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The subject of Reinforcement Learning are Markov Decision Processes(MDP)



More precisely, Reinforcement Learning is a Machine Learning approach to solving MDPs



MDP: simplest possible probabilistic model of “something” that can “take actions”/decisions and 
act on itself or on the world

agent/world with statesίɴ ꜝand possible actions ὥᶰה

(e.g. physical robot, trading agent, video-game playing agent, continuous decision maker in dynamic and 
uncertain environment, etc.)

Two models and one parameter are necessary to fully characterize the MDP:

Å a transition modelὖίίȟὥ Ὕίȟὥȟί (a.k.a dynamics model, “what is the effect of an action?”)
Å a reward modelat state ί: Ὑίᶰᴙ(“what is our objective? what state are we trying to reach?”)

(or  Ὑίȟὥ, or even Ὑίȟὥȟίᴂ), etc.)
Å a discount factorπ ‎ ρ(trade-off between immediate reward and delayed reward, “cost of 

delayed reward”)
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MDP = הȟꜝ ȟὝȟὙȟ‎



ί ίᴂ

ὥ

ὶ

ί ί

ὥ

ὶ

ί

ὥ

ὶ

MDP

ί

ὥ

ὶ

ȣ



ί ί

ὥ

ὶ

ί

ὥ

ὶ

‎ὶ ‎ὶ

ί

ὥ

ὶ

‎ὶ

ȣ

‎ὶ

ȣ

ȣdiscounted rewards

rewards

return



Policy= deciding what action to take at every state  “ȡίm ὥ

(a.k.a. “feedback loop”, “control law”, “control policy”, “decision function”, etc.)

“autonomous agent” = agent that follows (“is endowed with”) a policy “



“Solving” an MDP = solving for a policy“ȡהᴼꜝ
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autonomous agent that follows a policy “
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Sense

Plan

Act

The autonomy feedback loop revisited



We don’t want to find any policy, we want to find a good policy

A good policy is a policy that takes actions that make the agent maximize its long-term 
rewards(or returns), i.e. that makes the agent realize a certain objective (the objective being 
encoded in the reward/returns model)

The art of formulating a good MDPis thus formulating a good reward model that captures 
the desired objective

A good policy can also be interpreted a policy that minimizes cost(ὧέίὸὶὩύὥὶὨ)

Examples of long term rewards:
ÅWinning a game
Å Accomplishing a task successfully
Å Reaching a goal position
ÅMaking stock gains at a certain maximum horizon



Definition: A sequence of states ίfollows a policy “if

ὸᶅ πȟ ί ὖͯί ίȟ“ί

We write ίͯ “



So, we want to find the optimal policy “ᶻ

“ᶻ ÁÒÇÍÁØͯ ‎Ὑί ȿ“

Where
ίͯÇÉÖÅÎÄÉÓÔÒÉÂÕÔÉÏÎ
ί ὖͯί ίȟ“ί



Solving for the optimal policy is thus an optimization problem (optimal control) over the 
space of policies (ꜝה)

Different families of methods for solving MDP

Å Non-ML MDP Solving: Dynamic programming methods 
Å Value iteration
Å Policy iteration

Å Q-learning methods (DQN)

Å Policy gradient methods (Actor-Critic)

Å Evolution strategiesor DFO: Derivative-Free Optimization (CMA-ES)



Value of a state (or Utility of a state) V-value (or U-value)

ὠί έὶὟί ͯ ᶻ ‎Ὑί ȿί ίȟ“ᶻ



Value of a state (or Utility of a state) V-value (or U-value): 

“Best returns we can hope for in average, if we start from the state”

(meaning that we start from the state, and follow the optimal policy)



If we knew the V-value of every state, then the optimal policy at any given state is to take 
the action that gives you the best chance to land on the highest-value state

i.e. optimal policy = “follow the V-values”
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If we knew the V-value of every state, then the optimal policy is 

“z ί ÁÒÇÍÁØὝίȟὥȟίὠίᴂ



“ᶻί ÁÒÇÍÁØὝίȟὥȟίὠίᴂὠί ‎Ὑί ȿί ίȟ“ᶻ

Ȱὠ Ὢ“ᶻȱ Ȱ“ᶻ Ὢ ὠȱ
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Introducing Gridworld®

ꜝ ȟᴻN ȟȢȟO

ה ρȟςȟσȟτȟυȟφȟχȟψȟωȟρπȟρρ

for every state ίɴ let us denote ,ה

ίᴻthe state immediately to the north of ί(if it exists)

ίᴽthe state immediately to the south of ί(if it exists)
ίN the state immediately to the west of ί(if it exists)
ίᴼ the state immediately to the east of ί(if it exists)

the transition model is

ὖίO ίȟO πȢψ

ὖίᴻίȟO πȢρ

ὖίᴽίȟO πȢρ

ὖίᴻίȟᴻ πȢψ

ὖίᴺίȟᴻ πȢρ
ὖίO ίȟᴻ πȢρ

ȣ

the reward model is

Ὑρρ ρ
Ὑρπ ρ

Ὑί ρπÁÎÄρρ πȢπτ

the discount factor is
‎ ρ

+ If the robot bumps into a wall, it stays in the same state
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The value function or the optimal policy, completely characterize the optimal solution of an MDP



Bellman equation:
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0.812 0.868 0.918 +1

0.762 0.660 -1

0.705 0.655 0.611 0.388
πȢψz ρ πȢρz πȢφφππȢρz πȢωρψπȢπτ πȢωρψ

In the example state (the one with value 0.918), if the agent 
follows the optimal action (which is “go to right”), then it has 
80% chance of actually going to the right, landing in a state 
of value 1, 10% chance of going up, bumping into the wall, 
and thus stating in the same state with value 0.918, and 10% 
chance of going down, landing in the state of value 0.660, 
i.e.



Bellman equation:

ὠί Ὑί ‎ÍÁØὝίȟὥȟίὠί Ὕίȟὥȟί ὠί Ὕίȟὥȟί ὠί Ễ

ὠί Ὑί ‎ÍÁØὝίȟὥȟίὠί Ὕίȟὥȟί ὠί Ὕίȟὥȟί ὠί Ễ

ὠί Ὑί ‎ÍÁØὝίȟὥȟίὠί Ὕίȟὥȟί ὠί Ὕίȟὥȟί ὠί Ễ
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Solving Bellman equation ᶅSolving for ὠᶅObtaining “z



The Bellman equation

ὠί Ὑί ‎ÍÁØ Ὕίȟὥȟίὠίᴂ

is a fixed-point equation

Ȱὠ ὄὩὰὰάὥὲὠȱ



To solve a fixed-point equation, we apply the iteration method:

Initialize a random ὠ

ὠ ὄὩὰὰάὥὲὠ

ÌÉÍ
ᴼ
ὠ ὠ



Value-iteration (for finding the optimal policy of an MDP)

Å Initialize ὠ ίat some random values at all states ί

Å Apply Iterative Bellman equation

ὠ ί Ὑί ‎ÍÁØ Ὕίȟὥȟίὠ ίᴂ

Å Loop

Å Until convergence of ὠ ί to some value ὠί

Å Apply

“z ί ÁÒÇÍÁØὝίȟὥȟίὠίᴂ



There is another method very similar to Value-iteration, that solves directly for “ᶻ

called Policy-iteration



Reminder - Bellman equation:

ὠί Ὑί ‎ÍÁØ Ὕίȟὥȟίὠίᴂ

Linear Bellman equation, by definition of “ᶻ:

ὠί Ὑί ‎ Ὕίȟ“ᶻίȟίὠίᴂ



Policy-iteration (for finding the optimal policy of an MDP)

Å Initialize “ ίat some random values at all states ί

Å Solve linear Bellman equation for ὠ, given optimal policy “

ὠ ί Ὑί ‎ Ὕίȟ“ ίȟίὠ ίᴂ

Å Update 

“ ί ÁÒÇÍÁØὝίȟὥȟίὠ ίᴂ

Å Loop

Å Until convergence of “ ί to some value “ᶻί



Value-iteration and Policy-iteration are exact methods to solve MDPs, they 
are not Machine Learning approaches



Why would we need Machine Learning to solve MDPs anyways?

Usually we don’t know the transition and reward model a priori, we don’t know ╣
and ╡

We can only observesome sample data from Ὕand Ὑby making the agent actually 
perform in real world or simulate different actions ὥat different states ί, then 
record what state ίᴂwe ended up in and what reward ὶwe got as a result from that 
action at that state

Records of observed data from experiences will be in the form of tuples ▼ȟ╪ȟ▼ȟ►



Classical MDP solving: Model-based
input: model ὝȟὙ , output: policy

Reinforcement Learning for solving MDPs: Data-based
Input experience records (data) ίȟὥȟίȟὶ, output policy

ὝȟὙ “zȟὠ

ίȟὥȟίȟὶ

“ᶻȟὠίȟὥȟίȟὶ
ίȟὥȟίȟὶ
ίȟὥȟίȟὶ

ίȟὥȟίȟὶ
ίȟὥȟίȟὶ

…



Reinforcement learning template:

Å Start with a random policy
Å Following this policy (exploitation) interleaved with some random 

actions from time to time (exploration), make the agent collect 
experience record tuples

Å Refine the policy based the knowledge received from these actions and 
these observations

Å Loop
Å Until the policy converges



What is it exactly that we “learn”?

Å Not directly the model ╣and ╡, since we only care about the policy “

Å Maybe learn V-value of every state? too coarse, we don’t have experience 
data directly associated with states ί, but with actions ὥtaken at stateί

ÅWe introduce a new quantity that refines V-valuesᶅby giving value to a 
pair of <action, state> the Q-value of an action ╪at state ▼



V-value of a state:

ὠί Ὑί ‎ÍÁØ Ὕίȟὥȟίὠίᴂ



Q-value of an action at a state:

ὗίȟὥ Ὑί ‎ Ὕίȟὥȟίὠίᴂ



Q-value of an action at a state:

ὗίȟὥ Ὑί ‎ Ὕίȟὥȟίὠίᴂ

Q-value is also known as action-value, as opposed to V-value
which is known as state-value



Q-value of an action at a state:

Best returns we can hope for if we take action ὥat state ί

(meaning that we take action ὥat state ίand then start following the optimal policy 
from whatever state ίwe land at)
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If we knew the Q-value of every action at every state, then finding the optimal policy is straightforward

“ᶻί ÁÒÇÍÁØὗίȟὥ

And finding the V-value of a state is also straightforward

ὠί ÍÁØὗίȟὥ

The optimal policy is guided by the Q values
i.e. optimal policy = “follow the Q-values”



Relationship between ὠȟὗȟ“z

ὠί ὗίȟ“ᶻί



Bellman equation for the Q-value

ὗίȟὥ Ὑί ‎ Ὕίȟὥȟί ÍÁØὗίȟὥ



Bellman equation for the Q-value

ὗίȟὥ Ὑί ‎ Ὕίȟὥȟί ÍÁØὗίȟὥ

ὗίȟὥ Ὑί ‎ÍÁØὗίȟὥ ȿίȟὥ



Q-learning (for finding the optimal policy of an MDP) with learning rate ‌

Å Initialize ὗίȟὥ at some random values at all states ίand actions ὥ(i.e. initialize random policy)
Å Start in state ί
Å Set current state ί= ί
Å From current state ί, choose action ὥby picking one of these two choices (‭-greedy strategy):
Å [Exploitation, Being greedy] Either by following the current policy ÁÒÇÍÁØὗίȟὥ
Å [Exploration, with probability ‭] Or by picking a completely random action ὥ

Å Execute ὥ
Å Observe the landed state ίᴂ, and the obtained reward ὶ(we have now collected an experience 

record data point ίȟὥȟίȟὶ)
Å From this observation, update value of ὗίȟὥ by taking a stochastic gradient step towards 

ὗ ίȟὥίȟὶ ὶ ‎ÍÁØὗίȟὥ

ὗίȟὥ ὗίȟὥ ‌ὗ ίȟὥȿίȟὶ ὗίȟὥ

Å Update current state ί=ίᴂ
Å Loop

Å Until convergence of ὗ/convergence of “z

Keep in mind: policy ḳQ-value
“ᶻί ÁÒÇÍÁØὗίȟὥ

ὗ ίȟὥȿίȟὶ

ὗίȟὥ

‌
ὗίȟὥ



This approach is called Tabular Q-learning, which means it tries to build a table 
of Q-values for every (state,action) pair

Problematic with continuous state spaces or continuous action spaces

even with discretization and finite state space: huge number of states (Tetris has 
ρπ states 3 actions)



Solution: use function approximation with parametric model

instead of learning ὗίȟὥ for every ίȟὥ, parameterize ╠as ╠Ᵽ(for 
example linear model, neural network), and learn the parameter Ᵽ
from the observations, this is called Approximate Q-learning

when ὗ is a deep learning model (for example a CNN, taking the raw 
pixels of the game as the state of the game), then we talk about Deep 
Reinforcement Learning



Deep RL = Q-value of every action as a deep-learning regression model, 
called the Q-network

Note that it is different from a supervised learning problem as a 
classification problem on the actions from the observation of the actions 
taken by human agents. Here there is no human agent, the agent 
generates the data it needs and learns a Q-value function



Approximate Q-learning algorithm (for finding the optimal policy of an MDP) with learning rate ‌

Å Initialize —at some random values (i.e. initialize random policy)
Å Start in state ί
Å Set current state ί= ί
Å From current state ί, choose action ὥby picking one of these two choices:
Å [Exploitation] Either by following the current policy ÁÒÇÍÁØὗ ίȟὥ
Å [Exploration] Or by picking a completely random action ὥ

Å Execute/simulate ὥ
Å Observe the landed state ίᴂ, and the obtained reward ὶ(we have now collected an experience 

record data point ίȟὥȟίȟὶ)
Å From this observation, update value of ὗ ίȟὥ by taking a stochastic gradient step towards 

ὗ ίȟὥȿίȟὶ ὶ ‎ÍÁØὗ ίȟὥ

— — ‌
‬

‬—
ὗ ίȟὥȿίȟὶ ὗ ίȟὥ

Å Update current state ί=ίᴂ
Å Loop

Å Until convergence of ὗ/convergence of “ᶻ

Keep in mind: policy ḳQ-value
“ᶻί ÁÒÇÍÁØὗ ίȟὥ

ὗ ίȟὥȿίȟὶ

ὗίȟὥ

‌
ὗίȟὥ
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Å Update current state ί=ίᴂ
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Keep in mind: policy ḳQ-value
“ᶻί ÁÒÇÍÁØὗ ίȟὥ

Chasing a moving target

Failed iid assumption for SGD 

Two problems with this naïve approach



To stabilize Approximate Q-learning, Minh et al, 2015, introduce two 
improvements:
Å Experience replay, store 1M transitions (experience data point) in 

memory buffer, then sample minibatches from those for SGD, don’t 
use current current transition for SGD, store it in memory buffer

Å Use target network to compute the target of Q, update target 
network with Q-network every 10000 iterations



DQN algorithm with experience replay (for finding the optimal policy of an MDP) with learning rate ‌

Å Initialize —(Q-network) at some random values (i.e. initialize random policy), initialize — to —(— is the 
target network, target network=Q-network at initialization)

Å Start in state ί
Å Set current state ί= ί
Å From current state ί, choose action ὥby picking one of these two choices:

Å [Exploitation] Either by following the current policy ÁÒÇÍÁØὗ ίȟὥ
Å [Exploration] Or by picking a completely random action ὥ

Å Execute/simulate ὥ
Å Observe the landed state ίᴂ, and the obtained reward ὶ(we have now collected an experience record 

data point ίȟὥȟίȟὶ)
Å Store ίȟὥȟίȟὶ in replay buffer ꜠(buffer capacity 1M, FIFO) 

Å Sample minibatches of 32 tuples ίȟὥȟίȟὶ of iid from ꜠to perform SGD
Å [Update Q-network only, not target network] On that minibatch, update value of ὗ ίȟὥ by taking a 

stochastic gradient step towards 

ὗ ȟ ίȟὥȿίȟὶ ὶ ‎ÍÁØὗ ίȟὥ

— — ‌
‬

‬— ȟȟȟ ὗ ȟίȟὥȿίȟὶ ὗ ίȟὥ

Å Every 10000 iteration reset — to —(reset target network to Q-network)
Å Update current state ί=ί
Å Loop

Å Until convergence of ὗ/convergence of “ᶻ


