An Introduction to Deep Reinforcement Learning

Part 2 — Policy Gradient, Actor-Critic, Evolutionary Strategies

Karim Bouyarmane

At last 3 =
> >l =a cop >
€anbeyt 5 charf Puter 0gram thqs

pion Go
10;
n Go Player PAGE 494

Recap of Part I:

Definition of Markov Decision Processes (states s, actions a, rewards r/objective,
return R as collected sum of discounted rewards along a trajectory — change of
notation from Part 1)

Definition of a policy ™ (mapping from state to action, feedback law) and optimal
policy 7™ (best action to take at every state)

executing a policy = following a trajectory T and collecting rewards 7; along the
trajectory, that we accumulate in the return

+ 00

R =) v'n

t=0

Definition of state value V(s) (expected return for a trajectory that starts from s,
starting with O return)

When executing a trajectory that doesn’t start from s and that arrives at some

point at s, the expected return becomes the actual return accumulated so far +
the (discounted) value of state s, YtV (s)

Definition of Q-value or action value Q(s, a) (expected return for a trajectory that
starts from s with action a, starting with 0 return)
Fundamental relationships that link 7%, V, Q together:

V(s) = max Q(s,a)

n*(s) = argmax Q(s,a)

V(s) = Q(s,m"(s))

Bellman equation (V at a state defined by V' at neighboring states, Q of action at
state defined by Q of actions at neighboring states) allows to define a supervised
learning problem on Q or V, with the labels being themselves defined with Q or V.
Bellman equation allows to generate labeled data for the learning problem

Exact methods/dynamic programming methods (e.g. value iteration: starting from
random V' values, then iteratively enforcing Bellman equation for V, other example:
policy iteration)

Q-learning:

Initialize random policy, i.e. random values for Q

start from initial state s,

pick action a,

simulate action a, on state s,

observe new state s; and reward 74

apply “supervised” learning on Q(sg, ag) with the label being ; + max Q(sy,a)

i.e. we have collected a pair of labelled data (X, Y) for Q with X = (sg,ap) andY = r; + y max Q(s4, a)
a

now agent is in state s
pick action a,
etc...

Q-learning:

Initialize random policy, i.e. random values for Q

start from initial state s,

pick action ag (exploitation of current policy argmax, Q(sy, @), or exploration with random action with probability €)
simulate action a, on state s,

observe new state s; and reward 74

apply “supervised” learning on Q(sy, ay) with the label beingr; +y mé;\x Q(sy,a)

i.e. we have collected a pair of labelled data (X, Y) for Q with X = (sg,ap) andY = r; + y max Q(s4, a)
a

now agent is in state s
pick action a; (exploitation of current policy argmax, Q(s;, a), or exploration with random action with probability €)
etc...

Q-learning = start with random Q/policy, execute policy, collect experience tuples (s, a, s’, r) along
trajectory, enforce Bellman equation for this experience tuple and update Q/policy

Q(s,a) =aQ(s,a) + (1 —a) (r +y rr}lalle(a’, S’))

Approximate Q-learning (e.g. with deep neural net, called Q-network) = parameterize Qg as a
neural net with weights 6

2
0=0-—al (r + ymax Qg(a’,s’) — Qq (s, a))
al

Deepmind’s DQN use a separate network 8’ to compute target of Bellman equation, update target
network with Q-Network periodically, apply Bellman equation SGD step with batch of experience
tuples sampled from previous experiences (memory buffer) rather using current experience tuple,
store current experience tuple in memory buffer for later sampling

2
0 =60—aVy (r + ymax Qy/(a’,s") — Qg (s, a))
al

X

Q-Network (Qg)

a€{l,«,1,-}

Q-Network (Qg) Qo(s,a) ER

a€{l,«, 1, -} not the best approach to use
Y CNN to exploit raw input
images as states

Qo(s,a=T) ER
Qo(s,a =<) ER
Qo(s,a=l) ER

Q-Network
(Deep Convolutional
Neural Network)

©
Q
s
(®]
Q
C
(-
@)
@)
=
>
L

QQ(S,a =_>) ER

Qo(s,a=T) ER
Qo(s,a =<) ER
Qo(s,a=l) ER

Q-Network
(Deep Convolutional
Neural Network)

©
Q
s
(®]
Q
C
(-
@)
@)
=
>
L

Qo(s,a=—)€ER

better approach: multi-task network

Q-Network (Qp)

Target Network (Qg/)

Qo(s,a=T) ER
Qo(s,a=<) €R
Qo(s,a=1)ER
Qg(s,a=-) €ER

Qg'(s,a=T)ER
Qp'(s,a=«<)€ER
Qgpr(s,a=l)ER
Qgp'(s,a==)ER

used for back-propagation, updated every iteration

QQ(S,CL =) eER
Qo(s,a=<) ER

Q-Network (Qp)
Qo(s,a=1)ER

Qo(s,a=-) ER

update every 10000 iteration

Qg'(s,a=T)ER
Qp'(s,a=«<)€ER

Target Network (Qg/)

Qgpr(s,a=l)ER
Qgp'(s,a==)ER

used to compute labels of training data using Bellman equation
“frozen” version of Q-network for 10000 iteration

Note: in a win/lose process (only one reward at the end,
+1 if win and O if lose, with no intermediate rewards),
value and action value have particular interpretation: the

probability of winning

O

Q-Network (Qg)

Q(s,a) = p(wl|s,a)
V(s) =pwl|s)

p(w|s,a =T) €R
p(w|s,a =«<) ER
p(w|s,a=\l) €ER
p(w|s,a =—) ER

EPIDEMIOLOSY

SHARE DATA IN
OUTBREAKS

Forge openac
o sequences and m
PAGE4TT

COSMOLOGY

A GIANT IN THE
EARLY UNIVERSE
A supermassive black hole
ataredshiftof 6.3
PAGES480& 512

INNOVATIONS IN
The microbiome

nature

THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

Self-taught Al software
attains human-level
performance in video games

GUANTUM PHYSICS D NATURE.COM/NATURE
TELEPORTATION prrpssrrrsern

FORTWO 09>

Transferring two properties ||i|
0 1486%03070% %

of asingle photon
PAGES 491 &518

LETTER

d0i:10.1038/nature14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'¥, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. F'Ldjela_ndl, Georg Ostmvskil, Stig Petersﬂnl, Charles Beattie', Amir Sadik!, Toannis Antonugluul,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

The theory of reinforcement learning provides a normative account',
deeply rooted in psychological’ and neuroscientific’ perspectives on
animal behaviour, of how agents may optimize their control of an
i Tousereinfc i Ily in situati
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
i from high-di ional sensory inputs, and use these
togeneralize past experience to new situations. Remarkably, humans
and otheranimals seem to solve this problem through a har i
combination of reinforcement learning and hierarchical sensory pro-
cessing systems*”, the former evidenced by a wealth of neural data
revealing notable parallels between the phasic signals emitted by dopa-
minergic neurons and temporal difference reinforcement learning
algorithms®. While reinforcement learning agents have achieved some
sinavariety of domains®®, their applicability has previously

been limited to domains in which useful features can be handcrafted,
or to domains with fully observed, low-dimensional state spaces.
Here we use recent advances in training deep neural networks” "' to
develop a novel artificial agent, termed a deep Q-network, that can
learn successful policies directly from high-dimensional sensory inputs
using end-to-end reinforcement learning. We tested this agent on
the challenging domain of classic Atari 2600 games'>, We demon-
strate that the deep Q-network agent, receiving only the pixels and
the game score as inputs, was able to surpass the performance of all
previous algorithms and achieve a level comparable to that of a pro-
fessional human games tester across a set of 49 games, using the same
algorithm, network architecture and hyperp This work
bridges the divide between high-dimensional sensory inputs and
actions, resulting in the first artificial agent that is capable of learn-
ing to excel at a diverse array of challenging tasks.

We set out Lo create a single algorithm that would be able to develop
a wide range of competencies on a varied range of challenging tasks—a
central goal of general artificial intelligence' that has eluded previous
efforts®**'*. To achieve this, we developed a novel agent, a deep Q-network
(DQN), which is able to combine reinforcement learning with a class
of artificial neural network'® known as deep neural networks. Notably,
recent advances in deep neural networks® ', in which several layers of
nodes are used to build up progressively more abstract representations
of the data, have made it possible for artificial neural networks to learn
concepls such as object categories directly from raw sensory data. We
use one particularly successful architecture, the deep convolutional
network'?, which uses hierarchical layers of tiled convolutional filters
to mimic theeffects of receptive fields—inspired by Hubel and Wiesel’s
seminal work on feedforward processing in early visual cortex'*—thereby
exploiting the local spatial correlations present in images, and building
in robustness to natural transformations such as changes of viewpoint
or scale.

‘We consider tasks in which the agent interacts with an environment
through a sequence of observations, actions and rewards. The goal of the

1Google DeepMind, 5 New Street Square, London ECAA 3TW, UK.
*These authors contributed equally to this work.

agent is to select actions in a fashion that maximizes camulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

O (s.0)= max i [ry+yr 1+ 12+ s =5, ay=a, |,
i

which is the maximum sum of rewards r, discounted by y at each time-
step £, achievable by a behaviour policy 7 = P(a\s), after making an
abservation (s) and taking an action (a) (see Methods)".

Reinforcement learning is known to be unstable or even to diverge
when a nonlinear function approximator such as a neural network is
used to represent the action-value (also known as Q) function™. This
instability has several causes: the correlations present in the sequence
of observations, the fact that small updates to (may significantly change
the policy and therefore change the data distribution, and the correlations
between the action-values (Q) and the target values r+y max Q(¢', a').
‘We address these instabilities with a novel variant of Q-lca’lz'ning, which
uses two key ideas. First, we used a biologically inspired mechanism
termed experience replay*'* that randomizes over the data, thereby
removing correlations in the observation sequence and smoothing over
changes in the data distribution (see below for details). Second, we used
an iterative update that adjusts the action-values (Q) towards target
values thal are only periodically updated, thereby reducing correlations
with the target.

While other stable methods exist for training neural networks in the
reinforcement learning setting, such as neural fitted Q-iteration™, these
methods involve the repeated training of networks de novo on hundreds
of iterations. Consequently, these methods, unlike our algorithm, are
too inefficient to be used successfully with large neural networks. We
parameterize an approximate value function Q(s,a;0;) using the deep
convolutional neural network shown in Fig. 1, in which 0; are the param-
eters (that is, weights) of the Q-network at iteration i. To perform
experience replay we store the agent’s experiences e; = (So@pFs$: 1 1)
at each time-step ¢ in a data sel D; = {ey,...,e;}. During learning, we
apply Q-learning updates, on samples (or minibatches) of experience
(s,a,r,s") ~ U(D), drawn uniformly at random from the pool of stored
samples. The Q-learning update at iteration i uses the following loss
function:

Li(03) =Eoar.e)~un)

(r-&—"/m;\x O’ 07)— Q(s.a; ()i))]

in which y is the discount factor determining the agent’s horizon, 0;are
the parameters of the Q-network at iteration i and (); are the network
parameters used to compute the target at iteration i. The target net-
work parameters), are only updated with the Q-network parameters
(0;) every C steps and are held fixed between individual updates (see
Methods).

To evaluate our DQN agent, we took advantage of the Atari 2600
platform, which offers a diverse array of tasks (n = 49) designed to be

26 FEBRUARY 2015 | VOL 518 | NATURE | 529

©2015 Maemillan Publishers Limited. All rights reserved

Fully ccvmnected

Fully cgnnected

4

Convolution

Convolution
v

Y

@] (0] (0] [¢] [¢] [¢] (@
++1 +1+Q+Q+ 0+
'3 LY R Bd &4 B B

-4 R4 -4 -4

O
-+
K

D e & e o o ¢ o ¢ 00 e @& & o ¢ ¢ & & & 0 0

Part 2

In this part we will cover direct policy optimization, with two big families of
methods

- Policy gradient methods, Actor-Critic, A2C, A3C, PPO, TRPO

- Evolutionary Strategies (ES), namely Cross-Entropy Method (CEM) and
Covariance Matrix Adaptation (CMA-ES)

In policy gradient methods, we consider stochastic policies
n(als)

(in Q-learning we learned deterministic policies a = m(s))

More specifically, we consider parameterized stochastic policies
(e.g. neural nets)

mg(als)

Ty is called the policy network

——» mg(a =T |s)

——— mg(a =« |s)

Policy-network (g)

mg(a =1 [s)

mg(a =— |s)

~ Markov Chain
stationary
distribution

The objective of policy gradient is to solve

argmax J(6) = argmax E,_p[R(7)|mg]
6 6

where T is a trajectory (also called a rollout) that follows a probability distribution P
T = Sp,00,79,5S1,Q1,71,S2,05, 1, ...

P(7) is the probability to sample trajectory when sampling actions a; from the
policy my and states s; from the transition model T

" ~Tg (. |So) " ~Tg (.]|S1)
\ 4 \ 4
So ag S1 aq 152 L
"~T(.|Sp, ap) "~T(.]s1,a1)
A 4 v A 4
T‘O T']_ 7"2

H
R@ = y'r,
t=0

In order to solve
arggnax] (6) = E¢c-p[R(7)|76]

We perform a gradient ascent by computing the policy gradient

Vo) (6) = VpE, p[R(7)|m]

We use the log likelihood trick to compute the policy gradient

VoEr p[R(T)|mg] = E-p[Vylog P(z|my)R(T)]

We decompose the probability of trajectory T under policy g

H
75 log P(tlmg) = Vglog | [mo(aclse)T(seaalse ar)
t=0

H H
= Z Vg log mg(as|sy) + z Vo log T (S¢41lst, ar)
t=0 t=0

H
= z Vo log mg(alse)
t=0

We finally get the policy gradient expression

H
VoE; plR(7)|mg] = E;-p Z Vg log mg(a;|s;) R(T)
t=0

We finally get the policy gradient expression

H
VoE, p[R(7)|mg] = E;-p Z Vg log mg(a;|s;) R(T)
t=0

and use a basic Monte-Carlo estimator for the expectation,
by sampling trajectories (rollouts) from the current policy

Monte-Carlo estimator is unbiased, but very noisy (high variance)

To reduce variance, we can consider only future return at every step of the summation

H
VoE,-p[R(7)|Te] = E;vp Z Vo log g (aclse) R:(7)
t=0

where R; denotes the future return starting from time-step t

400

R(7) = Z yt'rt/

t'=0

To further reduce variance, we can subtract a baseline

H
VoE - p[R(7)|mg] = E;p lz Vg log mg(a;lse) (Re(r) — b)
t=0

The estimator is still unbiased, if b doesn’t depend on the actions

H
Vo p [R(T)|7T9] = Ez-p 2 Vo log Ttg (atlst) Ay
t=0

A; = R:(t) — b is called the Advantage

There are many possible choices for baselines b (constant baselines, time-dependent baselines,
state-dependent baselines), it can be shown that a good choice for the baseline (in terms of
variance reduction), is the value of the state b = V' (s;)

H
VoE.-p[R(7)|mg] = E.-p z Vo log mg(aclse) (Re(r) — V(sy))
t=0

However, we don’t know the value function, so we estimate it (learn it) along the policy by
parameterizing it with parameter vector w (e.g. neural network 1/,,)

H
VoE;-p[R(T)|mg] = E.op z Vo log mg(a¢ls:) (Re(7) — V,, (s¢))
t=0

We can also use the following expressions
H
oEep[R(DImg] = Brop |) Vo logm(arlse) (QCse, ar) = iy(50))
t=0
H
= Eep |) Vo logma(acls) (o + 14u(sesn) = Yo (50))
t=0
H
= Eep |) Vo logma(acls) (e + rivs + 17V (5es2) = Vu(se))

t=0

This is the policy gradient theorem

Actor-Critic algorithm

* |Initialize random weights 6 for the policy-network (actor network) and random weights w for
the Value-network (critic network)
* For N iterations until policy converges:
* Sample M trajectories T from current policy g
* For each timestep t along each trajectory, compute the advantage A; = R.(1) — V,, (s;)
* Estimate the policy gradient using MC estimation on

H
76](0) = Er-p |) Vg log m(aclse) A,

t=0
And perform gradient ascent step along VyJ(60)

* Refit the baseline

w = argminleVw(St) — R (DI?
w

—» mgla =T|s)

—»mgla=«<|s)
Policy-network (1
y (1g) ro(a =4 1)

mg(a =— |s)

Value-network (1) V,(s)

—» mgla =T|s)
—mgla=«<s)

mg(a =1 |s)

mg(a =-|s)

Vi ()

—» mgla =T|s)
—mgla=«<s)

mg(a =1 |s)

mg(a =-|s)

Learn from each other

Vi ()

—_— Tl'g(Cl =T |S)

——— mg(a =« |s)

layers

mg(a =1 |s)

connected

Actor-Critic network
(Deep Convolutional Neural
Network)

mg(a = |s)

Vi ()

%)
S
()
>

e

©
Q
s}
O
Q
C
C
(@)
(@)

THE INTERANATIONAL WEE

At last — a computer program that
can beat a champion Go player Pact 48

ESEASCHETHICS POPULAR SCIENCE
SAFEGUARD WHEN GENES
TRANSPAREN GOT ‘SELFISH’
e Dawkins's calling

d d0 years on

MGE 482

D NATUREAS

ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without

human knowledge

David Silver'*, Julian Schrittwieser'*, Karen Simonyan', Ioannis Antonoglou', Aja Huang', Arthur Guez!,
Thomas Hubert!, Lucas Baker!, Matthew Lai!, Adrian Bolton!, Yutian Chen!, Timothy Lillicrap', Fan Hui!, Laurent Sifre!,

George van den Driessche', Thore Graepel' & Demis Hassabis'

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in
challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The
tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce
an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also
the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality
move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo.

Much progress towards artificial intelligence has been made using
supervised learning systems that are trained to replicate the decisions
of human experts'~. However, expert data sets are often expensive,
unreliable or simply unavailable. Even when reliable data sets are
available, they may impose a ceiling on the performance of systems
trained in this manner. By contrast, reinforcement learning systems
are trained from their own experience, in principle allowing them to
exceed human capabilities, and to operate in domains where human
expertise is lacking. Recently, there has been rapid progress towards this
goal, using deep neural networks trained by reinforcement learning.
These systems have outperformed humans in computer games, such
as Atari®’ and 3D virtual environments® '°. However, the most chal-
lenging domains in terms of human intellect—such as the game of Go,
widely viewed as a grand challenge for artificial intelligence!' —require
a precise and sophisticated lookahead in vast search spaces. Fully gene-
ral methods have not previously achieved human-level performance
in these domains.

AlphaGo was the first program to achieve superhuman performance
in Go. The published version'?, which we refer to as AlphaGo Fan,
defeated the European champion Fan Hui in October 2015. AlphaGo
Fan used two deep neural networks: a policy network that outputs
move probabilities and a value network that outputs a position eval-
uation. The policy network was trained initially by supervised learn-
ing to accurately predict human expert moves, and was subsequently
refined by policy-gradient reinforcement learning. The value network
was trained to predict the winner of games played by the policy net-
work against itself. Once trained, these networks were combined with
a Monte Carlo tree search (MCTS)">"!* to provide a lookahead search,
using the policy network to narrow down the search to high-probability
moves, and using the value network (in conjunction with Monte Carlo
rollouts using a fast rollout policy) to evaluate positions in the tree. A
subsequent version, which we refer to as AlphaGo Lee, used a similar
approach (see Methods), and defeated Lee Sedol, the winner of 18 inter-
national titles, in March 2016.

Our program, AlphaGo Zero, differs from AlphaGo Fan and
AlphaGo Lee'? in several important aspects. First and foremost, it is

trained solely by self-play reinforcement learning, starting from ran-
dom play, without any supervision or use of human data. Second, it
uses only the black and white stones from the board as input features.
Third, it uses a single neural network, rather than separate policy and
value networks. Finally, it uses a simpler tree search that relies upon
this single neural network to evaluate positions and sample moves,
without performing any Monte Carlo rollouts. To achieve these results,
we introduce a new reinforcement learning algorithm that incorporates
lookahead search inside the training loop, resulting in rapid improve-
ment and precise and stable learning. Further technical differences in
the search algorithm, training procedure and network architecture are
described in Methods.

Reinforcement learning in AlphaGo Zero

Our new method uses a deep neural network fy with parameters 6.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
avalue, (p, v) = fy(s). The vector of move probabilities p represents the
probability of selecting each move a (including pass), p,=Pr(als). The
value v is a scalar evaluation, estimating the probability of the current
player winning from position s. This neural network combines the roles
of both policy network and value network'? into a single architecture.
The neural network consists of many residual blocks® of convolutional
layers'6!7 with batch normalization'® and rectifier nonlinearities' (see
Methods).

The neural network in AlphaGo Zero is trained from games of self-
play by a novel reinforcement learning algorithm. In each position s,
an MCTS search is executed, guided by the neural network fy. The
MCTS search outputs probabilities 7r of playing each move. These
search probabilities usually select much stronger moves than the raw
move probabilities p of the neural network fy(s); MCTS may therefore
be viewed as a powerful policy improvement operator”*?!. Self-play
with search—using the improved MCTS-based policy to select each
move, then using the game winner z as a sample of the value—may
be viewed as a powerful policy evaluation operator. The main idea of
our reinforcement learning algorithm is to use these search operators

'DeepMind, 5 New Street Square, London EC4A 3TW, UK
*These authors contributed equally to this work

354 | NATURE | VOL 550 | 19 OCTOBER 2017

7 Macmillan Publishers Limited, part of Springer Nature. All rights reserved

Reinforcement learning in AlphaGo Zero

Our new method uses a deep neural network f, with parameters 6.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
avalue, (p, v) =fy(s). The vector of move probabilities p represents the
probability of selecting each move a (including pass), p,=Pr(als). The
value v is a scalar evaluation, estimating the probability of the current
player winning from position s. This neural network combines the roles
of both policy network and value network!? into a single architecture.
The neural network consists of many residual blocks* of convolutional
layers'®!7 with batch normalization'® and rectifier nonlinearities'® (see

Methods).

Reinforcement learning in AlphaGo Zero
Our new method uses a deep neural network f, with parameters 6.
This neural network takes as an input the raw board representation s
of the position and its history, and outputs both move probabilities and
avalue, (p, v) =fy(s). The vector of move probabilities p represents the
probability of selecting each move a (including pass), p,=Pr(als). The
value v is a scalar evaluation, estimating the probability of the current
player winning from position s.|This neural network combines the roleg
| of both policy network and value network' into a single architecture
The neural network consists of many residual blocks* of convolutional
layers'®!7 with batch normalization'® and rectifier nonlinearities'® (see
Methods).

a Self-play s,

iy T il Tl i

AN VAN AN VA YA VA
ANA)

ANAN FAN A ANAN AW A AN A
N A A A

alla oA A A

T o T3 z

b Neural network training

S Sy

o
fy s fy 3
® @ ® @

u un un u u u

4 ju je i

Figure 1 | Self-play reinforcement learning in AlphaGo Zero. a, The
program plays a game s, ..., sy against itself. In each position s, an MCTS
avg is executed (see Fig. 2) using the latest neural network fg. Moves are
selected according to the search probabilities computed by the MCTS,

ay~ ;. The terminal position sy is scored according to the rules of the
game to compute the game winner z. b, Neural network training in
AlphaGo Zero. The neural network takes the raw board position s; as its
input, passes it through many convolutional layers with parameters 6,

and outputs both a vector py, representing a probability distribution over
moves, and a scalar value vy, representing the probability of the current
player winning in position s;. The neural network parameters 6 are
updated to maximize the similarity of the policy vector p; to the search
probabilities 7, and to minimize the error between the predicted winner v,
and the game winner z (see equation (1)). The new parameters are used in
the next iteration of self-play as in a.

a Select b Expand and evaluate € Backup d Play

Repeat

e

1
m#%
E
j\%\%
H/

3
Gl
O
£

>

>

H
2N

0
L+
|
EN
0
L+
EC
:"U
:'U
N
EO
-4
})
»
>
»
>
>
)>

....................................... ., R | Ly BEALE B

Figure 2 | MCTS in AlphaGo Zero. a, Each simulation traverses the the outgoing edges from s. ¢, Action value Q is updated to track the mean
tree by selecting the edge with maximum action value Q, plus an upper of all evaluations Vin the subtree below that action. d, Once the search is
confidence bound U that depends on a stored prior probability P and complete, search probabilities 7 are returned, proportional to N7, where
visit count N for that edge (which is incremented once traversed). b, The N is the visit count of each move from the root state and 7 is a parameter
leat node is expanded and the associated position s is evaluated by the controlling temperature.

neural network (P(s, -),V(s)) = fy(s); the vector of P values are stored in

Evolution Strategies

ABOUT PROGRESS RESOURCES

Evolution Strategies as
a Scalable Alternative to
Reinforcement Learning

We've discovered that evolution strategies (ES), an optimization technique
that's been known for decades, rivals the performance of standard
reinforcement learning (RL) technigques on modern RL benchmarks (e.g.

Atari/MuJoCo), while overcoming many of RL's inconveniences.

MARCH 24, 2017
12 MINUTE READ

In particular, ES is simpler to implement (there is no need for backpropagation), it is
easier to scale in a distributed setting, it does not suffer in settings with sparse
rewards, and has fewer hyperparameters. This outcome is surprising because ES
resembles simple hill-climbing in a high-dimensional space based only on finite
differences along a few random directions at each step.

1703.03864v2 [stat.ML] 7 Sep 2017

arXiv

Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAl

Abstract

We explore the use of Evolution Strategies (ES), a class of black box optimization
algorithms. as an alternative to popular MDP-based RL technigues such as Q-
leaming and Policy Gradients. Experiments on MuJoCo and Atari show that ES
is a viable solution strategy that scales extremely well with the number of CPUs
available: By using a novel communication strategy based on common random

our ES img ion only needs to scalars, making it
possible 1o scale to over a thousand parallel workers. This allows us 1o solve 3D
humanoid walking in 10 minutes and obtain competitive results on most Atari
games after one hour of training. In addition, we highlight several advantages of
ES as a black box optimizati hnigue: itisi iant to action freq and
delayed rewards, tolerant of extremely long horizons, and does not need temporal
discounting or value funclion approximation.

1 Introduction

Developing agents that can accomplish challenging tasks in complex, uncertain environments is a key
goal of artificial intelligence. Recently, the most popular paradigm for analyzing such problems has
been using a class of reinforcement learning (RL) algorithms based on the Markov Decision Process
({MDF) formalism and the concept of value functions. Successes of this approach include systems
that learn to play Atari from pixels [Maih et al., 2015], perform helicopter aerobatics Nyg et al. [2006],
or play expert-level Go [Silver et al.. 2016].

An alternative approach to solving RL problems is using black-box optimization. This approach
is known as direct policy search [Schmidhuber and Zhao, 1998], or neuro-evolution [Risi and
Togelius, 201 5], when applied to neural networks. In this paper, we study Evolution Strategies (ES)
[Rechenberg and Eigen, 1973], a particular set of optimization algorithms in this class. We show
that ES can reliably train neural network policies, in a fashion well suited to be scaled up to modem
distributed computer systems, for controlling robots in the MuJoCo physics simulator [Todorov et al,,
2012] and playing Atari games with pixel inputs [Mnih et al., 2015]. Qur key findings are as follows:

1. We found that the use of virtual batch normalization [Salimans et al., 2016] and other
reparameterizations of the neural network policy (section 2.2) greatly improve the reliability
of evolution strategies. Without these methods ES proved brittle in our experiments, but with
these reparameterizations we achieved strong results over a wide variety of environments.

We found the evolution strategies method (o be highly parallelizable: by introducing a novel
communication strategy based on common random numbers, we are able to achieve linear
speedups in run time even when using over a thousand workers. In particular, using 1,440
workers, we have been able (o solve the MuJoCo 3D humanoid task in under 10 minutes.

ad

w

The data efficiency of evelution strategies was surprisingly good: we were ahle to match
the final performance of A3C [Mnih et al., 2016] on most Atari environments while using
between 3x and 10x as much data. The slight decrease in data efficiency is partly offset by a

Example of a basic evolution strategy: the Cross-Entropy Method (CEM-ES)

Work with parameterized policies g
Assume that 6~N (u, ol)

For N iterations (generations) until convergence:

* Sample n candidates 0;~N (u, al)

* Executes rollouts (trajectories) 7; following each policy g, and evaluate E[R(7;)|mg, | with Monte Carlo
* Select p% best policies 8; from these simulations (called the elite set)

* Refit u and o to the elite set (e.g. with Maximum Likelihood Estimation) for the next generation

iteration 1, reward -0.13 iteration 2, reward 0.15 iteration 3, reward 0.31 iteration 4, reward 0.40

Example of a basic evolution strategy: the Cross-Entropy Method (CEM-ES)

Work with parameterized policies g
Assume that 6~N (u, ol)

For N iterations (generations) until convergence:

* Sample n candidates 0;~N (u, al)

* Executes rollouts (trajectories) 7; following each policy g, and evaluate E[R(7;)|mg, | with Monte Carlo
* Select p% best policies 8; from these simulations (called the elite set)

* Refit u and o to the elite set (e.g. with Maximum Likelihood Estimation) for the next generation

More advanced evolution strategy: using Covariance Matrix Adaptation (CMA-ES)

Work with parameterized policies g
Assume that 6~N(u,)

For N iterations (generations) until convergence:
* Sample n candidates 8;~N (u, C)
* Executes rollouts (trajectories) 7; following each policy g, and evaluate E[R(7;)|mg, | with Monte Carlo

* Select p% best policies 8; from these simulations (called the elite set)
* Refit u (e.g. with Maximum Likelihood Estimation)

e adaptCasC =aC+ (1—a)yy’, wherey = (tpew — Moia)/ || new — Hoigl| (direction of the search)

First generation Second generation Third generation

Generation 1 Generation 2 Generation 3

Generation 4 Generation 5 Generation 6

