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Abstract— Whole body controllers based on quadratic pro-
gramming allow humanoid robots to achieve complex motions.
However, they rely on the assumption that the model perfectly
captures the dynamics of the robot and its environment,
whereas even the most accurate models are never perfect. In this
paper, we introduce a trial-and-error learning algorithm that
allows whole-body controllers to operate in spite of inaccurate
models, without needing to update these models. The main idea
is to encourage the controller to perform the task differently
after each trial by introducing repulsors in the quadratic
program cost function. We demonstrate our algorithm on (1)
a simple 2D case and (2) a simulated iCub robot for which the
model used by the controller and the one used in simulation
do not match.

I. INTRODUCTION

Like humans, humanoid robots need to carefully coordi-

nate dozens of degrees of freedom for even the most basic

tasks, like standing upright or walking [1]. This challenge can

be tackled in a principled way with Quadratic Programming-

based Whole-Body Controllers (QB-based WBC) [2]: at each

time-step, an optimizer minimizes a cost function that de-

scribes the task(s), under constraints that model the dynamics

of the robot interacting with its environment [3]. This opti-

mization is performed many times per second by formulating

the problem as a quadratic program with linear constraints,

which can be solved efficiently on modern computers.

The most fundamental assumption of QP-based WBC is

that the model accurately captures the dynamics of both

the robot and the environment. Unfortunately, no model

is ever perfect and thus such controllers often fail when

the real world and the model do not match, even when

using accurate state estimators and even when assuming

perfect state feedback from the robot (which allows for

small perturbations to be absorbed to a certain extent). For

instance, the robot’s dynamics (contact forces, center of

mass, friction cones, etc.) is rarely known with precision.

Even with a good dynamics model extracted by CAD and

refined by dynamics parameters identification [4], [5], there

are elasticities, nonlinearities and coupled dynamics effects

which are impossible to model and measure accurately on

a complex platform like a humanoid, especially in presence

e-mail: firstname.lastname@inria.fr
karim.bouyarmane@loria.fr
All authors have the following affiliations:

- Inria, Villers-lès-Nancy, F-54600, France

- CNRS, Loria, UMR 7503, Vandœvre-lès-Nancy, F-54500, France
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of multiple contacts [6]. Some parts of the environment are

also generally unknown, like the exact mass of objects or

the friction of the floor, or might not be modeled accurately

because of imperfect sensors. Ultimately, the robot may also

be damaged [7], or some parts may be worn out. Overall,

in practice, setting a QP-based WBC for humanoids almost

always involves long hand-tuning sessions of the model and

the cost function [8].

The fact that a WBC can fail when its model is imperfect

is not a problem per se: humans often fail when they have

imperfect information or when their “internal model” is

different (e.g., when they move under perturbations [9] or

after an injury). Humans, however, learn from their mistakes,

i.e. they adapt their behavior until they find a way to achieve

their objective. By contrast, a QP-based WBC with a fixed

model and tasks structure will keep performing the same

faulty behaviors.

Ideally, we would like to see humanoid robots that (1)

attempt to achieve a whole body task with their WBC, (2)

fail (e.g., fall down), and (3) try again until they achieve

the desired task. We would also like the learning process to

succeed after only a few trials (less than a dozen) and a few

minutes [10], [11], [12], in particular because of the limited

energetic autonomy of robots. The main question here is:

“how to incorporate new information from the real world

into a QP-based WBC?”

Since a QP-based WBC assumes a perfect QP optimizer,

only two elements can be updated in such a trial-and-

error process: the cost function and the model (i.e., the

constraints). The most classic approach is to update the

model according to the data acquired during each trial,

i.e. perform a classic model identification [13]. Neverthe-

less, identifying the model of a full humanoid is far from

being straightforward, as (1) identification can seldom be

performed with only proprioceptive sensors [4], and (2) for

a humanoid structure, it might require exciting the system in

specific ways which may be unsafe for the robot [14]. More

importantly, some effects cannot be captured by tuning the

parameters of classic models. To take an extreme example, a

humanoid walking through a flooded room would experience

significant viscous forces, which are usually not taken into

account in the classical model for the robot moving in an

indoor environment.

Our main insight is that even if a model makes inaccurate

predictions for some behaviors, this is not necessarily the

case for all the behaviors [15], [16], [7], [17]. In the previous

flooded room example, the viscous forces are likely to be

negligible if the robot is moving slowly; therefore a learning
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process could discover that the WBC works fine when the

robot moves slowly, without needing to update the model

to take viscous forces into account. Similar situations are

common when robots perform highly dynamic motions:

while a perfect model might be required to move at high

speed, a less accurate model might be enough for a lower

speed motion. The redundancy of the robot also implies that

many tasks can be achieved in different ways with equivalent

costs. In case of damage, the redundancy of the robot plays

a similar role: the behaviors that do not use the damaged

parts (e.g., a blocked joint) will be accurately predicted by

the model, whereas those that rely on broken ones will have

very different outcomes [15], [7]. In other words, we can use

an imperfect model if we know its limits.

In the present paper, we introduce this idea in the QP-

based WBC framework for whole-body motion, leading to a

novel learning approach. When the robot performs a whole-

body movement that, at some point, fails (for example, the

robot falls), it should try to avoid repeating the same behav-

ior. This “information” should be added to the QP problem so

that the controller takes into account the “failures”. The key

challenge is that we cannot simply add penalties for failed

states because the “bad decision” (i.e., the control command

and the state that caused at some point the failure) is very

likely to have happened much before the moment when the

robot actually “fails” or falls. In essence, this problem is a

form of the classic “temporal credit assignment problem”

in reinforcement learning [18], which is one of the most

important problems of the field. For example, if a humanoid

robot falls on the ground, then it reaches a failed state when

it hits the ground; but penalizing the failed state would

mean repulsing from the ground, which is something that

we already know and is already identified as a bad state.

Instead, at some point of its trajectory, the robot took a series

of decisions that led to the failed state: these are the states

that should be avoided. In classic reinforcement learning (e.g.

Q-learning, see [18]), we would propagate the knowledge of

the failed state to the previous state and start a new episode,

but this means a prohibitive number of trials for a complex

humanoid robot with many degrees of freedom (thousands

in a complex space).

Our main concept is that we can update the cost function

of the QP controller after each trial so that the robot tries

to solve the task in different ways until it finds one that

is satisfying. To do so, we use the state-space trajectory

of failed trials to introduce repulsors along the trajectory

that push the QP controller away from states that have

already been visited, while still attempting to solve the task.

Between each episode, a gradient-free optimization algorithm

searches for the best repulsors so that the next trial is as

different as possible while still “solving” the task. This

new episodic, trial-and-error algorithm enables QP-based

whole-body controllers to adapt in a few trials to unknown

situations, like damage, and to imperfect models of the robot

or its environment.

We show the effectiveness of our approach on a toy-

example (a particle moving in 2D) and on a simulated iCub

humanoid robot for a squatting task, in a situation where the

robot model is wrong: the robot’s feet are smaller in reality

than in the QP model, which causes the QP controller to fail.

II. BACKGROUND

A. Humanoid QP-based whole-body control

Whole-body control for humanoid robots is essentially for-

mulated by prioritized multi-task controllers with strict task

priorities [19] or multi-task controllers with soft task priori-

ties (also called weights) [20], [21]. A now well-established

classical formulation for the latter is the quadratic program-

ming (QP) formulation, which solves, at every timestep of

the control loop, the following QP problem:

min
q̈, f ,τ

m

∑
k=1

wk

∥∥∥g̈k − g̈d
k

∥∥∥2
(1)

under constraints Mq̈+N = JT f +Sτ (2)

Jq̈+ J̇q̇ = 0 (3)

f ∈ K (4)

qmin ≤ q ≤ qmax (5)

q̇min ≤ q̇ ≤ q̇max (6)

τmin ≤ τ ≤ τmax , (7)

where q is the configuration of the robot (including the 6D

position and orientation of the floating-base), q̇ and q̈ are (as

an abuse of notation) the configuration-space velocity and

acceleration (thus respectively including the angular velocity

and angular acceleration of the base, which are not the

time derivatives of the base orientation representation), M
is the inertia matrix, N the gravity and Coriolis term, J
the stacked Jacobian matrices at the contact points, f the

vector composed of all the point contact forces, τ the actuator

torques, S a selection matrix that maps the dimension of the

actuated joints n− 6 to the dimension of the configuration

space n, K the Cartesian product of the linearized Coulomb

friction cones at the contact points. Equations (5) and (6)

are converted into linear constraints on q̈ by using finite

differentiation and velocity dampers [22].

A task gk, with its relative weight wk, is any mapping

R
n → R

nk , where nk is the dimension of the task. A task

is characterized by its Jacobian matrix Jk = ∂gk
∂q and a

desired acceleration behaviour g̈d . A classical behaviour is

the attractor behaviour, which is used to bring the task to a

desired set-point value gref
k . The attractor behaviour writes:

g̈d
k �−αk(gk −gref

k )−2
√

αkġk . (8)

It models a critically-damped mass-spring-damper system

with unit apparent mass, parameterizable stiffness αk, and

critical damping 2
√

αk. This is the most used task in QP

controllers. We use it in the examples below to make the

humanoid robot perform a squatting motion. The attractor

task in this example is on the center-of-mass (CoM) c with

reference setpoint that is lowered from the standing up

posture CoM cref,1 to the crouching posture CoM cref,2.
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As opposed to using nonlinear constrained robotics opti-

misation frameworks such as [23], a QP can be solved in

few milliseconds and thus allows for online control.

B. Learning with humanoid robots

A large part of the work about learning motion controllers

for humanoid robots has focused on the optimization of

neural networks [24], [25] or Central Pattern Generators

(CPG) [24], [26] in simulation, with the hope of transferring

the optimized controller to the physical robot; some others

rely on more classic reinforcement learning approaches (e.g.

Q-learning) and learn discrete policies (e.g., [27]). However,

all these approaches assume that the simulation perfectly

captures the dynamics of the robot. The few experiments

performed with real robots involve learning very few param-

eters (typically from 2 to 4) for simple walking patterns [28],

[29], because only a few dozen of controller evaluations can

be reasonably performed with a robot.

While interesting from an artificial intelligence perspec-

tive, these learning approaches are far from being competitive

with QP-based WBC: they can only generate simple motion

for a single task (e.g. walking forward) and are often open-

loop. In addition, they are not compatible with QP-based

WBC, which prevents the two communities to exchange

ideas and progress together.

A handful of papers combine QP-based WBC with some

form of learning (e.g. [30]). Modugno et al. [31] exploited

a black-box optimizer (CMA-ES [32]) to learn the temporal

profiles of the task weights of a QP-based controller, using

a simulated robot. In [8] they used constrained variants

of CMA-ES to learn safe task weights that guarantee that

the controller never violates constraints. However, the opti-

mization was still done offline and not on the real robot.

Mukovskiy et al. [33] learned movement primitives from

human motion captures, and combined them with model

predictive control and planning to generate whole body

motions on the HRP-2 robot. Clever et al. [34] used motion

generated in simulation with a QP-based WBC to learn

motion primitives, which can then be employed instead of

the QP-based WBC while having a lower computational cost.

Overall, these papers use learning in simulation only and

aim at making whole body control more reliable and less

computationally demanding. Contrary to the present paper,

they do not aim at incorporating data from failed executions

into the controller itself. Although not tested on a physical

robot (to our knowledge), the approach proposed by Lober

et al. [35] is probably the closest to the present work. In

this work, the authors used Bayesian Optimization (BO) [7],

which is a model-based black-box optimization algorithm,

to move an intermediate waypoint for a QP-based WBC.

However, as noted by the author, BO does not scale besides

a few parameters (about 5 to 10 parameters to optimize).

The same observation was done by Antonova et al. [36] that

used BO and CMA-ES to optimize the 16 parameters of a

walking controller for a simulated planar robot.

Finally, in a study related to the present paper, but not

directly related to learning, Gori et al. used force fields as

attractors and repulsors to model targets and obstacles inside

a reaching/tracking controller for the upper-body of iCub

[37]. The authors, however, only applied their approach to

the upper-body of the robot on a fixed base, and relied on

real-time perception of visual targets and obstacles. In other

words, they did not attempt to learn, that is, to improve

performance after several trials; instead, they only adapted

the current controller to the environment.

C. Transferability in robot learning

It is well documented that optimizers overfit simulators

most of the time, which leads to behaviors that are high-

performing in simulation, but low-performing in reality. This

issue is commonly called the “reality gap” [38], [16], [39].

Many ideas have been explored to cross this “reality gap”,

especially in evolutionary robotics. The proposed solutions

range from adding noise to the simulation [38], [40] to

automatically improving simulators [41], [11]. One of the

most successful approaches is the “transferability approach”

[16], [15], [39]: instead of attempting to correct the simulator,

the transferability approach hypothesizes that the simulator

is accurate for some behaviors and not others; it is therefore

possible to (1) learn the limits of the simulation, which is a

supervised learning problem, and (2) encourage the learning

process to select behaviors that are within these limits.

This idea was recently used to learn new walking policies

for a damaged 6-legged robot in less than 2 minutes / a

dozen trials [7]. In these experiments, the robot can find a

working policy because some behaviors from the simulated,

intact robot perform the same on the damaged, real robot

(typically because they do not rely on the damaged part). Put

differently, the algorithm finds the subset of high-performing

solutions that work similarly in the simulated, intact robot

and the physical, damaged robot. However, this algorithm

does not fit the QP-based WBC framework, since it is

designed to learn parametrized policies (e.g. CPGs or neural

networks). In the present work, we exploit the same concept

of transferability, but we formulate it in a way that leverages

the benefits of modern WBC.

III. REPULSOR LEARNING

A. Repulsor behavior with the QP controller

When the robot executes a QP-controlled motion that leads

to a failure (e.g. the robot falling down, the QP failing

to find a solution, etc.), we want to instruct the controller

to avoid that motion. Let t �→ qfail(t) be the trajectory in

the configuration space, corresponding to such an ultimately

failing motion. The trajectory is discretized in a number nr
of repulsor configurations qfail

1 , . . . ,qfail
nr , at times t1, . . . , tnr

distributed uniformly along the total time of the motion.

In order to write a QP-compatible repulsor task from

a repulsor configuration qfail
j , we take inspiration from

the behavior of the Coulomb’s inverse-square law between

electrically charged point particles. Considering the current

configuration q and the the repulsor configuration qfail
j as two
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positive electric charges, the desired behavior writes:

min
q̈

∥∥∥∥q̈− Δ
‖Δ‖3

∥∥∥∥
2

, Δ � β
(

q−qfail
j

)
, (9)

where β is a diagonal matrix with non-negative, and at least

one positive, elements. Changing the elements in β affects

the repulsion strength along each coordinate, which can also

be set to zero. Let us denote the desired acceleration of the

repulsor behavior from qfail
j as:

q̈rep(qfail
i )� Δ

‖Δ‖3
. (10)

Adding the set of repulsors from the failed motion to

the QP (1) with respective weights (wrep
1 , . . . ,wrep

nr ), the latter

stays definite positive and becomes:

min
q̈, f ,τ

m

∑
k=1

wk

∥∥∥g̈k − g̈d
k

∥∥∥2
+

nr

∑
j=1

wrep
j

∥∥∥q̈− q̈rep(qfail
j )

∥∥∥2
(11)

under constraints (2) to (7).

As described in Section II-A, a classical QP task behavior is

to attract the task to a desired set-point, using spring-damper

dynamics (8). When there is a mismatch between the QP

model and reality, this behaviour can cause the robot to fail.

Our insight is that using the data from failed attempts to

add repulsor tasks will cause the QP to explore away from

previously visited states, while still trying to complete the

task. The individual joint gains (β ) determine how much

each joint is repulsed by the repulsor, while the task weights

(wrep
j ) determine the strength of each repulsor.

Fig. 1 illustrates this behaviour in a simple two-

dimensional state-space where there is a mismatch between

the QP model and the real world. In example A, the hatched

area represents the mismatch between the real world robot

and its simulated model (i.e., the model used to compute the

controls) which drives the state “downwards” preventing the

QP to reach the task’s goal. Adding repulsors on the failed

trajectory causes the QP to explore away from the hatched

area and complete the task (A.2). In the second case (B.1

and B.2), we reach a failed state when entering the hatched

area. Adding the repulsors (red triangles) effectively changes

the path followed by the QP in B.2, which approaches the

goal from another configuration.

B. Optimizing the repulsors

The position of the added repulsors is determined by

the trajectories previously explored by the QP-based WBC.

However, the individual joint gains (β ) and the weight of

each repulsor task (wrep
j ) need to be tuned: if they are

too high, the QP-based WBC will not solve the task (the

repulsors will dominate the cost function of the quadratic

program); if they are too small, then the next behavior is

likely to be very close to the current failed ones, and therefore

likely to fail as well. As a consequence, we need to optimize

the gains and the weights so that the QP-based WBC solves

the task as best as possible, while being as far as possible

from the previous failed attempts.

Fig. 1. Intuition of the repulsors approach, shown in a 2D state-space
for simplicity. Each panel shows the path followed by the state from the
start (blue, filled) to the task goal (green, hollow). Hatched areas show a
mismatch between the QP model and the real world. Repulsors are shown
with red triangles.

These two objectives can be evaluated for a vector of

individual joint gains diag(β ) and a set of i · nr repulsor

weights W = [wrep
1 , . . . ,wrep

i×nr
] by running the QP controller

(Eq. 11) for nT time-steps without interacting with the
physical robot, that is, by simulating the robot with the same

model as the QP controller, and computing the two following

cost functions: (1) the average distance of the QP-generated

trajectory from each repulsor (cE ) and (2) the tracking error

of the QP task (cT ). More formally, we compute:

cE(β ,W )� 1

i ·nr

∫ T

0

i·nr

∑
j=1

exp

(
−
∥∥∥q(t)−qfail

j

∥∥∥2
)

dt (12)

cT (β ,W )�
∫ T

0

m

∑
k=1

wk

∥∥∥gk(t)−gd
k

∥∥∥2
dt , (13)

where i is the current episode number and T is the duration

of each episode.

We normalize cE and cT using a Monte Carlo estimate

of the bounds for each cost. Specifically, we run the QP

controller K times (e.g., K = 100) with random values for β
and W ; estimate cE and cT for each run; and finally normalize

them using the 5th and 95th percentiles (to avoid outliers):

CE(β ,W )� cE(β ,W )− I5%(cE)

I95%(cE)− I5%(cE)
(14)

CT (β ,W )� cT (β ,W )− I5%(cT )

I95%(cT )− I5%(cT )
(15)

where I5%(x) denotes the 5th percentile of x and I95%(x) the

95th percentile.

Lastly, we combine CE and CT in a single cost function:

C(β ,W )� λ ·CE(β ,W )+(1−λ ) ·CT (β ,W )+P(t) (16)
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where λ is a user-defined parameter that represents the trade-

off between the two cost functions, i.e. between exploration

and exploitation. A penalty P(t) is added to the cost if a

failed state is reached before the end of the allotted episode

time:

P(t) = 2
t

Tallotted
(17)

C(β ,W ) is not differentiable since it involves solving a QP

program at every time-step. We therefore consider it as a

black-box function that we optimize with CMA-ES1 [32],

a state-of-the-art global optimizer for non-linear, stochastic,

black-box optimization.

This optimization is performed by running simulations

using the QP model and different sets of repulsor param-

eters. This process typically requires hundreds of calls to

the cost function, which makes the overall optimization

computationally demanding (at least several minutes for a

humanoid using a modern computer). Nevertheless, our aim

is primarily to reduce the interaction time, that is, the time

spent trying controllers on the real robot, because we assume

that computers will be faster and faster in the future. In

addition, CMA-ES can take full advantage of multi-core

computers and clusters to speed up the computation. It is

also important to highlight that the optimization becomes

harder after each episode, since we increase the number of

parameters to optimize after each episode on the physical

robot. Our approach is therefore not likely to work with more

than a dozen of episodes; it still fits our use case well because

we aim at performing at most a dozen of learning episode

with the physical robot.

C. Episodic learning

The learning algorithm searches for high-performing, al-

ternative control strategies until it has exhausted its budget of

episodes (or until a satisfying solution is found). Algorithm 1

details the full learning loop, which is based on three main

steps:

1) attempt to complete the task using the QP controller

in the real world (with the physical robot); record the

trajectory and the tracking cost cT (β ,W ) (line 6);

2) add new repulsors R using the state-space trajectory

q(i) of the last episode (line 11);

3) optimize the parameters of the repulsors (β ,W ) with

CMA-ES and the QP controller, using the model of

the controller as a simulator (line 12).

After each episode, the robot is reset to its initial position.

A success threshold for the tracking cost is not specified to

keep a more general approach. In this case, each trajectory is

considered as sub-optimal and is therefore avoided in future

episodes. Thus, the output of the algorithm is not necessarily

the last set of repulsors, joint gains, and repulsor weights, but

the one that correspond to the best tracking cost in the real

world.

1We use the implementation of the libcmaes library: https://
github.com/beniz/libcmaes

Algorithm 1 Repulsor learning

1: procedure LEARN

2: R ← /0 � set of repulsors
3: C∗ ← ∞ � best cost so far
4: β ∗,W ∗ ← 0,0 � best parameters
5: for i from 1 to N do � for each episode
6: q(i) ← Run episode in real world using QP

controller with R(β ,W ) and compute cT (β ,W ) (Eq. 13)

7: if cT < c∗T then � update the best parameters
8: R∗ ← R
9: β ∗,W ∗ ← β ,W

10: cT ← c∗T
11: for j from 1 to nr do � add new repulsors
12: R ← R ∪q(i) (t j), t j =

j−1
nr−1 T

13: β ,W ← argmin(SIMEPISODE(R)) � CMA-ES
14: return R∗,β ∗,W ∗

15: procedure SIMEPISODE(R)

16: Run episode using QP model, controlled by QP with

R(β ,W ) (Eq. 11)

17: Calculate exploration cost, CE , using (Eq. 12, 14)

18: Calculate task cost, CT , using (Eq. 13, 15)

19: return C(β ,W ) (Eq. 16)

IV. EXPERIMENTAL RESULTS

A. 2D particle

Our first objective is to validate the concept of repulsor

learning on a simple and visual example (Fig. 2). To do so,

we implemented our algorithm for a simple two-dimensional

particle of mass 1 kg that has to start from state (1,0) and

reach state (−1,0). At each time-step, the QP controller

chooses the magnitude of a 2D force, which is applied

on the particle with the standard equation of dynamics. To

introduce a mismatch between the QP model and the “real

world”, we placed a circular obstacle of radius 0.3 around

(0,0) which is unknown to the QP controller. Hitting the

obstacle puts the particle in a ”failed state”, which halts the

controller. In higher-dimensional spate spaces, the equivalent

of this obstacle would be a zone in which the robot fails,

for instance, a zone of the state-space in which a humanoid

robot fails to maintain its balance. After each episode, we

add 6 repulsors, resulting in 8 to 32 parameters to optimize2,

depending on the episode number. Since the optimization

procedure is stochastic, we replicate each experiment 20

times to gather statistics. To optimize the cost, CMA-ES is

given a budget of 500 calls to the cost function.

The results show that three episodes are enough to reach

the target state (Fig. 2A). In a typical run (Fig. 2B), the

particle first hits the obstacle (for which there is a mismatch

between the model and the “reality”), which is expected since

the controller has no knowledge of the obstacle. Repulsors

are then added, but the second episode is often too close to

the obstacle. At the third episode, the particle usually reaches

2The particle has a 2-dimensional state. The number of parameters is
2+6× i, where 6 is the number of repulsors and i the learning episode.
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Fig. 2. Tracking cost for the particle task (20 replicates). A: Median of the
best tracking cost since the beginning of the learning process and 25th-75th

percentiles. The task is solved after only 3 to 4 seconds of interaction time
(3 to 4 episodes). B: Behavior of a typical controller. The first two episodes
(trajectories 1 and 2) hit the obstacle; the third tested trajectory solves the
task and obtains the best tracking cost; the fourth trajectory is very different
from the third trajectory, but it obtains a higher cost. The selected controller
is the third one.

   "real" physical world          model for the controller

small feet big feet

Fig. 3. The mismatch between the “real world” iCub (left, small feet) and
its internal model in the QP controller (right, large feet) causes the iCub
robot to fail in the real world, even though the QP-based WBC generates a
feasible joints trajectory. The “real world” here is in Gazebo.

the target state. After this episode, the algorithm explores

more complex trajectories, but the resulting trajectories often

have a high tracking error because they have to be different

from the “good” trajectory that was found at the third

episode.

B. iCub squatting with a mismatch in feet geometry

We then evaluate our approach with a QP-based WBC

for the iCub robot, with a mismatch between the internal

model of the QP controller and the model simulated in

Gazebo3. iCub is a 53-DOF full humanoid robot, with 7-

DOF arms, 3-DOF torso and 6-DOF legs. It is fully open-

3In this case, the simulated robot in Gazebo is the “real world” robot.

Fig. 4. Tracking cost for the iCub squatting task (13 replicates). Median of
the best tracking cost since the beginning of the learning process and 25th-
75th percentiles. The task performance increases (lower cost) on average as
more trials are performed, with the major improvement between the first
and second trials.

source in both mechanics and software [42]. Its dynamics

model, represented in a URDF format, is used by a software

abstraction layer to control the simulated robot in Gazebo

as if it was the real one [43]. Wrenches, contact forces and

center of mass are computed for both the real and simulated

robot by open-source libraries for dynamics estimation [44].

To optimize the cost, CMA-ES is given a budget of 500 calls

to the cost function.

We created a QP-based WBC for iCub using the MC-RTC

framework [3]. The controller is composed of a position

task for the robot’s center of mass (CoM), the left hand

and the right hand. Each position task switches its set-point

position every tperiod seconds, taking iCub from a standing to

a crouching configuration and back. Specifically, we move

the CoM from y = 0.45m to y = 0.3m. When both the QP

controller and Gazebo, i.e., the “real world”, have the exact

same model, iCub is able to perform the squatting task

with the “classic” QP controller with three tasks (and no

repulsors). However, we introduce a mismatch to the QP

model that causes iCub to fail when performing the task.

Specifically, we provide iCub with a different (smaller) pair

of feet, as shown in Figure 3, which is a common occurrence

in this platform as different variations of it are used in labs

around the world. The smaller feet are 15 cm long and 5 cm

wide while the bigger feet which are 19 cm long and 6.5

cm wide. The model in the QP controller no longer reflects

the real world robot: as expected, the “classic” QP controller

with the three tasks fails, and the robot falls.

Therefore, we start learning the repulsors as described in

Section III. The controlled robot has 53DOF, which would

result in a 53-dimensional repulsor if all the joints would

be considered (more if the full state would be considered,

including velocities and accelerations). However, most of the

joints of iCub are not “critical” for balancing (e.g., 9 DOF

in each hand). For this reason, and for keeping the number

of parameters to optimize as low as possible, we designed

a repulsor state of 8-DOF, with the following joints:

[“torso pitch”, “torso roll”, “torso yaw”, “neck pitch”,
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“l hip pitch”, “r hip pitch”, “l knee”, “r knee”].
We run the learning algorithm for 6 episodes, adding 6 new

repulsors after each episode and optimizing their parameters

before making a new attempt at fulfilling the task with

the “real robot”. The number of parameters to optimize is

therefore dim(β )+dim(W )× i = 8+6× i, ranging from 14

(i = 1, first episode) to 38 (i = 5, last episode).

There is a clear improvement in the task performance

when using repulsors, as seen in Fig. 4. As more trials are

performed and new repulsors are added, the performance

increases further. Although the robot is not able to perform

the same squatting motion as expected by the QP-based

WBC (because the QP controller is using a wrong model),

it is still able to perform a comparable squatting motion

without falling down (see the Supplementary Video). The

CoM trajectories from one learning process are shown in

Fig. 5. Here we can see that the original trajectory, i.e.
without repulsors (shown in blue), is not able to make the

robot stand up after performing the squat (the robot falls). In

three of the following trials iCub performed a smaller squat

(see the Supplementary video) and was able to go back to a

standing position.

V. CONCLUSION AND DISCUSSION

Learning repulsors is a novel and promising approach to

mix QP-based WBC with trial-and-error learning. It enables

applying QP controller to real world robots, despite the

inevitable model errors, and without requiring to identify or

improve the robot model used by the QP controller. In the

two experimental setups of this paper, only 3 to 5 episodes

are required to find a controller that works in spite of an

important mismatch between the model used in the controller

and the real world. This low number of episodes makes

it easy to use our approach on physical humanoids robot

and significantly lowers the risk of breaking them. In the

iCub case, dealing with smaller feet is a clear example to

demonstrate our approach, albeit a simple one to solve by

measuring the feet and updating the model. We are exploring

other demonstrations for our approach, and especially on the

real iCub.

Nevertheless, the way we learn repulsors is only a first

“proof of concept” of the idea and we believe the concept

can be improved in several ways. First, the trade-off between

solving the task and exploring needs to be well-tuned to

obtain satisfying results. In future work, we will explore the

use of stack-based formulations of the whole-body problem

[19] (instead of the weight-based approach followed here),

which would change the way we combine the repulsors with

the main task.

A second direction of improvement is to accelerate (and

potentially improve) the optimization of the repulsors by

using a more data-efficient optimization algorithm. For in-

stance, Bayesian optimization [7], [29] with an appropriate

prior could require fewer calls to the cost function to find

high-performing solutions. In addition, the proposed algo-

rithm does not use all the available information. For instance,

the score achieved in the real world is currently ignored by

Fig. 5. Center of mass trajectories of the iCub robot for 5 episodes of
a typical learning process in the “real world” (here the Gazebo simulation
with small feet). The original trajectory, i.e. without repulsors, is shown
in blue. Episodes 2, 4 and 5 led to satisfying behaviors (not falling,
squatting movement). See the supplementary Video for a a visualization
of the behaviors.

the algorithm, whereas it could be used to guide the search

for the best repulsors.

Overall, learning repulsors offers a new view of humanoid

robot learning that bridges the gap between modern whole

body control and reinforcement learning. We believe it opens

many new research avenues to make humanoids robot that

can both benefit from sophisticated control methods and

adapt to unexpected situations.
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