x∗) − yIk < ε, where
x∗ denotes a solution of problem (25).

Proof: From Lemma 1, there exists y ∈ YN such that yk =
yIk . From Theorem 6, we then have y ∈ cl(S(Y)). Since Y
is finite dimensional, all norms are topologically equivalent,
and thus, we can consider the �∞-norm ‖.‖∞ for the closure
definition cl(.). Therefore, there exists a sequence of elements
(yl)l∈N ∈ S(Y)N such that ‖yl − y‖∞ −−−−→

l→+∞
0, and as such,

there exists l0 ∈ N such that ‖yl0 − y‖∞ < ε. Finally, we have
yl0k − yIk = yl0k − yk ≤ ‖yl0 − y‖∞ < ε, which shows the de-
sired result. �

Applying Corollary 1 to problem (24) gives us the following.
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Corollary 2: If a given task τk is realizable exactly, i.e.,
∃x ∈ X s.t. τ̈k = τ̈ dk , then it can be reached with weighted-
sum scalarization of (24) with positive weights at any given
precision, i.e., for any ε > 0, there exists 0 < w such that

‖τ̈k (x∗) − τ̈ dk ‖2 < ε (28)

where x∗ is the solution of the w-weighted-sum scalarization
of (24):

min
x∈X

p∑
l=1

wl‖τ̈l(x) − τ̈ dl ‖2 . (29)

Proof: Immediate from Corollary 1. �
In redundant manipulator control, one popular optimality no-

tion is what is usually referred to as the strict priority ordering
of the tasks (or sometimes strict hierarchy), which is de facto
imposed by the nature of the method itself, i.e., the recursive
pseudoinversion of the task “constraint” and the projection in
the null space of higher priority constrains [28]. In the context
of multiobjective optimization, a similar notion is labeled under
the term lexicographic optimization

lexmin
x∈X

(f1(x), . . . , fp(x)) (30)

which consists in finding a point yL ∈ Y called the lexico-
graphic optimum such that ∀y ∈ Y yL ≤lex y where ≤lex de-
notes the lexicographic order (a total order) in Rp .

Theorem 7 (see [17, Lemma 5.2, p. 129]): The lexicograph-
ic optimum is one particular efficient solution of (1), i.e., yL ∈
YN .

Applying again Theorem 6, we obtain the following.
Corollary 3: The lexicographic (strict priority) optimum can

be approached at any given precision by positive weighted-sum
scalarization, i.e., for any ε > 0, there exists a set of positive
weights 0 < w such that ‖f(x∗) − yL‖ < ε, where x∗ is the
solution of (29).

Proof: Similar to the proof of Corollary 1 from
Theorem 7. �

At this stage, we have characterized the efficient solutions
of (24) and justified the use of (29) for solving it. Propositions 1
and 2 give us some stability results in the state space of the tasks
(τk , τ̇k ); we study in the following the behavior of the system in
the state space of the generalized coordinates of the robot (q, q̇).

IV. STABILITY IN THE STATE SPACE OF THE

GENERALIZED COORDINATES

In this section, we restrict ourselves to the case in whichx = q̈
and X = Rp . This would provide us with some insight on the
general case that is more complex to study analytically and is
out of the scope of this paper. We also consider task function
regulation problems, in which t �→ τ rk (t) are constant in time,
and for ease of notation, we denote their constant regulation
values τ rk .

Our aim here is to study the behavior of the system of ODEs
defined by

q̈ = arg min
p∑

k=1

wk‖τ̈k − τ̈ dk ‖2 (31)

in the state space of (q, q̇), where the weights are positive 0 < w
following our analysis in Section III-B. As for related work
concerning this section, see, for example, [29] and [30] that

study the stability of the strict priority inverse kinematics control
approach, [7] and [28] for the stability of strict priority inverse
dynamics, and [31] and [32] for the stability of the weighted
approach of a multitask controller based on control Lyapunov
functions.

We will base our argumentation below on Lyapunov’s indirect
method. In the Appendix, we introduce some general matrix
differentiation concepts that we extensively use in the course of
its application. This also allows us to introduce along the way
the concept of the second derivative of the forward kinematics
mapping (the “Jacobian of the Jacobian”).

We start with a single-task case to illustrate our method in
a simple setting; we then generalize the approach to multiple
tasks. Note that some of the notations used throughout the rest
of this paper are introduced inside the proofs of this section.

Proposition 3: Suppose nk = n. The system

q̈ = arg min ‖τ̈k − τ̈ dk ‖2 (32)

has an equilibrium if and only if there exists q0 such that
gk (q0) = τ rk and, in that case, if Jk (q0) is nonsingular, then the
equilibrium is exponentially stable in the state space of (q, q̇).
More generally, the system

q̈ = arg min ‖η̇k −Akηk‖2 (33)

where Ak is stable, has an equilibrium if and only if there
exists q0 such that gk (q0) = τ rk and, in that case, if Jk (q0) is
nonsingular, then the equilibrium is exponentially stable in the
state space of (q, q̇).

Proof: Let us denote by ξ = (q, q̇) the state of the sys-
tem (33). The variable ξ is related to ηk through the nonlinear
“forward kinematics” mapping

γk : ξ �→ ηk = γk (ξ) =
(
gk (q) − τ rk
Jk (q)q̇

)
. (34)

Let Jk (ξ) denote the Jacobian matrix of that mapping at ξ.
From (34), it appears that Jk (ξ) is related to Jk (q) through the
following relation:

Jk (ξ) =

(
Jk (q) 0
∂ [J (q)q̇ ]

∂ q Jk (q)

)
. (35)

From Proposition 1, the system (33) is equivalent to

η̇k = Akηk (36)

which has an equilibrium if and only if there exists q0 such that
ηk = 0, i.e., such that gk (q0) = τ rk . In terms of ξ, (36) translates
into the nonlinear descriptor system

Jk (ξ)ξ̇ = Akγk (ξ). (37)

Let ξ0 = (q0 , 0). Since n = nk and Jk (q0) is nonsingular, we
can see from (35) that Jk (ξ0) is a square 2n× 2n lower
block triangular matrix with rankJk (ξ0) = rankJk (q0) +
rankJk (q0) = 2n; therefore, Jk (ξ0) is also nonsingular. As-
suming that the forward kinematics mapping is continuously
differentiable, then the mapping J : ξ �→ Jk (ξ) is continuous,
and as such, the inverse image of any open set of R2n×2n under J
is open. Since theGL2n (R) group is an open subset of R2n×2n ,
J−1(GL2n (R)

)
is an open set containing ξ0 ; therefore, there

exists a neighborhood V of ξ0 included in J−1(GL2n (R)
)
. Fi-

nally, for any ξ ∈ V , Jk (ξ) = J(ξ) ∈ GL2n (R), and hence, in
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that neighborhood V , the descriptor system (37) takes the form
of the nonlinear dynamical system

ξ̇ = Jk (ξ)−1Akγk (ξ) (38)

or, denoting by φk the mapping φk : ξ �→ Jk (ξ)−1Akγk (ξ),

ξ̇ = φk (ξ). (39)

Before calculating the Jacobian of φk at ξ0 in order to apply
Lyapunov’s indirect method, we introduce the following matrix:

Γk = DJk (ξ) =
∂ vecJk

∂ ξ
. (40)

We have (we drop the dependencies on ξ when there is no
ambiguity):

dφk = d[Jk (ξ)−1Akγk (ξ)] (41)

= dJk (ξ)−1Akγk + J −1
k Akdγk (ξ). (42)

Then

dJk (ξ)−1Akγk = vec
[
dJk(ξ)−1Akγk

]
(43)

=
(
γTk A

T
k ⊗ I2nk

)
vec dJk(ξ)−1 (44)

and by (148)

vec dJk(ξ)−1 = vec
[−J−1

k dJk(ξ)J −1
k

]
(45)

= − (J −T
k ⊗ J−1

k

)
vec dJk(ξ) (46)

= − (J −T
k ⊗ J−1

k

)
Γkdξ. (47)

We also have

dγk (ξ) = Jkdξ. (48)

Plugging (44), (47), and (48) into (42) yields

dφk =
[− (γTk AT

k ⊗ I2nk
) (J −T

k ⊗ J−1
k

)
Γk

+ J −1
k AkJk

]
dξ. (49)

Therefore, we get the expression of the Jacobian of φk :

∂ φk
∂ ξ

= − (γTk AT
k ⊗ I2nk

) (J −T
k ⊗ J−1

k

)
Γk + J −1

k AkJk .
(50)

At ξ0 , we have γk (ξ0) = 0, and (50) simplifies into

∂ φk
∂ ξ

∣∣∣∣
ξ 0

= Jk (ξ0)−1AkJk (ξ0) (51)

which has the same eigenvalues as Ak . From Lyapunov’s indi-
rect method [19, Th. 1, p. 246], [22, Corollary 4.3, p. 166], we
conclude that (39) is exponentially stable. �

In the multitask case, we also analytically linearize the system
in the (q, q̇) state space. In what follows, we require that the tasks
together span the state space of the system, i.e., more formally
that the matrix B(ξ) in (52) is always positive definite. One
practical way to ensure this condition is that at least one of the
tasks k0 is a full-configuration task τk0 (q) = q, no matter how
infinitesimally small its weight wk0 is, as long as it remains
positive wk0 > 0. This is a nonrestrictive assumption following
the analysis in Section III-B.

Lemma 2: If one of the tasks is a full-configuration task,
then, for all ξ, the matrix

B(ξ) =
p∑

k=1

wkJk (ξ)T Jk (ξ) (52)

is nonsingular.
Proof: B(ξ) is clearly a symmetric positive matrix. Since

one of the tasks τk0 is a full-configuration task τk0 (q) = q, we
have Jk0 (q) = In , and from (35), Jk0 (ξ) = I2n ; therefore

B(ξ) = wk0 I2n +
p∑

k=1
k �=k0

wkJk (ξ)T Jk (ξ). (53)

Since wk0 > 0, B(ξ) is positive definite and thus
nonsingular. �

Proposition 4: Let us supposeB(ξ) > 0 (e.g., under the con-
ditions of Lemma 2). The system

ξ̇ = arg min
p∑

k=1

wk‖η̇k −Akηk‖2 (54)

has an equilibrium if and only if there exists ξ0 such that

p∑
k=1

wkJk (ξ0)T Akγk (ξ0) = 0. (55)

In that case, the equilibrium is exponentially stable if and only
if the matrix

B−1
p∑

k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓk + J T

k AkJk
)

(56)

evaluated at ξ0 is stable.
Proof: The first-order optimality condition for (54) is

∂

∂ ξ̇

[
p∑

k=1

wk‖η̇k −Akηk‖2

]
= 0 (57)

⇔
p∑

k=1

2wkJ T
k (η̇k −Akηk ) = 0 (58)

⇔
[

p∑
k=1

wkJ T
k Jk

]
ξ̇ =

p∑
k=1

wkJ T
k Akηk . (59)

WithB(ξ) being nonsingular, (59) takes the form of the nonlin-
ear system

ξ̇ = B(ξ)−1
p∑

k=1

wkJk (ξ)T Akγk (ξ) (60)

which admits an equilibrium if and only if there exists ξ0 such
that

p∑
k=1

wkJk (ξ0)T Akγk (ξ0) = 0. (61)

Let us linearize (60) around such an equilibrium. To do
this, we calculate the Jacobian of the mapping ψ : ξ �→
B(ξ)−1 ∑p

k=1 wkJk (ξ)T Akγk (ξ) using the differential-based
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treatment introduced in the Appendix. We have (dropping again
the dependencies on ξ when appropriate)

dψ = dB(ξ)−1
p∑

k=1

wkJ T
k Akγk

+B−1
p∑

k=1

wk
[
dJk (ξ)T Akγk + J T

k Akdγk (ξ)
]
.

(62)

Let us calculate each term of the right-hand side of (62) sep-
arately. To shorten the expressions, let C denote the vector
C(ξ) =

∑p
k=1 wkJk (ξ)T Akγk (ξ). We have, by (148),

dB(ξ)−1C = −B−1dB(ξ)B−1C (63)

= vec
[−B−1dB(ξ)B−1C

]
(64)

= − (CT B−T ⊗B−1) vec dB(ξ) (65)

where

vec dB(ξ) = dvec B(ξ) (66)

=
p∑

k=1

wkd vecJk(ξ)TJk(ξ) (67)

and by (150)

d vecJ T
k Jk =

(
I4n2

k
+ K2nk 2nk

)
(Jk ⊗ I2nk ) d vecJk (68)

with

d vecJk(ξ) = Γkdξ. (69)

This gives us the first term in (62) as

dB(ξ)−1C = − (
CT B−T ⊗B−1) p∑

k=1

wk

(
I4n2

k

+K2nk 2nk

)
(Jk ⊗ I2nk ) Γkdξ. (70)

As for the other two terms, we write, applying (149) for (73)

dJk (ξ)T Akγk = vec
[
dJk(ξ)TAkγk

]
(71)

=
(
γTk A

T
k ⊗ I2nk

)
vec dJk(ξ)T (72)

=
(
γTk A

T
k ⊗ I2nk

)
K2nk 2nvec dJk(ξ) (73)

=
(
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓkdξ (74)

and, finally, the last term

J T
k Akdγk (ξ) = J T

k AkJkdξ. (75)

Plugging (70), (74), and (75) into (62) gives us

dψ =

[
− (

CT B−T ⊗B−1) p∑
k=1

wk

(
I4n2

k
+K2nk 2nk

)

× (Jk ⊗ I2nk )Γk +B−1
p∑

k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓk

+ J T
k AkJk

)]
dξ (76)

from which we get the desired analytic expression of the Jaco-
bian of the mapping ψ:

∂ ψ

∂ ξ
= − (CT B−T ⊗B−1) p∑

k=1

wk

(
I4n2

k
+K2nk 2nk

)

(Jk ⊗ I2nk ) Γk +B−1
p∑

k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓk

+ J T
k AkJk

)
. (77)

At the equilibrium ξ0 , we have from (61)C(ξ0) = 0; hence, (77)
simplifies into

∂ ψ

∂ ξ

∣∣∣∣
ξ 0

= B−1
p∑

k=1

wk

((
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓk

+ J T
k AkJk

)
. (78)

Thus, the equilibrium ξ0 is exponentially stable if and only if
this latter matrix is stable. �

Corollary 4: If the tasks τk are ultimately realizable simul-
taneously, i.e., if there exists ξ0 such that ∀k ∈ {1, . . . , p}
γk (ξ0) = 0, then ξ0 is an equilibrium of (54). In that case, a
sufficient condition for ξ0 to be exponentially stable is that the
matrices Ak +AT

k are negative definite.
Proof: If ∀k ∈ {1, . . . , p}, γk (ξ0) = 0, then (55) holds, and

by Proposition 4, ξ0 is an equilibrium point of (54). Moreover,
in that case, (56) simplifies into[

p∑
k=1

wkJ T
k Jk

]−1 p∑
k=1

wkJ T
k AkJk = B−1A (79)

where we denoted

A =
p∑

k=1

wkJ T
k AkJk . (80)

If we additionally suppose thatAk +AT
k are negative definite,

then A + AT is also negative definite since

A + AT = wk0

(
Ak0 +AT

k0

)
+

p∑
k=1
k �=k0

wkJ T
k

(
Ak +AT

k

)Jk
(81)

with wk0

(
Ak0 +AT

k0

)
negative definite (since wk0 > 0) and

∀k �= k0 wkJ T
k

(
Ak +AT

k

)Jk negative.
Furthermore, withB being positive definite, B = B−1 is also

symmetric positive definite. Any matrix congruent to a negative-
definite matrix is also a negative-definite matrix, and hence,
B (AT + A)BT is negative definite. And given that

B (AT + A)BT = B (AT + A)B, (B symmetric) (82)

= BAT B + BAB (83)

= B (BA)T + (BA)B (84)

then the pair of positive-definite matrices Q =
−B (AT + A)BT and P = B satisfy the Lyapunov equation



BOUYARMANE AND KHEDDAR: ON WEIGHT-PRIORITIZED MULTITASK CONTROL OF HUMANOID ROBOTS 1639

P(BA)T + (BA)P = −Q. Therefore, BA = B−1A is stable.
By Proposition 4, we conclude that ξ0 is exponentially
stable. �

Remark 1: The terms
(
γTk A

T
k ⊗ I2nk

)
K2nk 2nΓk can all be

ignored in the expression of matrix (56) if and only if the tasks
are all achievable simultaneously. When the tasks conflict and
the equilibrium is a compromise between them, then these terms
cannot be ignored and the full expression of (56) has to be
considered for evaluating the stability of the system.

V. APPLICATION TO HUMANOID MULTITASK CONTROL

In this section, we determine the nature of the control deci-
sion variable x and characterize the constraint set X in the hu-
manoid control application case. We also cast the problem (29)
as a linearly constrained QP inspired by approaches in the litera-
ture [33]–[37] (see the discussion at the end of Section V-C) and
show some of its stability properties in the sense of existence,
uniqueness, continuity, and robustness of its solution (that is, a
“stability” sense different from the “Lyapunov stability” sense
in Section IV).

A. Physical and Mathematical Constraints

Constraints of the humanoid robot motion include its equation
of motion, the nonslipping contact constraints (e.g., at the feet
surfaces), the corresponding Coulomb friction constraints, and
various bounds on the applicable torques, admissible ranges of
joint angles, joint velocities, and collision avoidance.

The equation of motion of a humanoid robot in a given contact
phase is usually written as

M(q)q̈ +N(q, q̇) = Su+ Jc(q)T λ (85)

Jc(q)q̈ + J̇ c(q)q̇ = 0. (86)

One additional constraint has to be appended to the system (85),
(86) and yet is often omitted in many existing treatments of the
problem, that is, the Coulomb friction cone constraint which
then results into the following system:

M(q)q̈ +N(q, q̇) = Su+ Jc(q)T λ (87)

Jc(q)q̈ + J̇ c(q)q̇ = 0 (88)

λ ∈ C (89)

with C denoting a Coulomb friction cone. Note that con-
straint (88) cannot be derived from any arbitrary holonomic
constraint h(q) = 0 that expresses the fixation of the contact
(with ∂ h

∂ q = Jc ) . For example, for any such constrainth(q) = 0,
the constraint ‖h(q)‖2 = 0 would mathematically express the
exact same constraint but would result in a different Jacobian
and thus in Lagrange multipliers that would not satisfy the same
mathematical relations.

In order for the constraint (89) to physically make sense, λ has
to be the actual physical contact forces, not arbitrary constraint
forces. For a point contact at a point a belonging to a planar
surface S of the robot with normal νS, the physical contact force
λ is associated with the constraint Ja q̇ = 0, where Ja is the
Jacobian such that ȧ = Ja q̇. In that case, the Coulomb friction
cone takes the following form:

CS =
{
λ ∈ R3 | 〈λ, νS〉 > 0, ‖λ − 〈λ, νS〉νS‖

≤ μ〈λ, νS〉
}
. (90)

For distributed surface contact on a surface S, we would have a
continuum of forces and likewise constraints in a system of the
form:

M(q)q̈ +N(q, q̇) = Su+
∫∫

a∈S

Ja(q)T λ(a)dS(a) (91)

∀a ∈ S Ja(q)q̈ + J̇a(q)q̇ = 0 (92)

∀a ∈ S λ(a) ∈ CS. (93)

This system can, however, be simplified according to the fol-
lowing theorem.

Theorem 8 (see [38, Proposition 1]): If S is a convex poly-
gon

S =

{
s∑

i=1

αiai |
s∑

i=1

αi = 1

}
(94)

then we have the following equivalence:

∀F ∈ Rn : ∃λ : S → CS s.t. F =
∫∫

a∈S

Ja(q)T λ(a)dS(a)

⇔

∃(λ1 , . . . , λs) ∈ [CS]
s s.t. F =

s∑
i=1

Jai (q)T λi . (95)

Additionally, if we stay under the conditions of Theorem 8,
it is clear that

(92) ⇔ ∀i ∈ {1, . . . , s} Jai (q)q̈ + J̇ai (q)q̇ = 0 (96)

⇔ JS(q)q̈ + J̇Sq̇ = 0 (97)

where JS denotes the rotational and translational Jacobian of
any frame rigidly attached to S. This latter remark together
with Theorem 8 allows us to rewrite the continuum system of
equations (91)–(93) in the following equivalent finite system
form:

M(q)q̈ +N(q, q̇) = Su+
s∑

i=1

Jai (q)T λi (98)

JS(q)q̈ + J̇Sq̇ = 0 (99)

∀i ∈ {1, . . . , s} λi ∈ CS. (100)

B. Structural Constraints

We write here the structural constraints using the weak com-
ponentwise order notation for vector inequalities as follows:

umin � u � umax (101)

qmin � q � qmax (102)

q̇min � q̇ � q̇max (103)

and the collision avoidance between two bodies based on a
velocity damper formulation

ḋ ≥ −κ d− δs
δi − δs

(104)

where d denotes the distance between the two bodies and δi ,
δs , and κ are an influence distance, a security distance, and
a damping constant, respectively (see [39] for details on this
particular formulation).
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C. Casting the Problem as a QP

In order to cast the problem as a QP, we conservatively ap-
proximate the friction cone CS with an inscribed polyhedral cone
ĈS [40]. Let C denote the matrix of the set of the polyhedral cone
generators’ coordinates in the world frame, and let c denote the
number of generators, C ∈ R3×c ; then, we have λ ∈ ĈS if and
only if ∃λ̂ ∈ Rc

≥ s.t. λ = Cλ̂. The system (98)–(100) becomes

M(q)q̈ +N(q, q̇) = Su+
s∑

i=1

Jai (q)T Cλ̂i (105)

JS(q)q̈ + J̇Sq̇ = 0 (106)

∀i ∈ {1, . . . , s} 0 � λ̂i . (107)

We also rewrite the constraints (101)–(104), respectively, as
follows:

umin � u � umax (108)

q̇min − q̇

Δt
� q̈ � q̇max − q̇

Δt
(109)

qmin − q − q̇Δt
1
2 Δt2

� q̈ � qmax − q − q̇Δt
1
2 Δt2

(110)

d̈ ≥ 1
Δt

(
−ξ d− δs

δi − δs
− ḋ

)
(111)

where Δt is a fixed parameter (e.g., control time step). Finally,
we enforce the compactness of the feasible set by setting an
arbitrarily large bound on λ̂

λ̂ � λ̂max . (112)

It can now be seen that setting the control decision variable
as x = (q̈, u, λ̂) ∈ R2n−6+s·c , the set of equations and inequal-
ities (105)–(112) defining the feasible set X ⊂ R2n−6+s·c are
linear in x, i.e., X is a an intersection of closed halfspaces.
Let Hex = be denote the set of equations (105) and (106) and
Hix � bi denote the set of inequalities (107)–(112)

X =
{
x = (q̈, u, λ̂) ∈ R2n−6+s·c | (105) to (112)

}
(113)

=
{
x ∈ R2n−6+s·c | Hex = be ,Hix � bi

}
. (114)

Denoting the matrix

K(q) =
(
Ja1 (q)T C · · · Jas (q)T C ) ∈ Rn×s·c (115)

we have, in particular,

He =
(
M(q) −K(q) −S
JS(q) 0 0

)
, be =

(−N(q, q̇)
−J̇Sq̇

)
. (116)

To the set of tasks τ1 , . . . , τp , of which we recall that the task
τk0 is a full-configuration task τk0 = gk0 (q) = q, we append two
additional components in the vector optimization problem (24)

“min
x∈X

”f(x) = (‖τ̈1 − τ̈ d1 ‖2 , . . . , ‖τ̈p − τ̈ dp ‖2 , ‖u‖2 , ‖λ̂‖2).

(117)

We show now that the conditions of Theorem 6 hold. We shall
invoke the following two theorems, reusing the notations of
Section III.

Theorem 9 (see [18, Proposition 2.1.22, p. 15]): A suffi-
cient condition for the Rp

�-convexity of Y = f(X ) is that X is

convex and the functions f1 , . . . , fp are convex.
Theorem 10 (see [18, Lemma 3.2.3, p. 52]): Let Y + denote

the extended recession cone of a set Y , defined as

Y + =
{
y′ | ∃(βk ) ∈ RN , ∃(yk ) ∈ Y N , βk > 0,

s.t. βk −−−−→
k→+∞

0, βkyk −−−−→
k→+∞

y′
}
. (118)

Let Y1 and Y2 be two nonempty closed sets. If

Y +
1 ∩ (−Y +

2 ) = {0} (119)

then Y1 + Y2 is closed.
We can now prove the following.
Proposition 5: if X is nonempty, then the conditions of The-

orem 6 hold for the problem (117).
Proof: We recall that in, finite dimension, compactness is

equivalent to simultaneous closedness and boundedness. Since
X is closed as the intersection of a finite number of closed
halfspaces, and X is bounded by the constraints (107)–(109)
and (112), X is compact. f in (117) being continuous, Y =
f(X ) is, therefore, compact, which implies that it is closed and
bounded.

The extended recession cone of a bounded set is {0}
by [18, Lemma 3.2.1 p. 52]; thus, Y+ = {0}, and hence,
Y+ ∩ (−R(p+2)+

� ) = {0}. Since Y and Rp
� are closed, by The-

orem 10, Y + Rp+2
� is closed, i.e., Y is Rp+2

� -closed.

Moreover, X is convex as the intersection of a finite number
of closed halfspaces, which are convex sets, and the functions
f1 , . . . , fp+2 in (117) are convex; then, by Theorem 9, Y is
Rp+2

� -convex. �
With Proposition 5, we can now safely consider the weighted-

sum scalarization of (117) with strictly positive weights 0 < w
without sacrificing the completeness of all the achievable task
behaviors

min
x∈X

p∑
k=1

wk‖τ̈k − τ̈ dk ‖2 + wp+1‖u‖2 + wp+2‖λ̂‖2 . (120)

Problem (120) is a QP of the form

min
x

xT Qx+ lT x

subject to Hex = be ,Hix � bi

(121)

where, in particular,

Q =

⎛
⎝
∑p

k=1 wkJ
T
k Jk 0 0

0 wp+1In−6 0
0 0 wp+2Is·c

⎞
⎠ . (122)

Different variants of the formulation (120) and (121) were
originally derived in the literature, e.g., [33, eq. (5)], [34, Fig. 4
and eq. (16)], [36, eq. (20)], [37, eq. (20)]. All these formulations
can be seen as somewhat equivalent, with the later ones incor-
porating additional structural constraints and features (e.g. joint
and velocity limits) that were absent from earlier ones, hence
gradually becoming more complete and physically consistent.
Other differences between the various weighted multitask QPs
in the literature lie in the choice of the particular tasks or objec-
tives, with, for example, [35, eq. (13)] incorporating an angular
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Fig. 1. Example experiment with the HRP-4 humanoid robot.

momentum objective to control the center of pressure posi-
tion (although it uses a less accurate, penalty-based rather than
constraint-based, contact model). However, all these formula-
tions can be fit in the general framework of (120) with, as such,
differences in the particular formulation of the X constraint set
and in the choices of the ‖τ̈k − τ̈ dk ‖2 tasks.

The humanoid multiobjective QP formulation was later ap-
plied (or based upon) in the control architectures of different
humanoid robots. [41, QP 5.1] used it in a control architec-
ture for the HRP-2 robot. Many of the Atlas robot teams in the
DARPA Robotics Challenge (2015) designed their control ar-
chitectures based on a multiobjective QP formulation [42]. The
WPI-CMU team used an equivalent formulation to the one we
presented here [43, eq. (1) and Sec. 5]. The IHMC team used a
reduced and faster formulation with only centroidal dynamics
rather than full-body dynamics (at the expense of not accounting
for torque limits), and they also wrote the motion objectives as
joint acceleration constraints [44, Fig. 1 and eq. (21)]. Finally,
the MIT team used a different formulation, which does not fit in
the formulation (120), incorporating LQR-based CoM trajectory
optimization directly in the QP, as an additional cost function
objective along with the objectives considered here [45, Fig. 6
and QP 1]. However, their formulation was also inspired by the
classical framework analyzed here (see the discussion in [45,
Sec. 4.4]).

D. Stability of the QP

To conclude this section, we study some stability properties
of the QP (121). Note that the notion of “stability” we consider
here is different from the one in Section IV, as we understand
the term “stability” of the QP in the sense of 1) existence and
uniqueness of a solution (see Propositions 6 and 9); 2) robust-
ness of the solution with respect to problem perturbations (see
Lemma 3 and Propositions 7–9); and 3) continuity of the solu-
tion of the QP with respect to its parameters (see Corollary 5
and Proposition 9). This is the notion of stability we study
here, which is complementary to the one studied in Section IV.
Related work for a different control approach can be found, for
example, in [32]. We are interested in the questions of existence,
uniqueness, and continuity of the solution, as well as robustness
to perturbations and modeling uncertainties. We will take as
a first assumption the nonemptiness of X (i.e., the feasibility
of the problem) at a given initial state ξ0 . Other assumptions
we will make is the full row rank condition of the matrix He

in (116), i.e., rankHe = n+ 6, and the regularity of the system

Hex = be , Hix � bi. (123)

Definition 9 (see [46, Definition, p. 755], [47, Definition,
p. 512]): The system of equations and inequalities (123) is said
to be regular ifHe has full row rank and there exists x such that
Hex = be and Hix < bi .

Lemma 3: Q is symmetric positive definite. Moreover, for
any perturbation resulting from the updating of the state (q, q̇)
or from uncertainty in the model, the perturbed matrix Q+ δQ
remains positive definite.

Proof: Isolating the configuration task τk0 in (122), we ob-
tain

Q =

(
wk0 In 0 0

0 wp+1In−6 0
0 0 wp+2Is·c

)

+
p∑

k=1
k �=k0

⎛
⎝wkJ

T
k Jk 0 0
0 0 0
0 0 0

⎞
⎠ . (124)

Since 0 < w, we have in particular wk0 , wp+1 , wp+2 > 0, and
therefore, Q is symmetric positive definite. The perturbations
of the state and the model would affect only Jk for k �= k0
on the right-hand side of (124), with (Jk + δJk )T (Jk + δJk )
remaining positive, and therefore, Q+ δQ remains positive
definite. �

Remark 2: We can also show that Q > 0 from the less
strong assumption of B > 0. Indeed, B > 0 implies that∑

k wkJ
T
k Jk > 0 (Jk being block triangular with both block

diagonal terms being equal to Jk ). This assumption amounts
to the set of tasks spanning the joint space without necessarily
requiring that one of the tasks is a full-configuration task.

Proposition 6: If X is nonempty, then (121) reaches a mini-
mum at a unique point, i.e., the solution exists and is unique.

Proof: The set X being compact and the mapping F : x �→
xT Qx+ lT x being continuous, from the extreme value theo-
rem, (121) has a minimum. F being strictly convex from Q
positive definite by Lemma 3, the minimizer is unique. �

Proposition 7: A sufficient condition for the full row rank
condition of He is that rank (K(q) S ) = n (i.e., the contact
forces completely make up for the underactuation).

Proof: Let L(q) = (−K(q) −S ). We have

n+ 6 ≥ rankHe = rank
(
M(q) L(q)
JS(q) 0

)
(125)

≥ rankL(q) + rankJS(q) (126)

= rankL(q) + 6. (127)

Therefore, rankHe = n+ 6 if rankL(q) = n. �
Proposition 8: Let x0 denote the solution of (121) at an ini-

tial point ξ0 . If the system (123) is regular, then there exists
ε1 > 0 and K1 > 0 such that, for any update of the state ξ or
modeling error (in particular, inM(q), N(q, q̇), and the various
Jacobians of the robot), the perturbed system

(He + δHe)x = be + δbe , (Hi + δHi)x � bi + δbi (128)

remains solvable and regular for those perturbations
(δHe, δHi, δbe , δbi) such that

∣∣∣∣
∣∣∣∣
(
δHe

δHi

)∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣
(
δbe
δbi

)∣∣∣∣
∣∣∣∣ ≤ ε1 (129)
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Fig. 2. Tasks and state convergence when varying weights. We plot the trajectories for 27 runs of the hand reaching experiment on the HRP-4 robot
with different sets of weights to assess the results from Corollary 2 and Proposition 2 (3 × 3 × 3 values of (whand, wcom, wq ) ∈ {10−1 , 102 , 103}3 ).
As predicted by Corollary 2, although the tasks do not necessarily always converge to zero (e.g., two runs do not yield a zero-converging Zcom
and Xcom error and two runs do not yield a zero-converging posture error), yet there exists always a set of weights such that the acceleration error
of the task is below any given precision ε, which in turn ensures the boundedness of the error or the convergence to zero of the error of the task
by Proposition 2. The trajectories also illustrate the results from Section V (see Propositions 6–9 and Corollary 5) as the QP controller outputs a
continuous solution.

and, denoting x any solution of (128) with δx = x− x0 , we
have

‖δx‖ ≤

K1

(∣∣∣∣
∣∣∣∣
(
δHe

δHi

)∣∣∣∣
∣∣∣∣+

∣∣∣∣
∣∣∣∣
(
δbe
δbi

)∣∣∣∣
∣∣∣∣
)

max{1, ‖x0‖}(1 + ‖x0‖).
(130)

Proof: This is a direct application of [47, Corollary 7] since
the conditions of the latter corollary are all satisfied in the present
case. [47, Corollary 7] is itself a direct consequence of the
original work of Robinson [46, Th. 1]. See also the discussion
in [48] and [49]. �

Proposition 9: Let p = (δQ, δl, δHe, δHi, δbe , δbi) denote a
perturbation of the QP (121). We suppose thatHe andHe + δHe

are both full row rank and that the system (123) is regular at the
initial state ξ0 . Then, there exists ε2 > 0 and K2 > 0 such that
the solution x∗ = x0 + δx of the perturbed QP

min
x

xT (Q+ δQ)x+ (l + δl)T x

subject to (He + δHe)x = be + δbe , (Hi + δHi)x � bi + δbi
(131)

exists and is unique and satisfies, whenever ‖p‖∞ < ε2

‖x∗ − x0‖ < K2‖p‖∞. (132)

Proof: Our aim here is to apply [50, Th. 4.4]. We thus shall
show that the hypotheses [50, eqs. (3.1)–(3.4)] hold. First, we
know that the conditions of Proposition 8 hold; thus, the first
conclusion we can draw from that Proposition is that there exists
ε1 > 0 such that the system (128) is regular and solvable when-
ever (129) hold. Hence, both feasible sets of (121) and (131) are
nonempty under (129), which constitutes the first of the needed
hypotheses. The other hypotheses are already satisfied by our as-
sumptions, and therefore, we can apply [50, Th. 4.4], from which
we deduce that, under (129), there exist ε′1 > 0 and K2 such that
if ‖p‖∞ < ε′1 and x′ is any solution that minimizes (131), we
have ‖x0 − x′‖ < ‖p‖∞. From Lemma 3, Q+ δQ is positive
definite, and thus, x′ is unique, and we denote it x∗. Take now

ε2 = min
{ε1

4
, ε′1
}
. (133)

We have

‖p‖∞ < ε2 ⇒ (129) and ‖p‖∞ < ε′1 . (134)

We, finally, conclude that if ‖p‖∞ < ε2 , then ‖x∗ − x0‖ <
K2‖p‖∞. �
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Fig. 3. Tasks and state convergence from random initial states to assess stability of the system (31) by Proposition 4. We plot the trajectories for
ten runs of the hand reaching experiment of the HRP-4 robot starting from ten randomly sampled initial configurations in the upper body of the robot
(randomly sampled joint angles of the upper-body joints) for a fixed set of weights (whand, wcom, wq ) = (103 , 103 , 10−1 ). The errors converge to zero
from any of these initial random configurations, which positively correlate to the stability of the matrices of Proposition 4, as shown in Figs. 5 and 6.

Fig. 4. Changing the task objective for the hand with a fixed set of weights (whand, wcom, wq ) = (103 , 103 , 10−1 ). One of the positions was
unachievable without compromising the equilibrium of the robot, which led to not realizing the task with that set of weights.

Corollary 5: In the context and with the notations of Propo-
sition 9, the mapping p �→ x∗ is well defined on a neighborhood
of 0 and continuous at 0.

Proof: Immediate from Proposition 9. �

VI. EXPERIMENTAL VALIDATION

To illustrate our results, we applied the control scheme pro-
posed in Section V to the humanoid robot HRP-4. The robot has
to perform a whole-body reaching task with its right hand while
keeping balance and sustaining feet contact with the ground (see

Fig. 1). The corresponding video and more complex experiments
can be found online at the url given in [51].

We use the controller formulation (120), or in an equivalent
form the QP controller (121). Propositions 6–9 and Corollary 5
are, hence, applicable, and as a result, the controller outputs a
continuous solution, producing a smooth motion, as can be read
in Figs. 2–4. We plot in these figures the feedforward command
sent to the robot with task-level feedback.

The robot has 56 degrees of freedom, including the degrees
of freedom of the hand fingers, i.e., n = 56 and q ∈ R56 . We
define a set of p = 3 tasks for the robot: a right-hand posi-
tion task τhand ∈ R3 to reach the desired workspace goal, a
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Fig. 5. Matrix stability from Proposition 4. We discretized the (whand, wcom, wq ) space in 50 × 50 × 50 grid in the logarithmic scale ranging from
10−1 to 105 along each dimension of the weight vector (whand, wcom, wq ) ∈ logspace(−1, 5, 50)3 . We plot in color scale and surface plot the
maximum real part of the eigenvalues of the matrix from Proposition 4. We see that this maximum is always negative; hence, the matrices are
stable. In the top row figures, we plot the maximum real part of the eigenvalues along two dimensions of the weight vector for a given value of the
third dimension (104 ). In the bottom row figures, we plot the same data for ten values in logspace(−1, 5, 10) along the third dimension, while the
other two dimensions are in logspace(−1, 5, 50)2 , which result in ten surfaces in each plot (the ten surfaces are very close to each other in the
middle column).

Fig. 6. All 112 000 eigenvalues (counting multiplicities) of the
112 × 112 matrices from Proposition 4 for 1000 set of weights rang-
ing in the logarithmic scale from 10−1 to 105 , i.e., (whand, wcom, wq ) ∈
logspace(−1, 5, 10)3 . All the eigenvalues are located in the left com-
plex half plane, which means they are stable.

center-of-mass task τcom ∈ R3 to keep equilibrium while per-
forming the task, and a full-configuration task τq = q ∈ R56 for
stability and redundancy resolution, as required in Lemmas 2
and 3. For these three tasks, we design attractor behaviors (3)
with matrices Phand = khandI3 , Dhand = 2

√
khandI3 , Pcom =

kcomI3 , Dcom = 2
√
kcomI3 , Pq = kq I56 , Dq = 2

√
kq I56 , and

(khand, kcom, kq ) = (2, 5, 5) (standard values we use in most of
our control scenarios; these do not require any specific fine tun-
ing). These matrices allow us to derive the matricesAhand,Acom,
and Aq , respectively. Fig. 2 shows the convergence behavior of
the tasks along a subset of 3 × 3 × 3 values of the weights as
run on the robot HRP-4.

Using the MATLAB function logspace, we discretize the
weight space (whand, wcom, wq ) in a 50 × 50 × 50 grid ranging

in a logarithmic scale from 10−1 to 105 along each of the three
dimensions, i.e., (whand, wcom, wq ) ∈ logspace(−1, 5, 50)3 .
We then compute the matrices

R112×112 � Ξ[whand, wcom, wq ]

=

⎡
⎣ ∑
k∈{hand,com,q}

wkJ T
k Jk

⎤
⎦
−1 ∑

k∈{hand,com,q}
wkJ T

k AkJk

(135)

which are the forms of the matrix (56) in Proposition 4 when
the tasks are achievable (this is the case here as the tasks were
planned with a planner and a posture generator). Since at the
equilibrium ξ0 we have q̇ = 0, then the matrices Jk take here
the forms

Jk (ξ0) =
(
Jk (q0) 0

0 Jk (q0)

)
, k ∈ {hand, com, q}. (136)

In order to evaluate the stability of the matrices Ξ, using the
MATLAB function eig, we compute the eigenvalues of the
matrices Ξ[whand, wcom, wq ] that we plot in Fig. 6. We then com-
pute the maximum real part of the eigenvalues of each of these
matrices and plot them in Fig. 5. All the matrices are stable
since their eigenvalues have all negative real parts. Hence, by
Proposition 4, the equilibrium point of the system (31), which
corresponds to the closed-loop dynamical system resulting from
the unconstrained version of the multiobjective optimization, is
exponentially stable, giving hints on the Lyapunov stability of
the QP (120). Finally, this result is validated by running the con-
troller starting from ten randomly sampled initial configurations
in the upper body of the robot, as displayed in Fig. 3.

Note that on the limitations side, we experienced numerical
instability issues when the range of weights was extended to a
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ratio between the smallest and largest weight above 107 . This
is due the real optimization problem running on floating-point
hardware and becoming ill-conditioned when that ratio becomes
too large and is an inherent limitation of the nonconstructive
pure existence proofs of the results in Section III-B, more aimed
toward theoretical foundation of the proposed multitask control
approach.

VII. CONCLUSION

We have demonstrated that the essence of the multitask con-
trol problem can be effectively captured by the multiobjective
optimization formal framework. We discussed the pertinence of
scalarizing the vector optimization problem as a weighted sum
with positive weights and proved that the positive-weight scalar-
ization does indeed satisfy a completeness property with respect
to all the efficient solutions, the popular lexicographic solution
being one of them. We studied Lyapunov stability of the feed-
back system resulting from such a weighted-sum scalarization
scheme in the unconstrained optimization case and proposed
some necessary and/or sufficient conditions for the exponen-
tial stability of the equilibrium points of the systems. Finally,
we applied the study to the particular case of the humanoid
robot. We demonstrated that, in that case, the positive weighted-
sum scalarization leads to a linearly constrained positive-definite
quadratic problem that is stable (in the robustness and solution-
guaranteed sense) and well behaved under the stated regularity
conditions.

Future work is dedicated to translating some of the non-
constructive pure existence proofs of this paper, proposed es-
sentially as theoretical foundation layers, into practical weight
tuning algorithms, which constitutes an active topic of research.
We are also planning to extend the Lyapunov stability analysis
to the feedback dynamical system resulting from a constrained
multiobjective optimization formulation, with both equality and
inequality constraints. This is still an open problem, and the
contributions of the present paper will be used as the primary
building blocks for that follow-up work.

APPENDIX

MATRIX DIFFERENTIATION TOOLS FOR LYAPUNOV’S

INDIRECT METHOD

We introduce a tool to efficiently differentiate Jk (q) with
respect to q, which can somewhat be termed the “Jacobian of
the Jacobian” (which is not to be confused with the notion
of a Hessian matrix that is only defined for scalar functions).
Unfortunately, the expression

“∂ Jk (q)
∂ q

”

(137)

does not make sense and is not properly defined, since it involves
the differentiation of a matrix with respect to a vector. Magnus
and Neudecker proposed to use the following quantity that is
thoroughly consistent with all the properties of the classical
differentiation frameworks (in particular, with the chain rule, the
notion of the Jacobian, and Cauchy’s rule of invariance) [52]:

Gk = DJk (q) =
∂ vec Jk(q)

∂ q
. (138)

The vec operator denotes the vectorization operator, which con-
sists for a matrix in stacking its columns as a vector, i.e.,

vec

⎛
⎜⎝
a11 · · · a1m

...
. . .

...
an1 · · · anm

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11
...
an1

...

...
a1m

...
anm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (139)

Definition 10 (see [53, Definition 3.1, p. 383]): There exists
a so-called commutation matrix Knm , that is the nm× nm
permutation matrix, which transforms vec AT into vec A for
any n×m matrix A, i.e., ∀A ∈ Rn×m vec AT = Kmnvec A.

Denoting ⊗ the Kronecker product, we have the following.
Theorem 11 (see [54, Proposition 7.1.9, p. 401 and Fact

7.4.6, p. 405]): For any vector X and matrices A, B, and C
such that ABC is defined, we have

X = vec X (140)

vec (ABC) = (CT ⊗A)vec B (141)

vec (AB) = (I ⊗A)vec B (142)

vec (AB) = (BT ⊗ I)vec A. (143)

Definition 11 (see [52, Definition 5, p. 479]): A matrix fun-
ction F : S ⊂ Rn×m → Rp×q is differentiable at C ∈ int(S)
if there exists a matrix A(C) ∈ Rmn×pq such that, for U in a
neighborhood of 0 in Rn×m , we have

vec F(C + U) = vec F(C) + A(C)vec U + o(‖U‖). (144)

If A(C) exists, it is unique and the p× q matrix dF (C;U)
defined by

vec dF(C;U) = A(C)vec U (145)

is called the differential of F at C with increment U .
Theorem 12 (see [55, Th. 11, p. 108]): If F is differentiable

at C, then A(C) defined in Definition 6 is the Jacobian of vec F
with respect to vec X (X denoting the variable of F ) that we
also call the Jacobian of F at X

A(C) = DF (C) =
∂ vec F
∂ vec X

∣∣∣∣
C

. (146)

Theorem 13 (Cauchy’s rule of invariance [55, Th. 13, p.
108]): If F is differentiable at C and G is differentiable at
B = F (C), then H = G ◦ F is differentiable at C and

dH(C;U) = dG(B; dF (C;U)). (147)

Example 1 (see [55, Th. 3, p. 71 and Ch. 9, Sec. 13, pp.
205–208]): The differentials of the mappings GLn (R) → Rn

X �→ X−1 ; Rn×m → Rm×n , X �→ XT ; and Rn×m → Rn×n ,
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X �→ XT X can be derived, respectively, as

d(X−1) = −X−1dXX−1 (148)

d(XT ) = KnmdX (149)

d(XT X) = (Kmm + Im 2 )
(
Im ⊗XT

)
dX. (150)

Hence, by Cauchy’s rule of invariance, we can write for Jk (q)
seen as a function of q:

dJk (q)−1 = −J−1
k dJk (q)J−1

k (J(q) nonsingular)

(151)

d(Jk (q)T ) = Knk ndJk (q) (152)

d(Jk (q)T Jk (q)) =
(
Knk nk + In2

k

) (
Ink ⊗ JTk

)
dJk (q).

(153)
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