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We propose to tackle in this paper the problem of controlling whole-body humanoid
robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the
perspective of mapping human motor control strategies to human-like mechanical avatar.
Our solution is based on the adequate reduction of the controllable dimensionality
of a high-DOF humanoid motion in line with the state-of-the-art possibilities of
non-invasive BMI technologies, leaving the complement subspace part of the motion
to be planned and executed by an autonomous humanoid whole-body motion planning
and control framework. The results are shown in full physics-based simulation of a
36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain
signals generated with motor imagery task.
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1. INTRODUCTION
Due to their design that allows them to be readily used in an
environment that was initially arranged to accommodate the
human morphology, that makes them more acceptable to the
users, and easier to interact with, it is generally admitted that
humanoid robots are an appropriate choice as living assistants for
the everyday tasks, for instance for the elderly and/or reduced-
mobility people. The problem that naturally arises is that of
the control of such an assistant and how to communicate the
wills and intentions of the user to the robot. This problem is of
course general but becomes more challenging when addressing
the above-mentioned category of users for which communication
capabilities can also be impaired (stroke patients for example).
This brings our initial idea of considering brain-machine inter-
faces (BMI) as the possible communication tool between the
human and the humanoid assistant. Notwithstanding, brought
along with this reflection was the more general question, non-
necessarily application-directed, of a human using its brain motor
functions to control a human-like artificial body the same way
they control their own human body. This question becomes our
main motivation and concern in the present work since solving it
would pave the way of the discussed applicative perspectives. We
thus propose our solution to it in this paper.

The approach we choose to investigate deals with the following
constraints of the problem. First, we only consider easy-and-
ready-to-use non-invasive BMI technologies. Among this class of
technologies, we aim more specifically at the one that would align
best and most intuitively with our expressed desire of mimicking

human motor-control function, namely motor-imagery-based
BMI, consisting ideally for the human user of imagining a move-
ment of their own body for it to be replicated in the humanoid
body, though we do not reach that ideal vision restricting our
study for the sake of feasibility demonstration to the use of a
generic motor-imagery task (imagining arm movement) that we
re-target to the specific motion of the robot at hand (leg motion of
the robot). Finally, the control paradigm for the humanoid robot
we set as objective in our study is that of low-level joint/link-level
control, to keep as general behavior and class of movements as
possible for the user to replicate at the robot, without restric-
tion of the class of movements allowed by particular higher-level
humanoid motion controllers.

We address the related work and existing proposed solu-
tions for this problem or approaching ones in the next sec-
tion (Section 2). We then detail our own solution, based on
the integration of, for the humanoid motion control part,
an autonomous contact-based planning and control frame-
work (Section 3), and for the BMI part, a motor-imagery-task-
generated brain-signal classification method (Section 4). The
integration of these two originally independent components is
discussed in Section 5, 6 presents an example proof-of-concept
experiment with a fully physics-simulated humanoid robot.
Section 7 concludes the paper with discussion and future work.

2. RELATED WORK AND PROPOSED SOLUTION
Various approaches have been proposed to solve the problem we
stated in the introduction of controlling a humanoid robot with
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BMI (Bell et al., 2008; Bryan et al., 2011; Chung et al., 2011;
Finke et al., 2011; Gergondet et al., 2011; Ma et al., 2013). All
approaches, ours included, are based on the integration of a BMI
technology with a humanoid controller, and can thus be catego-
rized according to which strategy is followed for each of these two
components. See Figure 1 for an overview.

From the BMI point-of-view, all these works do abide by
our posed constraint of using non-invasive BMIs that rely
on electroencephalography (EEG), generally utilizing the well-
established frameworks of visual-stimulation-based event-related
potentials (ERP) such as P300 in Bell et al. (2008), evoked
potentials (EP) such as the steady state visually evoked potential
(SSVEP) in Bryan et al. (2011); Chung et al. (2011); Gergondet
et al. (2011), or hybrid approaches combining electrooculogram
(EOG) with ERP such as in Ma et al. (2013), or P300 with motor-
imagery-evoked event-related desynchronization (ERD) (Finke
et al., 2011; Riechmann et al., 2011). None, however, investigated
a solely motor-imagery-based BMI as stated in our motivations of
replicating intuitive human motor-control strategies. Hence our
first contribution in the integration initiative.

We adapt in this work a motor-imagery decoding scheme
that we previously developed for the control of a one-degree-of-
freedom robot and for sending standing-up/sitting-down com-
mands to a wearable exoskeleton (Noda et al., 2012). It allows
us to generate a three-valued discrete command that we propose
to map to a one-dimensional subspace of the multi-dimensional
whole-body configuration space motion of the humanoid, and
more precisely the motion along a generalized notion of “verti-
cal axis” of the moving end-limb, such as the foot of the swing
leg in a biped motion for instance. As we detail in the course of
the paper (Section 5), the motivation behind this strategy is to
allow the user to assist the autonomous motion that might lead
the moving limb to be “blocked” in potential field local minima
while trying to avoid collision. The strategy can in future work be
developed into a more sophisticated two-dimensional continuous
command one as proven possible by recent and ongoing studies

FIGURE 1 | A schematic illustration of the proposed approach vs. the

existing ones for controlling a humanoid robot with non-invasive BMI.

on motor-imagery control (Wolpaw and McFarland, 2004; Miller
et al., 2010).

From the humanoid controller point-of-view now, the most
standard retained solution consists in using available humanoid
high level controllers. These can be either walking controllers
with the commands “walk forward” “stop” “turn left” “turn right”
sent to a walking humanoid, effectively reducing the problem of
humanoid motion control to that of walk steering control (Bell
et al., 2008; Chung et al., 2011; Finke et al., 2011; Gergondet et al.,
2011), or an object selecton/pick-up controller, where the user
selects an object in the scene and then the arm reaching/grasping
controller of the robot picks up the desired object (Bryan et al.,
2011). Finally Ma et al. (2013) use a hybrid control strategy where
both walk steering and selecting a high-level behavior among a
finite library can be done by switching between EOG and ERP
control. With these strategies, a humanoid can be seen as an
arm-equipped mobile robot, with wheels instead of legs (as it
is actually the case in Bryan et al., 2011 where only the upper
body is humanoid), and consequently the considerable amount of
work done on BMI wheelchair control, for example, can be read-
ily adapted. However, in doing so, the advantages of using a legged
device over a wheeled one are partially lost, and we can no longer
claim the need for the humanoid design nor defend the argument
of the possibility of using the robot in everyday living environ-
ment which would present non-flat structures, such as stairs for
example, with which the walking controllers are not efficient to
deal.

While we admit that these strategies relying on walking pattern
generators can in the long term benefit from the developments
in these techniques that would allow them to autonomously
cope with unstructured terrain (variable height stairs, rough ter-
rain) (Takanishi and Kato, 1994; Hashimoto et al., 2006; Herdt
et al., 2010; Morisawa et al., 2011), and that they can as well
use the hierarchical architectures in which they are embedded
as it is the case in Chung et al. (2011); Bryan et al. (2011); Ma
et al. (2013) for switching, for example, to an appropriate stair-
climbing controller when facing stairs, we choose in this work
to investigate an entirely different approach that does not incor-
porate any kind of walking or high-level controller. Instead, we
propose to allow the user to perform lower-level joint/link level
control of the whole-body motion of humanoid, driven again
by the desire of replicating the human low-level motor-control
strategies into the humanoid, but also by the belief that a generic-
motion generating approach will allow the robot assistant to deal
more systematically with unpredictable situations that inevitably
occur in everyday living scenarios and for which the discussed
hierarchical architectures would not have exhaustively accounted.
This is our second contribution. To achieve this goal, we rely
on the contact planning paradigm that we previously proposed
for fully autonomous robot (Bouyarmane and Kheddar, 2012),
adapting it here to the instance of a BMI-controlled robot.

3. HUMANOID CONTROLLER
Our humanoid controller is based on the multi-contact planning
paradigm, introduced in Hauser et al. (2008); Bouyarmane and
Kheddar (2012). This controller allows for autonomously plan-
ning and executing the complex high-degree-of-freedom motion
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of the humanoid from a high-level objective expressed in terms
of a desired contact state to reach. The controller works in two
stages: an off-line planning stage and an on-line execution stage.

At the planning stage (Bouyarmane and Kheddar, 2011a), a
search algorithm explores all the possible contact transitions that
would allow the robot to go from the initial contact state to the
desired goal contact state. What we mean by contact transition is
either removing one contact from the current contact state (e.g.,
removing the right foot from a double-support state to transition
to a left-foot single-support one) or adding one contact to the
current contact state (e.g., bringing the swing right foot in contact
with the floor to transition from a left-foot single-support phase
to a double support phase). One must however note that a contact
is defined as a pairing between any surface designated on the cover
of the links of the robot and any surface on the environment, and
is not restricted to be established between the soles of the feet and
the floor surface. For instance, a contact can be defined between
the forearm of the robot and the arm of an armchair, or between
the palm of the hand of the robot and the top of a table. This
strategy stems from the observation that all motions of humans
can be broken down to such a succession of contact transitions,
be it cyclic motions such as walking where these transitions occur
between the feet and the ground, or more complex maneuvers
such as standing up from an armchair were contacts transitions
occur between various parts of the body (hands, forearms feet,
tights, etc.) and various parts the environment objects (armchair,
table floor, etc.). This feature makes our planning paradigm able
to cope with situations that are broader than the ones classi-
cally tackled by humanoid motion planner that either plan for
the motion assuming a given contact state (e.g., planning a reach-
ing motion with the two feet fixed on the ground) (Kuffner et al.,
2002; Yamane et al., 2004; Yoshida et al., 2006, 2008), or plan-
ning footprint placements assuming a cyclic walking pattern will
occur on these footprints (Kuffner et al., 2001; Chestnutt et al.,
2003, 2005). This aligns well with our initially expressed objective
of controlling whole-body motion of any kind without restriction
to a subclass of taxonomically identified motions.

At the above-described contact-transition search stage, every
contact state that is being explored is validated by running an
inverse-kinematics solver which finds an appropriate whole-body
configuration (posture) of the robot that meets the desired con-
tact state, while at the same time satisfying physics constraints
to make the posture physically realizable within the mechanical
limits of the robots (Bouyarmane and Kheddar, 2010). At the
end of the offline-contact planning stage, we are provided with a
sequence of feasible contact transitions and associated transition
postures, that go from the initial contact state to the the goal.

The second stage of the controller is an on-line real-time
low-level controller (Bouyarmane and Kheddar, 2011b) that will
successively track each of the intermediate postures fed by the
off-line planning stage, until the last element of the planned
sequence is reached. The controller is formulated as a multi-
objective quadratic program optimization scheme, the objectives
being expressed in terms of the moving link of the robot involved
in the current contact transition being tracked along the sequence
(e.g., the foot if the contact transition is a sole/floor one), the cen-
ter of mass (CoM) of the robot to keep balance, and the whole

configuration of the robot to solve for the redundancies of the
high-DOF motion. These objectives are autonomously decided
by a finite-state machine (FSM) that encodes the current type of
transition among the following two types:

• Removing-contact transition: the motion of the robot is per-
formed on the current contact state, and the step is completed
when the contact forces applied on the contact we want to
remove vanish. This is done by shifting the weight of the robot
away from the being-removed contact, tracking the CoM posi-
tion of the following configuration in the sequence. There is no
end-link motion in this kind of step. The corresponding FSM
state is labeled “Shift CoM.”

• Adding-contact transition: the motion of the robot is per-
formed on the current contact state, and the motion of the
link we want to add as a contact is guided to its desired con-
tact location. There is thus an end-link motion (contact link) in
this kind of step. Balance is ensured by also tracking the CoM
position of the following configuration in the sequence. The
corresponding FSM state is labeled “Move contact link.”

As an example, a cyclic walking FSM state transition sequence will
look like: Move contact link (left foot) → Shift CoM (on the left
foot) → Move contact link (right foot) → Shift CoM (on the right
foot) → Move contact link → . . . But non-cyclic behaviors are
also possible and allowed, for example when standing up from an
armchair where contacts between the hands of the robot and arms
of chair can be added in succession and removed in succession.

The final output of the quadratic program optimization
scheme is a torque command that is sent to the robot at every con-
trol iteration, after the execution of which the state of the robot is
fed-back to the controller.

4. BMI DECODING
Our aim is for the humanoid system to be controlled by using
brain activities in the similar brain regions that are used to con-
trol the user’s own body. Therefore, we asked a subject to control
the simulated humanoid system by using motor imagery of arm
movements so that brain activities in motor-related regions such
as the primary motor cortex can be used.

As non-invasive brain signal acquisition device we use an
electroencephalogram (EEG) system (64 channels and sampling
rate of 2048 Hz). The brain signals are decoded and classified
using the method that was applied and presented in our previ-
ous work (Noda et al., 2012), based on the spectral regulariza-
tion matrix classifier described in Tomioka and Aihara (2007);
Tomioka and Muller (2010). We recall the method here.

The EEG signals, of covariance matrices C considered as input,
are classified into two classes, labeled with the variable k, with the
following output probabilities (at sampled time t):

P(kt = +1|Ct) = 1

1 + exp ( − at)
, (1)

P(kt = −1|Ct) = exp ( − at)

1 + exp ( − at)
, (2)

with the logit being modeled as a linear function of C
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at = tr[W�Ct] + b , (3)

and where W is the parameter matrix to be learned (b is a
constant-valued bias).

To learn W the following minimization problem is solved

min
n∑

t = 1

ln (1 + exp ( − ktat)) + λ‖W‖1 , (4)

λ being the regularization variable (λ = 14 in the application
below) and

‖W‖1 =
r∑

i = 1

σi[W] (5)

being the spectral l1-norm of W (r is the rank of W and σi[W] its
i-th singular value).

Once the classifier learned, the 7–30 Hz band-pass-filtered
measured EEG signals are decoded online, by down-sampling
them from 2048 to 128 Hz, and applying Laplace filtering and
common average substraction to remove voltage bias. Their
covariance matrix, initialized at Ct = x�

t xt for the first time step
t = 1, where xt ∈ R

1×64 denotes the filtered EEG signals, are
updated at every time step as follows

Ct = 1

N
x�

t xt + N − 1

N
Ct−1 , (6)

and used to compute the probabilities in Equations (1) and (2).
Finally, the three-valued discrete command ct that is sent to the

robot is selected from these probabilities through the following
hysteresis

ct =

⎧⎪⎨
⎪⎩

+1 if P(kt = +1|Ct) > Pthresh and ct−1 �= +1 ,

−1 if P(kt = −1|Ct) > Pthresh and ct−1 �= −1 ,

0 otherwise ,

(7)

where the threshold is set at Pthresh = 0.6.

5. COMPONENT INTEGRATION
The command ct devised in Equation (7) is sent to the online
humanoid whole-body controller via UDP protocol at 128 Hz
frequency and used to modify the planned and autonomously
executed motion of the humanoid robot as described below and
as schematically represented in Figure 2.

When the robot is executing a step that requires moving a link
to a planned contact location (contact-adding step, executed by
the state “Move contact link” of the FSM, see Section 3), then
instead of tracking directly the goal contact location, we decom-
pose the motion of the end-link (the contact link, for instance the
foot) into two phases:

• Lift-off phase: The link first tracks an intermediate position
located at a designated way-point.

• Touch-down phase: The link then tracks its goal location in the
planned contact state sequence.

This two-phase decomposition allows the link to avoid unneces-
sary friction with the environment contact surface and to avoid
colliding with environment features such as stairs.

Each of these two phases correspond to a sub-state of the meta-
state “Move contact link” of the FSM, namely:

• State “Move contact link to way-point”
• State “Move contact link to goal”

Additionally, in order to avoid stopping the motion of the contact
link at the way-point and to ensure a smooth motion through-
out the step, we implemented a strategy that makes the transition
from the former to the latter sub-state triggered when the con-
tact link crosses a designated threshold plan along the way, before
reaching the tracked way-point.

A default position of the intermediate way-point is automat-
ically pre-set by the autonomous framework using the following
heuristic (see Figure 2, left): Let Ps denote the start position of the
contact link (at the beginning of the contact-adding step) and Pg

denote its goal position (its location in the following contact state

FIGURE 2 | The way-point moving strategy. The rectangles in the left and
middle figures represent positions of the moving foot (say the right foot,
supposing the left foot is the support foot that is fixed and not represented
here). In the right figure the whole leg motion is reconstructed from the foot
motion. In all three figures, in black is the initial position of the foot/leg at the
beginning of the step, in blue the controlled way-point position of the foot/leg
at the middle of the step, and in red is the planned final foot/leg position at
the end of the step. The left figure shows how a default position of the way
point is initialized autonomously by a translation of the final planned position.

�g is the gravity vector, �z the vertical unit vector (opposite to �g), �u is the unit
vector from the initial to the goal position along the goal planned-contact
surface plane, �v is the generalized vertical direction unit vector, i.e., the unit
vector normal to �u and in the plane defined by �u and �z, finally, h is a pre-set
default height. The middle figure shows how the way-point position is
controlled via the command ct sent through the motor imagery interface.
Finally the left figure shows how the resulting motion of the leg actually looks
like with the foot going through the desired way-point that was translated
downwards via the command ct = −1.
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along the planned sequence). Let �g denote the gravity vector, �z the
unit vector opposite to �g, i.e., �z = −�g/‖�g‖, and �u the unit vector
from Ps,g (Ps projected on the goal-contact surface plane) to Pg ,

i.e., �u = −−−→
Ps,gPg/‖−−−→

Ps,gPg‖. Finally let �v = �u × (�z × �u) be the unit
vector normal to �u that lies in the plan defined by �u and �z. The
default way-point Pw is defined as

Pw = Pg − 1

2

−−−→
Ps,gPg + h �v , (8)

where h is the hand-tuned user-defined parameter that specifies
the height of the steps. The command ct in Equation (7) that
comes from the BMI decoding system is finally used to modify
in real-time this way-point position Pw by modifying its height h
(see Figure 2, middle). Let δh denote a desired height control res-
olution, then the modified position of the way-point through the
brain command ct becomes

Pw(ct) =
{

Pg − 1
2
−−−→
Ps,gPg + (h + ct δh) �v if t = 1 ,

Pw(ct−1) + ct δh �v if t > 1 .
(9)

The command ct could have been used in other ways, however we
identified two principles that should in our view stand in a BMI
low-level control endeavor of humanoid motion such as ours:

• Principle 1: The full detailed motion, that cannot be designed
joint-wise by the BMI user, should be autonomously planned
and executed from high-level (task-level) command.

• Principle 2: The brain command can then be used to locally
correct or bias the autonomously planned and executed
motion, and help overcome shortcomings inherent to full
autonomy.

The way-point is a key feature to be controlled according to
these two principles as it helps surmount the main limitation
of the autonomous collision-avoidance constraint expressed in
the on-line quadratic-program-formulated controller described
in Section 3. This collision-avoidance constraint, that had to be
formulated as a linear constraint in the joint acceleration vec-
tor of the robot in order to fit within the quadratic-program
formulation [adapting to this end the velocity-damper formula-
tion (Faverjon and Tournassoud, 1987)], acts as a repulsive field,
with the tracked way-point acting as an attractive field, on the
contact link. The resultant field (from the superposition of these
two fields) can display local extrema corresponding to equilib-
rium situations in which the link stops moving though without
having completed its tracking task (see Figure 9). Manual user
intervention, here through the brain command, is then neces-
sary to un-block the motion of the link by adequately moving the
tracked way-point. The brain command is thus used here for low-
level correction of a naturally limitation-affected full-autonomy
strategy.

6. PROOF-OF-CONCEPT EXPERIMENT
The experiment we designed (see Figure 3 and video that
can be downloaded at http://www.cns.atr.jp/~xmorimo/videos/

frontiers.wmv) to test the whole framework is described as
follows.

An initial and goal configurations (Figure 4) are pre-specified
manually by the user among a finite number of locations in the
environment. In this case the initial configuration is standing in
front of a stair and the goal task is to go up on the stair. This selec-
tion is for now done manually, but it can later also be selected
through a brain command by embedding the strategy described
in this work within a hierarchical framework such as the ones sug-
gested in Chung et al. (2011); Bryan et al. (2011), that will switch
between the behavior of selecting the high-level goal task and the
low-level motion control.

Off-line, the framework autonomously plans the sequence of
contact transitions and associated intermediate static postures to
reach that goal (Figure 5), then the on-line controller is executed.

The user is wearing an EEG cap and is trained with 3 training
sessions of approximately 5 min each to learn the parameter of the
classifier described in Section 4, through a motor imagery task

FIGURE 3 | Experiment setup. The user is wearing an EEG cap. The laptop
on his left side is used for decoding the motor imagery task signal, the
computer on his right runs the real-time physics simulation allowing him to
control the position of the moving foot through the visual feedback he gets
from the simulator window.

FIGURE 4 | Intial and goal positions for the experiment. Left: initial
configuration with the robot standing in front of the stair. Right: goal
configuration with the robot standing at the extremity up on the srair.

Frontiers in Systems Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 138 | 5

http://www.cns.atr.jp/~xmorimo/videos/frontiers.wmv
http://www.cns.atr.jp/~xmorimo/videos/frontiers.wmv
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Bouyarmane et al. BMI control of humanoid

FIGURE 5 | The sequence of static postures planned autonomously. The
first posture is the initial posture. The second posture which looks like the
first one keeps both feet on the ground but puts all the weight of the robot
on the right foot so as to zero the contact forces on the right left to release it
for the next posture. The third posture moves the now free left foot and puts

it on the stair, but still without any contact force applied on it (all the weith of
the robot is still supported by the right foot). the fourth postures keeps both
feet at their current locations but shifts all the weight of the robot away from
the right foot to put it entirely on the left foot, the right foot becomes free of
contact forces, and so on.

FIGURE 6 | The controlled motion. The figures represent successive
snapshots from the real-time controlled motion in the physics simulator.
The controlled position of the way point appears in the simulator as a
black sphere that we circle here in red for clarity. This position is tracked
by the foot (more precisely at the ankle joint) throught the simulation.
The two horizontal lines represent the level of the sole of the foot at the

two positions sent as a command by the user through the BMI. These
lines do not appear in the simulator we add them here only as common
visualization reference lines for all the snapshots. In the first two frames
the robot tracks the default position of the way point. In the third frame
the user decides to move that position up, then down in fourth frame,
and finally up again in the fifth frame.

consisting of imagining respectively left arm and right arm cir-
cling movements for going up and down. This task is generic and
we retained it since it gave us in our experiment better decoding
performances than some other tasks (e.g., leg movements). The
user has visual feed-back from the simulator on the desktop com-
puter screen (on his right in Figure 3) and from a bar-diagram
representing in real-time the decoded probability of the motor-
imagery task classification on the laptop computer screen (on his
left in Figure 3). The experiment was successfully completed on
the first effective trial, which was the overall third trial (the first
two trials were canceled after their respective training sessions
since we encountered and fixed some minor implementation bugs

before starting the control phase). The subject had prior experi-
ence with the same motor-imagery classifier in our previously-
cited study (Noda et al., 2012). We only experimented with that
one subject as we considered that we reached our aim of testing
our framework and providing its proof-of-concept experiment.

The decoding of the BMI command is done in real-time and
implemented in Matlab, and the brain command is then sent via
UDP protocol to the physics simulator process implemented in
C++.

We tested the way-point control strategy in the second step
of the motion (the first contact-adding step along the sequence,
the highlighted transition in Figure 5). Figure 6 focuses on this
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controlled part of the motion. The user controlled the posi-
tion of a black sphere that represents the position of the tar-
geted way-point, that the foot of the robot tracks in real-time,
while autonomously keeping balance and avoiding self-collisions,
joint limits, and collision with the environment. A total of 8

FIGURE 7 | Motor imagery decoding performances. On the horizontal
axis is iteration number. From top to bottom: the thick blue line represents
the command cue given as an input to the user, the thin red line represents
the decoded brain activities [the probability P(kt = +1|Ct )], the thick red
point markers represent the estimated classified label [P(kt = +1|Ct ) ≥ 0.5
or < 0.5], finally the thick green line represents the command ct sent to the
robot (based on the threshold Pthres = 0.6). Note that this green command
does not represent the position of the way-point but the instantaneous rate
of change in this position between two successive time steps t and t + 1,
according to Equation (9), line 2 (i.e., the “derivative” were we talking of a
continuous and differentiable function rather than the time-discretized one
at hand).

commands (“up”/“down”) were sent during this controlled tran-
sition phase, that we voluntarily made last around 300 s (5 min)
in order to allow the user to send several commands. We then
externally (manually) triggered the FSM transition to the follow-
ing step along the sequence and left the autonomous controller
complete the motion without brain control. That autonomous
part was completed in about 16 s. See the accompanying
video.

Figure 7 illustrates the decoding performances of the BMI
system, while Figure 8 shows the tracking performance of the
humanoid whole-body controller. The table below gives com-
putation time figures executed on a Dell Precision T7600
Workstation equipped with a Xeon processor E5-2687W
(3.1 GHz, 20 M). Full details on the physics simulator, including
contact modeling and resolution, and collision detection, can be
found in Chardonnet et al. (2006); Chardonnet (2012).

Offline planning 2.7 s

Average online control command (QP) (@ 200 Hz) 2.661 ms

Average online simulation step (@ 1 kHz) 0.389 ms

BCI classifier training and learning session ∼ 30 min

Average online BCI signal buffering (@ 2048 Hz) 0.137 ms

Avg online BCI classification (@ 128 Hz) no control signal
sent (ct = 0)

0.204 ms

Avg BCI classification (@ 128 Hz) control signal sent
(ct = +1 or −1)

6.20 ms

From this experiment, we confirmed that the autonomous
framework can be coupled with the BMI decoding system
in real-time in simulation and that the simulated robot can
safely realize the task while receiving and executing the brain
command.

FIGURE 8 | Way-point tracking performance. The user-controlled quantity,
that happens to be in the particular case demonstrated here the z-coordinate
of the tracked way-point (the “generalized” vertical direction being reduced in
this case to the “conventional” vertical direction, meaning �v ≡ �z in Figure 2,
since the goal-contact surface on the stair is horizontal), is represented by the

piecewise-constant red curve. The corresponding motion of the foot, that
tracks this command-induced way-point position, is shown in yellow curve.
the two other coordinates of the foot (x and y ) are auonomously maintained
by the controller at the corresponding ones of the way-point and stay at their
desired values throught the command phase.
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FIGURE 9 | Comparison of the controlled transition motion in three

instances. Top: without collision-avoidance constraint, the foot of the robot
collides with the stair while targeting its goal, and the simulation stops.
Middle: with autonomous collision-avoidance constraint that happens to
create in this case a local-minimum trap, the robot reaches an equilibrium

situation and stays idle for as long as we let the simulation run (infinite time).
Bottom: The autonomous collision-avoidance strategy combined with the
proposed BMI-control approach helps reposition the way-point and overcome
the local-minimum problem. The robot safely reaches the goal contact
location and the motion along the sequence can be completed.

7. DISCUSSION AND FUTURE WORK
This work demonstrated the technical possibility of real-time
online low-level control of whole-body humanoid motion using
motor-imagery-based BMI.

We achieved it by coupling an existing EEG decoder
and whole-body multi-contact acyclic planning and control
framework. In particular, this coupling allowed us to control a
one-dimensional feature of the high-DOF whole-body motion,

Frontiers in Systems Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 138 | 8

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Bouyarmane et al. BMI control of humanoid

designed as the generalized height of moving link way-point,
in a discrete way. Though the motor-imagery task used in our
proof-of-concept experiment was a generic one (left-arm vs.
right-arm circling movement), we plan in the future to investigate
more specific motor-imagery tasks that are in tighter correspon-
dence with the limb of the robot being controlled, along the
longer-term user’s-mind-into-robot’s-body “full embodiment”
quest that motivates our study as expressed in our introductory
section. Since previous studies reported that imagery of gait and
actual gait execution have been found to recruit very similar cere-
bral networks (Miyai et al., 2001; La Fougère et al., 2010), we may
be able to expect that a human can control a humanoid the same
way they control their own human body through motor imagery.

We also aim now at continuous control of two-dimensional
feature of this whole-body motion, allowing not only the control
of the tracked way point but also of a corresponding thresh-
old plan that decides when to trigger the transition between the
lift-off and touch-down phases. We believe this can be achieved
based on the previous work done for example on motor-imagery
two-dimensional cursor control (Wolpaw and McFarland, 2004).
Other previous studies also discussed the possibilities of using
EEG for such continuous control (Yoshimura et al., 2012). In
addition, for the continuous two-dimensional feature control,
explicit consideration of individual differences in cerebral recruit-
ment during motor imagery may be necessary (Meulen et al.,
2014). As a future study, we may consider using transfer learn-
ing approaches (Samek et al., 2013) to cope with this individual
difference problem.

Finally, we aim at porting this framework from the simula-
tion environment to the real robot control, so that in future study
we may possibly use the proposed framework in a rehabilitation
training program to enhance recovery of motor-related nervous
system of stroke patients.
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