
An Introduction to Deep Reinforcement Learning

Part 2 – Policy Gradient, Actor-Critic, Evolutionary Strategies

Karim Bouyarmane

Recap of Part I:

Definition of Markov Decision Processes (states 𝒔, actions 𝒂, rewards 𝒓/objective,
return 𝑹 as collected sum of discounted rewards along a trajectory – change of
notation from Part 1)

Definition of a policy 𝜋 (mapping from state to action, feedback law) and optimal
policy 𝜋∗ (best action to take at every state)

executing a policy = following a trajectory 𝜏 and collecting rewards 𝑟𝑡 along the
trajectory, that we accumulate in the return

𝑅(𝜏) =෍

𝑡=0

+∞

𝛾𝑡𝑟𝑡

Definition of state value 𝑉(𝑠) (expected return for a trajectory that starts from 𝒔,
starting with 0 return)

When executing a trajectory that doesn’t start from 𝐬 and that arrives at some
point at s, the expected return becomes the actual return accumulated so far +
the (discounted) value of state s, 𝛾𝑡𝑉(𝑠)

Definition of Q-value or action value 𝑄(𝑠, 𝑎) (expected return for a trajectory that
starts from 𝒔 with action 𝒂, starting with 0 return)

Fundamental relationships that link 𝜋∗, 𝑉, 𝑄 together:

𝑉 𝑠 = max
𝑎

𝑄(𝑠, 𝑎)

𝜋∗ 𝑠 = argmax
𝑎

𝑄(𝑠, 𝑎)

𝑉 𝑠 = 𝑄(𝑠, 𝜋∗ 𝑠)

Bellman equation (𝑉 at a state defined by 𝑉 at neighboring states, 𝑄 of action at
state defined by 𝑄 of actions at neighboring states) allows to define a supervised
learning problem on 𝑄 or 𝑉, with the labels being themselves defined with 𝑄 or 𝑉.
Bellman equation allows to generate labeled data for the learning problem

Exact methods/dynamic programming methods (e.g. value iteration: starting from
random 𝑉 values, then iteratively enforcing Bellman equation for 𝑉, other example:
policy iteration)

Q-learning:
• Initialize random policy, i.e. random values for 𝑄
• start from initial state 𝑠0
• pick action 𝑎0
• simulate action 𝑎0 on state 𝑠0
• observe new state 𝑠1 and reward 𝑟1
• apply “supervised” learning on 𝑄(𝑠0, 𝑎0) with the label being 𝑟1 + 𝛾max

𝑎
𝑄(𝑠1, 𝑎)

i.e. we have collected a pair of labelled data 𝑋, 𝑌 for 𝑄 with 𝑋 = 𝑠0, 𝑎0 and 𝑌 = 𝑟1 + 𝛾max
𝑎

𝑄(𝑠1, 𝑎)

• now agent is in state 𝑠1
• pick action 𝑎1
• etc…

Q-learning:
• Initialize random policy, i.e. random values for 𝑄
• start from initial state 𝑠0
• pick action 𝑎0 (exploitation of current policy argmax𝑎 𝑄(𝑠0, 𝑎), or exploration with random action with probability 𝜖)

• simulate action 𝑎0 on state 𝑠0
• observe new state 𝑠1 and reward 𝑟1
• apply “supervised” learning on 𝑄(𝑠0, 𝑎0) with the label being 𝑟1 + 𝛾max

𝑎
𝑄(𝑠1, 𝑎)

i.e. we have collected a pair of labelled data 𝑋, 𝑌 for 𝑄 with 𝑋 = 𝑠0, 𝑎0 and 𝑌 = 𝑟1 + 𝛾max
𝑎

𝑄(𝑠1, 𝑎)

• now agent is in state 𝑠1
• pick action 𝑎1 (exploitation of current policy argmax𝑎 𝑄(𝑠1, 𝑎), or exploration with random action with probability 𝜖)

• etc…

Q-learning = start with random Q/policy, execute policy, collect experience tuples 𝑠, 𝑎, 𝑠′, 𝑟 along
trajectory, enforce Bellman equation for this experience tuple and update Q/policy

𝑄 𝑠, 𝑎 = 𝛼𝑄 𝑠, 𝑎 + (1 − 𝛼) 𝑟 + 𝛾max
𝑎′

𝑄(𝑎′, 𝑠′)

Approximate Q-learning (e.g. with deep neural net, called Q-network) = parameterize 𝑄𝜃 as a
neural net with weights 𝜃

𝜃 = 𝜃 − 𝛼𝛻𝜃 𝑟 + 𝛾max
𝑎′

𝑄𝜃(𝑎
′, 𝑠′) − 𝑄𝜃 𝑠, 𝑎

2

Deepmind’s DQN use a separate network 𝜃′ to compute target of Bellman equation, update target
network with Q-Network periodically, apply Bellman equation SGD step with batch of experience
tuples sampled from previous experiences (memory buffer) rather using current experience tuple,
store current experience tuple in memory buffer for later sampling

𝜃 = 𝜃 − 𝛼𝛻𝜃 𝑟 + 𝛾max
𝑎′

𝑄𝜃′(𝑎
′, 𝑠′) − 𝑄𝜃 𝑠, 𝑎

2

+1

-1

𝑎 ∈ {↑,←, ↓,→}

𝑠

Q-Network (𝑄𝜃) 𝑄𝜃 𝑠, 𝑎 ∈ ℝ

+1

-1

𝑎 ∈ {↑,←, ↓,→}

𝑠

Q-Network (𝑄𝜃) 𝑄𝜃 𝑠, 𝑎 ∈ ℝ

not the best approach to use
CNN to exploit raw input
images as states

+1

-1𝑠
Q-Network

(Deep Convolutional
Neural Network)

𝑄𝜃 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =→ ∈ ℝFu
lly

 C
o

n
n

ec
te

d

la
ye

rs

+1

-1𝑠
Q-Network

(Deep Convolutional
Neural Network)

𝑄𝜃 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =→ ∈ ℝFu
lly

 C
o

n
n

ec
te

d

la
ye

rs

better approach: multi-task network

+1

-1𝑠 Q-Network (𝑄𝜃)

𝑄𝜃 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =→ ∈ ℝ

+1

-1𝑠 Target Network (𝑄𝜃′)

𝑄𝜃′ 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =→ ∈ ℝ

+1

-1𝑠 Q-Network (𝑄𝜃)

𝑄𝜃 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃 𝑠, 𝑎 =→ ∈ ℝ

+1

-1𝑠 Target Network (𝑄𝜃′)

𝑄𝜃′ 𝑠, 𝑎 =↑ ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =← ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =↓ ∈ ℝ

𝑄𝜃′ 𝑠, 𝑎 =→ ∈ ℝ

update every 10000 iteration

used to compute labels of training data using Bellman equation
“frozen” version of Q-network for 10000 iteration

used for back-propagation, updated every iteration

+1

0𝑠 Q-Network (𝑄𝜃)

𝑝 𝑤|𝑠, 𝑎 =↑ ∈ ℝ

𝑝 𝑤|𝑠, 𝑎 =← ∈ ℝ

𝑝 𝑤|𝑠, 𝑎 =↓ ∈ ℝ

𝑝 𝑤|𝑠, 𝑎 =→ ∈ ℝ

𝑄 𝑠, 𝑎 = 𝑝 𝑤|𝑠, 𝑎
𝑉 𝑠 = 𝑝(𝑤|𝑠)

Note: in a win/lose process (only one reward at the end,
+1 if win and 0 if lose, with no intermediate rewards),
value and action value have particular interpretation: the
probability of winning

Part 2

In this part we will cover direct policy optimization, with two big families of
methods

- Policy gradient methods, Actor-Critic, A2C, A3C, PPO, TRPO

- Evolutionary Strategies (ES), namely Cross-Entropy Method (CEM) and
Covariance Matrix Adaptation (CMA-ES)

In policy gradient methods, we consider stochastic policies

𝜋(𝑎|𝑠)

(in Q-learning we learned deterministic policies 𝑎 = 𝜋(𝑠))

More specifically, we consider parameterized stochastic policies
(e.g. neural nets)

𝜋𝜃(𝑎|𝑠)

𝜋𝜃 is called the policy network

+1

0𝑠 Policy-network (𝜋𝜃)

𝜋𝜃 𝑎 =↑ |𝑠

so
ft

m
ax 𝜋𝜃 𝑎 =← |𝑠

𝜋𝜃 𝑎 =↓ |𝑠

𝜋𝜃 𝑎 =→ |𝑠

The objective of policy gradient is to solve

argmax
𝜃

𝐽 𝜃 = argmax
𝜃

𝔼𝜏~𝑃[𝑅(𝜏)|𝜋𝜃]

where 𝜏 is a trajectory (also called a rollout) that follows a probability distribution 𝑃

𝜏 = 𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2, …

𝑃(𝜏) is the probability to sample trajectory when sampling actions 𝑎𝑖 from the
policy 𝜋𝜃 and states 𝑠𝑖 from the transition model 𝑇

𝑠0 𝑎0

~𝜋𝜃(. |𝑠0)

~𝑇(. |𝑠0, 𝑎0)~ Markov Chain
stationary
distribution

𝑟0

𝑅 𝜏 =෍

𝑡=0

𝐻

𝛾𝑡 𝑟𝑡

𝑠1 𝑎1

~𝜋𝜃(. |𝑠1)

~𝑇(. |𝑠1, 𝑎1)

𝑟1

𝑠2

𝑟2

In order to solve

argmax
𝜃

𝐽 𝜃 = 𝔼𝜏~𝑃[𝑅(𝜏)|𝜋𝜃]

We perform a gradient ascent by computing the policy gradient

𝛻𝜃𝐽 𝜃 = 𝛻𝜃𝔼𝜏~𝑃[𝑅(𝜏)|𝜋𝜃]

We use the log likelihood trick to compute the policy gradient

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 𝛻𝜃 log𝑃(𝜏|𝜋𝜃 𝑅(𝜏)]

We decompose the probability of trajectory 𝜏 under policy 𝜋𝜃

𝛻𝜃 log𝑃 𝜏 𝜋𝜃 = 𝛻𝜃logෑ

𝑡=0

𝐻

𝜋𝜃(𝑎𝑡|𝑠𝑡)𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

=෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 +෍

𝑡=0

𝐻

𝛻𝜃 log 𝑇 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡

=෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡

We finally get the policy gradient expression

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅(𝜏)

We finally get the policy gradient expression

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅(𝜏)

and use a basic Monte-Carlo estimator for the expectation,
by sampling trajectories (rollouts) from the current policy

Monte-Carlo estimator is unbiased, but very noisy (high variance)

To reduce variance, we can consider only future return at every step of the summation

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑅𝑡 𝜏

where 𝑅𝑡 denotes the future return starting from time-step 𝒕

𝑅 𝜏 = ෍

𝑡′=0

+∞

𝛾𝑡
′
𝑟𝑡′

𝑅𝑡 𝜏 = ෍

𝑡′=𝑡

+∞

𝛾𝑡
′
𝑟𝑡′

To further reduce variance, we can subtract a baseline

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 𝜏 − 𝑏)

The estimator is still unbiased, if 𝑏 doesn’t depend on the actions

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐴𝑡

𝐴𝑡 = 𝑅𝑡 𝜏 − 𝑏 is called the Advantage

There are many possible choices for baselines 𝒃 (constant baselines, time-dependent baselines,
state-dependent baselines), it can be shown that a good choice for the baseline (in terms of
variance reduction), is the value of the state 𝑏 = 𝑉(𝑠𝑡)

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 𝜏 − 𝑉(𝑠𝑡))

However, we don’t know the value function, so we estimate it (learn it) along the policy by
parameterizing it with parameter vector 𝑤 (e.g. neural network 𝑉𝑤)

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑅𝑡 𝜏 − 𝑉𝑤(𝑠𝑡))

We can also use the following expressions

𝛻𝜃𝔼𝜏~𝑃 𝑅 𝜏 𝜋𝜃 = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑉𝑤(𝑠𝑡))

= 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑟𝑡 + 𝛾𝑉𝑤(𝑠𝑡+1) − 𝑉𝑤(𝑠𝑡))

= 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 (𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑉𝑤(𝑠𝑡+2) − 𝑉𝑤(𝑠𝑡))

This is the policy gradient theorem

Actor-Critic algorithm

• Initialize random weights 𝜃 for the policy-network (actor network) and random weights 𝑤 for
the Value-network (critic network)

• For N iterations until policy converges:
• Sample M trajectories 𝜏 from current policy 𝜋𝜃
• For each timestep 𝑡 along each trajectory, compute the advantage 𝐴𝑡 = 𝑅𝑡 𝜏 − 𝑉𝑤 𝑠𝑡
• Estimate the policy gradient using MC estimation on

𝛻𝜃𝐽(𝜃) = 𝔼𝜏~𝑃 ෍

𝑡=0

𝐻

𝛻𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐴𝑡

And perform gradient ascent step along 𝛻𝜃𝐽(𝜃)

• Refit the baseline

𝑤 = argmin
𝑤

෍ 𝑉𝑤 𝑠𝑡 − 𝑅𝑡 𝜏
2

+1

0𝑠

Policy-network (𝜋𝜃)

𝜋𝜃 𝑎 =↑ |𝑠

so
ft

m
ax 𝜋𝜃 𝑎 =← |𝑠

𝜋𝜃 𝑎 =↓ |𝑠

𝜋𝜃 𝑎 =→ |𝑠

Value-network (𝑉𝑤) 𝑉𝑤 𝑠

+1

0𝑠

Actor

𝜋𝜃 𝑎 =↑ |𝑠

so
ft

m
ax 𝜋𝜃 𝑎 =← |𝑠

𝜋𝜃 𝑎 =↓ |𝑠

𝜋𝜃 𝑎 =→ |𝑠

Critic 𝑉𝑤 𝑠

+1

0𝑠

Actor

𝜋𝜃 𝑎 =↑ |𝑠

so
ft

m
ax 𝜋𝜃 𝑎 =← |𝑠

𝜋𝜃 𝑎 =↓ |𝑠

𝜋𝜃 𝑎 =→ |𝑠

Critic 𝑉𝑤 𝑠

Learn from each other

+1

0𝑠
Actor-Critic network

(Deep Convolutional Neural
Network)

𝜋𝜃 𝑎 =↑ |𝑠

so
ft

m
ax 𝜋𝜃 𝑎 =← |𝑠

𝜋𝜃 𝑎 =↓ |𝑠

𝜋𝜃 𝑎 =→ |𝑠

𝑉𝑤 𝑠

Fu
lly

-
co

n
n

e
ct

ed

la
ye

rs
Fu

lly
-

co
n

n
e

ct
ed

la

ye
rs

Evolution Strategies

Example of a basic evolution strategy: the Cross-Entropy Method (CEM-ES)

Work with parameterized policies 𝜋𝜃

Assume that 𝜃~𝒩(𝜇, 𝜎𝐼)

For 𝑁 iterations (generations) until convergence:
• Sample 𝑛 candidates 𝜃𝑖~𝒩(𝜇, 𝜎𝐼)
• Executes rollouts (trajectories) 𝜏𝑖 following each policy 𝜋𝜃𝑖 and evaluate 𝔼[𝑅(𝜏𝑖)|𝜋𝜃𝑖] with Monte Carlo

• Select 𝑝% best policies 𝜃𝑖 from these simulations (called the elite set)
• Refit 𝜇 and 𝜎 to the elite set (e.g. with Maximum Likelihood Estimation) for the next generation

Example of a basic evolution strategy: the Cross-Entropy Method (CEM-ES)

Work with parameterized policies 𝜋𝜃

Assume that 𝜃~𝒩(𝜇, 𝜎𝐼)

For 𝑁 iterations (generations) until convergence:
• Sample 𝑛 candidates 𝜃𝑖~𝒩(𝜇, 𝜎𝐼)
• Executes rollouts (trajectories) 𝜏𝑖 following each policy 𝜋𝜃𝑖 and evaluate 𝔼[𝑅(𝜏𝑖)|𝜋𝜃𝑖] with Monte Carlo

• Select 𝑝% best policies 𝜃𝑖 from these simulations (called the elite set)
• Refit 𝜇 and 𝜎 to the elite set (e.g. with Maximum Likelihood Estimation) for the next generation

More advanced evolution strategy: using Covariance Matrix Adaptation (CMA-ES)

Work with parameterized policies 𝜋𝜃

Assume that 𝜃~𝒩(𝜇, 𝐶)

For 𝑁 iterations (generations) until convergence:
• Sample 𝑛 candidates 𝜃𝑖~𝒩(𝜇, 𝐶)
• Executes rollouts (trajectories) 𝜏𝑖 following each policy 𝜋𝜃𝑖 and evaluate 𝔼[𝑅(𝜏𝑖)|𝜋𝜃𝑖] with Monte Carlo

• Select 𝑝% best policies 𝜃𝑖 from these simulations (called the elite set)
• Refit 𝜇 (e.g. with Maximum Likelihood Estimation)
• adapt 𝐶 as 𝐶 = 𝛼𝐶 + 1 − 𝛼 𝑦𝑦𝑇, where 𝑦 = (𝜇𝑛𝑒𝑤 − 𝜇𝑜𝑙𝑑)/| 𝜇𝑛𝑒𝑤 − 𝜇𝑜𝑙𝑑 | (direction of the search)

